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Abstract— Inferring resting-state functional connectivity (FC)
from anatomical brain wiring, known as structural connectivity
(SC), is of enormous significance in neuroscience for understand-
ing biological neuronal networks and treating mental diseases.
Both SC and FC are networks where the nodes are brain
regions, and in SC, the edges are the physical fiber nerves among
the nodes, while in FC, the edges are the nodes’ coactivation
relations. Despite the importance of SC and FC, until very
recently, the rapidly growing research body on this topic has
generally focused on either linear models or computational
models that rely heavily on heuristics and simple assumptions
regarding the mapping between FC and SC. However, the
relationship between FC and SC is actually highly nonlinear
and complex and contains considerable randomness; additional
factors, such as the subject’s age and health, can also significantly
impact the SC-FC relationship and hence cannot be ignored.
To address these challenges, here, we develop a novel SC-to-
FC generative adversarial network (SF-GAN) framework for
mapping SC to FC, along with additional metafeatures based
on a newly proposed graph neural network-based generative
model that is capable of learning the stochasticity. Specifically,
a new graph-based conditional generative adversarial nets model
is proposed, where edge convolution layers are leveraged to
encode the graph patterns in the SC in the form of a graph
representation. New edge deconvolution layers are then utilized
to decode the representation back to FC. Additional metafeatures
of subjects’ profile information are integrated into the graph
representation with newly designed sparse-regularized layers that
can automatically select features that impact FC. Finally, we have
also proposed new post hoc explainer of our SF-GAN, which
can identify which subgraphs in SC strongly influence which
subgraphs in FC by a new multilevel edge-correlation-guided
graph clustering problem. The results of experiments conducted
to test the new model confirm that it significantly outperforms
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existing state-of-the-art methods, with additional interpretability
for identifying important metafeatures and subgraphs.

Index Terms— Convolutional neural network, deep learning,
functional connectivity (FC), interpretable graph neural net-
works, metafeatures, structural connectivity (SC), subgraph
mining.

NOMENCLATURE
Graphs of N nodes representing SC and FC.
Weighted adjacency matrices of G and G'.
Set of nodes of g.
ith node of G.
Random noise term of distribution 4.
Vector of K metafeatures.
Concatenation of N copies of metafeatures.
FC conditional generator.
FC conditional discriminator.
Value of the jth node under the kth latent feature.
Correlation matrix of the /th deconvolutional
layer and the mth feature map.
Hyperparameters to control regularization for
the generator.
W N2E kernel for the mth feature map (outgoing).
bm N2E kernel for the mth feature map (incoming).
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W,  N2E kemnel for the mth feature map and the kth
metafeature (outgoing).

Wpnir  N2E kernel for the mth feature map and the kth
metafeature (incoming).

P Size of each node embedding.

K Total number of metafeatures.

I. INTRODUCTION

TRUCTURAL connectivity (SC) and functional con-

nectivity (FC) are considered as two forms of brain
connectivity networks or “connectomes.” SC represents the
synaptic connections among neurons that can be quantified
by diffusion magnetic resonance imaging (MRI) techniques
such as diffusion tensor imaging, which can map diffusion
process of molecules in biological tissues in vivo and non-
invasively [1]. FC can be inferred by using (resting state)
functional MRI (fMRI) to calculate the strength of long-
range, temporal correlations (slow fluctuations, <0.1 Hz) [2]
of activation signals in various regions of brain [3]. fMRI relies
on the blood oxygenation level-dependent (BOLD) responses
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to activities triggered due to tasks/stimuli and measures brain
activity by detecting changes associated with blood oxy-
genation levels and flow [4]. Resting-state fMRI (rs-fMRI)
can also reveal the subjects’ baseline BOLD variance. The
study of the relationship between SC and FC is one of the
most crucial yet open problems neuroscientists currently face.
Learning the structural-to-functional mapping will deepen our
understanding of how the structural properties of our brain
impact its function and could thus suggest potential novel
solutions to address neurologic disease and improve well-
being. In addition to SC, based on evidence in [5] and [7]
and according to [8], demographic and behavioral measures
corresponding to the subjects under study strongly influence
patterns of brain connectivity and could thus enhance the
process of learning the mapping by employing appropriate
informative data to delineate FC.

Predicting the mapping from structural to FC is a rapidly
developing and very promising domain. Existing works can
be categorized into three main approaches. The methods in
the first category focus on developing linear diffusion models
that strive to fit the linear correlation between the correlation
matrices of SC and FC [3], while methods in the second
category concentrate on modeling the dynamics of neurons’
activity based on their connections, generally by proposing
straightforward hypotheses related to the dynamic processes
involved [9], [10]. For example, Abdelnour ef al. [3] assumed
that the coactivation patterns reflected by FC are actually
derived from the process of signal diffusion in SC. The
third category employs graph theory-based knowledge in their
prediction, using spectral-based approaches, or linear algebra
as discussed in [11] and [12], respectively. Existing works
typically focus on the mapping between structural to FC to
infer FC from SC samples, ignoring the possible contributions
of other factors in addition to SC, which affect the estimation
process.

Despite the numerous recent works in this domain, it is still
in its nascent stage, with several critical challenges remaining
unsolved. These include the following.

1) The Complex and Nonlinear Mapping Between Struc-
tural and Functional Connectivities: Both SC and FC
are graph-structured, so there could be dependencies
among the nodes inside them due to the complex
connections. Moreover, at present, the true mechanisms
governing the mapping between the SC and the FC
are still largely unknown and cannot be effectively
fit based solely on the simple linear transformations
between them. This has been demonstrated by several
studies where kernel-based [13] and heuristic-based [14]
approaches considering nonlinear relationships tend to
outperform those based on linearity assumptions. How-
ever, existing works still generally make a strong
assumption regarding the types of nonlinearity, thus
potentially limiting the expressiveness and flexibility of
the resulting models.

2) Stochasticity of the Mapping Between Structural and
Functional Connectivities: FC is unlikely to be fully
determined by SC and models that ignore the poten-
tial randomness in their mapping may well not be
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3)

4)

sufficiently robust. It was initially proposed in [14] that
during the resting state, intrinsic random fluctuations
modeled as white noise (corresponding to channel noise
and different sources of biophysical variability) can
stimulate firing rates of neurons and propagate through
the network, thus determining patterns of spontaneous
activity.

Insufficient Consideration of Environmental and Intrin-
sic Features of the Subjects: Metafeatures, such as the
environmental (e.g., substance use) and intrinsic features
(e.g., age, demographic, and behavioral measures) for
individual subjects, could also impact the FC. However,
the existing methods typically fail to take them into
account sufficiently [5]. This is partially due to the fact
that the SC is graph-structured, while the metafeatures
are vector-structured, creating serious technical diffi-
culties when it comes to ingesting and learning such
heterogeneous inputs in a seamless way.

