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ABSTRACT
Despite the fast development of explanation techniques where the

main focus is handling “how to generate the explanations”, research

questions like “whether the explanations are accurate”, “what if the

explanations are inaccurate”, and “how to adjust the model to gener-

ate more accurate explanations” are still relatively under-explored

by the research body. To guide the model toward better explana-

tions, explanation supervision techniques which add supervision

signals on the model explanation has started to show promising

effects on improving both the generalizability as well as intrinsic

interpretability of Deep Neural Networks (DNNs), especially on

the text and attributed data where the human annotation labels

can be assigned accurately on each feature of the data. However,

the research on supervising visual explanations (e.g., explanation

represented by saliency maps) is still under-explored and in its

nascent stage, due to several inherent challenges: 1) inaccuracy of

the human explanation annotation boundary, 2) incompleteness of

the human explanation annotation region, and 3) inconsistency of

the data distribution between human annotation and model expla-

nation maps. To address the challenges, we propose a generic RES
1

framework for guiding visual explanation by developing a novel

objective that handles inaccurate boundary, incomplete region, and

inconsistent distribution of human annotations, with a theoretical

justification on model generalizability. Extensive experiments on

two real-world image datasets demonstrate the effectiveness of the

proposed framework on enhancing both the reasonability of the

explanation and the performance of the backbone DNNs model.

CCS CONCEPTS
• Computing methodologies → Supervised learning; Com-
puter vision.
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Code available at: https://github.com/YuyangGao/RES.
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1 INTRODUCTION
As DNNs become widely deployed in border areas of applications

including sensitive areas, the study on explainability that aims at

understanding how DNNs work is currently attracting considerable

attention from researchers [1, 2, 16]. To open the “black box” of

DNNs, many explainability techniques have been proposed that try

to provide the “local explanation” of the DNNs prediction for a spe-

cific instance [16], such as methods that provide the saliency maps

for understanding which sub-parts (i.e., features) in an instance are

most responsible for the model prediction [3, 4, 23, 24, 30, 37].

Despite the fast development of explanation techniques where

the main focus is handling “how to generate the explanations”,

research questions like “whether the explanations are accurate”,

“what if the explanations are inaccurate”, and “how to adjust the

model to generate more accurate explanations” are still relatively

under-explored by the research body.

Recently, explanation supervision techniques which add supervi-

sion signals on themodel explanation has started to show promising

effects on improving both the generalizability as well as intrinsic

interpretability of DNNs in many application domains, especially

on text data [18, 29] and attributed data [33] where the human

annotation labels can be assigned accurately on each feature of the

data.

However, the research on supervising visual explanations (e.g.,

explanation represented by saliency maps) on image data is still

under-explored and in its nascent stage. This is because of several

inherent challenges in supervising visual explanations: 1) Inaccu-
racy of the human explanation annotation boundary. It is
very difficult and costly for the boundary of human annotation to

be perfectly accurate, which could lead the model to falsely assign

positive explanation value to irrelevant features (i.e., pixels in im-

age data). For example, as shown by the yellow arrows in Figure 1

(b), the coarsely drawn boundary of the human annotation falsely

excluded a non-trivial region of the boundary of the wildflowers

that could also be important to the prediction. 2) Incompleteness

https://github.com/YuyangGao/RES
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Figure 1: An example showing the challenges present in
the human annotation labels: (a) human annotations are
represented with red lines while ground-truth boundaries
are shown with black lines. (b) Error caused by “inaccu-
rate boundaries” are presented with black regions, (c) Error
caused by “incomplete regions” are shown with a black re-
gion, and (d) the discrepancies between the “binary” human
annotation and the “continuous” model-generated explana-
tion maps. The explanation is queried based on predicting
the scene as ‘wild nature’.

of the human explanation annotation region. When labeling

the explanation for image data, people usually tend to provide only

a few regions as long as they are sufficient to convince people

about the decision and do not bother to comprehensively find all

the possible regions that cover all different ways of explanations.

Such incompleteness can mislead the model to wrongly penalize

all the regions as long as they are not selected by annotators. An

example of such a situation can be illustrated by Figure 1 (c), where

the human annotation clearly missed one wildflower as shown

in the black region. 3) Inconsistency of the data distribution
between human annotation and model visual explanations.
The saliency maps generated by model explainers and those labeled

by human annotators reside in different data domains and distribu-

tions: the former takes the form of continuous real values while the

latter is often in discrete binary values. Figure 1 (d) clearly show

the huge difference between “binary” human annotation (i.e., red

circled areas as marked as positive, and the rest areas as negative)

and the continuous model-generated explanation map (i.e., more

importance is given to the area with a warmer color) in distribution.

Therefore, human-annotated explanations cannot be directly used

to supervise the model and its explanations without significant

efforts to fill the gap between the data domain and distributions.

To address the above challenges, beyond merely applying human

annotation labels directly as the supervision signals to train the

model, this paper focuses on proposing a generic robust explanation

supervision framework for learning to explain DNNs under the

assumptions that the human annotation labels can be inaccurate

in the boundary, incomplete in the region, as well as inconsistent

with the distribution of the model explanation. Specifically, we

propose a novel robust explanation loss that addresses all three

aforementioned challenges present in the noisy human annotation

labels. In addition, we give a theoretical justification of the benefits

of having the proposed explanation loss to the generalizability

power of the backbone DNN model.

Specifically, the main contributions of our study are as follows:

(1) Proposing a generic framework for learning to explain
DNNs with explanation supervision.We propose a uni-

fied framework that enables explanation supervision on

DNNs with both positive and negative explanation annota-

tion labels and is generalizable to the existing differentiable

explanation methods.

(2) Developing a robust model objective that can handle
the noisy human annotation labels as the supervision
signal. We propose a novel robust explanation loss that can

handle the inaccurate boundary, incomplete region, as well

as inconsistent distribution challenges in applying the noisy

human annotation labels as the supervision signal.

(3) Providing a theoretical justification on the generaliz-
ability power of the proposed framework. We formally

derive a theorem that provides an upper bound for the gener-

alization error of applying the proposed robust explanation

loss when training the backbone DNN models.

(4) Conducting comprehensive quantitative and qualita-
tive experimental analysis to validate the effectiveness
of the proposedmodel. Extensive experiments on two real-

world image datasets, gender classification and scene recog-

nition, demonstrate that the proposed framework improved

the backbone DNNs both in terms of prediction power and

explainability. In addition, qualitative analyses, including

case studies and user studies of the model explanation, are

provided to demonstrate the effectiveness of the proposed

framework.

2 RELATEDWORK
Our work draws inspiration from the research fields of local ex-

plainability techniques of DNNs that provide the model-generated

explanation, and explanation supervision on DNNs which enables

the design of pipelines for the human-in-the-loop adjustment on the

DNNs based on their explanations to enhance both explainability

and performance of DNN models.

2.1 Local Explainability Techniques of DNNs
As DNNs become widely deployed in border areas of applications

including sensitive areas, recent years have seen an explosion of

research in understanding how DNNs work under the hood (e.g.,

explainable AI, or XAI) [1, 2, 12, 16, 34]. Due to the “black box”

nature of DNNs, most of the existing and well-received explain-

ability methods focus on providing a “local explanation” that aims

at explaining the prediction in understandable terms for humans

for a specific instance or record [16]. One popular direction is to

compute saliency maps as the local explanation, which provide the
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saliency values regarding which input features are most responsi-

ble for the prediction of the model [3, 23, 24, 30, 37]. For example,

for image input, a saliency map is able to summarize where the

model is “paying attention to” when performing a certain image

recognition task. In this direction, one set of works incorporates

network activations into their visualizations, such as Class Acti-

vation Mapping (CAM) [37] and Grad-CAM [30]. Another set of

approaches take a backward pass and assign a relevance score for

each layer backpropagating the effect of a decision up to the input

level, existing works such as LRP [3, 23], and DTD [24] belong to

this category. In addition, some model inspection methods such

as VisualBackProp (VBP) [7] can also provide a local explanation

similar to the LRP approaches. Besides the above techniques that

are more specifically designed for interpreting image data, there

are also several existing techniques that aim at providing more

model-agnostic explanations on different types of data, such as

LIME [27], Anchors [28], MES [32], and LORE [15]. Please refer to

the survey papers [2, 16] for a more comprehensive review of the

existing works.

