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ABSTRACT
Objectives: A landscape scan of the methods that are used to either assess or mitigate biases

when using social media data for public health surveillance, through a scoping review.

Materials and Methods: Following best practices, we searched two literature databases (i.e.,
PubMed and Web of Science) and covered literature published up to July 2021. Through two
rounds of screening (i.e., title/abstract screening, and then full-text screening), we extracted
study objectives, analysis methods, and the methods used to assess or address the different

biases from the eligible articles.

Results: We identified a total of 2,856 articles from the two databases. After the screening
processes, we extracted and synthesized 20 studies that either assessed or mitigated biases
when leveraging social media data for public health surveillance. Researchers have tried to
assess or address several different types of biases such as demographic bias, keyword bias, and
platform bias. In particular, we found 11 studies that tried to measure the reliability of the

research findings from social media data by comparing them with other data sources.

Discussion and Conclusion: We synthesized the types of biases and the methods used to assess
or address the biases in studies that use social media data for public health surveillance. We
found very few studies, despite the large number of publications using social media data,
considered the various bias issues that are present from data collection to analysis methods.

Overlooking bias can distort the study results and lead to unintended consequences, especially



(8]

in the field of public health surveillance. These research gaps warrant further investigations
more systematically. Strategies from other fields for addressing biases can be introduced for

future public health surveillance systems that use social media data.
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BACKGROUND AND SIGNIFICANCE

Social media platforms are internet places for people to connect. Social media users often
voluntarily discuss and share their health-related experiences, such as their concerns about
contracting certain diseases or vaccinations.? These health-related posts on various social
media platforms bring new opportunities for public health surveillance. There are different
focuses of using social media data for public health surveillance, such as (1) disease
surveillance,>* (2) pharmacovigilance,>® (3) misinformation surveillance,” (4) surveillance of
human mobility and health behavior of a population, some of which use location-based social
networks.#10 Nevertheless, the nature of social media data and associated analysis methods are
very different from those that are used in traditional public health surveillance systems.
Traditionally, surveillance systems can be classified into either active or passive surveillance
based on the way they collect the data. For active surveillance systems, data are collected
through active outreach such as from surveys that ask questions of specific public health-related
events, where different sampling or weighting strategies are often used to create results that can
well represent the target population.!! For passive surveillance systems, data are passively
collected such as relying on reports by health care providers.?? Social media data are often used
in passive surveillance systems, where they passively monitor organic social media posts to
identify events of interest.> Nevertheless, it is critical to recognize the unique challenges of
dealing with the various potential biases in using social media data for public health
surveillance. A well-known example of harmful consequences when biases are ignored is
Google Flu Trends’ failure of making accurate predictions using internet search data.’* Even

though Google Flu Trends did not use social media data, many of the potential biases are



10

11

12

13

14

15

16

17

18

19

20

21

22

commonly inherent in surveillance using internet data, such as representativeness, confounding
of search terms, and lack of case validation.’* On a high level, we can generally categorize the
biases from their sources: rising (1) from the data itself, and/or (2) from the methods used when

processing and analyzing the data.

Biases inherent in the social media data

“Data bias” is the biases that comes from the inherent properties of social media data. For
example, social media data may not be representative of the general population of interest,
while representativeness is often a key desired feature of an ideal surveillance system. Firstly,
the demographics of social media users are not only different from the real-world populations
but also different across social media platforms. An early study from the Pew Research Center
discovered that TikTok and Instagram have more female users than male users, while male
users are more prominent on Twitter.’> Certain populations (e.g., younger adults and those that
are more comfortable with technology) are more prevalent on social media platforms in part
due to the characteristics of the specific subpopulations but also the particular design and
marketing strategies of the different social media platforms.’> Compounding this issue is that
social media platforms either do not collect user demographics explicitly such as Twitter or do
not make them available, for the right reason of protecting user privacy, such as Facebook,
which makes it difficult to use traditional methods (e.g., raking !¢) to generalize the findings
from social media data to the general populations. Some researchers have attempted to infer
user demographics from other contextual features that are available about the social media user

to address some of these issues. For instance, Culotta et al. (2015) created a machine learning
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classifier to identify Twitter users’ ethnicity, gender, and political preference based on whom
they follow.” However, some of the demographic attributes (e.g., age) are still difficult to
extract. Nguyen et al. (2014) found that older Twitter users are often predicted to be younger
using features derived from their Twitter posts, introducing additional biases if used to adjust
for represenativeness.!® Lastly, social media data may contain information posted by fake user
accounts or bots. A recent study found that bots contributed to nearly half of the discussions
about “reopening America” during the COVID-19 pandemic on Twitter.’ For a surveillance

system, it is important to identify and remove posts from bots or fake accounts.

