Parallel Computing 111 (2022) 102898

Contents lists available at ScienceDirect

SYSTEMS & APPLICATIONS

Parallel Computing

journal homepage: www.elsevier.com/locate/parco

Towards scaling community detection on distributed-memory

heterogeneous systems

Nitin Gawande #!, Sayan Ghosh 27,

Ananth Kalyanaraman ®

L)

Check for
updates

Mahantesh Halappanavar?, Antonino Tumeo 2,

2 Pacific Northwest National Laboratory, Richland, WA, United States of America
b Washington State University, Pullman, WA, United States of America

ARTICLE INFO

Keywords:

Distributed community detection
Heterogeneous systems
Multi-GPU

Parallel Louvain

Parallel graph algorithms

ABSTRACT

In most real-world networks, nodes/vertices tend to be organized into tightly-knit modules known as
communities or clusters such that nodes within a community are more likely to be connected or related to
one another than they are to the rest of the network. Community detection in a network (graph) is aimed at
finding a partitioning of the vertices into communities. The goodness of the partitioning is commonly measured
using modularity. Maximizing modularity is an NP-complete problem. In 2008, Blondel et al. introduced a
multi-phase, multi-iteration heuristic for modularity maximization called the Louvain method. Owing to its
speed and ability to yield high quality communities, the Louvain method continues to be one of the most
widely used tools for serial community detection.

Distributed multi-GPU systems pose significant challenges and opportunities for efficient execution of
parallel applications. Graph algorithms, in particular, have been known to be harder to parallelize on such
platforms, due to irregular memory accesses, low computation to communication ratios, and load balancing
problems that are especially hard to address on multi-GPU systems.

In this paper, we present our ongoing work on distributed-memory implementation of Louvain method on
heterogeneous systems. We build on our prior work parallelizing the Louvain method for community detection
on traditional CPU-only distributed systems without GPUs. Corroborated by an extensive set of experiments
on multi-GPU systems, we demonstrate competitive performance to existing distributed-memory CPU-based
implementation, up to 3.2x speedup using 16 nodes of OLCF Summit relative to two nodes, and up to 19x
speedup relative to the NVIDIA RAPIDS® cuGrapu® implementation on a single NVIDIA V100 GPU from DGX-2
platform, while achieving high quality solutions comparable to the original Louvain method. To the best of
our knowledge, this work represents the first effort for community detection on distributed multi-GPU systems.
Our approach and related findings can be extended to numerous other iterative graph algorithms on multi-GPU
systems.

1. Introduction

a hierarchical tree of association of how groups or pairs of vertices
are clustered [1]. Modularity [2] is a common metric to measure

Consider a graph G = (V, E, w), where V represents a set of vertices
or entities, E represents a set of edges or binary relationships on V, and
 represents positive weights associated with edges. Graph clustering
or community detection is the problem of partitioning the vertex set V'
into subsets called communities or clusters such that vertices within a
community are tightly connected with each other, while vertices across
communities are sparsely connected with each other. There are variants
of the problem such as overlapping clustering that allow vertices to
be part of multiple clusters, and hierarchical clustering that builds

* Corresponding author.

the goodness or quality of clustering. Algorithms based on modularity
optimization are effective but proved to be NP-hard [3]. There are also
a diverse set of algorithms to solve the problem [4]. In this paper,
we focus on one particular algorithm based on the idea of modularity
optimization that will be discussed in Section 3.

Graph theoretic modeling is used in numerous applications to com-
prehensively capture complex interactions between entities such as
interacting atoms in a molecule or proteins in an organism. With the

E-mail addresses: nitin.gawande@intel.gov (N. Gawande), sg0@pnnl.gov (S. Ghosh), hala@pnnl.gov (M. Halappanavar), antonino.tumeo@pnnl.gov

(A. Tumeo), ananth@wsu.edu (A. Kalyanaraman).
1 Intel Corporation, Santa Clara CA; work done while at PNNL.

https://doi.org/10.1016/j.parco.2022.102898

Received 4 November 2020; Received in revised form 16 September 2021; Accepted 28 January 2022

Available online 22 February 2022

0167-8191/Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://www.elsevier.com/locate/parco
http://www.elsevier.com/locate/parco
mailto:nitin.gawande@intel.gov
mailto:sg0@pnnl.gov
mailto:hala@pnnl.gov
mailto:antonino.tumeo@pnnl.gov
mailto:ananth@wsu.edu
https://doi.org/10.1016/j.parco.2022.102898
https://doi.org/10.1016/j.parco.2022.102898
http://crossmark.crossref.org/dialog/?doi=10.1016/j.parco.2022.102898&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/

N. Gawande et al.

10°

106 ‘ Summit full system
Concurrency: 4.53 x 10"9
Memory: >10PB DDR4 +
HBM + Non-volatile
Size: 50 Trillion edges

Single Node of Summit
Concurrency: 10°6
Memory: 512GB DDR4 +
96GB HBM2
Size: 1 Billion edges

GPU Threads: 10°

Single GPU
Concurrency: 10°5
Memory: 16 GB HBM2
Size: ~10 Million edges

Fig. 1. The scale of GPU thread concurrency and system memory at various levels of
Summit hosted at the Oak Ridge Leadership Computing Facility.

ability to discover structurally coherent modules in a graph, community
detection has emerged as a fundamental tool in a number of scientific
and industrial applications, including biological sciences, computa-
tional chemistry, climate sciences, graph analytics, social networks,
cyber security, financial networks, and literature mining. Consequently,
the need to perform community detection on large scale inputs has
become critically important. Comprehensive reviews on the various
formulations, methods, and applications of community detection can
be found in [4-7]. Clustering is closely related to the problem of graph
partitioning, a common and well defined problem in scientific comput-
ing with applications such as balanced work distribution among parallel
processors and optimization of circuit layouts [8]. Given a graph G
and p partitions as input, the objective of graph partitioning is to
partition the vertices in G into p partitions such that each partition has
roughly the same number of vertices and the edges between any two
partitions (called edgecut) is minimized. Thus, the two key distinctions
between partitioning and clustering are that the number of clusters is
not known a priori, and that the identified clusters can have different
sizes. Consequently, the methods for clustering and partitioning can be
fundamentally different.

On the other hand, the push to breach the exascale barrier in com-
puting influenced the emergence of massive scale parallelism through
accelerated and heterogeneous computing platforms, in particular,
graphic processing units (GPUs) programmable with general purpose
code (GPGPU). We provide a brief discussion in Section 2.1. The
unprecedented amount of concurrency to the order of billions of
hardware threads, and the deep, complex memory hierarchy brought
by heterogeneous architectures have emerged as formidable challenges
for the design and development of scalable algorithms. In particular,
graph algorithms pose special challenges such as inherently sequential
algorithms, irregular memory access patterns, low computation to
communication ratios, and load imbalances at multiple levels [9,10]. As
summarized in Fig. 1, the Summit system at the Oak Ridge Leadership
Computing Facility (OLCF) is a prototypical GPU-accelerated petascale
system that offers an unprecedented amount of parallelism and system
memory.

Using community detection as a prototypical case study, we discuss
design choices, and present early results on designing and scaling
our algorithm at three levels of hierarchy: single GPU, single node
multiple GPUs and multiple nodes multiple GPUs. We discuss some
of the practical issues in developing customizable graph applications
on CPU/GPU systems arising from disparities in data representations,
thread divergence, coalesced memory accesses and load balancing.

We provide a brief overview of the relevant hardware platforms in
Section 2.1.

Contributions: We make the following contributions in this paper:

(i) Present cuVrrk, a distributed multi-GPU C++ library for commu-
nity detection using the Louvain method as a serial template and
detailed in Section 3.

(ii) Discuss the various challenges in porting irregular applications
on multi-GPU systems and present strategies to address these
challenges; detailed in Sections 3 and 4.

Parallel Computing 111 (2022) 102898

(iii) Demonstrate up to 20x improvement relative to NVIDIA RAPIDS®
cuGrapH on a single node, and about 1.6-3.2x strong scaling
performance over 2-16 Summit nodes (Section 5).

(iv) Demonstrate speedups of up to 6x on 2048 processes of ALCF
Theta using eight real-world graphs, including characterization
of different memory modes (Section 5).

(v) Demonstrate parity of solutions computed by cuVite with the
solutions reported by serial and CPU-only implementations (Sec-
tion 5.5).

To the best of our knowledge, this work presents the first distributed-
memory multi-GPU graph community detection using the Louvain
method as the serial template. We build on the CPU-only distributed
graph community detection in Vite [11,12], and make significant addi-
tions to exploit multi-GPU nodes. We believe that the details discussed
in this paper will benefit not only researchers poring graph algorithms
on forthcoming exascale systems, but also application developers in di-
verse science domains that employ community detection for discovery
and analysis.

2. Preliminaries

In this section, we provide some information on contemporary
hardware architectures and introduce the graph community detection
problem.

2.1. Hardware overview

HPC systems have significantly increased their heterogeneity, by
integrating loosely coupled workload-specialized throughput proces-
sors (i.e., general purpose graphic processing units) or tightly coupled
extended vector units (512-bit and beyond). This has made arithmetic
operations (and, in particular, floating point operations) cheap in terms
of chip area and energy. However, network and memory bandwidth are
not increasing at the same rate, resulting in unbalanced systems, es-
pecially for the memory-bound graph analytics workloads. 3D-stacked
memory stacks multiple DRAM dies one on top of the other and inter-
connects them to a memory controller die at as the level of the stack
employing through silicon vias (TSVs), thus providing high bandwidth
with relatively low energy costs. HBM (High Bandwidth Memory) is by
far the predominant type of 3D stacked Dynamic Random Access Mem-
ory (DRAM), a number of contemporary CPUs (e.g., Fujitsu A64FX) and
GPUs (e.g., NVIDIA Pascal and Volta, AMD Radeon Vega) platforms
have started to integrate this type of memory, leading to interesting
trade-offs in terms of bandwidth and memory density (currently stacks
only up to 32 GB are possible). Our experiments indicate that HBM-
based systems hold promise for improving the performance of graph
workloads, particularly in the context of community detection, thanks
to the much higher bandwidth provided with respect to conventional
double data rate (DDR) DRAM, but still require accurate data structure
design due to lower utilization of such bandwidth with fine-grained
memory transactions.

In this work we consider three different heterogeneous HPC systems.
We consider Argonne Leadership Computing Facility (ALCF) Theta, as
a system integrating homogeneous cores with specialized units and
precursor of the next generation Aurora exascale supercomputer, the
NVIDIA DGX2 system as an example of an heterogeneous node with
a very high number of GPUs, and Oak Ridge Leadership Computing
Facility (OLCF) Summit as the premier example of a large scale super-
computing system with a moderate to high number of GPUs per node
and pre-cursor to the Frontier exascale system.