2.2 Explanation Supervision on DNNs
The potential of using explanation–methods devised for under-

standing which sub-parts in an instance are important for making a

prediction–in improving DNNs has been studied in many domains

across different applications [13]. In particular, explanation super-

vision techniques have been widely explored on image data by

the computer vision community [9, 10, 21, 22, 25, 26, 35]. Existing

studies have shown the benefit of using stronger supervisory sig-

nals by teaching networks where to attend [21]. Following this line

of study, several explanation supervision frameworks have been

proposed. Mitsuhara et al. [22] proposed a post hoc fine-tuning

strategy, where an end-user is asked to manually edit the model’s

explanation to interactively adjust its output. However, the pro-

posed framework is only applicable to a specific type of DNN called

Attention Branch Network [11]. In addition, several frameworks de-

signed for the Visual Question Answering (VQA) domain have been

proposed, where the goal is to obtain the improved explanation on

both the text data and the image data [10, 25, 26, 35].

More recently, several more generic frameworks have been pro-

posed for explanation supervision on image data. One existing

work proposed a conceptual framework HAICS [31], and the au-

thors further implement it in an image classification application

with human annotation in the form of scribble annotations as expla-

nation supervision signals. Another work proposed the GRADIA

pipeline [14], which improves the performance and explainability

of the backbone DNN by jointly optimizing the task performance

as well as the alignment between the human-annotated attention

maps and model explanation maps. Besides image data, the expla-

nation supervision has also been studied on other data types, such

as texts [18, 29], attributed data [33], and more recently on graph-

structured data [13]. However, most of the existing works typically

assume the human annotation labels are clean and accurate, while

in practice they are prone to be inexact, inaccurate, and incom-

plete when directly used as the supervision signal for supervising

the model explanation. To our best knowledge, we are the first to

propose a robust explanation supervision framework that aims at

handling this open research problem.

3 MODEL
In this section, we first introduce the proposed RES framework

that enables explanation supervision on DNNs with both positive

and negative explanation annotation labels. We then move on to

propose a novel robust explanation loss that is designed to handle

the inaccurate boundary, incomplete region, as well as inconsistent

distribution challenges in applying the noisy human annotation

labels as the supervision signal. Finally, we give the theoretical

justification of the benefits of having the proposed explanation loss

to the generalizability power of the backbone DNN model.

Problem formulation: Let 𝑥 ∈ R𝐶×𝐻×𝑊
be the input image

data with 𝐶 channels, 𝐻 as height, and𝑊 as width. Let 𝑦 be the

class label for input 𝑥 , the general goal for a DNN model is to learn

the mapping function 𝑓 for each input 𝑥 to its corresponding label,

𝑓 : 𝑥 → 𝑦.

3.1 The RES Framework
The general goal for the RES framework is to boost the model

explainability via robust explanation supervision such that the

model can robustly learn to assign more importance to the right

input features even given noisy human explanation annotation

labels, and consequently boost the task performance as well as

the interpretability of the backbone DNN model. Here, we present

the general learning objective of the RES framework to be a joint

optimization of themodel prediction loss and the robust explanation

loss. Concretely, we propose the objective function as:

min

𝑁∑︁
𝑖

L
Pred

(𝑓 (𝑥 (𝑖) ), 𝑦 (𝑖) )︸                   ︷︷                   ︸
prediction loss

+LExp (⟨𝑀 (𝑖) , 𝐹 (𝑖) ,𝐶 (𝑖) ⟩)︸                         ︷︷                         ︸
robust explanation loss

(1)

where 𝑀 (𝑖) ∈ R𝐻×𝑊
denotes the model-generated explanations

for 𝑖th sample using a given explanation method; 𝐹 (𝑖) ∈ {0, 1}𝐻×𝑊

and 𝐶 (𝑖) ∈ {0, 1}𝐻×𝑊
denote the corresponding binary labels for

positive (i.e., 𝐹
(𝑖)
𝑗,𝑘

= 1 if the pixel at coordinate ( 𝑗, 𝑘) of sample

image 𝑖 should be assigned with high importance, and 0 otherwise)

and negative (i.e., 𝐶
(𝑖)
𝑗,𝑘

= 1 if the pixel at coordinate ( 𝑗, 𝑘) of image

𝑖 should be assigned with low importance value, and 0 otherwise)

explanation marked by the human annotators. L
Pred

(𝑓 (𝑥 (𝑖) ), 𝑦 (𝑖) )
is the typical prediction loss (such as the cross-entropy loss).

3.2 Robust Explanation Supervision for Noisy
Explanation Annotation labels

To address the challenges presented in the noisy human annotation

labels, we propose a robust explanation lossLExp that measures the

discrepancies between model and human explanations regarding

both the positive and negative explanation and taking into consid-

eration the noisy nature of human annotation labels. Without loss

of generality, let us assume
˜𝑀 (𝑖) = 𝐹 (𝑖) −𝐶 (𝑖)

in range [−1, 1] be
the ground truth ideal explanation value for input image 𝑥 (𝑖) , given
the ideal positive explanation 𝐹 (𝑖) ∈ [0, 1] and negative explana-

tion 𝐶 (𝑖) ∈ [0, 1]; the binary human annotation as 𝐹 (𝑖)
and 𝐶 (𝑖)

;

and the model explanation as𝑀 (𝑖) = 𝑔(𝑓𝜃 ((𝑥 (𝑖) )), where function
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𝑔(·) specify the explanation method. We have E[∥𝑀 (𝑖) − (𝐹 (𝑖) −
𝐶 (𝑖) )∥−∥(𝐹 (𝑖)−𝐶 (𝑖) )−𝑀̃ (𝑖) ∥] ≤ max{0,E[∥𝑀 (𝑖)−(𝐹 (𝑖)−𝐶 (𝑖) )∥]−
E[∥(𝐹 (𝑖) − 𝐶 (𝑖) ) − 𝑀̃ (𝑖) ∥]} ≤ E[max{0, ∥𝑀 (𝑖) − (𝐹 (𝑖) − 𝐶 (𝑖) )∥ −
∥(𝐹 (𝑖) − 𝐶 (𝑖) ) − 𝑀̃ (𝑖) ∥}] ≤ E[∥𝑀 (𝑖) − 𝑀̃ (𝑖) ∥] according triangle

inequality. We define 𝛼 = E[∥(𝐹 (𝑖) − 𝐹 (𝑖) ) − (𝐶 (𝑖) −𝐶 (𝑖) )∥]. There-
fore, to minimize ∥𝑀 (𝑖) − 𝑀̃ (𝑖) ∥, we can have a tighter surrogate

loss based on the annotated labels as follows:

max{0, ∥𝑀 (𝑖) − (𝐹 (𝑖) −𝐶 (𝑖) )∥ − 𝛼}
Since the ground truth 𝐹 and𝐶 are unknown, estimating 𝛼 can be

difficult. In practice, we can assume their distributions are positively

correlated with the distribution of 𝐹 and 𝐶 , which can therefore be

estimated by a slack variable 𝛼 . To keep it simple and without loss

of generality, in this work, we define 𝛼 as a hyper-parameter of

the framework assuming no additional knowledge about the ideal

distribution.

