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ABSTRACT

Despite the fast development of explanation techniques where the
main focus is handling “how to generate the explanations”, research
questions like “whether the explanations are accurate”, “what if the
explanations are inaccurate”, and “how to adjust the model to gener-
ate more accurate explanations” are still relatively under-explored
by the research body. To guide the model toward better explana-
tions, explanation supervision techniques which add supervision
signals on the model explanation has started to show promising
effects on improving both the generalizability as well as intrinsic
interpretability of Deep Neural Networks (DNNs), especially on
the text and attributed data where the human annotation labels
can be assigned accurately on each feature of the data. However,
the research on supervising visual explanations (e.g., explanation
represented by saliency maps) is still under-explored and in its
nascent stage, due to several inherent challenges: 1) inaccuracy of
the human explanation annotation boundary, 2) incompleteness of
the human explanation annotation region, and 3) inconsistency of
the data distribution between human annotation and model expla-
nation maps. To address the challenges, we propose a generic RES!
framework for guiding visual explanation by developing a novel
objective that handles inaccurate boundary, incomplete region, and
inconsistent distribution of human annotations, with a theoretical
justification on model generalizability. Extensive experiments on
two real-world image datasets demonstrate the effectiveness of the
proposed framework on enhancing both the reasonability of the
explanation and the performance of the backbone DNNs model.
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1 INTRODUCTION

As DNNs become widely deployed in border areas of applications
including sensitive areas, the study on explainability that aims at
understanding how DNNs work is currently attracting considerable
attention from researchers [1, 2, 16]. To open the “black box” of
DNN s, many explainability techniques have been proposed that try
to provide the “local explanation” of the DNNs prediction for a spe-
cific instance [16], such as methods that provide the saliency maps
for understanding which sub-parts (i.e., features) in an instance are
most responsible for the model prediction [3, 4, 23, 24, 30, 37].

Despite the fast development of explanation techniques where
the main focus is handling “how to generate the explanations”,
research questions like “whether the explanations are accurate”,
“what if the explanations are inaccurate”, and “how to adjust the
model to generate more accurate explanations” are still relatively
under-explored by the research body.

Recently, explanation supervision techniques which add supervi-
sion signals on the model explanation has started to show promising
effects on improving both the generalizability as well as intrinsic
interpretability of DNNs in many application domains, especially
on text data [18, 29] and attributed data [33] where the human
annotation labels can be assigned accurately on each feature of the
data.

However, the research on supervising visual explanations (e.g.,
explanation represented by saliency maps) on image data is still
under-explored and in its nascent stage. This is because of several
inherent challenges in supervising visual explanations: 1) Inaccu-
racy of the human explanation annotation boundary. It is
very difficult and costly for the boundary of human annotation to
be perfectly accurate, which could lead the model to falsely assign
positive explanation value to irrelevant features (i.e., pixels in im-
age data). For example, as shown by the yellow arrows in Figure 1
(b), the coarsely drawn boundary of the human annotation falsely
excluded a non-trivial region of the boundary of the wildflowers
that could also be important to the prediction. 2) Incompleteness
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Figure 1: An example showing the challenges present in
the human annotation labels: (a) human annotations are
represented with red lines while ground-truth boundaries
are shown with black lines. (b) Error caused by “inaccu-
rate boundaries” are presented with black regions, (c) Error
caused by “incomplete regions” are shown with a black re-
gion, and (d) the discrepancies between the “binary” human
annotation and the “continuous” model-generated explana-
tion maps. The explanation is queried based on predicting
the scene as ‘wild nature’.

of the human explanation annotation region. When labeling
the explanation for image data, people usually tend to provide only
a few regions as long as they are sufficient to convince people
about the decision and do not bother to comprehensively find all
the possible regions that cover all different ways of explanations.
Such incompleteness can mislead the model to wrongly penalize
all the regions as long as they are not selected by annotators. An
example of such a situation can be illustrated by Figure 1 (c), where
the human annotation clearly missed one wildflower as shown
in the black region. 3) Inconsistency of the data distribution
between human annotation and model visual explanations.
The saliency maps generated by model explainers and those labeled
by human annotators reside in different data domains and distribu-
tions: the former takes the form of continuous real values while the
latter is often in discrete binary values. Figure 1 (d) clearly show
the huge difference between “binary” human annotation (i.e., red
circled areas as marked as positive, and the rest areas as negative)
and the continuous model-generated explanation map (i.e., more
importance is given to the area with a warmer color) in distribution.
Therefore, human-annotated explanations cannot be directly used
to supervise the model and its explanations without significant
efforts to fill the gap between the data domain and distributions.
To address the above challenges, beyond merely applying human
annotation labels directly as the supervision signals to train the
model, this paper focuses on proposing a generic robust explanation
supervision framework for learning to explain DNNs under the
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assumptions that the human annotation labels can be inaccurate
in the boundary, incomplete in the region, as well as inconsistent
with the distribution of the model explanation. Specifically, we
propose a novel robust explanation loss that addresses all three
aforementioned challenges present in the noisy human annotation
labels. In addition, we give a theoretical justification of the benefits
of having the proposed explanation loss to the generalizability
power of the backbone DNN model.

Specifically, the main contributions of our study are as follows:

(1) Proposing a generic framework for learning to explain
DNNss with explanation supervision. We propose a uni-
fied framework that enables explanation supervision on
DNN s with both positive and negative explanation annota-
tion labels and is generalizable to the existing differentiable
explanation methods.

Developing a robust model objective that can handle
the noisy human annotation labels as the supervision
signal. We propose a novel robust explanation loss that can
handle the inaccurate boundary, incomplete region, as well
as inconsistent distribution challenges in applying the noisy
human annotation labels as the supervision signal.
Providing a theoretical justification on the generaliz-
ability power of the proposed framework. We formally
derive a theorem that provides an upper bound for the gener-
alization error of applying the proposed robust explanation
loss when training the backbone DNN models.
Conducting comprehensive quantitative and qualita-
tive experimental analysis to validate the effectiveness
of the proposed model. Extensive experiments on two real-
world image datasets, gender classification and scene recog-
nition, demonstrate that the proposed framework improved
the backbone DNNs both in terms of prediction power and
explainability. In addition, qualitative analyses, including
case studies and user studies of the model explanation, are
provided to demonstrate the effectiveness of the proposed
framework.
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2 RELATED WORK

Our work draws inspiration from the research fields of local ex-
plainability techniques of DNNs that provide the model-generated
explanation, and explanation supervision on DNNs which enables
the design of pipelines for the human-in-the-loop adjustment on the
DNNss based on their explanations to enhance both explainability
and performance of DNN models.