With respect to the other systems considered in this work, ALCF
Theta is based on a manycore processor design (Intel Xeon Phi® Knights
Landing® - KNL) that employs simple general purpose multithreaded
cores with tightly integrated vector units, but starts exposing key
aspects that developers need to take into consideration for the effective

N. Gawande et al.

exploitation of a more complicated memory hierarchy that integrates
3D-Stacked memory. A KNL node in Theta consists of 64 multithreaded
(4 threads each) relatively simple cores with 512-bit vector units,
organized into 32 tiles (2 cores/tile, sharing an L2 cache of 1 MB) in a
2-D layout, a high bandwidth in-package multi-channel DRAM memory
of size 16 GB (MCDRAM), and 192 GB of DDR4 main memory. The tiles
are connected by a mesh interconnect, and the mesh supports different
levels of memory address affinity, known as clustering modes.

Both the DGX2 and a Summit node feature multiple NVIDIA Tesla®
V100® boards, based on the Volta architecture (GV100 GPU), and ex-
ploit the second generation NVLINK® interconnect to its fullest extent.
However, they have key differences in the organization of the resources
in a node: different host CPUs, different number of GPUs, and different
topologies to interconnect GPUs to host CPUs and GPUs together.

A key innovation of the Volta Streaming Multiprocessors (SMs) with
respect to previous architectures is the way warps are executed. While
instructions for threads are still issued in warps (i.e., for a group of 32
threads), their execution is now independently controlled, speeding up
those cases where they diverge. This feature can be readily exploited
through the use of cooperative groups, a new way to synchronizes
different threads. The GV100 hosts 6 MB of L2 cache and 8 memory
controllers at 512-bit width (4096-bit in total) to interface with 4
HBM2 stacks. The GPU runs at 1.3 GHz but supports (boost) clocks up
to 1.53 GHz. NVLINK2 provides six links with an aggregate 300GB/s
bidirectional bandwidth. The DGX-2 node has two 24-core 2.7 GHz
Intel Xeon® Platinum 8168® CPUs, with 32KB/1MB per-core L1/L2
caches and 33MB shared L3 cache, and 1.5TB DDR4 memory, and hosts
16 T V100 GPUs with 32 GB of HBM2 each. Each Summit node, instead,
includes two IBM Power9® processors with 22 cores, integrating sepa-
rate 32KB L1 data and instruction caches and connecting to 512 GB of
DDR4 memory. Pairs of cores share a 512KB L2 cache and a 10MB L3
cache. A Summit node hosts a total of 6 T V100 GPUs with 16 GB of
HBM2 each. The DGX-2 uses a fully interconnected topology across the
0-16 GPUs with 12 NVSwitches, but they communicate with the Intel
processors only through PCI Express. The 6 GPUs per node in Summit,
instead, are divided in two NVLINK2 fully interconnected blocks of 3
GPUs and a Power9 processor. The two blocks internally communicate
only through the processor interconnect (XBus). Additionally, both the
DGX-2 and Summit nodes feature Infiniband EDR network interfaces (8
for the DGX-2, and 2 for Summit). However, we only consider a single
node for the DGX-2, hence we do not employ the network interconnect.
For Summit, instead, we look at scaling when increasing number of
nodes.

Unified Virtual Addressing (UVA) is a software and hardware-
supported feature in contemporary NVIDIA architectures that, by en-
abling peer-to-peer access, allows writing code that directly uses point-
ers to data allocated on one GPU from another. Newer versions of
NVLINK enhance UVA features, introducing support for atomic memory
operations and significantly increasing bandwidth between devices,
thus making migration of virtual memory pages more practical. Our
current implementation does not currently leverage UVA features,
because our implementation is heterogeneous, where CPUs perform
part of the computation and prepare/transform data structures to
facilitate GPU computations. UVA is not directly applicable across the
nodes of a (distributed memory) cluster (such as Summit) without
using network-enabled RDMAs devices, which can complicate code
development. However, on single node dense-GPU platforms like the
DGX-2, our approach can readily use libraries like NVIDIA NCCL [13]
that allows for mapping message passing primitives to data transfer
through NVLINK.

2.2. Graph community detection or clustering
Given a graph G = (V, E, w), the objective for community detection

is to partition the vertex set V' = {C; U C, U ... C;} such that vertices
within a community are “tightly” connected with each other and

Parallel Computing 111 (2022) 102898

Modularity based
algorithms

Multiscale Label propagation Agglomerative
algorithm algorithm algorithm
L Staudt & 4(Riedy et al. [25]
| | Meyerhenke [23]

. Coarsening based
Parallel Louvain algorithm

This work & related C Kary[g)‘l;

Fig. 2. Louvain Method in the context of modularity based graph algorithms. See Ref.
[23-25].

sparsely connected with the rest of the graph. Various measures have
been proposed in literature to evaluate the goodness of partitioning
produced by an [14-16], and one of the measures is modularity that
has been used widely [2]. Given a partitioning P of V, modularity
denoted by Q, can be intuitively expressed as the difference between
the fraction of intra-cluster edges imposed by the partitioning P and
the expected fraction in an equivalent but randomly reconnected graph
with the same number of vertices, edges and vertex degree distribution.
Formally, modularity can be computed as follows:

_ly, oy % 4, .
0 2m 5 i~CW C%,(Zm Zm) M
where m = Y, w(e) denotes the sum of the weights of all the edges
in the graph, ¢, denotes the sum of the edge weights for the edges
connecting vertex i to vertices in community C, and a. denotes the
sum of the degrees of all the vertices in community C. Modularity as
a metric has been studied extensively and has been shown to have
limitations as the resolution limit problem [17].

From an algorithmic perspective, modularity optimization is an NP-
complete problem [18], and therefore practitioners depend on efficient
heuristics for maximizing modularity for clustering a given graph.
Albeit its limitations, the measure continues to be widely used in
practice and has been demonstrated to be competitive with other
methods for community detection [4,19]. Algorithms addressing the
resolution-limit problem have also been proposed in literature [20].
Many efficient community detection heuristics based on maximizing
modularity have been developed over the years, making the analysis
of large-scale networks feasible in practice. One such efficient heuristic
is the Louvain method proposed by Blondel et al. [21]. The method is
a multi-phase, multi-iteration heuristic that starts from an initial state
of |V'| communities (each vertex assigned to a unique community), and
iteratively improves the quality of community assignment until the gain
in modularity is less than a user-defined threshold value. At this point,
all the vertices in a given community are coarsened into a single vertex
for consideration in the next phase of execution, and edges are added to
represent inter-cluster connectivity in the current phase. The algorithm
then iterates until the coarsened graph reaches a given minimum
size. From a computation perspective, the operations translate into
performing multiple sweeps of the graph (one per iteration) and graph
coarsenings between successive phases.

Because of its speed and relatively high quality of output in prac-
tice [22], the Louvain method has been widely adopted by practitioners
in numerous domains. The Louvain method is inherently sequential,
and several efforts have been made in parallelizing the method, as
detailed in Section 6. Fig. 2 attempts to characterize Louvain method
in the space of contemporary modularity-based graph algorithms.

A subset of the authors of this paper have been involved in sev-
eral such efforts including multi-threaded [26], single GPU [27], and
distributed-memory [11] implementations. In this particular work, we

N. Gawande et al.

build on the distributed-memory implementation made available as
a software package called Vite [11]. The need to port to massively
parallel systems emerges from the need to solve large-scale problems,
as well as situations when the algorithm needs to be executed a large
number of times. For example, Weir et al. use output from multiple
executions to compute a better quality solution [28]. Recent work has
also demonstrated the application of community detection for ordering
of vertices to enhance memory locality [29], and therefore, the speed
and accuracy of the algorithm becomes critical.

3. Distributed multi-GPU Louvain method

We provide an overview of cuVitg, our distributed multi-GPU com-
munity detection algorithm using the Louvain method as a serial tem-
plate in this section. We provide specific approaches and heuristics for
GPU porting in Section 4. We begin with the input graph distribution
and provide an overview of the distributed algorithm.

3.1. Input distribution

Due to practical limitations of graph partitioning algorithms, we
rely on simple block distribution schemes for partitioning an input
graph among participating processes. In particular, we distribute con-
tiguous blocks of vertices and the incident edges across available
processes such that each process receives roughly the same number
of edges. Each process stores the subset of vertices that it owns. Each
process also keeps track of a “ghost” copy for any vertex that has an
edge to any of its local vertices but is owned by a different (remote)
process. Henceforth, we refer to the latter set of vertices as “ghost”
vertices. We use the compressed sparse row (CSR) format to store the
vertex and edge lists [30].

Similarly, each process also owns a subset of communities (set
initially to an equal number of communities per process), and keeps
track of a set of “ghost” communities to which the process’s local
communities have incident (inter-community) edges. Given the static
nature of input loading, each process knows the vertex and commu-
nity intervals owned by every other process as well. However, the
information pertaining to those vertices and communities could change
dynamically and therefore need to be communicated. We use p to
denote the number of processes, and rank i to denote an arbitrary rank
in the interval [0, p — 1].

We also explore an alternative vertex distribution to balance the
edge distributions to reduce the number of “ghost” vertices and com-
munication. This distribution maintains roughly equivalent edge lists
but may result in an uneven number of vertices per process (and
additional file I/0). The impact of this “edge-balanced” distribution
in avoiding communication is discussed in the context of distributed-
memory evaluation in Section 5.2.

3.2. Overview of the parallel algorithm

The Louvain algorithm has multiple phases, where each phase is run
for a certain number of iterations based on a user-defined threshold
value. Initially, each vertex is assigned to its own community, and
as the algorithm progresses, vertices migrate by entering and leaving
different communities. Each vertex resides in one community at the
start of an iteration, and decides to either stay in the current community
or move to one of its neighboring communities based on the value of
modularity gain by the end of an iteration. Algorithm 1 shows a high-
level description of the parallel Louvain algorithm executed on process
i. In this pseudocode, each iteration of the while loop corresponds to
a Louvain “phase”.

Algorithm 1 shows the two major steps of the parallel Louvain
algorithm. The first step involves invoking the Louvain iteration, Line
4 through a call to Function LouvamIteraTion()), which runs the Lou-
vain heuristic for modularity maximization. The second step is graph

Parallel Computing 111 (2022) 102898

Algorithm 1: Parallel Louvain Algorithm (at rank i).