Tradeoff Between Model Interpretability and Expres-
siveness: The sophisticated, unknown mapping between
SC and FC calls for highly expressive models, but
highly complex models typically suffer from limited
interpretability and are prone to overfitting. It is highly
beneficial to establish a model that can not only fit
complex patterns between SC and FC but also brings
transparency and enables users to distill new knowledge
from large amounts of historical data, for example when
identifying which metafeatures affect the FC patterns.
Moreover, it is also crucial to identify which subgraphs
in SC strongly impact which subgraphs in FC. However,
the existing graph neural network explainer cannot han-
dle this subgraph-based explanation problem where the
input and output graphs have different topologies [6].
To address all the above challenges, in this arti-
cle, we propose a new generic framework for deep
graph transformations designed to learn the relationship
between SC and FC. Our proposed SC-to-FC genera-
tive adversarial network (SF-GAN) model is a novel
graph conditional GAN that encodes SC, after which
the encoded latent representation and metafeatures are
jointly decoded into FC. The leveraged multiple edge
convolution and deconvolution layers ensure high model
expressiveness in fitting sophisticated nonlinear patterns,
with additional dropout operations to encompass ran-
domness. Various newly proposed sparsity regularization
graph deconvolution layers are integrated into the model
optimization process in order to select the key metafea-
tures that impact FC. A new subgraph-based graph
neural network explainer has been proposed that auto-
matically identifies which subgraphs in SC impact which
subgraphs in FC. Finally, our SF-GAN is validated to
scale with at most quadratic computation in terms of
the number of nodes of a graph, making it suitable for
at least modest scale graphs. The contributions of this
work are summarized as follows.

Propose a New Deep Graph Learning-Based Framework
for SC-to-FC Transformations: We formulate SC-to-
FC transformation as a generative process, utilizing a
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graph conditional GAN that can model sophisticated
transformation process with randomness.

Design a Scenario to Jointly Encode Heterogeneous
Inputs of SC and Metafeatures: A large amount of
metafeatures are integrated seamlessly with the learned
representation of SC, which are jointly used to decode
the FC.

Develop New Sparsity-Regularized Graph Deconvolu-
tion Layers for Metafeature Selection: To identify the
key metafeatures, we propose new graph deconvolu-
tion layers that enforce the sparsity of feature weights
with various regularization terms. This not only reduces
the risk of overfitting but also automatically identifies
metafeatures with nonzero weights that impact the FC
patterns.

Develop a New Subgraph Graph Neural Network
Explainer That Explains the Learned Mapping Patterns
Between SC and FC: We formulate into a new multilevel
graph clustering problem, which detects the clusters of
nodes that have strong correlations in SC, FC, and in-
between SC and FC. More importantly, the in-between
correlations are innovatively derived from the edge-to-
edge (E2E) correlations from the saliency maps of the
mapping learned by SF-GAN.

Conduct Extensive Experiments to Validate the Effec-
tiveness and Efficiency of the Proposed Model: Exten-
sive experiments on two real-world resting-state MRI
datasets demonstrated that our proposed SF-GAN can
indeed predict FC close to ground-truth target graphs
and outperforms existing state-of-the-art methods by a
large margin.

The remainder of this article is organized as follows.
In Section II, we introduce our proposed SF-GAN
framework and provide details on the newly developed
deconvolution layers, in addition to the new graph
neural network explainer for SF-GAN. In Section III,
we describe the experiment settings and performance
analyses, followed by Section IV in which we apply our
novel design to find the best partition of nodes in the SC
and FC graphs. We provide a summary of related work
in Section V and a conclusion of our work in Section VL.

II. METHOD

In this section, we describe the proposed SF-GAN frame-
work for predicting FC from SC. First, in Section II-A,
we introduce the notations in brain network data and machine
learning models used in this domain, which is followed
by Section II-B that summarizes the overall architecture
for the SF-GAN model. We then elucidate the details of
the proposed graph transformation model based on newly
developed graph deconvolution layers with various regular-
ization settings in Sections II-C and II-D. Finally, in Sec-
tions II-F and II-G, we describe our new graph neural
network explanation techniques for SF-GAN and present
analysis for model complexity, respectively. The schematic
for our method is included in Section II-B in Supplementary
Material.

A. Problem Formulation

This work focuses on brain networks with graph represen-
tation. Specifically, we define SC as G = (V, A), where G
serves as an undirected weighted graph. V is the set of N
nodes V = {v;|i € [1, N]} representing the gray matter regions
in the brain. The weighted adjacency matrix A € RV*N
corresponds to a collection of node pairs where A; ; € [0, c0)
is the weighted connectivity of the edge between nodes i
and j. It reflects the connectivity strength between any two
nodes (i, j) based on the proportion of fiber tracts connecting
the two regions per unit surface, normalized by the aver-
age fiber length measured through dMRI tractography [10].
An FC is defined as G’ = (V,A’), which has the same
node set as the SC G except that the weighted adjacency is
denoted as A’, where A; ; is the temporal correlation between
the time series of different brain regions i and j that reveals
the “coactivation” relationship between them. Table I describes
the various parameters and variables used in this work.

In neuroscience, modeling and understanding how the SC
determines and influences the patterns of FC is a critical issue
that could be highly beneficial for potential breakthroughs in
understanding mental diseases. In this article, the goal is to
generate FC of a subject, given the subject’s SC and other
metafeatures (e.g., age, health status, and family history of
disease).

Formal Definition of the Problem: This problem can be
mathematically formulated as a graph transformation problem
that learns the mapping

F G, R*K Uy — ¢

from an input graph, namely, the SC G < G, along with a set
of metafeatures M € R'*X and a random noise term u ~ U,
to a target graph, namely, the FC G’ € G'.

The above-formulated research problem involves several
technical challenges, including the difficulty of learning the
complex and nonlinear relation between the structural and
FC; the difficulty of accounting for the stochastic factors that
influence the generated FC; the integration of the heteroge-
neous inputs of SC and metafeatures, with graph structure and
vector structure, respectively; and the need to ensure model
interpretability in order to indicate important associations
between the input and the output. For example, it is important
to know which metafeatures have a strong impact on the
formation of FC. This is a challenging task that involves
teasing out its influence on FC from its joint coupling with SC.