2.1 Local Explainability Techniques of DNNs

As DNNs become widely deployed in border areas of applications
including sensitive areas, recent years have seen an explosion of
research in understanding how DNNs work under the hood (e.g.,
explainable Al or XAI) [1, 2, 12, 16, 34]. Due to the “black box”
nature of DNNs, most of the existing and well-received explain-
ability methods focus on providing a “local explanation” that aims
at explaining the prediction in understandable terms for humans
for a specific instance or record [16]. One popular direction is to
compute saliency maps as the local explanation, which provide the
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saliency values regarding which input features are most responsi-
ble for the prediction of the model [3, 23, 24, 30, 37]. For example,
for image input, a saliency map is able to summarize where the
model is “paying attention to” when performing a certain image
recognition task. In this direction, one set of works incorporates
network activations into their visualizations, such as Class Acti-
vation Mapping (CAM) [37] and Grad-CAM [30]. Another set of
approaches take a backward pass and assign a relevance score for
each layer backpropagating the effect of a decision up to the input
level, existing works such as LRP [3, 23], and DTD [24] belong to
this category. In addition, some model inspection methods such
as VisualBackProp (VBP) [7] can also provide a local explanation
similar to the LRP approaches. Besides the above techniques that
are more specifically designed for interpreting image data, there
are also several existing techniques that aim at providing more
model-agnostic explanations on different types of data, such as
LIME [27], Anchors [28], MES [32], and LORE [15]. Please refer to
the survey papers [2, 16] for a more comprehensive review of the
existing works.

2.2 Explanation Supervision on DNNs

The potential of using explanation-methods devised for under-
standing which sub-parts in an instance are important for making a
prediction—in improving DNNs has been studied in many domains
across different applications [13]. In particular, explanation super-
vision techniques have been widely explored on image data by
the computer vision community [9, 10, 21, 22, 25, 26, 35]. Existing
studies have shown the benefit of using stronger supervisory sig-
nals by teaching networks where to attend [21]. Following this line
of study, several explanation supervision frameworks have been
proposed. Mitsuhara et al. [22] proposed a post hoc fine-tuning
strategy, where an end-user is asked to manually edit the model’s
explanation to interactively adjust its output. However, the pro-
posed framework is only applicable to a specific type of DNN called
Attention Branch Network [11]. In addition, several frameworks de-
signed for the Visual Question Answering (VQA) domain have been
proposed, where the goal is to obtain the improved explanation on
both the text data and the image data [10, 25, 26, 35].

More recently, several more generic frameworks have been pro-
posed for explanation supervision on image data. One existing
work proposed a conceptual framework HAICS [31], and the au-
thors further implement it in an image classification application
with human annotation in the form of scribble annotations as expla-
nation supervision signals. Another work proposed the GRADIA
pipeline [14], which improves the performance and explainability
of the backbone DNN by jointly optimizing the task performance
as well as the alignment between the human-annotated attention
maps and model explanation maps. Besides image data, the expla-
nation supervision has also been studied on other data types, such
as texts [18, 29], attributed data [33], and more recently on graph-
structured data [13]. However, most of the existing works typically
assume the human annotation labels are clean and accurate, while
in practice they are prone to be inexact, inaccurate, and incom-
plete when directly used as the supervision signal for supervising
the model explanation. To our best knowledge, we are the first to
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propose a robust explanation supervision framework that aims at
handling this open research problem.

3 MODEL

In this section, we first introduce the proposed RES framework
that enables explanation supervision on DNNs with both positive
and negative explanation annotation labels. We then move on to
propose a novel robust explanation loss that is designed to handle
the inaccurate boundary, incomplete region, as well as inconsistent
distribution challenges in applying the noisy human annotation
labels as the supervision signal. Finally, we give the theoretical
justification of the benefits of having the proposed explanation loss
to the generalizability power of the backbone DNN model.
Problem formulation: Let x € REHXW be the input image
data with C channels, H as height, and W as width. Let y be the
class label for input x, the general goal for a DNN model is to learn
the mapping function f for each input x to its corresponding label,

fix—>y.

3.1 The RES Framework

The general goal for the RES framework is to boost the model
explainability via robust explanation supervision such that the
model can robustly learn to assign more importance to the right
input features even given noisy human explanation annotation
labels, and consequently boost the task performance as well as
the interpretability of the backbone DNN model. Here, we present
the general learning objective of the RES framework to be a joint
optimization of the model prediction loss and the robust explanation
loss. Concretely, we propose the objective function as:

N
min " Lprea(f(x),yD) + L (MD,FD, D)) (1)
i ———
prediction loss

robust explanation loss

where M() e RXW denotes the model-generated explanations
for ith sample using a given explanation method; F @) ¢ {0, 1}1W
and C) € {0, 1}W denote the corresponding binary labels for
positive (i.e., Fj(llz = 1 if the pixel at coordinate (j, k) of sample
image i should be assigned with high importance, and 0 otherwise)
and negative (i.e., C](llz = 1if the pixel at coordinate (j, k) of image
i should be assigned with low importance value, and 0 otherwise)

explanation marked by the human annotators. Lpeq(f (x(Dy, y(i))
is the typical prediction loss (such as the cross-entropy loss).

3.2 Robust Explanation Supervision for Noisy
Explanation Annotation labels

To address the challenges presented in the noisy human annotation
labels, we propose a robust explanation loss Ly, that measures the
discrepancies between model and human explanations regarding
both the positive and negative explanation and taking into consid-
eration the noisy nature of human annotation labels. Without loss
of generality, let us assume MO = F@ _¢0) jp range [—1,1] be
the ground truth ideal explanation value for input image x(D), given
the ideal positive explanation F (@ € [0,1] and negative explana-
tion C() ¢ [0, 1]; the binary human annotation as F( and C(i);
and the model explanation as M @) = g( fg((x(i))), where function
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g(+) specify the explanation method. We have E[IIM®D - (F® —
CON=(FD -cD)-MD ] < max{o, E[[|MD —(FD —cD)]||]-
E[||(F? - @) - MD|]} < E[max{o, [M") ~ (FO —c)|| -
I(FD — @Dy - pD|3] < E[|MD — MD||] according triangle
inequality. We define o = E[||(F()) — F()) — (¢() — ¢())]|]. There-
fore, to minimize ||M(i) -m® ||, we can have a tighter surrogate
loss based on the annotated labels as follows:
max{0, [|[M®D — (F®) - D) - o}

Since the ground truth F and € are unknown, estimating a can be
difficult. In practice, we can assume their distributions are positively
correlated with the distribution of F and C, which can therefore be
estimated by a slack variable a. To keep it simple and without loss
of generality, in this work, we define « as a hyper-parameter of
the framework assuming no additional knowledge about the ideal
distribution.