Input: Local portion G;(V;, E;, w; (in CSR format),

Input: Threshold, 7 (default: 107%), minSize

Output: Community assignment C,,,.,

1: C,,, < {{u}|Vu € V'} {Initial community assignment}

G’ « G, {G*: Subgraph on rank i and coarsening level k}

: while true do
LouvAINITERATION(G, C,

»

) {GPU enabled}
{On CPUs}

3

4 urr,t
5: G**! « BuwpNexrPHaseGraPH(GF, C,,,,)
6: if |V(G")| < minSize then

7 break

8: else

9 C..,» < Update based on G¥*!

0: G¥ « G¥*! {Update the graph}

1

: return C,

curr

—

Algorithm 2: Algorithm for the Louvain iterations of a phase (rank
i, coarse-level k), on CPU and GPU

Input: Local portion G*(V;, E;, »,), = = 107°

Output: Updates to community assignment C,,,,

: function LouvANITERATION(GF, C,,,,, 7)
: V, < Exchange ghost vertices
. {GPU initialization}
: Declare map m(V,) € {C,,ac} where C, < C,,, UC,,,,, and V, < V, UV,
: while true do
send/receive latest information on all ghost vertices and update
local communities
7: Remapping: initialize m(V,)
8: Copy m(V,) from host to device
9: for v € V; do {Computation on GPU}
10: Compute AQ by moving v to each of its neighboring communities
1 Determine target community for v based on the migration that
maximizes AQ
12: Mark both the local and remote communities of v for an update

U hWN

13: Copy m(V,) from device to host

14: send updated information on ghost communities to owner processes
15: C,,, < receive and update information on local communities
16: currMod; < Compute modularity based on G} and C,,,,
17: currMod < all-reduce: Y, currMod,;

18: if currMod — prevMod < t then

19: break

20: prevMod « currMod

reconstruction, Line 5 through a call to Function Bui.oNexTPHASEGRAPH(),
where vertices in each cluster are coarsened into a single meta-vertex,
compacting the graph. Function LouvaNITERATION represents the most
compute intensive part of the algorithm, and therefore, benefits from
the offloading the computation to a GPU. However, Function BuiLp-
NexTPHASEGRAPH involves irregular accesses to memory and can be
performed efficiently only on CPUs. We describe these two steps in
detail in the following discussion.

Algorithm 2 lists the steps for performing a sequence of Louvain
iterations within a phase. Since each process owns a subset of ver-
tices and a subset of communities, communication typically involves
information on “ghost” vertices and/or communities. For each vertex
owned locally, a community ID is stored; and for each community
owned locally, its incident degree (a.) and weights are stored locally
(as part of the vector C,,,. in Algorithm 2). In addition, each process
stores the list of its ghost vertices and their corresponding remote owner
processes. Since this vertex mapping to the process space changes with
every phase (due to graph compaction), we perform a single (one-time
per phase) send-receive communication step to exchange these ghost
coordinate information (shown in line 2 of Algorithm 2. Note that
the initial ghost community information can be derived from the ghost
vertex information, as at the start of every phase, each vertex resides

N. Gawande et al.

in its own community. However, after every iteration (within a phase),
changes to the community membership information need to be relayed
from the corresponding owner processes to all those processes that keep
a ghost copy of those communities.

The communities for ghost vertices are maintained in a separate
data structure (because they have to be communicated) and its size
changes across the iterations (because vertices can move around the
communities). To prevent repetitive device allocations of the commu-
nity data structures across Louvain iterations and to enable coalesced
accesses from GPU threads, we combine the local and ghost community
data structures and flatten them into separate contiguous sequence
containers. A one-time allocation of communities is possible since the
number of communities cannot exceed the number of vertices, and in
subsequent phases the overall number of communities is expected to
shrink; therefore, at most, the per-process size of communities will be
equivalent to the number of local and ghost vertices.

The main body of each Louvain iteration consists of the following
major steps (see Algorithm 2):

(i) At the beginning of each iteration, obtain information on ghost
vertices (i.e., their latest community assignments) at each pro-
cess (line 2);

(ii) Declare and initialize data structures for device (line 4);

(iii) At the beginning of each iteration, exchange updated informa-
tion for ghost communities among processes, compute the new
community assignments for local vertices (line 6), and adjust
GPU data structures (line 7-8);

(iv) Compute the gain in modularity (i.e., 4Q) if a vertex migrates to
a neighboring community, and designate a target that maximizes
the relative modularity gain (lines 10-11);

(v) Update local and ghost communities, and copy data from device
before exchanging the updated communities (lines 10-15);

(vi) Compute the global modularity based on the new community
state (line 16-17);

(vii) If the net modularity gain (4Q) achieved relative to the previous
iteration is below the desired threshold z, then terminate the
phase, and continue otherwise (lines 18-20).

3.3. Graph reconstruction

The coarsening or merging of communities at the input graph level
(finest level) can be observed as an important optimization technique
to improve the quality of clustering. The communities at the end of the
current phase form the basis for the basis for building the coarsened
graph for the next phase. Each community is represented as a vertex
in the coarsened graph and a self-edge is added with the total number
of intra-cluster edges as the weight of this self-edge. The self-edge acts
as the balancing force to keep a given cluster in the current phase stay
in its own community depending on the number of intra-cluster edges
relative to inter-cluster edges. Edges between communities, which are
now simply edges between vertices, are assigned weights based on the
inter-cluster edges from the current graph.

The graph reconstruction phase in a distributed setting is illustrated
using a simple example in Fig. 3. Process #0 owns vertices {0, 1,2},
while process #1 owns vertices {3,4}. The figure shows the partitioning
of the CSR representation. The index array employs local indexes,
whereas the edges array has global vertex IDs. Each process has an
array identifying community IDs for local vertices, and a hash map that
associates remote neighbor vertices with their respective community
ID. The specific steps in graph construction are as follows:

(i) Each process counts its unique local clusters, which are renum-
bered starting from 0. Renumbering is performed using an
std: :map data structure that associates the old community ID
with the new ID.

Parallel Computing 111 (2022) 102898

Graph Compaction

Community Vertex

Vertex-community

association within ‘ \ ‘ _
0

a phase

Next Phase
"""""""""" Process#0 | Process#1

2
[Array] ®\
<Map> o @

o 0
@ 3)
01 2 3 4

[Indexes] [0T274T5] [0T4]5]
[Vlocal,C] [0]0]2] [0T4]
[Edges] [173T0[3T4]| [0T1iT4T3T2]

<Vremote, C> 514 [olol2]

Step 1: Count unique local
clusters in [Vlocal,C].
Associate old cluster ID with
new renumbered ID <Cold,
Cnews <C, Cnew> [0l

Unique Local Clusters = 2 Unique Local Clusters = 1

(0]

Unique Local Clusters = 1

Unique Local Clusters = 1

4>
- |- B

Unique Local Clusters = 2

<C, Cnew> E

Unique Local Clusters = 2 1
¥

<C, Cnew> E

Step 4: all-to-all, exchange
<C, Cnew> among processes <C, Cnew> g

Step 2: Count any additional
local cluster in <Vremote,C>
that is not previously counted

Step 3: Process N sends
number of unique local
clusters to Process N+1, and
sums it to Cnew

(including ghosts) to generate
local edge lists. Edges between
vertices with the same Cnew is | <Cnew, <Cnew, weight>>
merged into a self loop, whereas
edges between vertices with
different Cnews is merged into
an edge connecting the clusters.

Step 5: Visit all vertices [0]
(o}
4]

Step 6: all-to-all, exchange
partial edge lists according to
new vertex partitioning, and
adjust weights

<Cnew, <Cnew, weight>>

@\
@\

Step 7: Build the new graph

(Cnew becomes new vertex
109 —@
0 1 2
[Indexes] [0T2]3]
[Edges] [0T2]2] [0T1]
[Weights] ~ [6]1]1]

Fig. 3. Graph reconstruction, the top cartoon demonstrates the overall compaction
process, whereas the bottom figure provides more details on the stepwise renumbering
and graph CSR reconstruction. In the example, we suppose that the modularity
optimization has assigned vertices {0, 1,3} to community 0, vertex 2 to community 2 and
vertex 4 to community 4 (i.e., vertices 2 and 4 are each one in their own community).
Because community IDs originate from vertex IDs, we consider the community IDs from
0 to 2 owned (local) to process #0, and community IDs 3 and 4 local to process #1.

(ii) Each process checks for local community IDs that, during the
Louvain iterations, may have been assigned to remote vertices
but are no longer associated with any of the vertices in the local
partition.

(iii) Local unique clusters are renumbered globally. This is achieved
using a parallel prefix sum computation on the number of unique
clusters.

(iv) Processes are involved in communicating the new global com-
munity IDs for the local partition. Only the new community IDs
that replace the old community IDs used in other processes need
to be communicated.

(v) Every process examines each of the vertices in its partition and
starts creating partial (new) edge lists. For each vertex in the
partition, a process checks its neighbor list. Neighbors associated
with the same new community ID contribute to a ‘“self loop”
edge.

N. Gawande et al.

Modified Data structure

Original Data structure

Local vertices = 8
(LocalCommy,, = 0; LocalCommpa, = 7)

Local vertices = 5; Ghost vertices = 3
(LocalCommy, = 3; LocalCommay = 7)

Fig. 4. Vertex index transformation from CPU to GPU representation.

(vi) Once these new partial edge lists have been created, they are
redistributed across processes. New partitions are generated so
that every process owns an equal number of vertices (as much
as possible).

(vii) New arrays for indices and vertices of the coarsened graph can
thus finally be rebuilt from the edge lists.

As can be observed from the details, the coarsening function in-
volves simple integer operations and communication between pro-
cesses. Given the low amount of parallelism in execution, and the need
for frequent synchronization, we perform the graph coarsening step
only on the CPU side of a node.

4. GPU-porting strategy

As described in the previous sections, the Louvain method comprises
two phases. Our distributed heterogeneous multi-GPU implementation
currently exploits GPUs only for the modularity optimization phase.
The modularity optimization phase can concurrently run on the GPUs
and the host CPUs for different portions of the graph. However, the
graph coarsening and rebuilding phase is executed only on the host
CPUs. In the rest of this section, we discuss critical aspects that enable
efficient execution of the algorithm on multiple GPUs across multiple
nodes as well as improve execution of the modularity optimization
phase on the Volta V100 GPU architecture.

4.1. Mapping between host and device data structures

Similar to Vite, the heterogeneous implementation employs a mix
of MPI processes and OpenMP threads. We assign one MPI process per
GPU. The graph is partitioned across MPI processes employing a simple
1D vertex based distribution (partitioning). As previously described in
Section 3, there is a notion of “ghost” vertices in the graph distribution
across processes. In Vite, separate data structures are maintained for
vertex-to-community associations to distinguish local (owned by the
current process) and ghost vertices. The community associations of
the ghost vertices are exchanged with the processes owning them in
every iteration. However, the GPU code only performs the modularity
optimization part of the algorithm. Hence, once the computation is
offloaded to the GPUs, GPUs do not need to communicate data and
storing two distinct data structures in GPU memory becomes unnec-
essary. We, instead, maintain a mapping to distinguish between local
and ghost vertices in the single GPU data structure to access the vertex-
to-community information for ghost vertices. The size of the mapping
is twice the number of edges. An illustration of the index re-mapping
using a small example is shown in Fig. 4.

Intuitively, the approach identifies the ghost vertices (which may
have any of the global vertex indices) and rebuilds the local CSR
representation as if they were local vertex indices. This allows accessing
the community information (community assignment and weight of such
a community) through direct indexing in an array rather than accessing
the separated per-process hash map containing the remote community
information. In Fig. 4, the original data structure starts from vertex

Parallel Computing 111 (2022) 102898

index 3, as it uses global vertex indices, and gets remapped to a new
local CSR starting from local vertex index 0.