B. SF-GAN Overall Architecture

To achieve SC-to-FC transformation and address all the
abovementioned challenges, this article proposes a new model,
SF-GAN. SF-GAN is a new graph conditional GAN, which
generates an output graph (i.e., FC) based on an input graph
and additional input features, as shown in Fig. 1. Going beyond
graph prediction methods, which aim to predict deterministic
graph output, the advantage of our proposed GAN-based archi-
tecture is its ability to account for the randomness of the gen-
erated complex graph. It consists of two major components,
namely, the conditional FC generator and the conditional FC
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Proposed SF-GAN framework. The E2E and E2N convolution layers are labeled in black and shown with black arrows, while the deconvolution

layers have red labels. Graph skip-nets used in [15] are omitted for more clarity of our model presentation.

discriminator. The former generates an FC as realistically as
possible so that it can convince any graph classifier that it
is real, while the latter accurately distinguishes the generated
graphs as “fake,” compared to the real observed FC. The
goals of these two components are adversarial, and hence,
the training of our SF-GAN models relies on an iterative
process of optimization of each alternately, during which they
strengthen each other until no further improvement is found.
This process is equivalent to optimize the following general
objective function:

mfin max L(F,D) = Eg,¢[logD(G'|G)]

+Eq,u[log(1-D(F (G, M, U)|G))]
+AUR1(F) + 12R2(F) (1)

where F and D denote the FC conditional generator and
the FC conditional discriminator, respectively. On the right-
hand side, the first term denotes the loss in the discriminator
due to classifying real observed FCs, while the second term
represents the loss in the generator due to generating the FCs
in the conditional generator J. The third and fourth terms
introduce additional regularization over the model parameters
of the generator. % (F), is the L, loss, which enforces sparsity
similarity. It is controlled by the hyperparameter 4; and is
equal to Eg 4 p[||A" — F(G, M, U)|;]. The last term will
be presented in Section II-D, after we formally describe the
conditional generator in Section II-C where we formulate our
proposed deconvolution layers.

C. FC Conditional Generator

The proposed FC conditional generator utilizes a graph
encoder—graph decoder framework, where the input of the
encoder includes the SC and random noise. The additional
metafeatures are input into the information bottleneck, namely,
the graph embedding encoded by the aforementioned graph
encoder. This addresses the challenges related to heterogeneity

of the two input structures in terms of graphs and vectors.
Once past, the information bottleneck, the graph embedding,
and the metafeatures are decoded back into the graph domain
to form the FC. Graph skip nets are also adopted into the
encoding—decoding process, to map the learned latent relations
between the input and target graphs but are omitted from
Fig. 1 for simplicity. Specifically, the output of the first edge
deconvolution layer in the decoder is concatenated with the
output of the first edge convolution layer and then input
into the second deconvolution layer. A similar technique is
applied to the second layers of the encoder and decoder. In the
following, we describe the graph convolution and proposed
deconvolution layers that constitute the encoder and decoder
architecture.

Since SC is a weighted adjacency matrix, the inputs are
actually edges rather than nodes. This means that instead of
the graph convolution layers normally used for the convolution
of node attributes, here, we require edge convolution layers.
Specifically, as shown in Fig. 1, we first leverage the E2E
convolution layers proposed by Kawahara ef al. [16], which
can aggregate the information for all the adjacent edges and
hence learn high-order neighborhood information. Moreover,
to further aggregate the result into higher level graph represen-
tation, the edge-to-node (E2N) convolution layers have been
leveraged to generate graph embedding as shown in Fig. 1 and
elaborated in Fig. 2, denoted as F € RY*?, where N is the
number of nodes and P is the size of each node embedding.
We can now describe the proposed graph deconvolution layers
as follows.

We proceed by focusing initially on the node-to-edge decon-
volution layer, which deconvolves the graph embedding F as
well as the metafeatures to a pairwise node relation matrix,
and for simplicity, we disregard the bias. Formally, let E%™ e
RN*N represent the pairwise node relation matrix for the
mth feature map, where EE‘}” denotes the correlation between
nodes i and j. Mathematically, we add four terms to represent
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Fig. 2.
figure.

pairwise node relation between nodes i and j as follows and
demonstrate these in Fig. 2:

P
EYN =2 o(¢m; Fia) +
k=1
P K )
—|—Zg Wmt ) + Za(wr;:,i,k ) Mj,k)
k=1 k=1
WnelC, W, el

0 (Wa,jk - Mix)

M =

=
Il

s.t.,

(@)

where M e RM*K is the concatenation of N copies of
metafeature vectors M € RYK, M;, corresponds to the
jth node and kth metafeature, F;; denotes the value of
the jth node under the kth latent feature, ¢, € RV is
the node-to-edge deconvolution kernel for “incoming™ edges
for mth feature map, ¢ (-) is an activation function such as
ReLU [17] or sigmoid function, y,, € RV*! is the node-
to-edge deconvolution kernel for “outgoing” edges for the
mth feature map, W,, € RV*K is the metafeatures’ node-
to-edge deconvolution kernel for “incoming” edges for mth
feature map, W, € RV*! is a column vector of the kth
metafeature, and W, € RX*N js the metafeatures’ node-
to-edge deconvolution kernel for “outgoing” edges for the
mth feature map. Hence, W, , € RV is a row vector of
the kth metafeature and C and C’ are all possible desired
sparsity patterns of the weights W,, and W, , respectively.
Some implementations of these are introduced in Section II-D.
We can now leverage the E2E deconvolution, which is a
reversed process denoted as follows:

o-g{ge)frier)

3

where @™ ¢ RN and g™ < RY are the kernels for the

“incoming” and “outgoing” edge deconvolution, respectively;
and E;’; L™ is the correlation between nodes i and Jj in the node
correlalmn matrix of the /th layer and the mth feature map,
in the last layer before the final output. Moreover, d refers to
the number of relation modes extracted by the previous layer.

D. Regularized Deconvolution for Metafeatures

Based on the mathematical representations of the node-to-
edge deconvolution layer provided by (2), we can now describe

w

mk

nf K _
' _'z U(Wm.J.k'Mi.k)
o k=t

d «
_‘l _‘Z?(Wm.kM J

Node-to-edge deconvolution layer, deconvolves the graph embedding F as well as the metafeatures. The four terms in (2) are demonstrated in this

the last term, R,(F), in (1). The constraints over W, and
W, in Section II-C are enforced during the model parame-
ter optimization process via the regularization term R (F).
By designing appropriate regularization terms, different forms
of the desired constraints can be achieved. In this article,
we explore several of the regularized patterns desired for
solving the problem of SC-to-FC transformation, introduced
as follows.