3.2.1 Bridging the distribution between human labels and model
explanation maps. To bridge the continuous model explanation
M with binary human labels C and F, we propose to split the
above objective into two terms with bidirectional projections, as
follows:

N
; o 1[arD — (F _ ey —
%$Zmﬂtm ( NI - a}

+d(MD p(FD, cD)y) )

where d(+) is a distance function, h(-) is a mapping function that

maps the binary masks F (D and ¢ to continuous value in range

[0,1], and MWD isa binary projection of M@ by a threshold a, as:

. (i 1 MO >4

NG ={ Lol 3)

Basically, the above equation takes both the absolute difference

(measured by the first term) and relative distance (measured by the

second term) into consideration when comparing the continuous
model explanation and the binary human explanation masks.

3.2.2 Mitigating the Inaccurate Boundary via Label Imputation. To
realize the mapping function h(-) in Equation (3) which aims at
projecting the binary human labels into continuous value domain,
an intuitive way is to define h(-) as applying a k X k Gaussian
kernel on the binary annotation labels F and C such that the pixels
that close to the boundary of the manual label will also obtain
slack values to boost the robustness and deal with the inexact and
inaccurate boundary from human annotation.

However, a predefined kernel matrix might not be suitable for
every data sample, and the discrepancy and inconsistency among
annotators can also influence the accuracy of such a pre-defined
estimation on handling the inaccurate boundary issue. Therefore,
we further extend this idea and define a learnable imputation func-
tion hy () with multiple learnable kernel transformations as the
parameter set ¢, such that the kernels’ weights can be adjusted and
learned to make better estimations of the ground truth explanation
values and provide better mitigation to the inaccurate boundary
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problem. Specifically, the explanation loss with a learnable imputa-
tion function as follows:

N
: 0. 1Tar®D — (g _ c(® —
gligzi:max{ L ( NI = a}

+d(MD, hy(FD, cDy) (4)
where ¢ is the parameter set of the imputation function hg(-). The
imputation function can be realized by applying multiple layers of

convolution operations with learnable kernels over the raw anno-
tation label F and C.

3.2.3 Handling the Incomplete Region by Selective Penalization. Fi-
nally, due to the incompleteness of human annotation labels, and to
avoid falsely penalizing the model from assigning importance to the
relevant features missed by the human labels, we propose to only
selectively apply the explanation supervision signal onto the fea-
tures with either positive or negative annotation labels. Concretely,
we define the robust explanation loss Ly, as follows:

N
min Zl: max{0, [|[[MD = (F) — cD)].1(FD =D % 0)|| - a}

+d(MD1(FD - £ 0), by (FD,cD).1(FD -c) £ 0)) (5)
where 1(-) is the indicator function, and - represents the elemental-
wise multiplication operation. This formulation also gives the model
a certain degree of flexibility on deciding the importance of unla-
beled features based on data and downstream task, thus could yield
a more generalizable and reasonable explanation that enhance both
explainability as well as task performance of the model.

3.3 Optimization of Robust Explanation Loss

The indicator function for calculating M () (as shown in Equation
(3)) prevents us from directly optimizing our model objective with
conventional gradient descent algorithms such as Adam [19]. Con-
cretely, the optimization problem presented in Equation (5) involves
optimizing both the adaptive threshold a and the model-generated
explanation M() = 9(fo (x)). Here, we propose to first find the
optimal threshold a given model parameter 6, and then optimize
0 with conventional gradient descent algorithm by proposing a
differentiable approximation to the indicator function.

First, to find the optimal a given 6, we need to solve the following
objective:

N
min )" [N = (FD - )] 1(FD —cD £ 0)| (o)
“ i

Which is mathematically equivalent to the following equation by
expanding M OF

N
~ (i) _ply. g
malnzi:H[l(M >a)—FD].FO|+

I1MD < a) - cD].cD (7)

If we treat each entry of M (@) a5 having two inequality constraints
on g, we can efficiently solve the above formula in O(mlogm)
by our proposed algorithm by treating this optimization problem
as finding a a that satisfies the maximum number of inequality
constraints, where m = max(|F|, |C|). The details of the proposed
searching algorithm can be found in Appendix A.3.
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To further enable gradient calculation of M @ in Equation (5),
we propose a surrogate loss using the hyperbolic tangent function
tanh(-) to approximate the indicator function, as follows:

N
min Z max{0, || [tanh(y(MD = a)) = HO]-1(HD # 0)|| - a}+
6.a,¢ ;
+d(MD - 1(HD 2 0),hg(FD,cD) . 1(HD 20)) (8

where H) = p() _ c(D), y controls the slop of the hyperbolic
tangent function. Moreover, when y — oo , we can ensure such a
approximation can be mathematically equivalent to the original
indicator function in Equation (4) as shown in the following lemma.

LEmMA 1. Equation (8) is mathematically equivalent to Equation
(5) wheny — oo.

Proor. Please refer to Appendix A.2 for the proof. O

3.4 Theoretical Analysis of Generalizablity

In this subsection, we theoretically justify the generalizability power
of the proposed explanation loss, as shown in Theorem 1 below.
We consider the regularized expected loss:

L(fp) =E [ Lprea(fo(x),y) + Lexp(Vy (x)) ] ©)
where fjy is any learnable function with parameter 6 € ©. In addi-
tion, denote the empirical loss as

N
. 1 . . :
LUfo) = 5 2 (Lreealfox ).y ) + Lep (Vp(x D)) (10)
i=1
where N denotes the training sample size. V fy (x) denotes the gradi-
ent of fp on input x, which can be used to generate any explanation.
We omit the label (namely, F (@ and C (i)) in Lgyp here for more
compact notation. Also, we assume that Lpeq is L1-Lipschitz and
Lgxp is Lz-Lipschitz continuous w.r.t its first input, respectively.

DEFINITION 1 (§-MINIMIZER). A function fj is said to be a 5-
minimizer of L(-) if

L(fp) < inf L(fg)+6 11

(fp) < nf L(fy) (1)

AsSUMPTION 1. Let fp« be the solution to Eq. (9). There exists a
neural network f; with t € © such that
2
2. 2 2 2 1167]|
e = forl = B [Ife = for P+ Ve - Vo] < 2L 12)
where C1 is some constant, m is a constant related to the number of
parameters in f, and y is a constant order.