The remapping operation to transform the respective per-process
vertex indices from the CPU to the GPU representation is currently
implemented as a shared-memory parallel routine on the host using
OpenMP, and the transformed information is copied to the device.
It is possible to entirely eliminate this step by modifying the un-
derlying graph data structure in Vite. However, this would require
significant changes to the code, and is therefore a planned set of future
optimization.

In Vite, the graph coarsening phase involves reconstructing the
Compressed Sparse Row (CSR) representation, and requires re-allocating
the data structures as needed. Since GPU memory allocations are
expensive, we only allocate a reusable buffer on the device memory
once at the beginning, and only adjust pointers to the data structures
as required. We also employ pinned memory to accelerate streaming of
data from the host process to the device.

4.2. Determining target communities

One of the most expensive operation in a multi-GPU implementation
is identifying target communities for vertices. In a Louvain iteration,
vertices calculate the relative gain in modularity obtained by mov-
ing the vertex from its current assignment to one the neighboring
communities. In the CPU-only version, the community information
(size and degree of communities) is stored as a C++ STL datastruc-
ture std: :map, and STL functions are used to “find” if a specific
community already exists in the map. GPU implementations of C++
containers are not portable across CUDA releases (for e.g., CUDA Thrust
libraries [31]), and the third-party libraries also suffer from similar
limitations. Furthermore, the absence of a scalable hash function com-
plicates the search in the data dictionary on a GPU. We are aware of the
existing research on faster hash functions targeted for GPUs [32-34].
We plan to employ such techniques in our future work.

In the current implementation, we maintain two independent vec-
tors to store degree and sizes. The task of determining the target
community for a vertex is either undertaken by a tile or a block
(multiple tiles) of threads. This is decided on the base of the degree
of a given vertex. If the degree of a vertex is on the higher side, then
a block of threads is dispatched to handle this operation, else a tile is
sufficient. In a tile or a block, each thread processes one or more edges
of a vertex to identify the neighboring communities and compute the
changes in modularity for moving the vertex being processed to one
of them. Additionally, in order to mitigate load imbalances owing to
varied vertex degree distributions, we make use of two separate CUDA
streams per GPU to distinguish computations on high-degree vertices
from the rest.

4.3. Exploiting CUDA cooperative groups

CUDA cooperative groups (CGs) introduced with CUDA 10.0, pro-
vide a flexible model for synchronization and communication within
groups of threads [35,36] of arbitrary dimensions, differently from
the basic thread block based synchronization historically employed in
previous CUDA versions. The cooperative groups programming model
leverages four key elements: (a) Group partitioning; (b) collective
algorithms for data movement and manipulation; (c) group barrier syn-
chronization; and, (d) collectives that expose low-level group-specific
operations. While cooperative groups are supported on older GPU ar-
chitectures such as Pascal, the new execution model for warps in Volta,
which significantly reduces penalties for thread divergence, makes
it an ideal platform for implementing cooperative groups. We made
extensive use of CGs for implementing all the GPU kernels in cuVirte.

Fig. 5 illustrates the template for using CGs in cuVite. The degree
of a vertex is used to decide the size of a cooperative group that will
be assigned to process a given vertex. If the degree is higher than a

N. Gawande et al.

[MPI rank X (host) ’

|

GPU \

Thread Block
LEN (0] 1 [213]4 5] [T 1]

Warp Size = 32

D catering to Vertices

V[to V(i + warp size- 1)

Individual Thread § y,% °
Works on Vertex V; j\ b? S

False

If (deg[V;] > value)

Warp
True Cooperative groups -,
Entire Cooperative Group (CG) %gg

,/ ,/ '/ '/ works on Vertex V;

CG size (8, 16, 32) < Warp Size

Fig. 5. Vertex distribution among GPU threads: depending on the vertex degrees,
individual threads in a warp work on a vertex or an entire warp works on a single
vertex, requiring cooperative groups for synchronization.

predefined value (the tile size for a CG), we assign an entire cooperative
group to work on a single vertex, since it is easy to synchronize once
execution is completed for this vertex. When the size of a CG equals the
size of a warp, we observe the highest performance. However, on Volta,
CGs enable the use of smaller number of threads without significant
penalties. CGs are also easy to synchronize at the subwarp level. When
the degree of a vertex is very small, we assign a single thread per vertex.
This approach is particularly useful during modularity optimization,
when each vertex needs to identify the communities of its neighbor-
hood and evaluate the variation in modularity when moving to each
one of them in order to select the move that provides the highest
increase.

In the following section (Section 5), we present the experimental
results detailing the impact of the data structures modifications and of
the other optimization techniques discussed here.

5. Performance evaluation

In this section, we discuss our distributed-memory Louvain evalua-
tions on ALCF Theta and OLCF Summit platforms (refer to Section 2.1),
using both real-world and synthetic graphs (we use undirected repre-
sentation of graphs). We begin by characterizing some general obser-
vations of our distributed-memory implementation in Section 5.1. We
discuss our evaluations on ALCF Theta in the context of exploiting the
modes to access KNL MCDRAM in Section 5.2. Finally, in Section 5.3,
we discuss our distributed-memory GPU evaluations on OLCF Summit.

5.1. General performance characterization

Overall performance of our distributed implementation is sensitive
to the input graph (especially since our simple graph partitioning makes
no assumption about the underlying graph structure). Fig. 6 shows the
inter-process communication volume of distributed Louvain method for
four real-world graphs on 1024 processes of Theta respectively, and they
exhibit significantly different communication patterns.

Load balancing of real-world graphs is challenging, since it is non-
trivial to implement equitable partitioning of graphs across processes.
We introduce an edge-balanced partitioning scheme that vastly im-
proves the communication time at the expense of extra I/O to read
the graph. We embed the edge count per vertex information in an

Parallel Computing 111 (2022) 102898

intermediate binary CSR representation of the native graph file (refer
to Section 3.1), in addition to the edge list. A single process can read
the graph partially within a limited amount of time (since number of
vertices is usually significantly lesser than the number of edges) and
use the per-vertex edge count information to construct a partitioning
scheme that tries to balance the number of edges owned by a process,
and accordingly broadcasts the respective file read positions to rest of
the processes.

Fig. 8 demonstrates the standard deviation of edges owned by a
process in the classic vertex-based distribution that divides the number
of vertices among processes (with each process receiving all the edges
connected to a vertex, in addition to “ghost” vertices), as compared to
our edge-balanced distribution, for eight real-world graphs distributed
on four process configurations (256, 512, 1024 and 2048). Thus, the
edge-balanced distribution can significantly minimize the amount of
“ghost” vertices, leading to communication avoidance. As a result, we
observe up to 80% improvement in the end-to-end execution times
for clustering, compared to the standard distribution, for a number of
real-world cases.

We use MPI nonblocking Send/Recv and collectives to perform
communication in our distributed Louvain implementation. Exchanging
vertex-community association among processes take place in every
iteration of a phase (refer to Algorithm 2), and is the most expensive
communication operation. In general, communication overhead of our
implementation can be significant and more than 90% of the overall
elapsed time as shown in Fig. 7, depending on the input graph and
process configurations, primarily due to the inherent load imbalances
in this application. Fig. 7 also shows the memory per PE (as reported
by CrayPAT profiler), which is an artifact of the distributed graph
structure. Hence, we include maximum, average and standard deviation
of edge distribution across the PEs. Relatively high standard deviation
of edge distribution indicates a higher number of “ghost” vertices.

5.2. Performance on ALCF Theta

The KNL nodes of ALCF Theta allows multiple configuration for
exploiting the on-package MCDRAM. In this section, we analyze the im-
pact of the memory modes or MCDRAM configurations on performance
for our distributed Louvain implementation. It is possible to configure
the available memory in KNL nodes of Theta into one of the three
modes—(i) cache: MCDRAM is a cache for main memory; (ii) flat: MC-
DRAM is treated as an addressable memory (like main memory); and,
(iii) hybrid: a portion of MCDRAM is treated as addressable memory,
and the rest is a cache for main memory. We further classify hybrid
mode into equal and split. In equal memory mode, 50% of MCDRAM is
addressable memory, and the other 50% is a cache. Whereas, in split
mode, 75% of MCDRAM is addressable memory, and the remaining
25% is cache. We use a custom allocator (i.e., hbw: :allocator)
from the memkind library [37] to allocate C++ containers that store
the community size/degree and the vertex-community mapping on the
KNL MCDRAM. The performance differences between different cluster-
ing modes were not evident, therefore we selected the default quadrant
for our distributed Louvain implementation. In quadrant clustering
mode, the tiles are divided into four parts (quadrants), which are
spatially located near four groups of memory controllers. Keeping the
clustering mode constant, we vary the memory modes and demonstrate
performance using four real-world datasets in Fig. 9.

Despite of the inherent simplicity of the cache mode (no application
code modification), the access latency of MCDRAM is higher than
standard caches, and the overall memory bandwidth is impacted by
main memory accesses (for the portion of data not resident on the
MCDRAM). Due to the irregular nature of memory accesses in our
distributed Louvain implementation, cache misses are pervasive. In
cache mode, the MCDRAM in KNL is treated as a direct mapped cache,
in which an address in the main memory is mapped to only one location
in the cache. Whereas, L3 caches in conventional CPU architectures

N. Gawande et al.

MEAN MESSAGE BYTES
Al paths

Recener

1023 /41 b oss

MEAN MESSAGE BYTES
recaen

MEAN MESSAGE BYTES
Al paths
ReCEVER oz |

sa0m

Parallel Computing 111 (2022) 102898

MEAN MESSAGE BYTES
Alpaths

RecENER

< 55453

007

(a) uk-2007

(b) com-friendster

(c) nlpkkt240

(d) com-orkut

Fig. 6. Communication volume, in terms of mean send/recv message sizes (bytes) exchanged between pairs of processes, for two real-world inputs on 1024 processes. The
vertical axis represents the sender process ids and the horizontal axis represents the receiver process IDs.

Uk-2007((E|=6.68)
com-friendster(|E|=3.68)
twitter7(|E|=2.938)

webbase-2001(|E|=1.018)

Fig. 7.
7 o
10 5 o . 0.. o. o..
a o ° °
@ e % olg | © .
$10 x o x =0
3 x o P xo.
x
510 xxx‘
[a)
=
7 104 ~ * Vertex-based

0 5 10 15 20
#Graph configurations

Edge-balanced

25 30

2.6e+07 [EIEERUM 6:86+06 3.56+06

16

REENI 7.16+06) 3.56+06 1.80+06
1.3e+07 | 8.6e+06 RIS
8e+06 4e+06

2e+06 1.7e+06

128 16

32 64 32 64
Max|E|/PEs AvglE|IPEs

LG 3.90+06 1.9e+06 9.7e+05

128

16 32 64
Stddev [E|/PEs

% MPI, Memory/PE and edge distribution across PEs for various real-world graphs on 16-128 Theta nodes.