Biases raised from the methods used in dealing with social media data

“Method bias” refers to the biases that come from the methods and procedures applied for the
collection, processing, and analysis of the social media data. For example, most social media
studies identify and collect sample datasets by using keywords and hashtags, depending on the
interfaces provided by individual social media platforms. Such keyword-based searches may
lead to biased samples (e.g., not representative of the topic of interest) and introduce noises (i.e.,
data irrelevant to the topic of interest) due to the ambiguity of the keywords. Using keywords
may also have a low recall, since it is difficult to identify all the relevant keywords and the
vocabulary used on social media are often different from those used in formal writing and
evolves rapidly (e.g., new slang terms continuously being invented). Thus, the choice of
keywords (and hashtags, in the case of Twitter) determines both the precision and recall of the
retrieved dataset in terms of its relevance to the topic of interest. Existing studies have shown

that poorly designed search queries can introduce more biases.?’ Secondly, regardless of the
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methods used for data collection, the sample data retrieved from social media platforms is only
a fraction of all relevant data. Social media platforms such as Twitter provide application
program interfaces (APIs) for data accessing purposes, but with restrictions on query length,
data volume, and data request frequency.?! Lastly, different from other traditional passive
surveillance data sources such as structured, coded data from electronic health records (EHRs),
social media data are often unstructured free-text data, where natural language processing
(NLP) methods are frequently used (e.g., text classifiers, sentiment analysis, and topic
modeling?-2*). These NLP methods can introduce biases (e.g., misclassification errors
introduced by the classifiers). Further, data preprocessing procedures, often a necessary step in
the NLP pipeline, can also introduce biases. Standard text normalization methods, such as
spelling corrections, lemmatization, and stemming, can potentially alter the meaning of original
words or phrases. For example, stemming the words “flying” and “flies” (i.e., the insects) will
lead to an identical representation, i.e., “fly.” These data preprocessing methods may also lead
to radically different results of the downstream NLP models. For example, topic modeling
techniques can yield different results depending on the choices made in the different pre-

processing steps for textual data.?

There are growing concerns of both the data and method biases when using social media data
for public health surveillance. Overlooking biases can distort the study results and lead to
unintended consequences. Even though the awareness is high,® there is limited work on
strategies to either assess (e.g., quantify) or mitigate the biases. Thus, our goal of this study is to

conduct a landscape scan of the methods that are used to either assess or mitigate biases when
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using social media data for public health surveillance, through a scoping review the literature.
To do that, we aim to answer the following two research questions (RQ):
e RQI: What are the existing data analysis methods (e.g., machine learning models for
classification) used in social media studies related to public health surveillance?
e RQ2: What are the existing methods used to assess and/or address bias in social media
studies related to public health surveillance?
Through answering these two RQs, we will identify research gaps from social media studies in
the field of public health surveillance. To the best of our knowledge, there are no existing
reviews focusing on this topic, i.e., biases in social media studies for public health surveillance.
Similar discussions in review literature can only be found on biases of general social media or
social network studies? or on biases of public health surveillance using traditional data sources

such as electronic health records.?”

MATERIALS AND METHODS

Literature search strategies

This scoping review follows the best practices and uses the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Through a systematic search of
two representative literature databases (i.e., PubMed and the Web of Science), we identified
relevant articles that assessed and/or addressed data and method biases in using social media
data for public health surveillance published by July 6%, 2021. Supplement Appendix A shows
the search strategies we used, which contains three groups of keywords: (1) public health

surveillance-related, (2) social media related; and (3) bias-related. The initial social media and
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bias-related keywords were built upon a survey paper that discusses biases in general social
media studies;*® and we developed the public health surveillance-related keywords through a
manual screening of relevant MeSH terms and samples of relevant studies. Through this
process, we found some social media studies often use machine-/deep learning (ML/DL)
methods to filter out irrelevant information or bot accounts from social media data, which is a
way of reducing the biases introduced by these nosies. These studies are less likely to mention
terms related to “bias” but can also be highly relevant to our RQs; we thus also included ML and

bot-related keywords to the bias-related keyword group.

Eligibility criteria

We drafted the initial inclusion and exclusion criteria through group discussions and conducted
two rounds of initial exercises of title and abstract screening to train the reviewers and refine
the eligibility criteria. The final inclusion criteria are: (1) studies that use data (i.e., any data
types, including text, images, and videos) generated from social media platforms, (2) studies
that are related to public health surveillance, and (3) the studies should have evaluated and/or
addressed/mitigated the biases in the social media data itself (i.e., data bias) and/or the analysis
methods (i.e., method bias) that used to process the social media data. We excluded studies
that: (1) are not written in English, (2) are review, opinion, and perspective papers, and (3) not
related to analysis of social media data for public health surveillance (e.g., use the social media

platforms for recruitment).