AssUMPTION 2. Given any neural network fp from 6 € © and i.i.d

sample {x® }ﬁ\il. Given any 0 < € < 1, we assume that

5 Co(V,m,€)
L -L < ——”-"
;gg |L(fp) = L(fo)| < N

with probability at least 1 — €. Cy relies on set ®, m and €.

(13)

Such an inequality can be ontained using some statistical learning
theories like Rademacher complexity.
Now we provide our generalization error bound as follow:
THEOREM 1 (GENERALIZABILITY OF EQUATION (1)). Let fy« be the
minimizer of L(-), fz be a 6-minimizer of £, then given0 < € < 1,
with probability at least 1 — € over the choiec ofx(i), we have

C1ll6*Il  2C2(V, m,e)
0< L(fz) = L(fy) < (L1 +L2) :,1)//2 + zwme

+25 (14)
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ProOF. Please refer to Appendix A.1 for the formal proof. O

Our Theorem 1 provides an upper bound for the generalization
error between the numerical optimal solution 6 and the theoretical
optimal solution 6. The first term in the bound corresponds to the
approximation error given in the first assumption, the second term
corresponds to the quadrature error given in the second assump-
tion, and the last term corresponds to the training error. To reduce
the generalization error, we need to increase both the number of
parameters and training samples. Meanwhile, the empirical loss is
needed to be solved sufficiently well.

4 EXPERIMENTS

We test our RES framework on two application domains, gender
classification and scene recognition. We first describe the detailed
settings for the experiments and then present the quantitative stud-
ies on both model prediction as well as the explanation. In addition,
we include several qualitative studies, including case studies and
user studies, to make a better qualitative assessment of how the
proposed model has enhanced the explainability of the backbone
DNN models.

4.1 Experimental Settings

Gender Classification Dataset: The gender classification? is one
of the widely used tasks in the research of fairness in broader
machine learning communities [5, 8, 36]. We constructed the dataset
from the Microsoft COCO dataset? [20] by extracting images that
had the word “men” or “women” in their captions. We then filtered
out instances that 1) contain both words, 2) include more than two
people, or 3) humans appear in the figure is nearly not recognizable
from human eyes. We collected a total of 1,600 images that satisfied
our criterion and obtained the human annotation labels for all
the image samples with our human annotation UI (please refer to
Appendix A.4 for more details). For data splitting, we only randomly
sampled 100 samples out of the 1,600 images as the training set
to better simulate a more practical situation where we only have
limited assess to the human explanation labels. The rest 1,500 data
samples were then evenly split as the validation set and test set.

Scene Recognition Dataset: We obtained the scene images
from the Places365 dataset* [38]. The original dataset contains more
than 10 million images comprising 400+ unique scene categories.
Following the macro-class defined by [38], we constructed a binary
scene recognition task: nature vs. urban. The data samples for
the two classes were randomly sampled from a set of pre-defined
categories under macro-class “nature” and “urban”, respectively.
Specifically, the categories we used to sample the data are listed
below:

e Nature: mountain, pond, waterfall, field wild, forest broadleaf,
rainforest
e Urban: house, bridge, campus, tower, street, driveway

Notice that the categories are non-comprehensive and the generated
datasets are just for the purpose of studying the quality of model

2We are aware that using a binary classification in gender does not reflect on the
diverse viewpoint of gender in the real world, and we emphasize that the binary
“gender classification” task here does not represent our viewpoint on gender.

3 Available online at: https://cocodataset.org/

4 Available online at: http://places2.csail. mit.edu/index.html
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explanation. We balanced the sample size for each category and
collected a total of 1,600 images. Again, we obtained the human
annotation labels for all the samples with the human annotation
UL, and split the data randomly with sample sizes of 100/750/750
for training, validation, and testing.

Evaluation Metrics: We evaluate the model in terms of task
performance as well as in terms of explainability. For model perfor-
mance, we use the conventional prediction accuracy to measure the
prediction power of the backbone DNN models as the datasets stud-
ied are well imbalanced. For explainability assessment, we leverage
the human-labeled explanation on the test set to assess the quality
of the model explanation. Specifically, we use the Intersection over
Union (IoU) score [6], which is calculated by taking the bit-wise
intersection and union operations between the ground truth expla-
nation and the binarized model explanation to measure how well
the two explanation masks overlap. In addition, since the IoU score
only assesses the quality of positive explanation, we further com-
pute the precision, recall, and F1-score as additional metrics which
provide a more comprehensive evaluation of the model-generated
explanation by taking into consideration the alignment of both
positive and negative explanation.

Comparison methods: We compare the performance of the RES
framework with the vanilla backbone model as the baseline as well
as two existing explanation supervision methods, GRAIDA [14] and
HAICS [31]. For the proposed framework, we show two variations:
RES-G and RES-L, with different implementations of the imputation
function. Concretely, we studied the following methods:

e Baseline: The conventional DNN model that is trained with
only the prediction loss.

e GRADIA [14]: A framework that trains the DNN model with
both the prediction loss as well as a conventional L1 loss that
directly minimizes the distance between the continuous model
explanation and the binary positive explanation labels.

e HAICS [31]: A framework that trains the DNN model with
both the prediction loss as well as a conventional Binary Cross-
Entropy (BCE) loss that directly minimizes the distance be-
tween the continuous model explanation and the combination
of positive and negative binary explanation labels.

e RES-G: The proposed RES framework with the imputation
function ¢(+) as a fixed value Gaussian convolution filter.

e RES-L:The proposed RES framework with the learnable impu-
tation function g (-) via multiple layers of learnable kernels.

Implementation Details: For all the methods studied in this
work, the backbone DNN model is based on the pretrained ResNet50
architecture [17]. All models were trained for 50 epochs using the
ADAM optimizer [19] with a learning rate of 0.0001. To make a
fair comparison on explainability, the model explanations were
all generated by the well-recognized explanation technique Grad-
CAM [30], although other local explanation techniques can also
be applied in our framework. The generated explanation maps are
normalized in the range of (0, 1] by dividing the maximum saliency
value on each sample for model training as well as visualization.
When calculating the explanation evaluation metrics, the explana-
tion maps were further binarized by a fixed threshold of 0.5. The
hyper-parameter « of the proposed RES framework was set to 0.001
for the gender classification task, and 0.01 for the scene recognition
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task, based on grid research via prediction accuracy on the valida-
tion set. The detailed implementation of the imputation layers for
RES-L can be found in the Appendix A.5.

