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Abstract

In this closing talk, I review some of the lessons we’ve learned about quantum chromo-
dynamics, and reflect on what we may hope to learn in the coming years.
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1 Introduction

This talk isn’t meant to be an exercise in prediction, and 2030 is still a long way off. The
study of quantum chromodynamics, however, is now driven as much by evolving experimental
capabilities as by the evolution of theory, so we have some sense of what may happen in the
meantime.

Ten years ago, the last of the great Standard Model discovery machines, the Tevatron,
closed up shop, following LEP and HERA, while RHIC entered its second fruitful decade. The
decade just past saw the historic LHC Runs I and II, as CEBAF transitioned from 6 to 12 GeV
at Jefferson Lab. All these milestones were reflected in the DIS series of conferences.

Starting with RHIC, many accelerator capabilities have been designed with QCD in mind,
at JLab of course, and in the decade unfolding, the EIC. The LHC was not built for QCD, but
the insightful designs of its detectors make it (of necessity) a powerful QCD discovery tool.

Over the past twenty years, QCD has brought nuclear and particle physics (back) together.
Roads from Newport News and Upton lead to Geneva (and back). The specifically QCD exper-
imental capabilities that will link the 2020s and the 2030s, including fixed target experiments
at Fermilab, JLab, CERN and Brookhaven, have already paved the way for the nascent Electron
Ion Collider project, based on the demonstrated need for high statistics to reveal the structure
of the nucleon, and high energy to unlock the dense gluonic matter from which the mass of
the visible universe is generated. Those same energy and statistics will provide the means to
study the emergence of hadronic from partonic matter.

The story that follows is one sketch of some lessons we have learned about the role QCD
in nature, and some we may hope to learn in the coming years. Most of the topics I'll touch on
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can be found, with many references, in the survey [1] and recent dedicated study [2] of QCD
physics at the Electron-Ion Collider.

2 QCD in the Grand Scheme of Things

Very early in the history of the universe we know, quarks and gluons secluded themselves to a
nearly vanishingly small, and ever-decreasing, proportion of space, occupying something like
one 10~*th of the volume of the observable universe. The reason, so far as we understand it,
lies in the nonabelian phase invariance of the quarks: three utterly indistinguishable colors,
connected by gluonic excitations. This, of course, is quantum chromodynamics.
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Figure 1: Left: The electroweak process mediating the annihilation of lepton pairs to
hadrons. Right: The total cross section for electron-positron annihilation to hadrons.

The very same theory possesses asymptotic freedom, which has opened windows to its
fundamental degrees of freedom. Just knowing that QCD is asymptotically free is enough to
get a good estimate of an important physical process, the total e" e~ annihilation cross section
to hadrons, as if the theory were free. The familiar electroweak process mediating electron-
positron pairs to quark pairs, and hence to the world of hadrons, is shown on the left of Fig. 1.
The inclusive cross section, on the right of Fig. 1, is very much the same as what it would be if
the quarks were able to go their merry ways, without further interactions. At long distances,
the same theory forms only bound states, the mesons and baryons of the quark model, and,
as discovered in recent years, exotics of a surprisingly wide variety. A few of the quark model
states are visible on the right of the figure. Yet all of these “long-distance" phenomena do not
radically change the inclusive annihilation cross section.

3 Looking Closely, and from Afar
Much of our knowledge of QCD comes from a judicious choice of quantities to observe. In-
clusive cross sections offer a window into short-distance processes, while providing a partonic

map of the structure of hadrons. Inclusive, of course, is a relative term, and the observation
and analysis of the more fine-grained structure of final states, particularly involving jets of
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hadrons, affords a variable resolution into the long-time behavior of the theory. This is the
case perturbatively, and this approach may some day provide a theory of the transition from
partonic to hadronic descriptions of strongly-interacting matter.