3.2.1 Bridging the distribution between human labels and model
explanation maps. To bridge the continuous model explanation

𝑀 (𝑖)
with binary human labels 𝐶 and 𝐹 , we propose to split the

above objective into two terms with bidirectional projections, as

follows:

min

𝜃,𝑎

𝑁∑︁
𝑖

max{0, ∥ [𝑀̂ (𝑖) − (𝐹 (𝑖) −𝐶 (𝑖) )] ∥ − 𝛼}

+𝑑 (𝑀 (𝑖) , ℎ(𝐹 (𝑖) ,𝐶 (𝑖) )) (2)

where 𝑑 (·) is a distance function, ℎ(·) is a mapping function that

maps the binary masks 𝐹 (𝑖)
and 𝐶 (𝑖)

to continuous value in range

[0, 1], and 𝑀̂ (𝑖)
is a binary projection of𝑀 (𝑖)

by a threshold 𝑎, as:

𝑀̂ (𝑖) =
{

1 𝑀 (𝑖) ≥ 𝑎

−1 𝑀 (𝑖) < 𝑎
(3)

Basically, the above equation takes both the absolute difference

(measured by the first term) and relative distance (measured by the

second term) into consideration when comparing the continuous

model explanation and the binary human explanation masks.

3.2.2 Mitigating the Inaccurate Boundary via Label Imputation. To
realize the mapping function ℎ(·) in Equation (3) which aims at

projecting the binary human labels into continuous value domain,

an intuitive way is to define ℎ(·) as applying a 𝑘 × 𝑘 Gaussian

kernel on the binary annotation labels 𝐹 and 𝐶 such that the pixels

that close to the boundary of the manual label will also obtain

slack values to boost the robustness and deal with the inexact and

inaccurate boundary from human annotation.

However, a predefined kernel matrix might not be suitable for

every data sample, and the discrepancy and inconsistency among

annotators can also influence the accuracy of such a pre-defined

estimation on handling the inaccurate boundary issue. Therefore,

we further extend this idea and define a learnable imputation func-

tion ℎ𝜙 (·) with multiple learnable kernel transformations as the

parameter set 𝜙 , such that the kernels’ weights can be adjusted and

learned to make better estimations of the ground truth explanation

values and provide better mitigation to the inaccurate boundary

problem. Specifically, the explanation loss with a learnable imputa-

tion function as follows:

min

𝜃,𝑎,𝜙

𝑁∑︁
𝑖

max{0, ∥ [𝑀̂ (𝑖) − (𝐹 (𝑖) −𝐶 (𝑖) )] ∥ − 𝛼}

+𝑑 (𝑀 (𝑖) , ℎ𝜙 (𝐹 (𝑖) ,𝐶 (𝑖) )) (4)

where 𝜙 is the parameter set of the imputation function ℎ𝜙 (·). The
imputation function can be realized by applying multiple layers of

convolution operations with learnable kernels over the raw anno-

tation label 𝐹 and 𝐶 .

3.2.3 Handling the Incomplete Region by Selective Penalization. Fi-
nally, due to the incompleteness of human annotation labels, and to

avoid falsely penalizing the model from assigning importance to the

relevant features missed by the human labels, we propose to only

selectively apply the explanation supervision signal onto the fea-

tures with either positive or negative annotation labels. Concretely,

we define the robust explanation loss L𝐸𝑥𝑝 as follows:

min

𝜃,𝑎,𝜙

𝑁∑︁
𝑖

max{0, ∥ [𝑀̂ (𝑖) − (𝐹 (𝑖) −𝐶 (𝑖) )] · 1(𝐹 (𝑖) −𝐶 (𝑖) ≠ 0)∥ − 𝛼}

+𝑑 (𝑀 (𝑖) ·1(𝐹 (𝑖)−𝐶 (𝑖) ≠ 0), ℎ𝜙 (𝐹 (𝑖) ,𝐶 (𝑖) ) ·1(𝐹 (𝑖)−𝐶 (𝑖) ≠ 0)) (5)

where 1(·) is the indicator function, and · represents the elemental-

wisemultiplication operation. This formulation also gives themodel

a certain degree of flexibility on deciding the importance of unla-

beled features based on data and downstream task, thus could yield

a more generalizable and reasonable explanation that enhance both

explainability as well as task performance of the model.

3.3 Optimization of Robust Explanation Loss
The indicator function for calculating 𝑀̂ (𝑖)

(as shown in Equation

(3)) prevents us from directly optimizing our model objective with

conventional gradient descent algorithms such as Adam [19]. Con-

cretely, the optimization problem presented in Equation (5) involves

optimizing both the adaptive threshold 𝑎 and the model-generated

explanation𝑀 (𝑖) = 𝑔(𝑓𝜃 (𝑥 (𝑖) )). Here, we propose to first find the

optimal threshold 𝑎 given model parameter 𝜃 , and then optimize

𝜃 with conventional gradient descent algorithm by proposing a

differentiable approximation to the indicator function.

First, to find the optimal 𝑎 given 𝜃 , we need to solve the following

objective:

min

𝑎

𝑁∑︁
𝑖

∥ [𝑀̂ (𝑖) − (𝐹 (𝑖) −𝐶 (𝑖) )] · 1(𝐹 (𝑖) −𝐶 (𝑖) ≠ 0)∥ (6)

Which is mathematically equivalent to the following equation by

expanding 𝑀̂ (𝑖)
:

min

𝑎

𝑁∑︁
𝑖

∥ [1(𝑀 (𝑖) ≥ 𝑎) − 𝐹 (𝑖) ] · 𝐹 (𝑖) ∥+

∥[1(𝑀 (𝑖) < 𝑎) −𝐶 (𝑖) ] ·𝐶 (𝑖) ∥ (7)

If we treat each entry of𝑀 (𝑖)
as having two inequality constraints

on 𝑎, we can efficiently solve the above formula in 𝑂 (𝑚 log𝑚)
by our proposed algorithm by treating this optimization problem

as finding a 𝑎 that satisfies the maximum number of inequality

constraints, where𝑚 =𝑚𝑎𝑥 ( |𝐹 |, |𝐶 |). The details of the proposed
searching algorithm can be found in Appendix A.3.
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To further enable gradient calculation of 𝑀 (𝑖)
in Equation (5),

we propose a surrogate loss using the hyperbolic tangent function

𝑡𝑎𝑛ℎ(·) to approximate the indicator function, as follows:

min

𝜃,𝑎,𝜙

𝑁∑︁
𝑖

max{0, ∥ [𝑡𝑎𝑛ℎ(𝛾 (𝑀 (𝑖) − 𝑎)) − 𝐻 (𝑖) ] · 1(𝐻 (𝑖) ≠ 0)∥ − 𝛼}+

+𝑑 (𝑀 (𝑖) · 1(𝐻 (𝑖) ≠ 0), ℎ𝜙 (𝐹 (𝑖) ,𝐶 (𝑖) ) · 1(𝐻 (𝑖) ≠ 0)) (8)

where 𝐻 (𝑖) = 𝐹 (𝑖) − 𝐶 (𝑖)
; 𝛾 controls the slop of the hyperbolic

tangent function. Moreover, when 𝛾 → ∞ , we can ensure such a

approximation can be mathematically equivalent to the original

indicator function in Equation (4) as shown in the following lemma.

Lemma 1. Equation (8) is mathematically equivalent to Equation
(5) when 𝛾 → ∞.

Proof. Please refer to Appendix A.2 for the proof. □

3.4 Theoretical Analysis of Generalizablity
In this subsection, we theoretically justify the generalizability power

of the proposed explanation loss, as shown in Theorem 1 below.