4.2 Performance

Table 1 shows the model performance and model-generated explana-
tion quality for gender classification and scene recognition datasets.
The results are obtained from 5 individual runs for every setting.
The best results for each dataset are highlighted with boldface
font and the second bests are underlined. In general, our proposed
framework variations, i.e., RES-G and RES-L, outperformed all other
comparison methods in terms of both prediction accuracy as well
as explainability on both datasets. Specifically, regarding predic-
tion power, the RES-G with a pre-defined Gaussian transformation
kernel as the imputation function achieved the best performance,
outperforming the baseline DNN model by 4% and 3% on prediction
accuracy on gender classification and scene recognition datasets,
respectively. In addition, the proposed RES framework enhanced
the explainability of the backbone DNNs by a significant margin
as compared with the baseline DNN model as well as other expla-
nation supervision methods. The proposed RES-L with learnable
kernels as the imputation function achieved the highest improve-
ment on model explainability in terms of both IoU and F1 scores
on both datasets, out-performing other comparison methods by
8%-72% and 16%-36% on IoU and explanation F1 scores, respectively.
The comparison methods GRADIA and HAICS also improved the
model performance by leveraging the additional human attention
labels, but are generally much less effective than the proposed RES
framework. Those results demonstrated the effectiveness of the
proposed framework on enhancing the model explainability ro-
bustly under noisy annotation labels, and consequently improved
the model performance and prediction power on the prediction
tasks.

Next, we further studied how the DNN models can benefit from
the RES framework to gain a better generalization power under
different training sample size scenarios. Specifically, we studied
four training sample scenarios with training sample sizes of 10,
20, 50, and 100 on the Gender Classification Dataset. As shown in
Figure 2, we present the test prediction accuracy, IoU score, and
explanation F1 score of each method under the four training sample
size scenarios. The data point represents the mean value over 5 runs,
and the error bar here corresponds to the standard deviation. We
can see that the proposed RES framework outperformed all other
comparison methods by a significant margin under all scenarios
studied, especially on boosting the explainability of the backbone
DNNs as reflected by IoU and explanation F1 scores. Specifically,
RES was able to improve the model prediction accuracy by 2% - 5%,
and boosted the quality of the model explanation by 60%-80% and
36%-40% in terms of IoU and explanation F1 scores, respectively.
Interestingly, we also observed degradation in model performance
when applying GRADIA and HAICS when the sample size is ex-
tremely limited, such as in 10 and 20 training sample sizes scenarios.
This could be due to the fact that GRADIA and HAICS simply treat
the raw human annotation as clear data and thus suffer significantly
from learning directly from the noisy labels and consequently prone
to over-fitting badly. In contrast, with the robust learning objective,
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Table 1: The performance and model-generated explanation evaluation among the proposed models and the comparison
methods on both gender classification and scenes recognition tasks. The results are obtained from 5 individual runs for every
setting. The best results for each task are highlighted with boldface font and the second bests are underlined.

Dataset Model Accuracy ToU Precision Recall F1
Baseline | 68.35+1.00 | 13.68 £0.89 52.68 £0.61 56.34+1.63 47.77 +1.14
GRADIA | 70.01 + 1.47 16.66 + 1.10  64.07 £ 2.07  51.84 £ 3.55  53.35 + 3.08
Gender Classification | HAICS 69.29 £ 0.50 17.56 £ 0.79  60.06 = 2.17  56.48 = 2.13  54.90 = 2.14
RES-G 7133 £0.53 | 2297 £044 76.47 £0.45 63.90+3.64 63.54 + 2.29
RES-L 7039 £0.35 | 23.60 +£0.36 7632+ 0.77 65.75+ 1.20 65.24 +0.74
Baseline | 93.42 +0.43 | 38.55+0.22 89.67 £0.07 60.96 +0.56 68.47 + 0.46
GRADIA | 95.03 +£0.35 | 39.60 +1.13 8798 +£0.19 6347 +2.24 70.80 + 1.84
Scene Recognition HAICS 9489 £0.20 | 41.29+091 8847 +0.53 66.23+1.00 7295+ 0.87
RES-G | 95.91+0.31 | 45.97 £0.12 87.54+030 8288 +1.14 82.90 +0.33
RES-L 9553 £0.54 | 44.64+0.31 86.37 +£0.08 88.01+0.39 84.78 +0.29
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Figure 2: Model performance under different training sample size scenarios on gender classification dataset. The data point
represents the mean value over 5 runs, and the error bar here corresponds to the standard deviation. (Left) The test prediction
accuracy comparison. (Middle) The test IoU score comparison. (Right) The test explanation F1 score comparison.

the proposed RES framework is able to cope with the noisy label
pretty well even under a very limited sample size, and consequently
boosted the model performance in terms of prediction power as
well as explainability robustly in all scenarios studied.

4.3 Qualitative Analysis of the Explanation

4.3.1 Case Studies. Here we provide some case studies about the
model-generated explanation comparison for both gender classi-
fication and scene recognition datasets, as illustrated in Figure 3.
Here we present the model-generated explanations as the heatmaps
overlaid on the original image samples, where more importance is
given to the area with a warmer color.

Gender Classification: As shown in the left four rows of Fig-
ure 3, we studied two ‘male’ class instances (top 2 rows) and two
‘female’ class instances (bottom 2 rows). As can be seen, in general,
the explanation generated by the proposed RES models can more
accurately focus on the important areas (e.g. the human face areas)
for identifying the gender of the person in the image. In contrast,
both the baseline model as well as the two comparison methods
failed to generate reasonable explanation, as the models’ ‘atten-
tion’ was distracted by some other objects presented in the images
that are irrelevant to the gender classification task. For example,
as shown in the first row on the left in Figure 3, where both a dog
and a person are presented in the image sample. The explanation
generated by the baseline and comparison methods assigned impor-
tance to the areas in between the dog and the person, and therefore

could not focus properly on the person. On the other hand, both
RES-G and RES-L learned to focus only on the person, and more
specifically focused on human face area. Similar patterns could
also be observed in the rest three rows on the left, demonstrating
the powerful effect of the proposed RES framework on learning to
generate more accurate explanations, and consequently enhances
the explainability of the DNN models.