Article screening process
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Following the PRISMA guideline, we first removed duplicate records across the two literature
databases and conduced title and abstract screening based on our inclusion and exclusion
criteria. During this process, we also iteratively refined the eligibility criteria. For the articles
that passed title/abstract screening, we conducted a full-text screening. In both title/abstract
and full-text screenings, two reviewers (YZ and XH) performed the screening independently,

and conflicts were resolved by a third reviewer (JB).

Data extraction from the articles

We developed a data extraction form iteratively during the full-text screening phase with a
focus on information related to the objective of each study and how data and method biases
were assessed and/or addressed. For each study, we extracted: (1) the outcomes of interest (e.g.,
conditions, diseases, or adverse events) , (2) the social media data sources (e.g., Twitter), (3) the
data analysis methods (e.g., ML-based classifier), and (4) whether the study addressed data

and/or method biases and if so the types of the bias that were addressed.

RESULT

A total of 2,856 articles were identified from the two literature databases. After removing
duplicates, 2,193 articles were left for title and abstract screening; from which, 2,159 articles
were deemed ineligible because they either do not use social media data for surveillance or do
not explicitly assess or address data or method biases according to our eligibility criteria. For
articles that its eligibility is unclear from the title and abstract alone, we conservatively kept the

article for full text screening. We further screened the full text of the remaining 34 articles and
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removed 12 articles that have no bias evaluation and 2 articles that are not related to public
health surveillance. Finally, 20 articles remained eligible for data extraction. Figure 1 shows the

PRISMA flow diagram of our review process.

Records identified through Records identified through
i3 PubMed search published Web of Science search
E by 07/06/2021 published by 07/06/2021
£ (n=1,187) (n=1,669)
=
2

Records after duplicates removed

(n=2,193)

£

=

2

2

(e Records screened Records excluded

(n=2,193) (n=2,159)

g Full-text articles List of reasons excluded

,a assed for eligibility 1. No bias evaluation (n = 12)

= (n=34) 2. Not public health

surveillance study (n =2)

Number of studies

E which tried to access

2 and address biases

= (n=20)

Figure 1. PRIMSA flow diagram of the literature review process.

Overview of the included studies

Among the 20 articles included for data extraction, 7 different social media platforms were
used: Twitter (n = 15), Facebook (n =2), Yelp (n=1), Weibo (n=1), YouTube (n = 1), Instagram
(n=1), and web forums (n=1). Twitter is the most popular data source for public health
surveillance studies using social media data. There are 3 studies that used data from multiple
social media platforms: (1) Audeh et al. (2020) used data from 21 French web forums to detect
drug mentions;? (2) Elkin et al. (2020) manually evaluated vaccination-related contents from

YouTube and Facebook;* and (3) Jaidka et al. (2020) estimated geographic well-being by using
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data from Twitter and Facebook.?* Except for two studies®** that manually coded the content of
videos and images from YouTube and Instagram, respectively, all the other studies analyzed

textual data from social media.

The outcomes of interest in the 20 articles are (1) disease surveillance (n=14; e.g., infectious
disease), (2) pharmacovigilance (n=7; i.e., adverse events, drug use/misuse, and vaccination), (3)
public's attitudes or behaviors (n=4), and (4) others (n=2; e.g., general well-being). Table 1
shows the number of studies by the outcome of interest. Disease surveillance (n = 14) is the
most prevalent use case for public health surveillance using social media data, including
infectious diseases (n = 10), chronic diseases (n = 2), and mental health (n =3). Two of the 10
infectious disease studies focused on the current pandemic of Coronavirus disease 2019
(COVID-19). Note that some studies studied multiple diseases or multiple outcomes. For
example, Yang et al (2016)> created a general-purpose platform and discussed three different
use cases: influenza outbreaks (i.e., infectious disease), public responses to Ebola outbreak (i.e.,

attitudes and opinions), and online discussion of (medical) marijuana (i.e., drug use).

Table 1. Summary of the outcomes of interest among the 20 included studies.