7.1e+04 7.6e+04 1.1e+05 1.1e+05
2.7e+03 4.50+03 6.4e+03 9e+03

7.1e+05 6.1e+05 |3.9e+05 LRI}

1.3e+06 [RIFUN 326405 1.6e+05
128

Fig. 8. Lower standard deviation of #Edges/process of the edge-balanced distribution
compared to classic vertex-based distribution indicates less communication for the
former.

such as Intel® Haswell® are multi-way set associative, in which an
address in main memory can be mapped to any of the multiple cache
addresses, significantly reducing conflict misses. An MCDRAM cache
miss is more expensive than reading from main memory, because mem-
ory requests cannot travel from processor L2 cache to main memory
directly, and has to involve MCDRAM in between. We notice that the
hybrid split mode is more scalable than the other modes, whereas the
flat mode (opposite of the cache mode) yields the best execution time
performance in most of the cases. In flat mode, we explicitly allocated
some data structures on the MCDRAM, and observe 30%-45% better
performance as compared to the cache mode. We capture the relative
performances between the KNL memory modes for our distributed
Louvain implementation in Fig. 10.

5.3. Performance on OLCF Summit

We now present multi-GPU results on OLCF Summit. The input
consists of real-world graphs obtained from the SuiteSparse Matrix Col-
lection [38] and IEEE-HPEC Graph Challenge [39], and synthetically
generated using the random geometric graph (RGG) model [12], as
listed in Table 1. Several heuristics such as threshold scaling and incom-
plete coloring exist in Vite for significantly improving the performance
at scale [11]. However, our goal in this work is to conduct a baseline
performance analysis, and therefore, we refrained from using heuristics
in evaluations. On Summit we use GCC 8.1 compiler, CUDA 10.1.243
and Spectrum MPI 10.3 for building cuVire.

In Fig. 11, we compare cuVite results on multiple GPUs across
Summit nodes, using similar runs of Vit as a baseline for comparison.

Table 1

Graphs used in summit multi-GPU evaluations.
Graphs V] |E| Modularity Iterations Phases
Synthetic graph datasets
rgg-33M 33.55M 378.02M 0.99 77 8
rgg-67M 67.10M 775.04M 0.99 51 4
rgg-134M 134.22M 1.58B 0.99 93 9
Real-world datasets
hollywood-2009 1.14M 113.89M 0.75 82 9
nlpkkt240 27.99M 760.64M 0.97 714 8
uk-2002 18.52M 298.11M 0.99 43 5
uk-2005 39.46M 936.36M 0.95 79 12
webbase-2001 118.1M 1.01B 0.98 47 7
com-friendster 65.61M 3.6B 0.61 39 3
uk-2007 105.90M 6.6B 0.99 32 5

For these evaluations, the only difference between Vite and cuVite
configuration is in the usage of a GPU per MPI rank, while the number
of threads per rank is kept the same for both of these versions. As we
discussed in Section 4.1, the GPU implementation has to undergo a
remapping operation on the host side, which can take more than 2x the
time spent in GPU computation for certain large graphs, such as com-
friendster (due to the presence of many high-degree vertices). While
remapping is a costly operation with respect to the GPU computation,
the adopted solution allows quickly designing a hybrid solution starting
from the Vite code and data structures, optimized for CPU, without
completely redesigning the application. One objective of this work is,
in fact, not only showing a multi-GPU porting, but a hybrid imple-
mentation, where general-purpose processing elements are also used
to provide further scalability.

Barring the remapping costs, we observed 1.2-3.3x improvement in
performance of the GPU version for most of the input graphs with re-
spect to the CPU-only Vite. cuVite implementation demonstrates about
1.6-3.2x scalability over 2-64 Summit nodes for most of the graphs
in Fig. 11. Since graph edge distribution varies with the number of
processes, an irregular number of edges per process can cause severe
load imbalance, limiting the overall scalability.

5.4. Performance on NVIDIA DGX-2

We now compare the performance of cuVite relative to NVIDIA
RAPIDS® cuGrapu [40], Runpemanen [27] and Graproro [26]. The GPU

N. Gawande et al.

cache =z equal

flat —— split soc-friendster (3.6B edges)

uk-2007 (6.6B edges) 8192
_ 256 @
2 £ 409%
£ °
g S g
= 128 s
S 3 N
£ 8 1024 N
3 2 N
¢ LN E s
64 512 g BN N N

512 1024 2048

Parallel Computing 111 (2022) 102898

nipkkt240 (760.6M edges) com-orkut (234.3M edges)

1024

512

512

N
a
>

256

N
®

Execution time (in s)
Execution time (in s)

128 64

512 1024 2048

Fig. 9. Performance of real-world graphs using different memory modes on KNL nodes of ALCF Theta. X-axis: #Processes; Y-axis: Execution time (s).

Table 2

Single node performance of cuViTe relative to NVIDIA RAPIDS® cuGrapx and Runpemanen on NVIDIA V100 GPU and Grapporo (using 224 OpenMP threads).
An asterisk is shown for runs that did not complete because of insufficient memory to execute Runpemanen. Highlighted rows signify cases for which cuVite

provided the best performance relative to others.

l Graphs [CuGRAPH [RUNDEMANEN [CUVITE [GrappoLo (CPU; 64-bit) ‘
[Name [V| [|E| [Modularity [Time (s) [Modularity [Time (s) [Modularity [Time (s) [Modularity [Time (s) ‘

as20000102 6.47K 50.2K 0.62 0.04 0.61 0.03 0.61 1.02 0.61 0.05
Oregon2_ 010512 11.26K 62.6K 0.63 0.04 0.63 0.14 0.63 0.12 0.63 0.10
p2p-Gnutella3l 62.58K 295.78K 0.48 0.12 0.47 0.21 0.47 0.25 0.47 0.11
soc-Epinions1 75.87K 811K 0.45 0.12 0.43 0.34 0.43 0.13 0.43 0.51
soc-Slashdot0902 82.16K 1M 0.33 0.16 0.29 0.24 0.37 0.41 0.26 0.66
flickrEdges 105.93K 4.63K 0.67 0.39 0.67 0.43 0.67 0.43 0.67 8.91
roadNet-PA 1.08M 3.08M 0.98 0.76 0.98 1.02 0.98 0.32 0.98 1.80
roadNet-TX 1.37M 3.84M 0.99 0.88 0.99 1.22 0.99 0.39 0.99 1.69
roadNet-CA 1.96M 5.53M 0.99 1.05 0.99 1.66 0.99 0.62 0.99 5.04

V2a 55.04M 117.21M 0.99 5.72 - * 0.99 30.29 0.99 29.12

Ula 67.16M 138.77M 0.98 4.65 - * 0.98 27.42 0.98 77.29
Graph500-scale21 1.24M 63.4M 0.06 1.45 0.05 3.52 0.02 4.17 0.04 37.04
Graph500-scale22 2.39M 128.19M 0.07 3.39 0.05 7.17 0.02 8.89 0.03 46.91
Graph500-scale23 4.60M 258.5M 0.06 5.82 0.05 14.04 0.02 22.03 0.03 174.59
MAWI-1 18.57M 38.04M 0.25 59.02 0.89 14.08 0.89 6.97 0.88 68.79
MAWI-2 35.99M 74.48M 0.25 297.74 - * 0.9 16.52 0.88 95.25
MAWI-3 68.86M 143.41M 0.28 520.77 - * 0.89 28.1 0.87 323.94
MAWI-4 128.56M 270.23M 0.21 1533.17 - * 0.89 78.85 0.86 498.17

| a B T suite [41]. We used cuGrapu 0.14.0 in our experiments and built the

A

g

[=]

S

Z0s8 |
(=]

I

2 0.6

8

204

.

3 R
= ——cache
2 e —+—flat T
s * equal
= 0 - split |

| 1:1 1.2 1::3 1.4 1.5

Performance Relative to the Best Algorithm

Fig. 10. The relative performance profiles for cache, equal, flat and split memory modes
on Theta KNL nodes using all the runs as shown in Fig. 9 in addition to similar runs
with other graphs not included. The X-axis represents the factor by which a given
scheme fares relative to the best performing scheme for that particular input. The
Y-axis represents the fraction of problems. The closer a curve is aligned to the Y-axis
the superior is its performance relative to the other schemes over a range of 40 inputs.

implementations were executed on a single-GPU of NVIDIA DGX-2
platform. We use GCC 7.3, CUDA 10.0.130 and OpenMPI 3.1.3 to build
our GPU implementations. Comparative GrappoLo evaluations was per-
formed on a 224-core 8-way (28-core/socket) Intel® Xeon® Platinum
8276M CPU 2.20 GHz system, with 1MB private L2 cache and shared
38.5MB L3 cache. We used GCC/9.2.0 compiler to build Grappolo on
the shared-memory platform.

From an algorithmic perspective, cuVite and RUNDEMANEN are similar
in that they both adapt parallelization strategies from Graprporo. The
latest GPU-based implementation is in the NVIDIA RAPIDS software

Python dependencies using Anaconda release 3.2019.3. We only time
the cucrapH. community.louvain function,> while comparing the
performance and modularity scores with our GPU implementation on
a single GPU of the NVIDIA DGX-2 system.

As summarized in Table 2 the results computed from our GPU im-
plementation are comparable with Grappolo for most of the graphs,
which has been shown to closely resemble the output from the Louvain
implementation of Blondel et al. [21]. Since cuGraru currently does
not support multiple GPUs, we use a single V100 GPU for compar-
ison. We also used a single MPI rank and 8 OpenMP threads for
cuVite evaluation. Since there are no “ghost” vertices in this case,
there is no remapping overhead as well (refer to Section 4.1). We
selected a number of real-world graphs and three synthetic ones (for
e.g., Graph500); unlike the real-world instances, the Graph500 inputs
exhibit poor community structure, as evident from the low modularity
scores.

Since cuGrapH uses a 32-bit representation to store graph vertex
indices and edge weights, cuVite also used a 32-bit representation
for this evaluation, along with Runpemanen. However, we use 64-bit
representation of Grappolo as there no option to build the software
with 32-bit data representation. For all other cases, we have used
a default 64-bit representation for cuVite to store the graph and for
associated operations. We also observe that modularity values for cuVite
are comparable to Grapporo.