Scene Recognition: For the scene recognition dataset, as shown
in the right four rows in Figure 3, we studied two instances of ‘urban’
scene (top 2 rows) and two instances of ‘nature’ scene (bottom
2 rows). Once again, we found that compared with the baseline
model and other comparison methods, the explanations generated
by RES models are more accurate and close to the ground truth
for identifying whether the scene is taken from the urban areas or
from wild nature. For instance, as shown in the third row on the
right in Figure 3, the explanation generated by both the baseline
and comparison methods focuses more on the water surface while
RES focuses more on the wild animal itself. Similarly, as shown in
the fourth row, the explanation generated by RES focuses more on
the wildflowers rather than the grass-fields background. Although
in those situations the prediction can be correct for all the models
studied, we argue that the model trained with the RES framework
can be more robust and have a batter generalizability power to the
downstream predictive tasks by learning to assign importance more
accurately to the most distinguishable features/patterns presented
in the data samples.
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Figure 3: Selected explanation visualization results on gender classification dataset (left) and scene recognition dataset (right).
The model-generated explanations are represented by the heatmaps overlaid on the original image samples, where more

importance is given to the area with a warmer color.
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(p-values)
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Baseline vs. RES-L 4.96e-28%F

GRADIA vs. HAICS 0.4980

GRADIA vs. RES-G 2.71e-22%%
GRADIA vs. RES-L 1.54e-15%%
HAICS vs. RES-G 1.67e-19%%
HAICS vs. RES-L 2.96e-13%%
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Figure 4: Top: results for pairwise comparison of five condi-
tions. f: p < 0.05, ¥: p < 0.01, §F: p < 0.001. Bottom: Distri-
butions of human users’ perceived attention quality ratings.
5-level Likert scale is used (5: Excellent, 4: Good, 3: Fair, 2:
Bad, 1: Inferior).

Score

4.3.2  Human Assessment. To evaluate the quality of explanations
for the five comparison methods, we developed a web-based user
interface (UI) where a human annotator can go over all the model-
generated explanations and make qualitative evaluation on both
datasets. We distributed the model-generated explanations from the
test set to three separate human annotators. We asked annotators
to assess the perceived quality of explanations with the five-level

Likert scale. “5-Excellent” when explanations show positive atten-
tion very clearly while don’t contain negative attention at all, and
“4-Good” when positive attention is clearly presented with negli-
gible negative attention. “3-Fair” meant that positive attention is
partially seen while negative attention is clearly visible. “2-Bad” in
case positive attention can be barely seen while negative can be
found evidently. “1-Inferior” is assigned when a human annotator
can only find negative attention. After performing the Shapiro-Wilk
normality test, we found participants’ ratings don’t follow a nor-
mal distribution. Therefore, we applied Kruskal-Wallis H-test for
identifying the differences between the five conditions.

According to Kruskal-Wallis H-test, the quality ratings of five
models are significantly different, with a p-value of 7.82e-51 (< 0.05).
For post-hoc pairwise comparisons using Dunn’s test, all pairs are
significantly different, with the exception of GRADIA vs. HAICS
and RES-G vs. RES-L. This means that the ranking among the five
conditions is that RES-G (M = 4.40, SD = 0.91) and RES-L (M =
4.35, SD = 0.89) are rated notably higher than the rest, followed by
GRADIA (M = 3.92, SD = 1.24) and HAICS (M = 3.95, SD = 1.23).
The least performing condition was Baseline (M = 3.79, SD = 1.25).
Specific pair-wise testing results and visual representation between
conditions are explained in Figure 4.

4.4 Sensitivity Analysis of Hyper-parameter o

Here we further provide a sensitivity analysis of the hyper-parameter
a introduced in the proposed RES framework, as shown in Equation
(5) which measures the tolerance level we give to the discrepancies
between human annotation labels and the model explanation. Fig-
ure 5 shows the prediction accuracy, IoU, and explanation F1-score
of the RES-L model for various values of « on the gender classifica-
tion dataset. The scene recognition dataset follows a similar trend.
The red dashed lines represent the baseline model’s performance. In
general, the model performance is not too sensitive to the value of
a within the range studied, as all models outperformed the baseline
model by a significant margin in terms of both prediction accuracy
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Figure 5: The sensitivity study of hyper-parameter « in RES
framework (RES-L) on gender classification dataset. The red
dashed lines represent the baseline model’s performance.

as well as explainability. As we developed our models based on
the accuracy of the validation set, we indeed observed a concave
curvature on test accuracy, peaking at a o value between 0.001 and
0.1. While the specific best value of @ can vary depending on the
dataset as well as the degree of nosiness of the human annotation
labels (such as the granularity of the annotation), in general, the
proposed framework can perform well when « is relatively small
(e.g. less than 0.1).

5 CONCLUSION

This paper proposes a generic framework for visual explanation
supervision by developing a novel explanation model objective
that can handle the noisy human annotation labels as the supervi-
sion signal with a theoretical justification of the benefit to model
generalizability. Extensive experiments on two real-world image
datasets demonstrate the effectiveness of the proposed framework
on enhancing both the reasonability of the explanation as well as
the performance of the backbone DNNs model.

Although the additional data of human explanation labels may
not be easily accessible, our studies have demonstrated the effective-
ness of the proposed RES framework under a quite limited amount
of training samples, which could benefit application domains where
data samples are limited and hard to acquire, yet both model per-
formance as well as the explainability are on-demand, such as in
medical domains. Furthermore, designing effective semi-supervised
or weakly-supervised explanation supervision frameworks can be
promising future directions to further overcome this limitation.

ACKNOWLEDGMENTS

This work was supported by the NSF Grant No. 1755850, No. 1841520,
No. 2007716, No. 2007976, No. 1942594, No. 1907805, a Jeffress
Memorial Trust Award, Amazon Research Award, NVIDIA GPU
Grant, and Design Knowledge Company (subcontract number:
10827.002.120.04).

REFERENCES

[1] Amina Adadi and Mohammed Berrada. 2018. Peeking inside the black-box: a
survey on explainable artificial intelligence (XAI). IEEE access 6 (2018), 52138—
52160.

[2] Alejandro Barredo Arrieta, Natalia Diaz-Rodriguez, Javier Del Ser, Adrien Ben-
netot, Siham Tabik, Alberto Barbado, Salvador Garcia, Sergio Gil-Lopez, Daniel
Molina, Richard Benjamins, et al. 2020. Explainable Artificial Intelligence (XAI):
Concepts, taxonomies, opportunities and challenges toward responsible AL In-
formation Fusion 58 (2020), 82-115.

B3

=
=

[11

[12

[13

[14

=
i)

[16

(17

(18]

[19

™
=

[21

[22

[23

[24

~
2

[26

[27

KDD ’°22, August 14-18, 2022, Washington, DC, USA.

Sebastian Bach, Alexander Binder, Grégoire Montavon, Frederick Klauschen,
Klaus-Robert Miiller, and Wojciech Samek. 2015. On pixel-wise explanations for
non-linear classifier decisions by layer-wise relevance propagation. PloS one 10,
7 (2015), €0130140.

Guangji Bai and Liang Zhao. 2022. Saliency-regularized Deep Multi-task Learning.
In Proceedings of the 28th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. ACM.