1) Setting 1 (Identical Sparsity Pattern of Metafeatures):
This regularization requires that among all the metafeatures,
only a small subset are important factors that significantly
influence the patterns of FC. Each metafeature influences
different nodes identically. This notion can be denoted as

Vm,k,i # j: Wyii= Wny,j, and [supp(Wp)| < N x K

(namely W, is sparse)

where supp(x) means the support function of a vector whose
outputs are the set of nonzero elements of the input vector x.
To achieve the above sparse pattern, in (1), we define R, (F) =
2o Wl (Vm, ki # j: Wi = Wik j).

2) Setting 2 (Independent Sparsity Pattern of Metafeatures):
This regularization requires that among all the metafeatures,
only a small subset are important factors that significantly
influence the patterns of FC. Each metafeature influences
different nodes differently. This notion can be denoted as
supp(Wn) <« N x K (namely W, is sparse). This can be
easily achieved by once again enforcing the same £; norm
as that used in Setting 1, but without the equality constraint.

3) Setting 3 (Group Sparsity Pattern of Metafeatures):
Settings 1 and 2 strive to address extreme patterns, where the
former assumes that the metafeatures must influence all the
nodes the same, while the latter insists that the influence on
all the nodes is totally independent. In contrast, Setting 3 tries
to take an intermediate case between the above two settings by
enforcing the constraint that if a metafeature is (un)important,
then it should be (un)important to all the nodes, and the
specific strength of the importance can vary across different
nodes. This type of regularization aims to achieve a compelling
tradeoff between interpretability (depending on whether each
metafeature is useful for generating FC) and expressiveness
(preserving the model parameter flexibility to handle node het-
erogeneity due to the different inherent functions of different
brain regions). More concretely, the desired pattern can be
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expressed in the following:
VYm,k,i # j:
supp(Wn,k,i) = supp(Wimx,;), and [supp(Wn)| < N x K
(namelyW,, is sparse).

The above equation calls for a pattern that ensures that for the
same feature, W, will have the same sparsity pattern across
all the nodes. This effect can be achieved by enforcing a group
sparsity term such as an £ | norm on the graph deconvolution
kemel, namely, Ra(F) = 2, [Wmll21 = 22, 224 [Wankll2.

E. FC Conditional Discriminator

The utilized SF-GAN conditional graph discriminator is
designed to accept two graphs (one pair) as the input and
decide whether the two are related or not. Specifically, the
input pair is formed by concatenating SC with either predicted
or real FC. The input here contains graph edge information and
hence is passed through edge convolution layers to generate
node representations. These embeddings are then summed up
and fed to a softmax layer to generate the final output. This
architecture is also shown in Fig. 1.

FE. Subgraph Mapping Discovery Between SC and FC

Beyond merely doing SC-to-FC prediction based on our
SF-GAN framework, it is also interesting and important to
figure out which subgraphs in the SC majorly influence which
subgraphs in the functional one. For example, via sophisticated
experimental design, neuroscientists investigated and found
that strong FC weights are present between regions with no
direct SCs [18]. In [19], the researchers combined FC with DTI
data prove that FC reflects, to a large degree, the underlying
SC. However, the research domain is still looking forward to
an automatic way to quickly probe the data and find candidate
pairs of structural and functional subgraphs that have strong
correlation.

To accomplish the above goal, we propose a new post hoc
explanation technique for explaining our SC-to-FC prediction
results. To discover the underlying mapping patterns between
SC and FC, we define the problem as subgraph mapping
patterns discovery between SC and FC, which is to find
mappings from subgraphs in SC to subgraphs in FC, such
that the nodes are well connected within each subgraph (i.e.,
intraconnectivity) while also having tight intergraph connec-
tions between subgraphs in each pair (i.e., interconnectivity).
Mathematically, define g; € G and g; € G’ as a pair of
subgraphs from SC G and FC G/, respectively, the objective
of finding C such pairs is given as follows:

min
{(en-2:)12.SG g, SG"}

C
D f(gnmenA AL Q)

n=1

C
=D (fi(gn A) + fi(gr, A) + f2(gn. 81, Q) (@)
n=l1

where C is the number of subgraphs after the partition; the
function fi(gn, A) is to measure the intraconnectivity of a
subgraph g, of a given graph with adjacency matrix A, while
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the function h(g,, g,, Q) is to measure the interconnectivity
between the subgraphs g, and g, of each pair, where Q
RN*NxNxN denotes the correlation between edges in the first
graph and the edges in the second graph such that Q; j .y
denotes the correlation between the edge (i, j) in the second
graph (i.e., FC) and edge (x, y) in the first graph (i.e., SC). The
problem now becomes finding the best sets of subgraphs in the
SC graph and FC graph as well as defining the measurements
for intraconnectivity and interconnectivity. It is not hard to
measure the intraconnectivity of the set of nodes within one
graph via the edge weights, and however, measuring the
interconnectivity Q € RN*NXNxN petween SC and FC is
challenging. Also, to the best of our knowledge, this is still
an open problem.

Here, we propose to take advantage of the SF-GAN model
that was trained to learn and uncover the mapping from
the SC graph to the corresponding FC graph. Specifically,
we leverage the gradient information [22] via computing the
partial derivatives of each output edge A} ; (i.e., each edge in
FC graph) with respect to each input edge A,  (i.e., each edge
in the SC graph), as previously introduced in Section II-A as
follows:

dA]
Ay

i,jx,y = (5)
where A} j corresponds to the edge between nodes i and j in
the predicted FC graph and A, , corresponds to edge between
nodes x and y in the input SC graph. Clearly, computing these
derivatives, for each specific edge in the output, generates an
N x N matrix, resulting in an N* tensor for all edges in the
predicted FC.

Although this 4-D tensor g will give us the correspondence
between each pair of edges in SC and FC, it is still very
obscure to be used directly for measuring the interconnectivity
between a set of nodes in SC and a set of nodes in FC. Thus,
we propose to perform a compression operation by global
average pooling (GAP), which reduces the 4-D tensor g to
a 2-D matrix §. In using GAP, we performed the compression
over two directions, one from input and one from the output,
such that the outcome of the operation will yield the average
correspondence between one node from SC and one node from
FC. Specifically, given a node i from the SC graph and a node
y from the FC graph, the node-level correspondence weight
between nodes i and y can be estimated by taking the average
values over all the possible paths that connect these two nodes
as follows:

A 1
Qiy =173 2.2 diiny (6)

Finally, with the information of A, A’, and @ € RV*V, we can

define a supergraph G, which is a combination among them

such that
A= [ ST f] 7

Here, G = (V = VUV,A = AUA'U§), where A ¢
R2N*2N and hence, the problem in (4) can be transferred into
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the following:
c

> (filgns A+ fi(g) A')

min
{(gn.8:)18n G 82 G Y 0

HZ(gmgi.sQ))
= Zf 8n 8 A, A, Q)

{(gn gn)lg,.EG g,,‘;G } iz

an .U g, A

{(g,,Ug")CG} A)[According to (7)].