We consider the regularized expected loss:

L(𝑓𝜃 ) = E
[
L
Pred

(𝑓𝜃 (𝑥), 𝑦) + LExp (∇𝑓𝜃 (𝑥))
]

(9)

where 𝑓𝜃 is any learnable function with parameter 𝜃 ∈ Θ. In addi-

tion, denote the empirical loss as

ˆL(𝑓𝜃 ) =
1

𝑁

𝑁∑︁
𝑖=1

(
L
Pred

(𝑓𝜃 (𝑥 (𝑖) ), 𝑦 (𝑖) ) + LExp (∇𝑓𝜃 (𝑥 (𝑖) ))
)

(10)

where 𝑁 denotes the training sample size. ∇𝑓𝜃 (𝑥) denotes the gradi-
ent of 𝑓𝜃 on input 𝑥 , which can be used to generate any explanation.

We omit the label (namely, 𝐹 (𝑖)
and 𝐶 (𝑖)

) in LExp here for more

compact notation. Also, we assume that L
Pred

is 𝐿1-Lipschitz and

LExp is 𝐿2-Lipschitz continuous w.r.t its first input, respectively.

Definition 1 (𝛿-minimizer). A function 𝑓
ˆ𝜃
is said to be a 𝛿-

minimizer of L(·) if
L(𝑓

ˆ𝜃
) ≤ inf

𝜃 ∈Θ
L(𝑓𝜃 ) + 𝛿 (11)

Assumption 1. Let 𝑓𝜃 ∗ be the solution to Eq. (9). There exists a
neural network 𝑓𝜏 with 𝜏 ∈ Θ such that

∥ 𝑓𝜏 − 𝑓𝜃 ∗ ∥2 B E
[
|𝑓𝜏 − 𝑓𝜃 ∗ |2 + |∇𝑓𝜏 − ∇𝑓𝜃 ∗ |2

]
≤ 𝐶2

1

∥𝜃∗∥2
𝑚𝛾

(12)

where 𝐶1 is some constant,𝑚 is a constant related to the number of
parameters in 𝑓 , and 𝛾 is a constant order.

Assumption 2. Given any neural network 𝑓𝜃 from 𝜃 ∈ Θ and i.i.d
sample {𝑥 (𝑖) }𝑁

𝑖=1
. Given any 0 < 𝜖 < 1, we assume that

sup

𝜃 ∈Θ
|L(𝑓𝜃 ) − ˆL(𝑓𝜃 ) | ≤

𝐶2 (𝑉 ,𝑚, 𝜖)
√
𝑁

(13)

with probability at least 1 − 𝜖 . 𝐶2 relies on set Θ,𝑚 and 𝜖 .

Such an inequality can be ontained using some statistical learning

theories like Rademacher complexity.

Now we provide our generalization error bound as follow:

Theorem 1 (Generalizability of Eqation (1)). Let 𝑓𝜃 ∗ be the
minimizer of L(·), 𝑓

ˆ𝜃
be a 𝛿-minimizer of ˆL, then given 0 < 𝜖 < 1,

with probability at least 1 − 𝜖 over the choiec of 𝑥 (𝑖) , we have

0 ≤ L(𝑓
ˆ𝜃
) − L(𝑓𝜃 ∗ ) ≤ (𝐿1 + 𝐿2)

𝐶1∥𝜃∗∥
𝑚𝛾/2 + 2𝐶2 (𝑉 ,𝑚, 𝜖)

√
𝑁

+ 2𝛿 (14)

Proof. Please refer to Appendix A.1 for the formal proof. □

Our Theorem 1 provides an upper bound for the generalization

error between the numerical optimal solution
ˆ𝜃 and the theoretical

optimal solution 𝜃∗. The first term in the bound corresponds to the

approximation error given in the first assumption, the second term

corresponds to the quadrature error given in the second assump-

tion, and the last term corresponds to the training error. To reduce

the generalization error, we need to increase both the number of

parameters and training samples. Meanwhile, the empirical loss is

needed to be solved sufficiently well.

4 EXPERIMENTS
We test our RES framework on two application domains, gender

classification and scene recognition. We first describe the detailed

settings for the experiments and then present the quantitative stud-

ies on both model prediction as well as the explanation. In addition,

we include several qualitative studies, including case studies and

user studies, to make a better qualitative assessment of how the

proposed model has enhanced the explainability of the backbone

DNN models.

4.1 Experimental Settings
Gender Classification Dataset: The gender classification2 is one
of the widely used tasks in the research of fairness in broader

machine learning communities [5, 8, 36].We constructed the dataset

from the Microsoft COCO dataset
3
[20] by extracting images that

had the word “men” or “women” in their captions. We then filtered

out instances that 1) contain both words, 2) include more than two

people, or 3) humans appear in the figure is nearly not recognizable

from human eyes. We collected a total of 1,600 images that satisfied

our criterion and obtained the human annotation labels for all

the image samples with our human annotation UI (please refer to

Appendix A.4 for more details). For data splitting, we only randomly

sampled 100 samples out of the 1,600 images as the training set

to better simulate a more practical situation where we only have

limited assess to the human explanation labels. The rest 1,500 data

samples were then evenly split as the validation set and test set.

Scene Recognition Dataset: We obtained the scene images

from the Places365 dataset
4
[38]. The original dataset contains more

than 10 million images comprising 400+ unique scene categories.

Following the macro-class defined by [38], we constructed a binary

scene recognition task: nature vs. urban. The data samples for

the two classes were randomly sampled from a set of pre-defined

categories under macro-class “nature” and “urban”, respectively.

Specifically, the categories we used to sample the data are listed

below:

• Nature: mountain, pond, waterfall, field wild, forest broadleaf,

rainforest

• Urban: house, bridge, campus, tower, street, driveway

Notice that the categories are non-comprehensive and the generated

datasets are just for the purpose of studying the quality of model

2
We are aware that using a binary classification in gender does not reflect on the

diverse viewpoint of gender in the real world, and we emphasize that the binary

“gender classification” task here does not represent our viewpoint on gender.

3
Available online at: https://cocodataset.org/

4
Available online at: http://places2.csail.mit.edu/index.html
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explanation. We balanced the sample size for each category and

collected a total of 1,600 images. Again, we obtained the human

annotation labels for all the samples with the human annotation

UI, and split the data randomly with sample sizes of 100/750/750

for training, validation, and testing.

Evaluation Metrics: We evaluate the model in terms of task

performance as well as in terms of explainability. For model perfor-

mance, we use the conventional prediction accuracy to measure the

prediction power of the backbone DNN models as the datasets stud-

ied are well imbalanced. For explainability assessment, we leverage

the human-labeled explanation on the test set to assess the quality

of the model explanation. Specifically, we use the Intersection over

Union (IoU) score [6], which is calculated by taking the bit-wise

intersection and union operations between the ground truth expla-

nation and the binarized model explanation to measure how well

the two explanation masks overlap. In addition, since the IoU score

only assesses the quality of positive explanation, we further com-

pute the precision, recall, and F1-score as additional metrics which

provide a more comprehensive evaluation of the model-generated

explanation by taking into consideration the alignment of both

positive and negative explanation.

Comparisonmethods:We compare the performance of the RES

framework with the vanilla backbone model as the baseline as well

as two existing explanation supervision methods, GRAIDA [14] and

HAICS [31]. For the proposed framework, we show two variations:

RES-G and RES-L, with different implementations of the imputation

function. Concretely, we studied the following methods:

• Baseline: The conventional DNN model that is trained with

only the prediction loss.

• GRADIA [14]: A framework that trains the DNN model with

both the prediction loss as well as a conventional L1 loss that

directly minimizes the distance between the continuous model

explanation and the binary positive explanation labels.

• HAICS [31]: A framework that trains the DNN model with

both the prediction loss as well as a conventional Binary Cross-

Entropy (BCE) loss that directly minimizes the distance be-

tween the continuous model explanation and the combination

of positive and negative binary explanation labels.