Number
of
Outcomes Specific outcomes studies | Reference
Infectious diseases (e.g.,
COVID) 10 3342,
Disease surveillance Chronic diseases 2 4243
Mental health (e.g.,
depression) 3 324244
Pharmacovigilance Adverse Event 2 245
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Vaccine 1 30

Drug use/misuse (e.g.,
opioid) 4 29,33,46,47

Attitudes and behavior (e.g.,
Public’s attitudes or behavior | opinions, alcohol
consumption) 4 33,36,37,39

Other General well-being 2 31,48

RQ1: What are the existing data analysis methods used in social media studies related to
public health surveillance?

To answer RQ1, we extracted the analysis methods used in the 20 studies and categorized these
into 3 groups: (1) classification models, including both ML-based classification (e.g., Aslam et al.
(2014) implemented a support vector machine to identify laypeople” flu-related tweets 34) and
rule-based classification (e.g., Yang et al. (2016) adopted simple rules that remove retweets and
tweets with URLs to remove irrelevant information®?). Note that we considered ML- or
dictionary-based sentiment analysis into this category as well; (2) content analysis that includes
both algorithmic text clustering or topic modeling methods (e.g., Massey et al. (2021) explored
discussions topics from Twitter data on the topic of COVID-19 using topic modeling®) and
manual content analysis (e.g., McCosker et al. (2020) developed a manual coding approach to
explore depression-related contents on Instagram??); and (3) correlation analysis that includes
simple correlation measures (e.g., Jayawardhana et al. (2019) validated the influenza rate
estimates from social media data with hospitalization records issued by Ohio Departmetn of
Health®) and regression analysis (e.g., Alessa et al. (2019) used linear regression with flu-related
tweets to estimate flu-rate?’). Table 2 shows the number of studies by analysis method. Note

that some studies employed multiple methods.
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Table 2. The number of studies by analysis method.

Categories Methods Number of studies* | Reference
Machine learning-based 30,33-36,38-40,43-
classification/sentiment analysis 12 45,48
Rule-based

Classification | classification/dictionary-based

models sentiment analysis 4 31,33,39,46

Content Manual content analysis 2 532

analysis Text clustering/topic modeling 3 37,4147

Correlation Simple correlation measures 10 31,32,34-37,40,4146,48

analysis
Regression analysis 2 39,40

*Note that some studies used multiple analysis methods.

RQ2: What are the existing methods used to assess and/or address bias in social media
studies related to public health surveillance?

To answer RQ2, we first summarized the types of biases that were discussed in the 20 studies
based on existing literature on the topic of bias in public health surveillance.** Nevertheless,
there is no standard classification of biases and the definition of each bias; and it is often
difficult to draw clear boundaries between different bias terms and their normative
connotations. Table 3 shows the summarization along with the definition or example of the
specific bias type, the methods used for assessing or mitigating the bias, and associated studies.
Out of the 20 studies, 10 of them (i.e., some studies addressed multiple biases) discussed three
types of biases: (1) demographic bias (n=3), (2) keyword bias (n=8), and (3) platform bias (n=1),
which all related to selection bias. Most studies focused on discussing the biases of the social

media data, while a few (i.e., 8 articles that discussed keyword bias) addressed the biases



introduced by the methods used to collect, process, or analyze the data. Even the 8 articles that

are related to keyword bias have focused their discussions on how issues concerning the choice

and use of certain keywords would affect the sample data (i.e., data bias due to data collection

or processing methods used). There is no study that discussed how analysis methods would

introduce biases in the study results explicitly.

Table 3. Summary of the bias types and methods to assess or mitigating the bias in the 20

articles.
Type of the bias in Example/definition | # of Method | Methods for Studies Data bias
public health studi | s for mitigating or Method
surveillance es assessin Bias
literature g
Demographic bias The demographics 3 NA Stratifying social | 31324 Data
of the social media media users
user shifts from the based on the
general population demographic
distributions
Keyword bias The use of 8 Manual | (1) Machine 31-34,39,43-45 Data/Meth
keywords to extract analysis | learning-based od
sample data may filtering
introduce noises as (2) Rule-based
the keywords may filtering
be ambiguous (e.g.,
misspelling or
slang words)
Platform bias Differences across 1 Manual | NA 30 Data
platforms due to analysis
platform
characteristics (e.g.,
the ranking
algorithm it used)
Unclassified* 10 Regressi | NA 29,35-37,40~ Data
on or 43,46,47
correlati
on
analysis