3.1 Inclusive and exclusive observables and factorization

In a broad sense, the “universal" form of hard-scattering observables, both cross sections and
amplitudes, is a factorization, very schematically of the form

S=C xF. ¢y

The left-hand side is an observable quantity, while the right-hand side separates a calculable
“short distance" factor, represented by C, which can be computed in perturbation theory, from
a “long distance" quantity, F accessible only to experimental determination, and increasingly,
to numerical simulation. The product represents in general a convolution, most simply in
partonic momentum fraction.

The classic example of Eq. (1) is, of course, deep-inelastic scattering, illustrated by Figs. 2
and 3. Figure 2 illustrates a typical DIS event. In the figure, the diagonal axes represent the
light cone, around which the extended proton, of momentum p and represented as a cylinder,
arrives. A quark of flavor f and fractional momentum x is suddenly scattered by the exchange
of a photon of momentum g. The full final state is generally complex, and involves many other
particles emerging from the fractured proton.

Despite this complexity, we can measure the momentum transfer simply by observing the
final-state electron. From its final-state momentum, k’ in the figure, we can determine the
momentum transfer q. A large, spacelike momentum transfer q localizes the hard scattering
to points that differ in the amplitude and the complex conjugate amplitude by a nearly lightlike
distance. This provides a clean separation between initial and final states. In fact, we can do
even better by a judicious observation of a particle or jet in the direction of the scattered quark’s
momentum, p’ = xp + q in the figure. In this case, the difference betweent the scattering
event in the amplitude and complex conjugate remains near the lightcone, but deviates slightly
in the transverse plane. Appropriate sums over final states provide measurements of parton
correlations in the nucleon, including spin.

f(xp+q)

and that results in a
complicated final state
e(k)

(s struck here

Figure 2: A typical event in deep-inelastic scattering.

In all of these cases, fully or semi inclusive, a sum combines the total probabilities of specific
final states. The total result must add up to unity, even if we cannot calculate the probability
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for any final state individually. Corrections arise only from distances of order 1/+/¢2, and can
hence be computed perturbatively. Long-distance contributions from final states, which are
infrared divergent in perturbation theory, cancel. The result is the “coefficient" function C in
Eq. (1).

The amplitudes for the noncancelling initial states can be interpreted as a parton distri-
bution, illustrated in Fig. 3. Here, a proton comes in from the past to some fixed point in
spacetime, where a quark is removed from it. A quark of the same flavor appears at a nearly
(but in general not quite) lightlike separation. The parton distribution is the amplitude for
this proton to reemerge and travel undisturbed into the future. As suggested in Fig. 3, if the
spin carried by the quark that disappears is correlated with the spin of the one that appears,
we have a polarization-dependent distribution. All of these parton distributions can be writ-
ten as field-theoretic matrix elements. For fully inclusive DIS, we need the “collinear" parton
distributions

Fo(x) = J%e_i“P'"(PIQ(ln)FQ(O)IP), (2)

where Q(x) represents a quark (or gluon) field, and where the vector n* is the light cone
direction just opposite to the proton in the center of mass. Here I represents a Dirac or vector
projecction and, for the experts, an appropriate gauge link. When transverse momenta are
observed in the final state, we translate the field Q off the light cone as in the figure, and
Fourier transform in that “impact parameter" distance.

The same proton in the future.

The same flavor
dispaced from the LG4

w/ new spin directjd

disappears here

A proton in the past.

Figure 3: Illustration of the matrix element for a collinear or transverse momentuum
distribution. A quark is removed from the proton, and reinserted at a point on or
near the opposite-moving light cone.

Factorizations like Eq. (1) with parton distributions of the type in Eq. (2) are only the first
term in a series expansion in momentum transfer. So-called “higher twist" terms involve more
fields, and depend on matrix elements such as (P|Q(x)I'G(y)Q(0)|P), with Q a quark and G
a gluon field. For some observables, especially involving spin, this the leading effect, offering
information on short-distance correlations between partons of different flavor.