(®)

Therefore, fi(-), as mentioned above, is a score function
measuring the connectivity of subgraph g, U g, and can be a
classical community detection objective such as InfoMap [21],
[23]. Here, the goal of InfoMap for optimizing (8) is to find
the optimal partition that minimizes the description length
over all possible network partitions. Accordingly, the network
partition that gives the shortest description length [24] and
compresses the data the most also best captures the community
structure with respect to the dynamics on the network [21].
Following the existing works, we applied the fast stochastic
and recursive search algorithm [20] to minimize (8) and find
the best descriptive subgraph mapping.

G. Time Complexity Analysis

Here, we compute the overall time complexity of SF-GAN
as the sum of the complexity for the conditional generator
and the complexity for the conditional discriminator. The total
complexity can be presented as O(f *((L;+Ly+ L3)« N> M3 +
N2My + N2MyR)), where N is the number of nodes, My is
the number of feature maps at each convolution layer, L;
is the number of E2E convolution layers in the encoder in
generator, L, is the number of E2E deconvolution layers in
the decoder in generator, L3 is the number of E2E convolution
layers in the discriminator, R is the length of the last (fully
connected) layer, and ¢ is the number of training samples. Our
SF-GAN framework is able to provide a scalable [i.e., O(N 2)]
algorithm for mapping SC to FC. This is valuable if we
need to use other brain parcellations with a larger number of
brain regions, compared to the existing graph neural network
generative models [25], [26], which can only scale to small
graphs (up to N = 20) and often have O(N?) or even O(N*)
computational complexity.

III. EXPERIMENTS

This section describes the experiment settings and perfor-
mance analyses. To evaluate the performance of the proposed
model, extensive experiments were performed using a 64-bit
machine, with a 40-GB memory, a 4-Core Intel' CPU, and
an Nvidia' RTX-2080 Ti GPU. The deep architecture was
fully implemented by tensorflow 1.13.1. The details of the
experiments, including the datasets, comparison methods, and
evaluation metrics, are described in turn below. MATLAB and
the python scripts written to obtain the results are publicly
available at https://github.com/netemady/SF-GAN-. Details on

IRegistered trademark.

data splitting and hyperparameter tuning are included in
Appendix-A (see the Supplementary Material), and a discus-
sion on model selection is provided in Section II-A in the
Supplementary Material, both available in the same repository.

A. Datasets

The SC and FC datasets used in this study were extracted
from the Human Connectome Project (HCP), specifically,
the 1200 Subjects Release, February 2017 [27]. HCP aimed to
study and share MRI data from 1200 young adult (ages 22-35)
subjects, along with their behavioral features. The MRI data
and metafeatures used in this study can be downloaded from
the HCP website (https://db.humanconnectome.org/).

1) Data Sources: The (structural, diffusion, and functional)
MRI data were preprocessed using the HCP pipeline [8].
For the diffusion MRI, this was followed by the Bayesian
Estimation of Diffusion Parameters Obtained using Sampling
Techniques, modeling crossing X fibers (BEDPOSTX) algo-
rithm in the FMRIB Software Library [28] (FSL), which
models white matter fiber orientations and crossing fibers
for probabilistic tractography. The resting-state blood-oxygen-
level-dependent functional MRI (r-fMRI) time series data were
acquired from a total of 823 participants, in four runs of
approximately 15 min for each participant, including two runs
on two different days (Days 1 and 2). These measurements
were collected with the subject supine and still, with eyes
open, to track physiological changes in the brain (i.e., changes
in blood flow and oxygen levels) that occur in the resting state,
when an explicit task is not being performed [29], [30].

The behavioral and demographic data HCP collected for
each participant were utilized as additional input for our
model. Relevantly, a public data dictionary was released that
included 357 features related to each subject in the set of which
161 were selected as the input to our model. A list of the input
features is provided in the Supplementary Material. These
features were divided into five categories: subject information
(e.g., age), health and family history (e.g., height, BMI,
and family history of disease), psychiatry and life function
(e.g., anxiety and attention problems score), sensory (odor
identification, hearing and pain tests, and so on), and substance
use (e.g., test result for methamphetamine and cocaine). When
training our proposed SF-GAN model, our primary goal was to
identify which of these five categories had the greatest impact
on improving the prediction compared to the use of SC alone.
Once identified, the most influential categories could then be
used to ensure a more efficient feature collection process for
the FC prediction of additional subjects, with a few key factors
delivering a similar performance to that achieved using all
161 metafeatures.

2) Extracting SC and FC: To construct the SC matrix for
each subject, we ran Probtrackx in FSL with 68 regions of
interest (ROIs) obtained from the Desikan—Killiany atlas [31].
For the remaining parameter setting in Probtractx, we followed
the recommendations of the tutorial [32] provided by HCP.
Finally, the resulting SC matrices were normalized by dividing
the respective row sum from each nonzero value.

Three steps were followed to extract the FC from the r-fMRI
time series data, for each day: 1) concatenate the time series
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for the two runs together; 2) for each of the 68 ROIs defined
by the Desikan—Killiany atlas, average all the time series to
create a single ROI time series; and 3) obtain the FCs by either
computing the pairwise ROI time series’ Pearson correlations
using FSLNets [33] with the full correlation option, thus
generating Dataset 1; or following similar three steps as
mentioned for Dataset 1, except that we concatenate the time
series for the two runs performed in Day 2 together, thus
generating Dataset 2.

B. Comparison Methods

The following FC prediction methods were included in the
performance comparison. The SC was normalized before using
it as input for all the techniques.

1) Deep Graph Spectral Evolution Network (GSEN) [34]:
The graph topology evolution problem was modeled
by the composition of newly developed generalized
graph kernels. GSEN was designed to represent many
sophisticated phenomena that require the involvement
of sequential or simultaneous graph kernels.

2) Connectome Embedding (CE) [35]: This technique cre-
ates embeddings of input SC to a meaningful low-
dimensional vector space. It will then employ the
embeddings to construct predictive deep models of func-
tional and SC.

3) CE-Aligned [36]: Built upon CE, this method employs
CEs to improve structural to FC mapping in individuals
with a novel embedding alignment approach.