Pinar Barlas, Kyriakos Kyriakou, Olivia Guest, Styliani Kleanthous, and Jahna
Otterbacher. 2021. To" See" is to Stereotype: Image Tagging Algorithms, Gender
Recognition, and the Accuracy-Fairness Trade-off. Proceedings of the ACM on
Human-Computer Interaction 4, CSCW3 (2021), 1-31.

David Bau, Bolei Zhou, Aditya Khosla, Aude Oliva, and Antonio Torralba. 2017.
Network dissection: Quantifying interpretability of deep visual representations.
In Proceedings of the IEEE conference on computer vision and pattern recognition.
6541-6549.

Mariusz Bojarski, Anna Choromanska, Krzysztof Choromanski, Bernhard Firner,
Larry Jackel, Urs Muller, and Karol Zieba. 2016. Visualbackprop: visualizing cnns
for autonomous driving. arXiv preprint arXiv:1611.05418 2 (2016).

Kaylee Burns, Lisa Anne Hendricks, Kate Saenko, Trevor Darrell, and Anna
Rohrbach. 2018. Women also snowboard: Overcoming bias in captioning models.
In European Conference on Computer Vision. Springer, 793-811.

Shi Chen, Ming Jiang, Jinhui Yang, and Qi Zhao. 2020. AiR: Attention with
Reasoning Capability. In European Conference on Computer Vision. Springer, 91—
107.

Abhishek Das, Harsh Agrawal, Larry Zitnick, Devi Parikh, and Dhruv Batra. 2017.
Human attention in visual question answering: Do humans and deep networks
look at the same regions? Computer Vision and Image Understanding 163 (2017),
90-100.

Hiroshi Fukui, Tsubasa Hirakawa, Takayoshi Yamashita, and Hironobu Fujiyoshi.
2019. Attention branch network: Learning of attention mechanism for visual
explanation. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition. 10705-10714.

Yuyang Gao, Giorgio A Ascoli, and Liang Zhao. 2021. BEAN: Interpretable
and efficient learning with biologically-enhanced artificial neuronal assembly
regularization. Frontiers in Neurorobotics 15 (2021), 68.

Yuyang Gao, Tong Sun, Rishab Bhatt, Dazhou Yu, Sungsoo Hong, and Liang
Zhao. 2021. GNES: Learning to Explain Graph Neural Networks. In 2021 [EEE
International Conference on Data Mining (ICDM). IEEE, 131-140.

Yuyang Gao, Tong Sun, Liang Zhao, and Sungsoo Hong. 2022. Aligning Eyes
between Humans and Deep Neural Network through Interactive Attention Align-
ment. arXiv:2202.02838 [cs.Al]

Riccardo Guidotti, Anna Monreale, Salvatore Ruggieri, Dino Pedreschi, Franco
Turini, and Fosca Giannotti. 2018. Local rule-based explanations of black box
decision systems. arXiv preprint arXiv:1805.10820 (2018).

Riccardo Guidotti, Anna Monreale, Salvatore Ruggieri, Franco Turini, Fosca
Giannotti, and Dino Pedreschi. 2018. A survey of methods for explaining black
box models. ACM computing surveys (CSUR) 51, 5 (2018), 1-42.

Kaiming He, Xiangyu Zhang, Shaoging Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770-778.

Alon Jacovi and Yoav Goldberg. 2020. Aligning Faithful Interpretations with
their Social Attribution. arXiv preprint arXiv:2006.01067 (2020).

Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva
Ramanan, Piotr Dollar, and C Lawrence Zitnick. 2014. Microsoft coco: Common
objects in context. In European conference on computer vision. Springer, 740-755.
Drew Linsley, Dan Shiebler, Sven Eberhardt, and Thomas Serre. 2018. Learning
what and where to attend. arXiv preprint arXiv:1805.08819 (2018).

Masahiro Mitsuhara, Hiroshi Fukui, Yusuke Sakashita, Takanori Ogata, Tsubasa
Hirakawa, Takayoshi Yamashita, and Hironobu Fujiyoshi. 2019. Embedding
Human Knowledge into Deep Neural Network via Attention Map. arXiv preprint
arXiv:1905.03540 (2019).

Grégoire Montavon, Alexander Binder, Sebastian Lapuschkin, Wojciech Samek,
and Klaus-Robert Miiller. 2019. Layer-wise relevance propagation: an overview.
Explainable Al interpreting, explaining and visualizing deep learning (2019), 193—
209.

Grégoire Montavon, Sebastian Lapuschkin, Alexander Binder, Wojciech Samek,
and Klaus-Robert Miiller. 2017. Explaining nonlinear classification decisions with
deep taylor decomposition. Pattern recognition 65 (2017), 211-222.

Badri Patro, Vinay Namboodiri, et al. 2020. Explanation vs attention: A two-
player game to obtain attention for VQA. In Proceedings of the AAAI Conference
on Artificial Intelligence, Vol. 34. 11848-11855.

Tingting Qiao, Jianfeng Dong, and Duanqing Xu. 2018. Exploring human-like
attention supervision in visual question answering. In Proceedings of the AAAI
Conference on Artificial Intelligence, Vol. 32.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. Why Should I
Trust You?: Explaining the Predictions of Any Classifier. In Proceedings of ACM


https://arxiv.org/abs/2202.02838

KDD ’22, August 14-18, 2022, Washington, DC, USA.

International Conference on Knowledge Discovery and Data Mining (KDD’16). ACM,
1135-1144. https://doi.org/10.1145/2939672.2939778

[28] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2018. Anchors: High-
precision model-agnostic explanations. In Proceedings of the AAAI conference on
artificial intelligence, Vol. 32.

[29] Andrew Slavin Ross, Michael C Hughes, and Finale Doshi-Velez. 2017. Right for
the right reasons: Training differentiable models by constraining their explana-
tions. arXiv preprint arXiv:1703.03717 (2017).

[30] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedan-

tam, Devi Parikh, and Dhruv Batra. 2017. Grad-cam: Visual explanations from

deep networks via gradient-based localization. In Proceedings of the IEEE interna-

tional conference on computer vision. 618-626.

Haifeng Shen, Kewen Liao, Zhibin Liao, Job Doornberg, Maoying Qiao, Anton Van

Den Hengel, and Johan W Verjans. 2021. Human-Al interactive and continuous

sensemaking: A case study of image classification using scribble attention maps.

In Extended Abstracts of the 2021 CHI Conference on Human Factors in Computing

Systems. 1-8.

[32] Ryan Turner. 2016. A model explanation system. In 2016 IEEE 26th international
workshop on machine learning for signal processing (MLSP). IEEE, 1-6.