As broad as the forms of Eq. (1) are for inclusive and semi-inclusive cross sections, these
are only one route from experiment to the QCD matrix elements that reveal nucleon struc-
ture. With the matrix element interpretation of parton distributions as inspiration, we can
find similar factorized expressions for exclusive amplitudes. The classic example is the pro-
cess of deeply-virtual Compton scattering, illustrated by Fig. 4. Here we can study a unique
quantum-mechanical amplitude, corresponding to the process in the picture. In this reaction,
a proton and an electron collide, and the electron exchanges an off-shell photon with a quark.
The quark then travels for some distance in the proton, after which it emits an on shell photon.
The proton then reforms itself, with the quark starting out in a new place and with a slightly
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p'=p+q-q

e(k)

e(k)

p

Figure 4: The process encoded in a generalized parton distribution.

different momentum. This prccess is described by matrix elements of the general form, [3,4]

dA . -
Aﬂkﬁﬁf)=‘f5;¢“FWp+erﬂmernﬂm, (3)

for a quark field Q, in which a relatively small net momentum transfer, q redirects the proton.
This matrix element, corresponding to the figure, depends on the longitudinal momentum
zp - n that the quark loses in the process, along with a corresponding transverse momentum
transfer A. It is from matrix elements such as these that the angular momentum and similar
non-local information on hadronic structure can be formulated in terms of partonic degrees of
freedom.

Taken together with the scattered electron, this process corresponds experimentally to a
very distinctive final state, with a slightly deflected nucleon accompanied by an on-shell pho-
ton. The new sets of nucleon correlations made available in these experiments are beginning
to reveal the stationary nucleon state in the language of partonic degrees of freedom. Such
quantities are also increasingly accessible to lattice calculations [5]. These are among the most
exciting contemporary confrontations of theoretical with experimental physics of the strong
interactions.

3.2 From jet cross sections to long-time behavior

The experimental studies described above all depend on grouping together events with similar
final states. For the total DIS cross section, these are all states that share a scattered electron
with the same momentum transfer and energy loss. For studies of generalized parton dis-
tributions, these are the much smaller, more exclusive class of final states with a scattered
electron, a high energy photon and a proton. Another window into short-distance phenomena
is provided by sets of states with similar global flows of energy. These states, characterized
by collimated sets of high energy particles, are called jet states. Jet final states also offer a
direct picture of processes that take place at the elementary level, the scattering of quarks, the
creation of quark pairs, the decay of heavy particles, and the radiation of gluons.

The analysis of jet events has taken on a new life, as we recognize that they should be
regarded as a source of* ‘big data", and hence as a target for “deep learning". Looking at a
detector display, our natural intellegence readily identifies the jets qualitatively, relying on
charged particle tracks and such symbolic translations of energy scale as to the length or color
of bars representing particles or calorimeter signals. The information in ensembles of jets, each
containing perhaps dozens of particles of various energies and flavor content, is the outcome
of the complex process we understand as perturbative showering followed by hadronization.
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The flow of energy itself has a field theoretic analog, and much current analysis revolves
around exploring the properties of operators involving the energy-momentum tensor,

o

E(R) = lim R? J dtfi; Ty (t,RA), 4)
R— o0 0

which measures energy flowing in the specific direction 11, as seen by a detector. Correlations

between particle jets can be generated from expectations of products of these operators in

initial states |I), such as

C(E(Ry)...E(Ry), x) = (IIJH(X)l_[c‘f(ﬁi))j“(O)ll), (5)
i=1

with j* an electroweak current. Such correlations can be calculated perturbatively. Integrating
over angular regions, we can measure energy correlations over differing angular separations.

The dependence of angular correlations in energy flow on the medium traversed by par-
tons on their way from a hard scattering to the final state has been, and remains, a sensitive
probe of the properties of hot and cold nuclear media. Varying energies, reactions, flavors and
luminosities will be necessary to explore fully these fundamental properties of matter. Interest
is also increasing on “hybrid" expectation values, involving both the energy-momentum tensor
and other conserved charges. The exploration of these correlations will hopefully lead to new
insights on the final stages of the translation from the language of partons into that of hadrons.