As shown in Table 2, cuVite demonstrates a speedup of about 2-19x
relative to cuGrapH for a number of cases. Since it is not apparent how to
extract information for each Louvain phase in cuGrapH, we are unable to
analyze the reason behind modularity divergences for few of the inputs,

2 https://docs.rapids.ai/api/cugraph/stable/api.html#module-cugraph.
community.louvain

https://docs.rapids.ai/api/cugraph/stable/api.html#module-cugraph.community.louvain
https://docs.rapids.ai/api/cugraph/stable/api.html#module-cugraph.community.louvain

Parallel Computing 111 (2022) 102898

N. Gawande et al.

775.04M)
=1.01B)
=6.6B)

oSSy oesesesereteses
I
e
e
R

rgg67 (|E|
uk-2007 (|E|

R
IR
SRR

webbase-2001 (|E|

ogegs
23
RIS
e
e
B RS KRKK

R
[
R

3.61B)

.
[fedatetetetetetete!

e
R
ORREIKA
RXRXXXXXY

298.11M)
936.36M)

RRRRERIRL]
IR
GRS
aSe0sesesesesesesesess]
e
SRRl

com-friendster (|E|

uk-2002 (|E|
uk-2005 (|E|

3500
3000
2500

09/
m = R OO
B R
s S
— K
LSS =
e RS
== @ N =
2> o S /.//o\ =5
Eqa P @ [as]
=5 T R o S]
Il gEssssssss R 3 3
e s ©)
2oy N i I
Ze 5 O@ w w
=S I = u
xXE S n% o <
Wo o R S —)
© sl Y| BRI -
< e IS
53 R & = IR 2
=
T =2 N o
e = < =
= RIS
¢S B =
K PR R R R
T | s
BRI
KRR R R]

GPU
64
11
21
755

cuVITE (32 nodes)
Remap
15
11
1220
Hollywood-2009 (| E|=113.89M)
CuVITE
19
26
25
23
19

VitE (32 nodes)
VITE
36
52
29
33
21

73
13
1068

19
ite high, as noted by Lu et al. [26].

sized graphs over 1-12 processes. While

CuViTE
20
13
25
16

GrappoLo (128 threads)
rgg33 (| E|=378.02M)

283

20

1824
VITE
171
76
38
43
28

43

ifferent medium
rgg33 demonstrates up to 6x scalability on 12 PEs, hollywood-2009

only exhibits about 40% improvement in the execution time.
We note that Ghosh et al. performed quality assessment of Vite [11]

relative to the original serial implementation by Blondel el al In
Table 6, we use several synthetic graphs from the LFR benchmark [42]

Table 3 compares the GPU results for few of the larger graphs
with Grappolo on 128 threads. Single process or serial execution times

for most of these graphs are qu

Comparing Grapporo with Vite (distributed CPU) and cuVire (distributed CPU+GPU, this
2005

work) for large graphs.

nlpkkt240
webbase-2001
com-friendster
PEs (1 node)

Graphs
uk

4

Comparing single process execution times (in seconds) with multiple processes (and

GPUs) for two medium graphs.

In Table 4, we compare Vite and CuVite execution times using two

structurally d

Table 3
Table 4

10

ts

the data on
This cost of
ignmen

hts need to be transferred back

ty ass

1rS 1n communt

t implementation,
ig
, for which cuGrapH and RUNDEMANEN

in our curren

il

In order to assess the quality of our distributed-memory multi-GPU

Louvain implementation, we compare our results against communities
% https://github.com/rapidsai/cugraph/blob/branch-21.10/cpp/src/

Fig. 11. Strong scaling of Vite and cuVite on OLCF Summit using real-world and synthetic graphs. X-axis: CPU/GPU version on total #processes (with 6 MPI ranks per node, 14
community/louvain.cuh#L365

OpenMP threads per MPI rank; additionally, GPU versions use a single GPU per MPI rank); Y-axis: Time in seconds.

where nearly all computations over multiple phases occur in the GPU
memory, in our implementation the community updates are performed

by the CPU. Therefore
global modularities to be at least 1.0E-03,> whereas for Vire/cuVire/

GrarpoLo it is 1.0E—06. This can cause a mismatch in the number of

iterations to convergence for cuVite and cuGrapH.
tical measures such as F-score, Precision and Recall that are computed

from the true positive, false positive and false negative evaluations ob-

tained by comparing all possible vertex pa
1 indicate an almost exact clustering of vertices by cuVire relative to

Vite. Further details are also presented in Table 2. We present results
on qualitative and performance comparisons of cuVire relative to ViTE

reported by Vite and cuVite. As summarized in Table 5, values close to
and Grarporo in this section.

requires the difference between the current and previously computed
reported by the CPU implementation, i.e., Vite. We use standard statis-

moving data between host and device can be a significant fraction of
perform better than cuVite. Also, the current version of cuGrapH Louvain

such as MAWIL. Unlike GPU implementations of cuGrapH and RUNDEMANEN
the total time for smaller datasets

community assignments and their we
and forth between host and device in every iteration.

5.5. Quality assessment

https://github.com/rapidsai/cugraph/blob/branch-21.10/cpp/src/community/louvain.cuh#L365
https://github.com/rapidsai/cugraph/blob/branch-21.10/cpp/src/community/louvain.cuh#L365

N. Gawande et al.

Table 5
Quality assessment of cuVite relative to Vire for four real-world inputs. Values close or
equal to one indicate strong correlation with CPU results.

Score Hollywood-2009 uk-2002 nlpkkt240 webbase-2001
Precision 0.985 0.995 1.0 1.0
Recall 0.956 0.933 1.0 1.0
F-score 0.970 0.963 1.0 1.0
Table 6

Quality assessment of Vite across multiple processes for various
comparison with Grarroro (multi-threaded).

LFR graphs, and

V] |E| #PEs Time(s) F — scorey,, F — scoreg oo
350K 34.72M 1 114.62 0.990352 0.990352
600K 58.91M 32 112.90 0.990849 0.990849
M 98.12M 208 117.40 0.981119 0.981119
1.5M 147.13M 448 116.40 0.967736 0.967736
2M 196.45M 512 113.55 0.945176 0.951238

to demonstrate the quality across 1-512 PEs (up to 16 nodes) of VitE vs.
@shared-memory Grappolo, compared with ground-truth communities.
Overall, we observe about 6%-10% variability in the relative commu-
nity assignments with larger graphs and #PEs, due to the inherent
non-deterministic nature of the algorithm. Since we compare with
Grappolo, there is existing empirical analysis using datasets with known
ground truth information [43].

6. Related work

Graph analytics has emerged as an important branch of data an-
alytics and enables efficient modeling and analysis of unstructured
data with complex relationships among participating entities. Com-
munity detection is a commonly used tool in graph analytics to not
only discover coherent modules or structures in a graph, but also for
dimensionality reduction in many applications. Consequently, commu-
nity detection has been studied extensively in literature. Our work
has therefore benefited from advances in several fronts including su-
perior algorithms, parallelization efforts and application domains. In
particular, modularity optimization has been studied extensively and
has is being used widely in numerous science domains and analyt-
ics applications. We refer you to comprehensive survey papers for
details [4-7].

Parallel implementations of community detection that are relevant
to this work can be broadly categorized based on the target archi-
tectures into: CPU-only, GPU-only, and heterogeneous CPU-and-GPU.
Shared-memory or multithreaded CPU-only implementations have been
shown to scale and perform well [44-46], leading to the exploration of
a number of heuristics and push—pull formulations that prune unnec-
essary edge explorations [47]. Since multi-threaded implementations
are severely restricted on the sizes of inputs that can be processed, we
focus only on distributed-memory and GPU-based implementations in
the following discussion.

CPU-only Efforts: Distributed homogeneous CPU implementations of
community detection for high-performance computing (HPC) clusters,
taking advantage of novel network interconnects, system architec-
tures, and specialized algorithm designs, have demonstrated scalability
well up to several thousand computing cores distributed over hun-
dreds of computing nodes [11,48-56]. Among these, in the MPI-based
distributed memory Louvain implementation of Que et al. [55], the
vertices and their edge lists are partitioned among the processes using
a 1D decomposition, similar to our distribution strategy. However, our
approaches are significantly different. Firstly, we use various heuristics
to optimize performance. Moreover, we use large real-world datasets
in our experimental evaluations, and compare the performance of our
MPI+OpenMP Louvain algorithm with that of a pure OpenMP imple-
mentation, and recursively, with the original serial implementation

11

Parallel Computing 111 (2022) 102898

of Blondel et al. Que et al. [55] report the execution time for their
algorithm run on the uk—-2007 real-world network (3.3B edges) to be
about 45 s on 128 IBM® Power7® nodes. In comparison, we report
an all-inclusive execution time of about 61 s for the same uk-2007
graph on 256 Intel® KNL nodes of ALCF Theta, and 20 s on 64 dual-
socket IBM Power9 nodes of OLCF Summit (using 4 OpenMP threads
per process). Whereas on 64 Summit nodes using 384 GPUs (6 GPUs
per node), we obtain a total execution time of 23 s for our GPU version
(refer to Fig. 11).

In the MPI implementation of Wickramaarachchi et al. [48], a
parallel graph partitioner ParMETIS [57] is used to partition the graph
among processes before the distributed memory community detection
algorithm starts. Since graph partitioning is also an NP-hard problem
and generally more expensive than community detection, we do not
assume an optimized input distribution in our approach and instead
work with a simpler distribution. It has also been well studied that
graphs from real-world are often hard to partition beyond a small num-
ber of partitions [58]. In a similar work, Zeng et al. [59] present their
distributed-memory (MPI-based) Louvain implementation where they
replicate high-degree vertices among processes and redistribute edges
to ensure load balancing of edges. The authors report that the execution
time of the first two Louvain phases on the uk-2007 graph is over
100 s on 1024 processes of the ORNL Titan supercomputer. In contrast,
the execution time of the baseline version of our distributed Louvain
implementation including all the Louvain phases for the uk-2007 graph
is about 38 s on 1024 processes of NERSC Cori.

GPU-based Efforts: Several works have shown the potential of GPUs
to accelerate the Louvain algorithm. While Naim et al. [27] showed
that single-GPU implementation was significant faster relative to a CPU-
based parallel implementation using a large set of problems [27], the
maximum problem size that can be executed in memory of a single GPU
remains severely restricted. We provide relative performance of cuVite
in Section 5.

Cheong et al. [60] addressed multi-GPU scalability, demonstrating
speed up of the multi-GPU implementation with respect to a single-
GPU solution, but they started with a slower single-GPU performance
relative to the work of Naim et al. [27]. They also showed a degradation
in the quality of results. Another multi-GPU parallel Louvain algorithm
implemented in the tool suite Gunrock, a graph processing library for
GPUs, has demonstrated scalability with respect to its specific single-
GPU implementation. However, it was evaluated only on clusters with
a single GPU per node, and remained limited by the underlying library
primitives [61,62]. Most recently, NVIDIA® introduced a software suite
named RAPIDS®, which also includes the cuGrapu library for optimized
graph algorithms such as community detection using the Louvain algo-
rithm [40]. However, cuGrapH is a single-GPU code, which we included
in our empirical analysis (Section 5).

Heterogeneous CPU-and-GPU implementations have been demon-
strated only on single shared-memory CPU nodes. One such example is
the work of Bhowmick et al. which focused on the static work distribu-
tion among the multi-core CPUs and a single-GPU in the node [63]. We
note that the implementation of Bhowmick et al. is based on individual
tools used in our analysis (Section 5).