• RES-G: The proposed RES framework with the imputation

function 𝑔(·) as a fixed value Gaussian convolution filter.

• RES-L:The proposed RES framework with the learnable impu-

tation function 𝑔𝜙 (·) via multiple layers of learnable kernels.

Implementation Details: For all the methods studied in this

work, the backbone DNNmodel is based on the pretrained ResNet50

architecture [17]. All models were trained for 50 epochs using the

ADAM optimizer [19] with a learning rate of 0.0001. To make a

fair comparison on explainability, the model explanations were

all generated by the well-recognized explanation technique Grad-

CAM [30], although other local explanation techniques can also

be applied in our framework. The generated explanation maps are

normalized in the range of (0, 1] by dividing the maximum saliency

value on each sample for model training as well as visualization.

When calculating the explanation evaluation metrics, the explana-

tion maps were further binarized by a fixed threshold of 0.5. The

hyper-parameter 𝛼 of the proposed RES framework was set to 0.001

for the gender classification task, and 0.01 for the scene recognition

task, based on grid research via prediction accuracy on the valida-

tion set. The detailed implementation of the imputation layers for

RES-L can be found in the Appendix A.5.

4.2 Performance
Table 1 shows themodel performance andmodel-generated explana-

tion quality for gender classification and scene recognition datasets.

The results are obtained from 5 individual runs for every setting.

The best results for each dataset are highlighted with boldface

font and the second bests are underlined. In general, our proposed

framework variations, i.e., RES-G and RES-L, outperformed all other

comparison methods in terms of both prediction accuracy as well

as explainability on both datasets. Specifically, regarding predic-

tion power, the RES-G with a pre-defined Gaussian transformation

kernel as the imputation function achieved the best performance,

outperforming the baseline DNN model by 4% and 3% on prediction

accuracy on gender classification and scene recognition datasets,

respectively. In addition, the proposed RES framework enhanced

the explainability of the backbone DNNs by a significant margin

as compared with the baseline DNN model as well as other expla-

nation supervision methods. The proposed RES-L with learnable

kernels as the imputation function achieved the highest improve-

ment on model explainability in terms of both IoU and F1 scores

on both datasets, out-performing other comparison methods by

8%-72% and 16%-36% on IoU and explanation F1 scores, respectively.

The comparison methods GRADIA and HAICS also improved the

model performance by leveraging the additional human attention

labels, but are generally much less effective than the proposed RES

framework. Those results demonstrated the effectiveness of the

proposed framework on enhancing the model explainability ro-

bustly under noisy annotation labels, and consequently improved

the model performance and prediction power on the prediction

tasks.

Next, we further studied how the DNN models can benefit from

the RES framework to gain a better generalization power under

different training sample size scenarios. Specifically, we studied

four training sample scenarios with training sample sizes of 10,

20, 50, and 100 on the Gender Classification Dataset. As shown in

Figure 2, we present the test prediction accuracy, IoU score, and

explanation F1 score of each method under the four training sample

size scenarios. The data point represents the mean value over 5 runs,

and the error bar here corresponds to the standard deviation. We

can see that the proposed RES framework outperformed all other

comparison methods by a significant margin under all scenarios

studied, especially on boosting the explainability of the backbone

DNNs as reflected by IoU and explanation F1 scores. Specifically,

RES was able to improve the model prediction accuracy by 2% - 5%,

and boosted the quality of the model explanation by 60%-80% and

36%-40% in terms of IoU and explanation F1 scores, respectively.

Interestingly, we also observed degradation in model performance

when applying GRADIA and HAICS when the sample size is ex-

tremely limited, such as in 10 and 20 training sample sizes scenarios.

This could be due to the fact that GRADIA and HAICS simply treat

the raw human annotation as clear data and thus suffer significantly

from learning directly from the noisy labels and consequently prone

to over-fitting badly. In contrast, with the robust learning objective,
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Table 1: The performance and model-generated explanation evaluation among the proposed models and the comparison
methods on both gender classification and scenes recognition tasks. The results are obtained from 5 individual runs for every
setting. The best results for each task are highlighted with boldface font and the second bests are underlined.

Dataset Model Accuracy IoU Precision Recall F1

Gender Classification

Baseline 68.35 ± 1.00 13.68 ± 0.89 52.68 ± 0.61 56.34 ± 1.63 47.77 ± 1.14

GRADIA 70.01 ± 1.47 16.66 ± 1.10 64.07 ± 2.07 51.84 ± 3.55 53.35 ± 3.08

HAICS 69.29 ± 0.50 17.56 ± 0.79 60.06 ± 2.17 56.48 ± 2.13 54.90 ± 2.14

RES-G 71.33 ± 0.53 22.97 ± 0.44 76.47 ± 0.45 63.90 ± 3.64 63.54 ± 2.29

RES-L 70.39 ± 0.35 23.60 ± 0.36 76.32 ± 0.77 65.75 ± 1.20 65.24 ± 0.74

Scene Recognition

Baseline 93.42 ± 0.43 38.55 ± 0.22 89.67 ± 0.07 60.96 ± 0.56 68.47 ± 0.46

GRADIA 95.03 ± 0.35 39.60 ± 1.13 87.98 ± 0.19 63.47 ± 2.24 70.80 ± 1.84

HAICS 94.89 ± 0.20 41.29 ± 0.91 88.47 ± 0.53 66.23 ± 1.00 72.95 ± 0.87

RES-G 95.91 ± 0.31 45.97 ± 0.12 87.54 ± 0.30 82.88 ± 1.14 82.90 ± 0.33

RES-L 95.53 ± 0.54 44.64 ± 0.31 86.37 ± 0.08 88.01 ± 0.39 84.78 ± 0.29
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Figure 2: Model performance under different training sample size scenarios on gender classification dataset. The data point
represents the mean value over 5 runs, and the error bar here corresponds to the standard deviation. (Left) The test prediction
accuracy comparison. (Middle) The test IoU score comparison. (Right) The test explanation F1 score comparison.

the proposed RES framework is able to cope with the noisy label

pretty well even under a very limited sample size, and consequently

boosted the model performance in terms of prediction power as

well as explainability robustly in all scenarios studied.

4.3 Qualitative Analysis of the Explanation
4.3.1 Case Studies. Here we provide some case studies about the

model-generated explanation comparison for both gender classi-

fication and scene recognition datasets, as illustrated in Figure 3.

Here we present the model-generated explanations as the heatmaps

overlaid on the original image samples, where more importance is

given to the area with a warmer color.

Gender Classification: As shown in the left four rows of Fig-

ure 3, we studied two ‘male’ class instances (top 2 rows) and two

‘female’ class instances (bottom 2 rows). As can be seen, in general,

the explanation generated by the proposed RES models can more

accurately focus on the important areas (e.g. the human face areas)

for identifying the gender of the person in the image. In contrast,

both the baseline model as well as the two comparison methods

failed to generate reasonable explanation, as the models’ ‘atten-

tion’ was distracted by some other objects presented in the images

that are irrelevant to the gender classification task. For example,

as shown in the first row on the left in Figure 3, where both a dog

and a person are presented in the image sample. The explanation

generated by the baseline and comparison methods assigned impor-

tance to the areas in between the dog and the person, and therefore

could not focus properly on the person. On the other hand, both

RES-G and RES-L learned to focus only on the person, and more

specifically focused on human face area. Similar patterns could

also be observed in the rest three rows on the left, demonstrating

the powerful effect of the proposed RES framework on learning to

generate more accurate explanations, and consequently enhances

the explainability of the DNN models.