4 Putting the Pieces Together

What might we expect from theory in the coming years? Here is a personal perspective, very
much ready to be supplemented by novel ideas.

We understand QCD best at its endpoints. Its dynamics at the very moment of a hard scat-
tering is well-described in perturbation theory, which we can use to evolve to length scales
approaching 1/Aqcp. At the longest scales, the quark model and effective theories based on
its symmetries also afford quantitative descriptions. In between, perhaps we can think of a
process by which current quarks generate mass from radiative energy, becoming constituent
quarks. How to quantify this transition? Are there observables sensitive to this period? Pho-
tons radiated in this stage might be an example.

Final states provide a countable amount of information, and we should be ready to count
it all, to the extent possible. The detailed census within each jet encodes a set of stories. Jet
substructure analyses are beginning the process of breaking this code, but it will surely take
many new insights, ideas, and computing power. [6]

A judicious use of machine learning, new ideas of event display and perhaps quantum
information will lead to the demystification of the transition between the language of partons
and that of hadrons. For amplitudes and inclusive cross sections, we’ll continuously reevaluate
to what orders can we calculate. Analytic fixed-order progress will continue, hand-in-hand
with mathematical insight, while numerically, higher orders will become more accessible for
cross sections, and experimental cuts easier to implement.

We'll hopefully see algorithmic evaluations of complex QCD amplitudes and cross sec-
tions [7]. Why might this be possible? It’s the magic of unitarity, the same conservation of
probability that enables us to factorize parton distributions in DIS and makes jet cross sections
calculable. We will then be able to avoid infrared divergences before we integrate over phase
space and impose experimental cuts. We will learn to calculate in four dimensions and limit
perturbation theory to finite times. This may help make room for a new theory of hadroniza-
tion.
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QCD will be more and more embedded in the Standard Model, with flavor issues coming
to the fore at all scales, from g —2 all the way to future super high-energy colliders. Also with
the help of the lattice, we will learn more of the correlations within hadrons and in exotic
states of matter in the lab and in the universe. Higher twist will be subsumed into a theory
of quark-hadron duality, building on the kind of analysis that led to QCD sum rules, relating
hadronic properties to the operator product expansion. A solution to the strong CP may arise
in the coming decade, perhaps in connection with an observation of dark matter. Perhaps what
we learn about QCD will suggest other scenarios for early stages of the universe and matter
under extraordinary conditions. This will bring us back to the beginning.

5 Concluding Thoughts

In many ways, quantum chromodynamics is the exemplary quantum field theory. It exhibits
highly nontrivial phase structure, accessible now in ion collisions, and perhaps through its
collective flow in smaller systems too. Its classical solutions, the instantons, opened new per-
spectives in geometry, and its perturbative amplitudes have echos in the mathematics of com-
plex analysis and both classical and quantum general relativity. It serves as a benchmark for
more manageable theories, especially conformal quantum field theories and related bootstrap
programs.

Even more generally, any answer to the question “what is quantum field theory?" must
encompass and find inspiration from quantum chromodynamics. The quantum field theory of
our day is a bit like the calculus of Newton and Leibnitz, not yet fully defined, but extraor-
dinarily effective. This is one reason why QCD continues to be guided by experiment. For
example, only through experience could we know that the particle jets of perturbative QCD
would be there at high energy in the laboratory.

Quantum chromodynamics is approaching its fiftieth year, but for a fundamental theory,
it is still young. Newtonian gravity, for example, is still going strong at 334 since it appeared
in the Principia. Quantum chromodynamics itself remains an astounding discovery, with its
mysterious unbroken color symmetry. Even more, QCD makes it possible for us to face the
challenge of bridging the fundamental and the emergent phenomena of the natural world.
This is a hallmark of 21st Century science, and indeed of human thought.
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