4) Graph Diffusion Model [3]: A linear network of brain
dynamics based on graph diffusion was derived and
compared against nonlinear approaches. A diffusion
process was modeled based on the underlying structural
network to obtain a deterministic solution for FC and
the global diffusivity parameter was estimated for each
dataset by finding the critical (optimum) value over all
subjects using curve fitting to fit an exponential function
on all data points.

5) Eigen Decomposition Model [38]: An eigen relationship
between structural and FC networks was established
via Laplacian spectra based on the FC and SC found
to share eigenvectors whose eigenvalues were exponen-
tially related.

6) Weighted Sum of Matrix Powers [39]: Using two func-
tional imaging modalities, namely, fMRI and MEG, the
mapping between SC and stationary FC was described
by a mathematical function represented as a weighted
sum of matrix powers. The weights were obtained by
computing the normalized sum of squares for each point.

T) Spontaneous Neural Activity Model [14]: Focusing on
the microscopic level to describe the synaptic connec-
tions between neurons, a general mathematical model
of neural dynamics was derived. This mathematical
equation describing the variation in the firing rate in
the neurons could then be applied to identify the link
between dominant patterns of spontaneous activity and
the underlying network architecture.

8) Baseline [15]: By replacing the ReLU activation in the
last layer of generator with tanh, it became possible to
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make negative FC predictions as well as positive ones.
The hyperparameters were tuned separately for each
input dataset.

The performance of our proposed SF-GAN method
under the three regularized patterns was compared with
the results obtained using the above five methods and
reported in Section III-D.

C. Evaluation Metrics

In order to evaluate how effectively SF-GAN and other tech-
niques can reveal the translation rules between the predicted
and empirical graphs, the Pearson correlation coefficient, r,
was computed for each pair. This metric, which represents
the linear correlation between estimated and ground-truth
data, is computed between the upper triangular values of
the two connectivity matrices and averaged over all pairs in
the validation set. Before employing any of the comparison
methods or our proposed SF-GAN, the SC matrix must be
normalized in a preprocessing step.

The distance measurement between the generated and real
graphs was calculated using mean squared error (MSE) and
mean absolute error (MAE) metrics for all eight methods over
the two datasets. Higher r and lower MSE and MAE show
better performance.

D. Performance

1) Model Accuracy Analysis: This section examines the
performance of the proposed and comparison methods for
Datasets 1 and 2. The results for the Pearson correlation, MSE,
and MAE are presented in Table I; the best performance for
each dataset among 11 different techniques tested is indicated
in bold print.

As the data shown in Table I, SF-GAN consistently out-
performed the four nondeep learning comparison methods
in terms of the Pearson correlation, with a higher discrep-
ancy between the average Pearson correlation of the nondeep
learning and SF-GAN techniques (77.14%) being observed
for Dataset 2 compared to Dataset 1 (73.33%). As a general
observation, for nondeep learning, and all GAN techniques,
the Pearson correlation increased moving from Dataset 1 to
Dataset 2, by at least 9.09%. On a similar comparison,
we can compute an improvement in Pearson correlation equal
to 32.45% for Dataset 1, from state-of-the-art deep learning
methods (GSEN, CE, and CE-aligned) to SF-GAN techniques.
This rise equals 41.32% for Dataset 2, when comparing
SF-GAN to state-of-the-art deep learning methods.

The impact of integrating metafeatures to the model is also
revealed by the data in Table I, with the metadata signifi-
cantly improving the Pearson correlation for both datasets;
with an improvement of 5.41% for Setting 1 and 10.25%
for Settings 2 and 3 (Dataset 1), and 6.67% and 4.55% for
Dataset 2. This establishes the value of incorporating metafea-
tures using node embedding and regularization for the node
layer.

We also computed the MSE as another well-recognized
graph metric to evaluate the predictions generated by SF-GAN
and the comparison methods. The superiority of the deep
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TABLE I
PEARSON CORRELATION, MSE, AND MAE RESULTS FOR THE TWO DATASETS

Methods Dataset 1 Dataset 2

Tr | 1 MSE | | MAE Tr | I MSE | | MAE
Graph diffusion - | >10° 2,55 | 0.07 | 139.43 0.98
Eigen decompose 010 | >10° >10% | 011 | >10% > 10%
Weighted sum 0.11 145.01 1.01 0.12 > 10° 1.55
Neural activity 0.09 | >10° > 108 - > 10? 7.39
GSEN 0.28 68.19 0.53 | 0.30 69.12 0.53
CE 0.23 71.14 0.53 | 0.23 70.18 0.54
CE-aligned 0.25 75.17 0.56 | 0.24 77.14 0.56
Bascline 0.35 70.17 0.54 | 0.42 62.33 0.49
SF-GAN Setting 1 | 0.37 69.28 0.51 | 0.45 | 55.06 0.47
SF-GAN Setting 2 | 0.39 | 67.51 0.52 | 0.44 57.02 0.48
SF-GAN Setting 3 | 0.39 68.06 0.51 | 0.44 57.05 0.48

TABLE II
EFFICIENCY RESULTS FOR SF-GAN AND FIVE COMPARISON METHODS

Methods Training time Testing time

mean std | mean std

Graph diffusion 8.28 0.97 1.18 0.13
Eigen decomposition 8.65 0.60 1.25 0.06
Weighted sum 8.73 0.86 1.17 | 0.08
Neural activity 2.58 0.09 2.58 0.08
Baseline 86.25 1.45 1.98 0.09
SF-GAN Setting 1 79.19 1.86 1.97 0.10
SF-GAN Setting 2 86.95 1.56 2.17 0.13
SF-GAN Setting 3 93.04 0.96 2.27 0.10

learning techniques (both SF-GAN and comparison methods)
is again demonstrated by this metric, in addition to the
findings for the Pearson correlation. Graph diffusion, eigen
decomposition, and spontaneous neural activity all performed
markedly worse than the others for both datasets, with the
poorest value of greater than 103 being obtained for nondeep
learning methods in several cases. The GAN and the rest
of deep learning-based techniques exceed all the comparison
methods for both datasets, with a high margin in all instances.

To investigate the predictions of all the techniques more
closely, we also used a third metric, MAE (Table I). The GAN
techniques for both datasets outperform all other methods,
with the best performance for SF-GAN Settings 1 and 3,
and SF-GAN Setting 1, for the first and second datasets,
respectively.

2) Model Efficiency Analysis: The training and test times for
the proposed technique and the nondeep learning comparison
methods for Dataset 2 are presented in Table II. The training
time is reported for 30 epochs for all the GAN methods. The
results for the other dataset are not presented here as they
followed a similar pattern. The shortest training time is for
spontaneous neural activity.