Scene Recognition: For the scene recognition dataset, as shown
in the right four rows in Figure 3, we studied two instances of ‘urban’

scene (top 2 rows) and two instances of ‘nature’ scene (bottom

2 rows). Once again, we found that compared with the baseline

model and other comparison methods, the explanations generated

by RES models are more accurate and close to the ground truth

for identifying whether the scene is taken from the urban areas or

from wild nature. For instance, as shown in the third row on the

right in Figure 3, the explanation generated by both the baseline

and comparison methods focuses more on the water surface while

RES focuses more on the wild animal itself. Similarly, as shown in

the fourth row, the explanation generated by RES focuses more on

the wildflowers rather than the grass-fields background. Although

in those situations the prediction can be correct for all the models

studied, we argue that the model trained with the RES framework

can be more robust and have a batter generalizability power to the

downstream predictive tasks by learning to assign importance more

accurately to the most distinguishable features/patterns presented

in the data samples.
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Figure 3: Selected explanation visualization results on gender classification dataset (left) and scene recognition dataset (right).
The model-generated explanations are represented by the heatmaps overlaid on the original image samples, where more
importance is given to the area with a warmer color.

Model Pairs Perceived Quality
(p-values)

Baseline vs. GRADIA 2.68e-03‡
Baseline vs. HAICS 2.33e-04‡‡
Baseline vs. RES-G 4.98e-37‡‡
Baseline vs. RES-L 4.96e-28‡‡
GRADIA vs. HAICS 0.4980

GRADIA vs. RES-G 2.71e-22‡‡
GRADIA vs. RES-L 1.54e-15‡‡
HAICS vs. RES-G 1.67e-19‡‡
HAICS vs. RES-L 2.96e-13‡‡
RES-G vs. RES-L 0.0824

Figure 4: Top: results for pairwise comparison of five condi-
tions. †: 𝑝 < 0.05, ‡: 𝑝 < 0.01, ‡‡: 𝑝 < 0.001. Bottom: Distri-
butions of human users’ perceived attention quality ratings.
5-level Likert scale is used (5: Excellent, 4: Good, 3: Fair, 2:
Bad, 1: Inferior).

4.3.2 Human Assessment. To evaluate the quality of explanations

for the five comparison methods, we developed a web-based user

interface (UI) where a human annotator can go over all the model-

generated explanations and make qualitative evaluation on both

datasets. We distributed the model-generated explanations from the

test set to three separate human annotators. We asked annotators

to assess the perceived quality of explanations with the five-level

Likert scale. “5-Excellent” when explanations show positive atten-

tion very clearly while don’t contain negative attention at all, and

“4-Good” when positive attention is clearly presented with negli-

gible negative attention. “3-Fair” meant that positive attention is

partially seen while negative attention is clearly visible. “2-Bad” in

case positive attention can be barely seen while negative can be

found evidently. “1-Inferior” is assigned when a human annotator

can only find negative attention. After performing the Shapiro-Wilk

normality test, we found participants’ ratings don’t follow a nor-

mal distribution. Therefore, we applied Kruskal-Wallis H-test for

identifying the differences between the five conditions.

According to Kruskal-Wallis H-test, the quality ratings of five

models are significantly different, with a p-value of 7.82e-51 (< 0.05).

For post-hoc pairwise comparisons using Dunn’s test, all pairs are

significantly different, with the exception of GRADIA vs. HAICS

and RES-G vs. RES-L. This means that the ranking among the five

conditions is that RES-G (M = 4.40, SD = 0.91) and RES-L (M =

4.35, SD = 0.89) are rated notably higher than the rest, followed by

GRADIA (M = 3.92, SD = 1.24) and HAICS (M = 3.95, SD = 1.23).

The least performing condition was Baseline (M = 3.79, SD = 1.25).

Specific pair-wise testing results and visual representation between

conditions are explained in Figure 4.

4.4 Sensitivity Analysis of Hyper-parameter 𝛼
Herewe further provide a sensitivity analysis of the hyper-parameter

𝛼 introduced in the proposed RES framework, as shown in Equation

(5) which measures the tolerance level we give to the discrepancies

between human annotation labels and the model explanation. Fig-

ure 5 shows the prediction accuracy, IoU, and explanation F1-score

of the RES-L model for various values of 𝛼 on the gender classifica-

tion dataset. The scene recognition dataset follows a similar trend.

The red dashed lines represent the baseline model’s performance. In

general, the model performance is not too sensitive to the value of

𝛼 within the range studied, as all models outperformed the baseline

model by a significant margin in terms of both prediction accuracy
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Figure 5: The sensitivity study of hyper-parameter 𝛼 in RES
framework (RES-L) on gender classification dataset. The red
dashed lines represent the baseline model’s performance.

as well as explainability. As we developed our models based on

the accuracy of the validation set, we indeed observed a concave

curvature on test accuracy, peaking at a 𝛼 value between 0.001 and

0.1. While the specific best value of 𝛼 can vary depending on the

dataset as well as the degree of nosiness of the human annotation

labels (such as the granularity of the annotation), in general, the

proposed framework can perform well when 𝛼 is relatively small

(e.g. less than 0.1).

5 CONCLUSION
This paper proposes a generic framework for visual explanation

supervision by developing a novel explanation model objective

that can handle the noisy human annotation labels as the supervi-

sion signal with a theoretical justification of the benefit to model

generalizability. Extensive experiments on two real-world image

datasets demonstrate the effectiveness of the proposed framework

on enhancing both the reasonability of the explanation as well as

the performance of the backbone DNNs model.

Although the additional data of human explanation labels may

not be easily accessible, our studies have demonstrated the effective-

ness of the proposed RES framework under a quite limited amount

of training samples, which could benefit application domains where

data samples are limited and hard to acquire, yet both model per-

formance as well as the explainability are on-demand, such as in

medical domains. Furthermore, designing effective semi-supervised

or weakly-supervised explanation supervision frameworks can be

promising future directions to further overcome this limitation.

ACKNOWLEDGMENTS
Thisworkwas supported by theNSFGrant No. 1755850, No. 1841520,

No. 2007716, No. 2007976, No. 1942594, No. 1907805, a Jeffress

Memorial Trust Award, Amazon Research Award, NVIDIA GPU

Grant, and Design Knowledge Company (subcontract number:

10827.002.120.04).

REFERENCES
[1] Amina Adadi and Mohammed Berrada. 2018. Peeking inside the black-box: a

survey on explainable artificial intelligence (XAI). IEEE access 6 (2018), 52138–
52160.

[2] Alejandro Barredo Arrieta, Natalia Díaz-Rodríguez, Javier Del Ser, Adrien Ben-

netot, Siham Tabik, Alberto Barbado, Salvador García, Sergio Gil-López, Daniel

Molina, Richard Benjamins, et al. 2020. Explainable Artificial Intelligence (XAI):

Concepts, taxonomies, opportunities and challenges toward responsible AI. In-
formation Fusion 58 (2020), 82–115.

[3] Sebastian Bach, Alexander Binder, Grégoire Montavon, Frederick Klauschen,

Klaus-Robert Müller, and Wojciech Samek. 2015. On pixel-wise explanations for

non-linear classifier decisions by layer-wise relevance propagation. PloS one 10,
7 (2015), e0130140.

[4] Guangji Bai and Liang Zhao. 2022. Saliency-regularized DeepMulti-task Learning.

In Proceedings of the 28th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. ACM.

[5] Pinar Barlas, Kyriakos Kyriakou, Olivia Guest, Styliani Kleanthous, and Jahna

Otterbacher. 2021. To" See" is to Stereotype: Image Tagging Algorithms, Gender

Recognition, and the Accuracy-Fairness Trade-off. Proceedings of the ACM on
Human-Computer Interaction 4, CSCW3 (2021), 1–31.

[6] David Bau, Bolei Zhou, Aditya Khosla, Aude Oliva, and Antonio Torralba. 2017.