[33] Roman Visotsky, Yuval Atzmon, and Gal Chechik. 2019. Few-shot learning with
per-sample rich supervision. arXiv preprint arXiv:1906.03859 (2019).

[34] Fuxun Yu, Zhuwei Qin, Chenchen Liu, Liang Zhao, Yanzhi Wang, and Xiang Chen.
2019. Interpreting and evaluating neural network robustness. In Proceedings of
the 28th International Joint Conference on Artificial Intelligence. 4199-4205.

[35] Yundong Zhang, Juan Carlos Niebles, and Alvaro Soto. 2019. Interpretable visual
question answering by visual grounding from attention supervision mining. In
2019 IEEE Winter Conference on Applications of Computer Vision (WACV). IEEE,
349-357.

[36] Jieyu Zhao, Tianlu Wang, Mark Yatskar, Vicente Ordonez, and Kai-Wei Chang.
2017. Men also like shopping: Reducing gender bias amplification using corpus-
level constraints. arXiv preprint arXiv:1707.09457 (2017).

[37] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba.
2016. Learning deep features for discriminative localization. In Proceedings of the
IEEE conference on computer vision and pattern recognition. 2921-2929.

[38] Bolei Zhou, Agata Lapedriza, Aditya Khosla, Aude Oliva, and Antonio Torralba.
2017. Places: A 10 million Image Database for Scene Recognition. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence (2017).

w
g

A APPENDIX
A.1 Proof of Theorem 1

ProoF. Suppose fy is a -minimizer of £ with € ©. From
Assumption 1, we know that there exists a neural network f; such
that

Ify = fo-I? = E[Ify = for P + |V fr = Vfp-|?] < CF
Then, we have
L(fy)-L(fo) < L(fr) = L(fp-) + 6
<LiE [|fr (x) = for (x)] +L2E [|V fr (x) =V fo: (x)] +6

6% 11
mY

(15)

<(L; + Lz)% +6
(16)
From Assumption 2, given 0 < € < 1, we have
P(IL(fp) - L(fy)] < %) >1-¢ VOe® (17)
Then,
A Co(V.m,
Lfy) - £(fp) < £(fy) - L(fp) + %
< £(fy) - Lifpy + ZD s
c (‘\//N ) (18)
< LUfy) - Lfy) + % +6
< (L + Lz)ci!jz” + ZCZ(\‘//’N'”’ ) 426
m}
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A.2 Proof of Lemma 1

ProoF. Since

eX—e X 11—
tanh(x) = = 19
) eX+e ¥  1+e2X (19

where the last equality follows by multiplying by % = 1. And

since: limy—00 1 — e72* = 1, and limy—00 1 + e 72X = 1, we have
lim tanh(x) =1 (20)
X—00
Similarly, we also have
) ) er -1
xg@m tanh(x) = xg@m i -1 (21)
Thus we have
) (i)
. G) _ _ 1 MY >a
Yll_)rréo tanh(y(M a)) = { 1 M <4 (22)

Thus we have the equivalency of Equation (8) and Equation (5)
when y — oo. O

A.3 Efficient Adaptive Threshold Searching
Algorithm

Algorithm 1: Adaptive Threshold Searching Algorithm

Require: M, F,C
Ensure: solution a
1: initialize: a = 0,act = 0,0 =0,0ct =0,i=0,j=0

2: ge = {M[find(C > 0)]} % find the set of greater or equal to inequality constraints
3: | = {M|[find(F > 0)]} % find the set of less to inequality constraints

4: ges = Sort(ge, ‘ascend’)

5: Is = Sort(/, ‘descend’)
6
7
8
9

: for i < |ges| do
: v = ges|i]
vct = i+ 1+ BinarySearch(o, Is)
H if vct > act then
10: a=v

11: act = vct
12: end if

13: i=i+1

14: end for

15: for j < |Is| do
16: v =Is[i]

17: oct = j + 1 + BinarySearch(v, ges)
18: if oct > act then

19: a=v

20: act = oct
21: end if

22: j=Jj+1

23: end for

A.4 Human Annotation and Evaluation Ul
demonstration

Figure 6 (a) is the interface used to collect attention annotation on
the areas people think are relevant to the classification task. For
example, for the gender dataset annotation, users first determine
whether they can identify the person’s gender in the image, then
draw the areas that help them for the gender classification. In the
back-end, the coordinates of highlighted areas are converted into a
binary map, preparing for the modeling step.

Figure 6 (b) is the interface for human assessment on the model-
generated explanations. For each image annotation, 5 explanations
were presented in random order with 3 questions (Q1 and Q2 are
true/false questions, Q3 is a 5-point Likert scale rating question)
asked for each explanation. Question 1 asks if the focus on the
explanation shows details necessary for identifying the target label
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Please draw the area(s) that you think can help identify the gender of the person in the image.
(In cases where you believe that the gender of the person is not identifiable, please directly click *“Submit and go to the next’ button without making annotation)

Use right click & to erase strokes, or use | Remove Al

Image 1/250

image 1/150

Q1. Does the focus show details necessary for O yes O yes
identifying gender? ®n ®no

Q2. Does the focus include any unnecessary O yes O yes
details not directly related to identifying gender? g ® o

Q3. Overall, please rate the quality of the focus:  © 5 (Excellent) O 5 (Excellent)
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Figure 6: The screenshots illustrating the two Uls for human annotation and evaluation. (a) The interface for attention
annotation where users can draw on the image and generate a binary matrix of the focus area used for improving model
explanation quality. (b) The interface for attention quality assessment where 5 model-generated explanations are displayed in
random order. Users will answer three questions for each explanation.

(i.e., labels in gender classification or scene recognition), and ques-
tion 2 asks for the presence of unnecessary details on the image for
identifying the target. Question 3 is our main focus of the attention
quality assessment, where annotators give 1 to 5 ratings to each
model explanation.

A.5 Detailed Implementation of the Learnable
Imputation Layers

For the learnable imputation function, we studied both a shallow
implementation as well as a deep implementation, as shown in
detail below:

Shallow Implementation: We apply one layer of convolution
operation to process the raw human annotation label, with a 64 x 64
convolution kernel with a padding size of 16 and a stride of 32.

Deep Implementation: We apply five layers of convolution
operations to process the raw human annotation label, with 7 X 7,
3% 3,3%3,3x%3,and 3 X 3 convolution kernel with a padding size

of 3 on the first layer and 1 for the rest layer, and a stride 2 for all
layers.

We choose the Shallow implementation for the RES-L model as
it achieves better performance on the validation set. The reason
why the deep version gets inferior performance could be due to the
training sample size studied in this work is too small.
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