The deep learning-based methods tend to consume more
time to train, largely due to their more sophisticated architec-
ture. This is still at most 1.57 min, making the proposed model
very practical for real-world applications. The test times for
the baseline and SF-GAN are within the same range as the
other methods; the times shown are for 100 samples, making
the test time per sample less than 0.03 s for all models, which
is negligible.

3) Model Scalability Analysis: Our proposed method’s scal-
ability was evaluated in terms of the number of edges,

metafeatures, and samples for both training and test sets.
The number of edges in the SC (and FC) matrices can be
gradually increased by relaxing the threshold required for
each pair of ROIs to be considered connected. The results
on 20 repeated experiments for each setting and both datasets
follow the pattern in Figs. 3 and 4. The data show that adding
more edges to the graphs by lowering the threshold creates
curves that follow a generally constant trend. As the number
of metafeatures increases, the training and test time are not
affected to a great extent, as shown in Figs. 5 and 6. These
results are consistent with the results of the time complexity
analysis reported in Section II-G.

Scaling the total number of samples used for training and
test with a constant ratio reveals a linear relationship between
the time it takes to train/test the model and the number of
samples in each set (Figs. 7 and 8). This relationship is also
shown in Section II-G. We provide additional discussions of
results as the Supplementary Material at github repository
addressed in Section III.

E. Model Feature Selection

In this section, we describe the feature selection process
utilized by SF-GAN. As explained in Section II, the proposed
method integrates and incorporates metafeatures to generate
the final prediction. This is possible because the W and W'
kernels are leveraged to form the node-to-edge deconvolution
layer in the conditional generator architecture shown in Fig. 1.
The constraints enforced by the model parameter optimization
determine the contribution of each individual metafeature.

To study the influence of the metafeatures, we compared the
Pearson correlation r, with comparison methods, for the two
datasets and three settings, in Table I. The metadata clearly
improved r for both datasets, compared to the baseline. We,
therefore, performed further analysis on Datasets 1 and 2,
to find out more about how these features contributed in
improving the performance.

Statistical Analysis: Here, the goal was to determine and
report which category(ies) among the five options presented
in Section III-A1 has the greatest impact on improving the
model’s prediction capability. Computing the mean value for
the weights W in the trained model, we obtain a vector with
dimension equal to the total number of metafeatures, which
represents the mean weight corresponding to each individual
feature. We can now calculate the average weight for each
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Fig. 7.

category. The results show that the “subject information”
category exhibits the highest mean value overall. Continuing
the analysis, a one-way ANOVA with five groups identifies
that the results are significant at the 5% significance level.
This is revealed by computing Fiiica = F(X,y) = F(4,156)
(for x equal to between groups degree of freedom and y equal
to within groups degree of freedom), and Fypova = 4.83. As it
can be seen, Fitical < Fanova, With p-value = 0.001. A “post
hoc” analysis of the group means using the least significant
difference (LSD) test showed that the “subject information”

Training time versus size of training set. (a) Setting 1. (b) Setting 2. (c) Setting 3.

category was statistically significant compared to the other
categories. These results are plotted as a bar graph in Fig. 9.
As the list of metafeatures provided in the Supplementary
Material demonstrates, age is included in this category, which
has already been shown to be influential by previous studies
reported in the literature [7].

E Qualitative Analysis of the Visualized Connectivities

During the experimental process, we observed numerous
interesting predictions made by our models on the information
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contained in Datasets 1 and 2. Due to space limitations, we are
only able to present an example here. Fig. 10 shows the case
study for subjects 21. Each figure includes a single subject’s
SC (the left-hand column), empirical FC (the middle column),
and predicted FC (the right-hand column). The predicted FC
using each subject’s SC is very close to the same subject’s
empirical FC, even though they possess very similar adjacency
matrices for SC. This is because the SC is defined by the
human brain’s anatomical neural network, which has relatively
few individual differences among human beings [34]. The case
studies for more subjects are shown in the Supplementary
Material.

The SC and FC between brain regions are visualized in
Fig. 11. The nodes represent regions in the brain in terms of the
coordinates utilized in the HCP database, and the graphs are
plotted using the BrainNet Viewer toolbox. The corresponding
ranges for SC and FC are shown by the various colorbars.
As we can see, the true and predicted values for FC include
both positive and negative edges.

IV. SUBGRAPH DISCOVERY AND Post Hoc ANALYSIS OF
RESULTS

As proposed in Section II-F, we can apply our novel
design to find the best partition of nodes in the SC and FC
graphs. These partitions would have tight connections within,
in addition to between subgraphs (i.e., intraconnectivity and
interconnectivity). To do that, we optimized the objective
defined in 8, to find the best partition M, with minimum
description length, or L(M). We used the adjacency matrices
A and A’, in SC and FC, plus the compressed gradient using
GAP, defined by 5, to compute all terms in 8. The result
of partitions for Subject 1, Dataset 1, is shown in Fig. 12.

In each subfigure, the left image shows the partition in the
SC, and the right image corresponds to partition in FC graphs.
Each specific color is used in the two images, to show the
subgraphs that are mapped from input to output. We have
included additional images showing these patterns for more
subjects, in the Supplementary Material.

Here, we report and summarize our findings,
500 subjects, as follows.

for

1) In more than 70% of the mappings discovered, the
subgraphs had exactly the same nodes that exist in SC
and FC. For the remaining mappings, between 50% and
80% of nodes were the same.

2) In more than 70% of the mappings, nodes in the right
hemisphere in SC determine nodes in the right hemi-
sphere of FC. This value was about 78% for the left
hemisphere.

3) We also investigated the number of edges in each
subgraph of SC, for all mappings, and all subjects,
that contributed to predicting one or more edges in
FC. In more than 92% of input subgraphs, several
(more than 5) edges existed. This can show that, rather
than a one-to-one mapping, there is a cluster-to-cluster
correspondence from SC to FC.

4) In addition, for about 89% of mappings, we found
several significant structural edges being responsible for
fewer of the functional edges.

In addition to studying subjects individually, we computed
the average interconnectivity and intraconnectivity values for
all subjects in our dataset. Here, we also report the obser-
vations we had for subgraphs discovered by applying these
average connectivity values to 8. In summary, we identified
nine subgraphs among the brain regions considering both SC
and FC. Subgraph 1 included 28 and 30 nodes from SC
and FC, respectively, accounting for a large percentage of
the total 68 brain regions. This suggests that the association
between SC and FC for this subgraph is largely global and less
modular. There was also a significant overlap of nodes from
SC and FC being grouped to the same subgraph. For example,
in subgraph 1 out of 28 and 30 brain regions from the SC and
FC graphs, respectively, 26 nodes are common brain regions.
In subgraph 6, right entorhinal cortex, right parahippocampal
gyrus, and right fusiform gyrus were found to form subgraph
in SC and influence ten brain regions in FC across bilateral
hemispheres. Entorhinal cortex, parahippocampal gyrus, and
fusiform gyrus are implicated in memory and human face
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Fig. 10. Case study: heat-maps for subject 21.
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Fig. 11. Case study: brain connectivity for subject 21.
recognition. Interestingly, we also found subgraphs that only
involve SC nodes, including subgraphs 4 and 9.