Network dissection: Quantifying interpretability of deep visual representations.

In Proceedings of the IEEE conference on computer vision and pattern recognition.
6541–6549.

[7] Mariusz Bojarski, Anna Choromanska, Krzysztof Choromanski, Bernhard Firner,

Larry Jackel, Urs Muller, and Karol Zieba. 2016. Visualbackprop: visualizing cnns

for autonomous driving. arXiv preprint arXiv:1611.05418 2 (2016).
[8] Kaylee Burns, Lisa Anne Hendricks, Kate Saenko, Trevor Darrell, and Anna

Rohrbach. 2018. Women also snowboard: Overcoming bias in captioning models.

In European Conference on Computer Vision. Springer, 793–811.
[9] Shi Chen, Ming Jiang, Jinhui Yang, and Qi Zhao. 2020. AiR: Attention with

Reasoning Capability. In European Conference on Computer Vision. Springer, 91–
107.

[10] Abhishek Das, Harsh Agrawal, Larry Zitnick, Devi Parikh, and Dhruv Batra. 2017.

Human attention in visual question answering: Do humans and deep networks

look at the same regions? Computer Vision and Image Understanding 163 (2017),

90–100.

[11] Hiroshi Fukui, Tsubasa Hirakawa, Takayoshi Yamashita, and Hironobu Fujiyoshi.

2019. Attention branch network: Learning of attention mechanism for visual

explanation. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition. 10705–10714.

[12] Yuyang Gao, Giorgio A Ascoli, and Liang Zhao. 2021. BEAN: Interpretable

and efficient learning with biologically-enhanced artificial neuronal assembly

regularization. Frontiers in Neurorobotics 15 (2021), 68.
[13] Yuyang Gao, Tong Sun, Rishab Bhatt, Dazhou Yu, Sungsoo Hong, and Liang

Zhao. 2021. GNES: Learning to Explain Graph Neural Networks. In 2021 IEEE
International Conference on Data Mining (ICDM). IEEE, 131–140.

[14] Yuyang Gao, Tong Sun, Liang Zhao, and Sungsoo Hong. 2022. Aligning Eyes

between Humans and Deep Neural Network through Interactive Attention Align-

ment. arXiv:2202.02838 [cs.AI]

[15] Riccardo Guidotti, Anna Monreale, Salvatore Ruggieri, Dino Pedreschi, Franco

Turini, and Fosca Giannotti. 2018. Local rule-based explanations of black box

decision systems. arXiv preprint arXiv:1805.10820 (2018).
[16] Riccardo Guidotti, Anna Monreale, Salvatore Ruggieri, Franco Turini, Fosca

Giannotti, and Dino Pedreschi. 2018. A survey of methods for explaining black

box models. ACM computing surveys (CSUR) 51, 5 (2018), 1–42.
[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual

learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770–778.

[18] Alon Jacovi and Yoav Goldberg. 2020. Aligning Faithful Interpretations with

their Social Attribution. arXiv preprint arXiv:2006.01067 (2020).

[19] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-

mization. arXiv preprint arXiv:1412.6980 (2014).
[20] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva

Ramanan, Piotr Dollár, and C Lawrence Zitnick. 2014. Microsoft coco: Common

objects in context. In European conference on computer vision. Springer, 740–755.
[21] Drew Linsley, Dan Shiebler, Sven Eberhardt, and Thomas Serre. 2018. Learning

what and where to attend. arXiv preprint arXiv:1805.08819 (2018).
[22] Masahiro Mitsuhara, Hiroshi Fukui, Yusuke Sakashita, Takanori Ogata, Tsubasa

Hirakawa, Takayoshi Yamashita, and Hironobu Fujiyoshi. 2019. Embedding

Human Knowledge into Deep Neural Network via Attention Map. arXiv preprint
arXiv:1905.03540 (2019).

[23] Grégoire Montavon, Alexander Binder, Sebastian Lapuschkin, Wojciech Samek,

and Klaus-Robert Müller. 2019. Layer-wise relevance propagation: an overview.

Explainable AI: interpreting, explaining and visualizing deep learning (2019), 193–

209.

[24] Grégoire Montavon, Sebastian Lapuschkin, Alexander Binder, Wojciech Samek,

and Klaus-Robert Müller. 2017. Explaining nonlinear classification decisions with

deep taylor decomposition. Pattern recognition 65 (2017), 211–222.

[25] Badri Patro, Vinay Namboodiri, et al. 2020. Explanation vs attention: A two-

player game to obtain attention for VQA. In Proceedings of the AAAI Conference
on Artificial Intelligence, Vol. 34. 11848–11855.

[26] Tingting Qiao, Jianfeng Dong, and Duanqing Xu. 2018. Exploring human-like

attention supervision in visual question answering. In Proceedings of the AAAI
Conference on Artificial Intelligence, Vol. 32.

[27] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. Why Should I

Trust You?: Explaining the Predictions of Any Classifier. In Proceedings of ACM

https://arxiv.org/abs/2202.02838


KDD ’22, August 14–18, 2022, Washington, DC, USA. Gao, et al.

International Conference on Knowledge Discovery and DataMining (KDD’16). ACM,

1135–1144. https://doi.org/10.1145/2939672.2939778

[28] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2018. Anchors: High-

precision model-agnostic explanations. In Proceedings of the AAAI conference on
artificial intelligence, Vol. 32.

[29] Andrew Slavin Ross, Michael C Hughes, and Finale Doshi-Velez. 2017. Right for

the right reasons: Training differentiable models by constraining their explana-

tions. arXiv preprint arXiv:1703.03717 (2017).

[30] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedan-

tam, Devi Parikh, and Dhruv Batra. 2017. Grad-cam: Visual explanations from

deep networks via gradient-based localization. In Proceedings of the IEEE interna-
tional conference on computer vision. 618–626.

[31] Haifeng Shen, Kewen Liao, Zhibin Liao, Job Doornberg, Maoying Qiao, Anton Van

Den Hengel, and Johan W Verjans. 2021. Human-AI interactive and continuous

sensemaking: A case study of image classification using scribble attention maps.

In Extended Abstracts of the 2021 CHI Conference on Human Factors in Computing
Systems. 1–8.

[32] Ryan Turner. 2016. A model explanation system. In 2016 IEEE 26th international
workshop on machine learning for signal processing (MLSP). IEEE, 1–6.

[33] Roman Visotsky, Yuval Atzmon, and Gal Chechik. 2019. Few-shot learning with

per-sample rich supervision. arXiv preprint arXiv:1906.03859 (2019).
[34] Fuxun Yu, Zhuwei Qin, Chenchen Liu, Liang Zhao, YanzhiWang, and Xiang Chen.

2019. Interpreting and evaluating neural network robustness. In Proceedings of
the 28th International Joint Conference on Artificial Intelligence. 4199–4205.

[35] Yundong Zhang, Juan Carlos Niebles, and Alvaro Soto. 2019. Interpretable visual

question answering by visual grounding from attention supervision mining. In

2019 IEEE Winter Conference on Applications of Computer Vision (WACV). IEEE,
349–357.

[36] Jieyu Zhao, Tianlu Wang, Mark Yatskar, Vicente Ordonez, and Kai-Wei Chang.

2017. Men also like shopping: Reducing gender bias amplification using corpus-

level constraints. arXiv preprint arXiv:1707.09457 (2017).

[37] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba.

2016. Learning deep features for discriminative localization. In Proceedings of the
IEEE conference on computer vision and pattern recognition. 2921–2929.

[38] Bolei Zhou, Agata Lapedriza, Aditya Khosla, Aude Oliva, and Antonio Torralba.

2017. Places: A 10 million Image Database for Scene Recognition. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence (2017).