To the best of our knowledge, this work presents the first distributed-
memory multi-GPU community detection using the Louvain method as
the serial template, and made available in a library names cuVire. Al-
though we build on the CPU-only distributed-memory implementation,
Vite [11], we made significant additions to exploit multi-GPU nodes.

7. Conclusion

Massively parallel systems including the forthcoming exascale sys-
tems are fundamentally heterogeneous in nature comprising of node
with multi-core CPUs and multiple GPUs. These hierarchical systems
pose significant challenges for the design and development of efficient

N. Gawande et al.

parallel algorithms, especially irregular applications such as iterative
graph algorithms. In this paper, we presented cuVite, a distributed-
memory multi-GPU community detection algorithm using the Louvain
algorithm as the serial template, and using the latest CUDA features. We
demonstrated the quality and performance of cuVite using a set of real-
world and synthetic graphs. We also showed the relative performance
of cuVirte with the state-of-the-art shared and distributed-memory CPU-
only as well as GPU-based implementations. We presented performance
improvement of up to 19x relative to NVIDIA cuGrart and greater than
10x relative to multithreaded CPU implementation Grapporo. Our code
is available from: https://github.com/pnnl/cuVite.

The performance of cuVite is currently limited by the data trans-
formations needed to map information between host and device data
structures, and adds significant overhead in some cases. However, these
transformations can be eliminated by using an uniform data represen-
tation on both the device and host. We therefore plan to perform a
complete redesign of the elementary data structures in the near future,
which would also enhance the performance of Vire along with the
performance of cuVirtk.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This research was supported by the DOE ECP (17-SC-20-SC), a col-
laborative effort of the U.S. DOE SC and the NNSA, and by the U.S. NSF
grants CCF 1815467 and CCF 1919122 to Washington State University.
We used resources of the Oak Ridge Leadership Computing Facility at
the Oak Ridge National Laboratory, United States (Contract DE-ACO05-
000R22725) and Argonne Leadership Computing Facility at Argonne
National Laboratory, United States (Contract DE-AC02-06CH11357).
The Pacific Northwest National Laboratory is operated by Battelle

Memorial Institute, United States under Contract DE-AC06-76RL01830.
References

[1] C.C. Aggarwal, Graph clustering, in: C. Sammut, G.I. Webb (Eds.), Encyclopedia
of Machine Learning, Springer US, Boston, MA, 2010, pp. 459-467.
M.E. Newman, M. Girvan, Finding and evaluating community structure in
networks, Phys. Rev. E 69 (2) (2004) 026113.
U. Brandes, D. Delling, M. Gaertler, R. Gorke, M. Hoefer, Z. Nikoloski, D. Wagner,
On modularity clustering, I[EEE Trans. Knowl. Data Eng. 20 (2) (2007) 172-188.
S. Fortunato, Community detection in graphs, Phys. Rep. 486 (3) (2010) 75-174.
M. Coscia, F. Giannotti, D. Pedreschi, A classification for community discovery
methods in complex networks, Stat. Anal. Data Min.: ASA Data Sci. J. 4 (5)
(2011) 512-546.
M.E. Newman, Communities, modules and large-scale structure in networks, Nat.
Phys. 8 (1) (2012) 25.
M.A. Porter, J.-P. Onnela, P.J. Mucha, Communities in networks, Not. AMS 56
(9) (2009) 1082-1097.
A. Pothen, Graph Partitioning Algorithms with Applications to Scientific
Computing, Tech. Rep., Old Dominion University, USA, 1997.
A. Lumsdaine, D. Gregor, B. Hendrickson, J. Berry, Challenges in parallel graph
processing, Parallel Process. Lett. 17 (01) (2007) 5-20.
M. Halappanavar, A. Pothen, A. Azad, F. Manne, J. Langguth, A. Khan,
Codesign lessons learned from implementing graph matching on multithreaded
architectures, Computer 48 (8) (2015) 46-55.
S. Ghosh, M. Halappanavar, A. Tumeo, A. Kalyanaraman, H. Lu, D. Chavarria-
Miranda, A. Khan, A. Gebremedhin, Distributed louvain algorithm for graph
community detection, in: 2018 IEEE International Parallel and Distributed
Processing Symposium, IPDPS, IEEE, 2018, pp. 885-895.
S. Ghosh, M. Halappanavar, A. Tumeo, A. Kalyanaraman, A.H. Gebremedhin,
MiniVite: A graph analytics benchmarking tool for massively parallel systems,
in: 2018 IEEE/ACM Performance Modeling, Benchmarking and Simulation of
High Performance Computer Systems, PMBS, IEEE, 2018, pp. 51-56.
S. Jeaugey, Nccl 2.0, in: GPU Technology Conference, Vol. 2, GTC, 2017.
B. Karrer, M.E. Newman, Stochastic blockmodels and community structure in
networks, Phys. Rev. E 83 (1) (2011) 016107.

[2]

[3]

[4]

[5]

(6]

[71

[8]

[91

[10]

[11]

[12]

[13]
[14]

12

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

Parallel Computing 111 (2022) 102898

D. Krackhardt, R.N. Stern, Informal networks and organizational crises: An
experimental simulation, Soc. Psychol. Q. (1988) 123-140.

Z. 1i, S. Zhang, R.-S. Wang, X.-S. Zhang, L. Chen, Quantitative function for
community detection, Phys. Rev. E 77 (3) (2008) 036109.

S. Fortunato, M. Barthélemy, Resolution limit in community detection, Proc. Natl.
Acad. Sci. 104 (1) (2007) 36-41.

U. Brandes, D. Delling, M. Gaertler, R. Gorke, M. Hoefer, Z. Nikoloski, D. Wagner,
Maximizing modularity is hard, 2006, arXiv preprint Physics/0608255.

B.H. Good, Y.-A. de Montjoye, A. Clauset, Performance of modularity
maximization in practical contexts, Phys. Rev. E 81 (4) (2010) 046106.

V.A. Traag, P. Van Dooren, Y. Nesterov, Narrow scope for resolution-limit-free
community detection, Phys. Rev. E 84 (1) (2011) 016114.

V.D. Blondel, J.-L. Guillaume, R. Lambiotte, E. Lefebvre, Fast unfolding of
communities in large networks, J. Stat. Mech.: Theory Exp. 2008 (10) (2008)
P10008.

D. Hric, R.K. Darst, S. Fortunato, Community detection in networks: Structural
communities versus ground truth, Phys. Rev. E 90 (6) (2014) 062805.

C.L. Staudt, H. Meyerhenke, Engineering high-performance community detec-
tion heuristics for massive graphs, in: Parallel Processing (ICPP), 2013 42nd
International Conference On, IEEE, 2013, pp. 180-189.

D. LaSalle, G. Karypis, Multi-threaded modularity based graph clustering using
the multilevel paradigm, J. Parallel Distrib. Comput. 76 (2015) 66-80.

E.J. Riedy, H. Meyerhenke, D. Ediger, D.A. Bader, Parallel community detection
for massive graphs, in: International Conference on Parallel Processing and
Applied Mathematics, Springer, 2011, pp. 286-296.

H. Lu, M. Halappanavar, A. Kalyanaraman, Parallel heuristics for scalable
community detection, Parallel Comput. 47 (2015) 19-37.

M. Naim, F. Manne, M. Halappanavar, A. Tumeo, Community detection on the
GPU, in: 2017 IEEE International Parallel and Distributed Processing Symposium,
IPDPS, IEEE, 2017, pp. 625-634.

W. Weir, S. Emmons, R. Gibson, D. Taylor, P. Mucha, Post-processing partitions
to identify domains of modularity optimization, Algorithms 10 (3) (2017) 93.
R. Barik, M. Minutoli, M. Halappanavar, N. Tallent, A. Kalyanaraman, Vertex
reordering for real-world graphs and applications: An empirical evaluation, in:
IEEE International Symposium on Workload Characterization, IISWC’20, Virtual
Conference, October 27-29, 2020, IEEE Computer Society, 2020.

J. Dongarra, Compressed Row Storage, http://www.netlib.org/utk/people/
JackDongarra/etemplates/node373.html.

N. Bell, J. Hoberock, Thrust: A productivity-oriented library for CUDA, in: GPU
Computing Gems Jade Edition, Elsevier, 2012, pp. 359-371.

D.A. Alcantara, A. Sharf, F. Abbasinejad, S. Sengupta, M. Mitzenmacher, J.D.
Owens, N. Amenta, Real-time parallel hashing on the GPU, in: ACM SIGGRAPH
Asia 2009 Papers, 2009, pp. 1-9.

D.A. Alcantara, V. Volkov, S. Sengupta, M. Mitzenmacher, J.D. Owens, N.
Amenta, Building an efficient hash table on the GPU, in: GPU Computing Gems
Jade Edition, Elsevier, 2012, pp. 39-53.

S. Ashkiani, S. Li, M. Farach-Colton, N. Amenta, J.D. Owens, GPU LSM: A
dynamic dictionary data structure for the GPU, in: 2018 IEEE International
Parallel and Distributed Processing Symposium, IPDPS, IEEE, 2018, pp. 430-440.
K. Perelygin, Y. Lin, Cooperative groups, in GTC, 2017, NVIDIA.

NVIDIA, CUDA Toolkit Documentation, https://docs.nvidia.com/cuda/cuda-c-
programming-guide/index.html.

C. Cantalupo, V. Venkatesan, J. Hammond, K. Czurlyo, S.D. Hammond, memkind:
An Extensible Heap Memory Manager for Heterogeneous Memory Platforms
and Mixed Memory Policies, Tech. Rep., Sandia National Lab.(SNL-NM),
Albuquerque, NM (United States, 2015.

S.P. Kolodziej, M. Aznaveh, M. Bullock, J. David, T.A. Davis, M. Henderson, Y.
Hu, R. Sandstrom, The suitesparse matrix collection website interface, J. Open
Source Softw. 4 (35) (2019) 1244.

MIT, A. Webservices, Graphchallenge, 2020, http://graphchallenge.mit.edu/data-
sets.

NVIDIA, Nvidia RAPIDS cugraph, 2020, https://github.com/rapidsai/cugraph.
J. Zedlewski, End-to-end data science on GPUs with {RAPIDS}, 2020.

A. Lancichinetti, S. Fortunato, F. Radicchi, Benchmark graphs for testing
community detection algorithms, Phys. Rev. E 78 (4) (2008) 046110.

T. Bodenheimer, M. Halappanavar, S. Jefferys, R. Gibson, S. Liu, P.J. Mucha, N.
Stanley, J.S. Parker, S.R. Selitsky, FastPG: fast clustering of millions of single
cells, 2020, Biorxiv.

S. Bhowmick, S. Srinivasan, A template for parallelizing the louvain method for
modularity maximization, in: Dynamics on and of Complex Networks, Vol. 2,
Springer, 2013, pp. 111-124.