V. RELATED WORK
A. Deep Learning for Graph Transformation

Graph neural networks have been widely studied with the
general focus on graph recurrent networks or graph convo-
lutional networks. The former, which is based on recursive
neural networks and was initially proposed in [40], has been an
attractive topic. Bacciu et al. [41] proposed a novel approach
based on a node ordering procedure and two RNNs, each of
which generated one endpoint of an edge in the predicted
graph. The latter, which is based on the generalization of the
idea of convolutions from grids to graph data, utilizes a series
of building blocks to form more complex graph neural network
models, including generative models [42]. Generative models
can be used for graph topology prediction [43], through
design of an encoder—decoder framework. Along the same
track, Guo ef al. [44] established a new framework based
on disentangled representation learning for deep generative
models.

B. Feature Selection

Feature selection, initially proposed as a data preprocessing
approach, has successfully solved critical issues, such as the
curse of dimensionality, overfitting, high memory, and com-
putational complexity in data analytics-related fields [45]. For
the purposes of the current study, it is convenient to describe
traditional feature selection algorithms for conventional data
in terms of four groups. The first group assigns value to
features based on how well they preserve similarity in the
data. By defining some utility function over the features and

Brain ROl index
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selecting the top k features that maximize their individual
utility, this approach has proved useful in both supervised and
unsupervised problems and has low computational complexity,
although most methods in this category cannot handle feature
redundancy. The second group is based on a conditional
likelihood maximization framework. Although these methods
maximize feature relevance and minimize feature redundancy,
they can only be applied to discrete variables. The third group
consists of sparse regularization terms that eliminate some
features through a typical learning algorithm. This method
has high interpretability and good performance, but at a high
computational cost. Finally, the fourth group consists of meth-
ods that rely on various statistical measures to assess feature
relevance. These methods do not address feature redundancy
issues.

A newly proposed feature selection method that applies the
Group Lasso penalty to inputs of neural networks is proposed
by Zhang ef al. [46], where they claim that their method
represents an improvement over the primary Group Lasso,
eliminates the need for additional weights, and promises to
solve the nondifferentiability problem at the origin.

C. SC-to-FC Prediction

Inferring functional interactions between different brain
regions from patterns of anatomical connectivity has been the
focus of many studies over the last few decades. The literature
in this domain can be categorized into three types: linear
models based on a diffusion pattern, heuristic models based
on modeling the dynamics of neurons’ activity, and graph
theory-based models. Examples of works that fall into the
first category by incorporating diffusion process in their model
include: Sudrez et al. [48] argued that the correspondence
between SC and FC in most existing models is imperfect and
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Fig. 12.

suggest the use of statistical, communication, and biophysical
models to assign weights to connectivities, incorporate one or
more signaling mechanisms (i.e., routing or diffusion), or gen-
erate stimulation-induced activity. These models are regionally
heterogeneous and integrated with cellular and molecular
metadata, and however, the complexity for such model is not
discussed or compared with other findings. Tarun ef al. [49]
proposed an integrated diffusion/fMRI approach based on the
analysis of the default mode network (DMN) and the brain
regions reported to be more involved during the resting state.

The second category of techniques includes those that
make assumptions about the dynamics of neuronal activity.
The comprehensive comparison of seven computational-based
models on the prediction of FC from SC presented in [10] con-
cluded that all these models can be simplified to a single-core
stationary linear process based on the simultaneous autore-
gressive (SAR) model and discussed the limited predicted
power of such models in their current form with respect to
empirical FC. The work reported in [9] focused on the origins
of FC, proposing a new modeling method for the spiking
attractor network of the brain. This approach represents a
heuristic model very effectively as it makes assumptions
regarding the existing mechanisms at the level of each single
brain area based on spiking neurons and realistic synapses.
You et al. [50] proposed a regularized multiple regression
approach in estimating the interactions between SC and FC
for task-evoked fMRI data but did not apply their method
to rsfMRI measurements. Proposed a regularized multiple-
regression approach that adapts to non-Gaussian data. Finally,
the third type of models incorporates graph theory-based
knowledge in their prediction. Becker ef al. [11] proposed a
spectral graph theory-based approach that applies a nonlinear
mapping of SC to resting-state FC by computing a weighted
combination of the structural matrix and then changing the
coordinates to align the eigenmodes of the target and input
graphs. Using linear algebra on one side and empirical and
synthetic data on the other, Tewarie ef al. [12] concluded that
functional networks can be described by all possible walks
in the structural network, and this is equivalent to using the
eigenmodes of the structural network.

An extensive search of the existing literature in this domain
revealed that joint consideration of the nonlinearity, com-
plexity, and stochasticity of the SC-FC link remains largely

unexplored. In addition to this challenge, assessing the influ-
ence of various features of the subjects and proposing designs
that provide different dynamic patterns corresponding to dif-
ferent brain regions within an integrated framework can poten-
tially enhance the generalizability of the model considerably.

VI. CoNCLUSION

In this article, we have presented SF-GAN, a novel
graph-based conditional generative-adversarial-nets technique
to infer resting-state FC from anatomical structural measure-
ments. Our proposed design is capable of capturing highly
nonlinear, complex, stochastic relationships between the two
connectivities and innovatively take the subjects’ profiles into
account by integrating factors such as age, health, and family
history of disease into our model. To make this possible, a new
framework is proposed, namely, the conditional generator,
which is designed to encode the SC into a graph represen-
tation, integrate the result with the metadata, and decode
the combination back into the graph domain to represent
FC. New sparse-regularized edge deconvolution layers are
proposed, which can automatically select the key features
needed for constructing FC. In addition, post hoc analysis
of our SF-GAN model can identify which subgraphs in SC
strongly influence which subgraphs in FC by solving a new
multilevel edge-correlation-guided graph clustering problem.
As a current limitation of this work, there are additional
metafeatures provided by HCP, which are not considered here.
Also, investigating task MRI data is of interest besides resting-
state datasets. We plan to move on to explore these topics in
the subsequent work in the near future.
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