A APPENDIX
A.1 Proof of Theorem 1

Proof. Suppose 𝑓𝜓 is a 𝛿-minimizer of L with 𝜓 ∈ Θ. From
Assumption 1, we know that there exists a neural network 𝑓𝜏 such

that

∥ 𝑓𝜏 − 𝑓𝜃 ∗ ∥2 B E
[
|𝑓𝜏 − 𝑓𝜃 ∗ |2 + |∇𝑓𝜏 − ∇𝑓𝜃 ∗ |2

]
≤ 𝐶2

1

∥𝜃∗∥2
𝑚𝛾

(15)

Then, we have

L(𝑓𝜓 )−L(𝑓𝜃 ∗) ≤L(𝑓𝜏 ) − L(𝑓𝜃 ∗ ) + 𝛿

≤𝐿1E [|𝑓𝜏 (𝑥)− 𝑓𝜃 ∗ (𝑥)] +𝐿2E [|∇𝑓𝜏 (𝑥)−∇𝑓𝜃 ∗ (𝑥)]+𝛿

≤ (𝐿1 + 𝐿2)
𝐶1∥𝜃∗∥
𝑚𝛾/2 + 𝛿

(16)

From Assumption 2, given 0 < 𝜖 < 1, we have

𝑃 ( |L(𝑓𝜃 ) − ˆL(𝑓𝜃 ) | ≤
𝐶2 (𝑉 ,𝑚, 𝜖)

√
𝑁

) ≥ 1 − 𝜖, ∀ 𝜃 ∈ Θ (17)

Then,

L(𝑓
ˆ𝜃
) − L(𝑓𝜃 ∗ ) ≤ ˆL(𝑓

ˆ𝜃
) − L(𝑓𝜃 ∗ ) + 𝐶2 (𝑉 ,𝑚, 𝜖)

√
𝑁

≤ ˆL(𝑓𝜓 ) − L(𝑓𝜃 ∗ ) + 𝐶2 (𝑉 ,𝑚, 𝜖)
√
𝑁

+ 𝛿

≤ L(𝑓𝜓 ) − L(𝑓𝜃 ∗ ) + 𝐶2 (𝑉 ,𝑚, 𝜖)
√
𝑁

+ 𝛿

≤ (𝐿1 + 𝐿2)
𝐶1∥𝜃∗∥
𝑚𝛾/2 + 2𝐶2 (𝑉 ,𝑚, 𝜖)

√
𝑁

+ 2𝛿

(18)

□

A.2 Proof of Lemma 1
Proof. Since

𝑡𝑎𝑛ℎ(𝑥) = 𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
=

1 − 𝑒−2𝑥

1 + 𝑒−2𝑥
(19)

where the last equality follows by multiplying by
𝑒−𝑥
𝑒−𝑥 = 1. And

since: lim𝑥→∞ 1 − 𝑒−2𝑥 = 1, and lim𝑥→∞ 1 + 𝑒−2𝑥 = 1, we have

lim

𝑥→∞
𝑡𝑎𝑛ℎ(𝑥) = 1 (20)

Similarly, we also have

lim

𝑥→−∞
𝑡𝑎𝑛ℎ(𝑥) = lim

𝑥→−∞
𝑒2𝑥 − 1

𝑒2𝑥 + 1

= −1 (21)

Thus we have

lim

𝛾→∞
𝑡𝑎𝑛ℎ(𝛾 (𝑀 (𝑖) − 𝑎)) =

{
1 𝑀 (𝑖) > 𝑎

−1 𝑀 (𝑖) < 𝑎
(22)

Thus we have the equivalency of Equation (8) and Equation (5)

when 𝛾 → ∞. □

A.3 Efficient Adaptive Threshold Searching
Algorithm

Algorithm 1: Adaptive Threshold Searching Algorithm

Require: 𝑀, 𝐹,𝐶
Ensure: solution 𝑎
1: initialize: 𝑎 = 0, 𝑎𝑐𝑡 = 0, 𝑣 = 0, 𝑣𝑐𝑡 = 0, 𝑖 = 0, 𝑗 = 0

2: 𝑔𝑒 = {𝑀 [𝑓 𝑖𝑛𝑑 (𝐶 > 0) ] } % find the set of greater or equal to inequality constraints
3: 𝑙 = {𝑀 [𝑓 𝑖𝑛𝑑 (𝐹 > 0) ] } % find the set of less to inequality constraints
4: 𝑔𝑒𝑠 = Sort(𝑔𝑒, ‘ascend’)
5: 𝑙𝑠 = Sort(𝑙, ‘descend’)
6: for 𝑖 < |𝑔𝑒𝑠 | do
7: 𝑣 = 𝑔𝑒𝑠 [𝑖 ]
8: 𝑣𝑐𝑡 = 𝑖 + 1 + BinarySearch(𝑣, 𝑙𝑠)
9: if 𝑣𝑐𝑡 > 𝑎𝑐𝑡 then
10: 𝑎 = 𝑣
11: 𝑎𝑐𝑡 = 𝑣𝑐𝑡
12: end if
13: 𝑖 = 𝑖 + 1

14: end for
15: for 𝑗 < |𝑙𝑠 | do
16: 𝑣 = 𝑙𝑠 [𝑖 ]
17: 𝑣𝑐𝑡 = 𝑗 + 1 + BinarySearch(𝑣, 𝑔𝑒𝑠)
18: if 𝑣𝑐𝑡 > 𝑎𝑐𝑡 then
19: 𝑎 = 𝑣
20: 𝑎𝑐𝑡 = 𝑣𝑐𝑡
21: end if
22: 𝑗 = 𝑗 + 1

23: end for

A.4 Human Annotation and Evaluation UI
demonstration

Figure 6 (a) is the interface used to collect attention annotation on

the areas people think are relevant to the classification task. For

example, for the gender dataset annotation, users first determine

whether they can identify the person’s gender in the image, then

draw the areas that help them for the gender classification. In the

back-end, the coordinates of highlighted areas are converted into a

binary map, preparing for the modeling step.

Figure 6 (b) is the interface for human assessment on the model-

generated explanations. For each image annotation, 5 explanations

were presented in random order with 3 questions (Q1 and Q2 are

true/false questions, Q3 is a 5-point Likert scale rating question)

asked for each explanation. Question 1 asks if the focus on the

explanation shows details necessary for identifying the target label

https://doi.org/10.1145/2939672.2939778
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(a)

(b)
Figure 6: The screenshots illustrating the two UIs for human annotation and evaluation. (a) The interface for attention
annotation where users can draw on the image and generate a binary matrix of the focus area used for improving model
explanation quality. (b) The interface for attention quality assessment where 5 model-generated explanations are displayed in
random order. Users will answer three questions for each explanation.

(i.e., labels in gender classification or scene recognition), and ques-

tion 2 asks for the presence of unnecessary details on the image for

identifying the target. Question 3 is our main focus of the attention

quality assessment, where annotators give 1 to 5 ratings to each

model explanation.

A.5 Detailed Implementation of the Learnable
Imputation Layers

For the learnable imputation function, we studied both a shallow

implementation as well as a deep implementation, as shown in

detail below:

Shallow Implementation: We apply one layer of convolution

operation to process the raw human annotation label, with a 64×64

convolution kernel with a padding size of 16 and a stride of 32.

Deep Implementation: We apply five layers of convolution

operations to process the raw human annotation label, with 7 × 7,

3 × 3, 3 × 3, 3 × 3, and 3 × 3 convolution kernel with a padding size

of 3 on the first layer and 1 for the rest layer, and a stride 2 for all

layers.

We choose the Shallow implementation for the RES-L model as

it achieves better performance on the validation set. The reason

why the deep version gets inferior performance could be due to the

training sample size studied in this work is too small.
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