M. Halappanavar, H. Lu, A. Kalyanaraman, A. Tumeo, Scalable static and
dynamic community detection using grappolo, in: 2017 IEEE High Performance
Extreme Computing Conference, HPEC, IEEE, 2017, pp. 1-6.

M. Fazlali, E. Moradi, H.T. Malazi, Adaptive parallel louvain community
detection on a multicore platform, Microprocess. Microsyst. 54 (2017) 26-34.
J.J. Tithi, A. Stasiak, S. Aananthakrishnan, F. Petrini, Prune the unnecessary:
Parallel pull-push louvain algorithms with automatic edge pruning, in: 49th
International Conference on Parallel Processing, ICPP, 2020.

https://github.com/pnnl/cuVite
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb1
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb1
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb1
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb2
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb2
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb2
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb3
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb3
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb3
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb4
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb5
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb5
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb5
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb5
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb5
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb6
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb6
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb6
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb7
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb7
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb7
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb8
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb8
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb8
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb9
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb9
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb9
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb10
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb10
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb10
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb10
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb10
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb11
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb11
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb11
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb11
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb11
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb11
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb11
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb12
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb12
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb12
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb12
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb12
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb12
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb12
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb13
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb14
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb14
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb14
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb15
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb15
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb15
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb16
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb16
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb16
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb17
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb17
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb17
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb18
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb18
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb18
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb19
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb19
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb19
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb20
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb20
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb20
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb21
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb21
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb21
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb21
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb21
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb22
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb22
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb22
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb23
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb23
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb23
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb23
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb23
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb24
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb24
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb24
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb25
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb25
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb25
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb25
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb25
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb26
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb26
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb26
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb27
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb27
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb27
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb27
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb27
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb28
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb28
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb28
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb29
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb29
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb29
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb29
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb29
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb29
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb29
http://www.netlib.org/utk/people/JackDongarra/etemplates/node373.html
http://www.netlib.org/utk/people/JackDongarra/etemplates/node373.html
http://www.netlib.org/utk/people/JackDongarra/etemplates/node373.html
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb31
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb31
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb31
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb32
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb32
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb32
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb32
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb32
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb33
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb33
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb33
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb33
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb33
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb34
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb34
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb34
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb34
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb34
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb35
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb37
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb37
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb37
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb37
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb37
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb37
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb37
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb38
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb38
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb38
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb38
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb38
http://graphchallenge.mit.edu/data-sets
http://graphchallenge.mit.edu/data-sets
http://graphchallenge.mit.edu/data-sets
https://github.com/rapidsai/cugraph
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb41
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb42
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb42
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb42
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb43
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb43
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb43
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb43
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb43
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb44
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb44
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb44
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb44
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb44
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb45
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb45
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb45
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb45
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb45
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb46
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb46
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb46
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb47
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb47
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb47
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb47
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb47

N. Gawande et al.

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

C. Wickramaarachchi, M. Frincu, P. Small, V.K. Prasanna, Fast parallel algorithm
for unfolding of communities in large graphs, in: High Performance Extreme
Computing Conference, HPEC, 2014 IEEE, IEEE, 2014, pp. 1-6.

X. Que, F. Checconi, F. Petrini, J.A. Gunnels, Scalable community detection
with the louvain algorithm, in: 2015 IEEE International Parallel and Distributed
Processing Symposium, IPDPS 2015, Hyderabad, India, May 25-29, 2015, IEEE
Computer Society, 2015, pp. 28-37.

J. Zeng, H. Yu, Effectively unified optimization for large-scale graph community
detection, in: 2019 IEEE International Conference on Big Data, Big Data, IEEE,
2019, pp. 475-482.

S.-H. Bae, B. Howe, GossipMap: A distributed community detection algorithm for
billion-edge directed graphs, in: Proceedings of The International Conference For
High Performance Computing, Networking, Storage and Analysis, ACM, 2015, p.
27.

N. Buzun, A. Korshunov, V. Avanesov, I. Filonenko, I. Kozlov, D. Turdakov, H.
Kim, Egolp: Fast and distributed community detection in billion-node social net-
works, in: Data Mining Workshop (ICDMW), 2014 IEEE International Conference
On, IEEE, 2014, pp. 533-540.

M. Ovelgonne, Distributed community detection in web-scale networks, in:
Proceedings of The 2013 IEEE/ACM International Conference on Advances in
Social Networks Analysis and Mining, ACM, 2013, pp. 66-73.

V. Prasanna, GoFFish: Graph-Oriented Framework for Foresight and Insight Using
Scalable Heuristics, Tech. Rep., UNIVERSITY of SOUTHERN CALIFORNIA LOS
ANGELES, 2015.

X. Que, F. Checconi, F. Petrini, J.A. Gunnels, Scalable community detection
with the louvain algorithm, in: Parallel and Distributed Processing Symposium
(IPDPS), 2015 IEEE International, IEEE, 2015, pp. 28-37.

G.M. Slota, J.W. Berry, S.D. Hammond, S.L. Olivier, C.A. Phillips, S. Raja-
manickam, Scalable generation of graphs for benchmarking HPC community-
detection algorithms, in: Proceedings of The International Conference For High
Performance Computing, Networking, Storage and Analysis, 2019, pp. 1-14.

G. Karypis, K. Schloegel, V. Kumar, Parmetis: Parallel graph partitioning and
sparse matrix ordering library, 1997, Version 1.0, Dept. of Computer Science,
University of Minnesota.

A. Abou-Rjeili, G. Karypis, Multilevel algorithms for partitioning power-law
graphs, in: Proceedings 20th IEEE International Parallel & Distributed Processing
Symposium, IEEE, 2006, pp. 10-pp.

J. Zeng, H. Yu, A scalable distributed louvain algorithm for large-scale
graph community detection, in: 2018 IEEE International Conference on Cluster
Computing, CLUSTER, IEEE, 2018, pp. 268-278.

C.Y. Cheong, H.P. Huynh, D. Lo, R.S.M. Goh, Hierarchical parallel algorithm for
modularity-based community detection using GPUs, in: European Conference on
Parallel Processing, Springer, 2013, pp. 775-787.

Y. Wang, Y. Pan, A. Davidson, Y. Wu, C. Yang, L. Wang, M. Osama, C. Yuan,
W. Liu, A.T. Riffel, et al., Gunrock: GPU graph analytics, ACM Trans. Parallel
Comput. (TOPC) 4 (1) (2017) 1-49.

Y. Pan, Multi-GPU Graph Processing (Ph.D. thesis), University of California,
Davis, 2019.

A. Bhowmick, S. Vadhiyar, Hysdetect: A hybrid CPU-gpu algorithm for commu-
nity detection, in: 2019 IEEE 26th International Conference on High Performance
Computing, Data, and Analytics, HiPC, IEEE, 2019, pp. 2-11.

Nitin A. Gawande, Ph.D. is currently a Software Ap-
plication Engineer with the Architecture and Workload
Engineering Accelerated Computing Systems and Graphics
group at Intel Corporation. Nitin’s current research interests
include design and implementation of scalable high perfor-
mance computing algorithms on GPU accelerators. He has
authored several peer reviewed journals and peer reviewed
conference proceedings. He is a member of Association for
Computing Machinery (ACM).

13

Parallel Computing 111 (2022) 102898

Sayan Ghosh is a Computer Scientist in the Data Sciences
group at the Pacific Northwest National Laboratory (PNNL)
in Richland, WA. His research interests are broadly in the
application of parallel programming models for building
scalable codes on supercomputers. He holds a Masters
degree from University of Houston in Houston, TX and a
Ph.D. degree (both in Computer Sciences) from Washington
State University in Pullman, WA.

Mahantesh Halappanavar is a computer scientist and
group leader of the Data Sciences and Machine Intelligence
Group at the Pacific Northwest National Laboratory. He
holds a joint appointment as an adjunct faculty in the School
of Electrical Engineering and Computer Science at the Wash-
ington State University. His research focuses on developing
efficient parallel graph algorithms and their applications to
several domains including the analysis of electric power
grids, sparse linear algebra, and cyber security.

Antonino Tumeo received M.S degree in Informatic En-
gineering, in 2005, and the Ph.D. degree in Computer
Engineering, in 2009, from Politecnico di Milano in Italy.
Since February 2011, he has been a research scientist
in the PNNL’s High Performance Computing group. He
Joined PNNL in 2009 as a post doctoral research associate.
Previously, he was a post doctoral researcher at Politecnico
di Milano. His research interests are modeling and simula-
tion of high performance architectures, hardware-software
codesign, FPGA prototyping and GPGPU computing.

Ananth Kalyanaraman received the bachelor’s degree from
the Visvesvaraya National Institute of Technology, Nagpur,
India, in 1998, and the MS and Ph.D. degrees from Iowa
State University, Ames, in 2002 and 2006, respectively.
Currently, he is an associate professor in the School of Elec-
trical Engineering and Computer Science, Washington State
University, Pullman and also holds a joint appointment at
Pacific Northwest National Laboratory (PNNL). His research
focuses on developing parallel algorithms and software for
data-intensive problems originating in the areas of computa-
tional biology and graph-theoretic applications. He received
the DOE Early Career Award, an Early Career Impact Award
and two best paper awards. He serves on editorial boards of
the IEEE Transactions on Parallel and Distributed Systems
and the Journal of Parallel and Distributed Computing. He
is a member of the AAAS, the ACM, the IEEE, the ISCB, and
the SIAM.

http://refhub.elsevier.com/S0167-8191(22)00006-0/sb48
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb48
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb48
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb48
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb48
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb49
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb49
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb49
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb49
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb49
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb49
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb49
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb50
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb50
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb50
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb50
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb50
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb51
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb51
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb51
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb51
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb51
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb51
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb51
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb52
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb52
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb52
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb52
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb52
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb52
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb52
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb53
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb53
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb53
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb53
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb53
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb54
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb54
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb54
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb54
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb54
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb55
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb55
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb55
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb55
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb55
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb56
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb56
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb56
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb56
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb56
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb56
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb56
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb57
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb57
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb57
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb57
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb57
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb58
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb58
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb58
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb58
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb58
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb59
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb59
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb59
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb59
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb59
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb60
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb60
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb60
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb60
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb60
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb61
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb61
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb61
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb61
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb61
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb62
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb62
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb62
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb63
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb63
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb63
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb63
http://refhub.elsevier.com/S0167-8191(22)00006-0/sb63

	Towards scaling community detection on distributed-memory heterogeneous systems
	Introduction
	Preliminaries
	Hardware overview
	Graph community detection or clustering

	Distributed multi-GPU Louvain method
	Input distribution
	Overview of the parallel algorithm
	Graph reconstruction

	GPU-porting strategy
	Mapping between host and device data structures
	Determining target communities
	Exploiting CUDA cooperative groups

	Performance evaluation
	General performance characterization
	Performance on ALCF Theta
	Performance on OLCF Summit
	Performance on NVIDIA DGX-2
	Quality assessment

	Related work
	Conclusion
	Declaration of competing interest
	Acknowledgments
	References