* Studies that cannot be mapped to existing types of biases from public health surveillance
literature; however, some of the studies in this category compared their social media results with
other data sources, thus, in a way assessed the biases of the study results. See Table 4 for details on

those individual studies.
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From the 20 studies, we found 3 discussed demographic bias. Iacus et al. (2020)* and Jaidka et
al. (2020)*! attempted to mitigate demographic bias by stratifying Twitter users based on their
geographic distributions to get representative measurements of users’ general well-being from
Twitter data, while Weeg et al. (2015) 32 found that the correlation between findings from social
media data and the results from a national survey was significantly increased after stratifying
Twitter users by demographics. Eight out of 20 studies have targeted keyword bias. For
example, Mowery et al. (2017) assessed how accurately the depression-related keywords could
identify depression-related tweets by manually reviewing a sample of tweets for each
keyword;* and Culotta et al. (2013) tested both rule-based (i.e., keyword-based) approach and
machine learning-based approach to identify relevant tweets and used the volume of the
identified tweets to estimate flu rates and alcohol sales volume from Twitter data.* We found
only 1 article that attempted to assess social media platform bias. Elkin et al. (2020)* manually
evaluated vaccine-related content from YouTube and Facebook; and they found more negative

vaccine-related content on Facebook than YouTube.

However, the rest 10 out of the 20 studies addressed the overall data or method bias question
but cannot be classified into the 3 types of biases described above. Most of these studies (7 out
of the 10) discussed the reliability of social media study results when potential bias exists by
validating the results generated from social media data with external data sources. In fact, there
is a total of 11 studies (4 from those that can be classified into the 3 types of biases described
above) that compared social media results with external data sources, and we further list the

specific validation methods and corresponding external data sources used in the 11 studies in
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Table 4. We found data sources such as hospitalization records,* reports from the Centers for
Disease Control and Prevention (CDC)>*? and surveys32*® are often used as the external
validation datasets; and 9 out of 11 articles used simple correlation metrics to compare the
results from social media data with the external data sources. At last, 3 studies?®34 that cannot
be classified, as they are general descriptive studies (e.g., Audeh et al. (2020)* identified the

most frequently mentioned drugs in web forums and discussed the potential biases related to

forum selection and the corresponding population representativeness).

Table 4. Social media public health surveillance studies that compared their results with

external data sources.

Twitter

Validation Articles Topic External data source
method
Simple Aslam et al. Seasonal influenza The morbidity and
correlation (2014)3 surveillance from mortality weekly report
Twitter by the CDC>2
Weeg et al. Disease mentions vs. | Survey data by the
(2015)% prevalence from Experian Marketing
Twitter Services*
Chary et al. Misuse of opioids The national survey on
(2017)% estimation from drug usage and health>
Twitter
Jayawardhana et | Influenza rate from | The hospitalization
al. (2019)*» Twitter records by the Ohio
Department of Health>
Jaidka et al. Well-being The Gallup-sharecare
(2020)* distribution from well-being index survey>
Twitter
Iacus et al. Well-being Survey data from the
(2020)* distribution from Italian National Institute
Twitter of Statistics (ISTAT)>
Massey et al. COVID-19 case The United States
(2021)¥ prediction using COVID-19 cases and




10

11

12

13

14

deaths by the state over
time reports by the CDC*!

Margus, et al.

(20214

COVID-19 case
prediction using
Twitter

The COVID-19 dashboard
by the Center for Systems
Science and Engineering
at Johns Hopkins
University®

Tacheva et al.

Misuse of opioids

A wide range of online

(2021)% estimation from data for epidemiologic
Twitter research by the CDC>
Regression Culotta et al. Influenza rates from | The reports from the US
analysis (2013)® Twitter outpatient influenza-like
illness surveillance
network by the CDC®
Alessa et al. Flu detection from FluView by the CDC®!
(2019)* Twitter
DISCUSSION

We summarized the existing studies that have discussed methods and strategies used to assess

and/or mitigate data and method biases when using social media data for public health

surveillance through a scoping review. Even though our initial literature database search

identified a large number of records, only 20 articles eventually met our eligibility criteria that
explicitly discussed either data or method biases when using social media for public health
surveillance. Despite the great awareness of bias concerns, we found very few studies have
explored this topic, and virtually no practical and systematic methods have been proposed to
mitigate the various biases when using social media data. Although some studies have realized
the potential biases, they failed to identify the specific types of biases and address them
according to their properties. Only 10 studies further discussed biases in different types.
Eleven out of the 20 studies discussed the reliability of study results when potential biases exist

by comparing or validating the results with external, often more authoritative data sources such
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as those from the CDC. For studies that discussed and addressed biases of different types, there
is a significant under-awareness of several types of biases and only a few types of the biases
(Table 3) are unevenly discussed. Among the 20 studies we reviewed, 8 addressed keyword
bias, 3 addressed demographic bias, and only 1 study addressed platform bias. Even though
sample bias and misclassification errors are discussed extensively in existing literature on biases
in public health surveillance studies*** and in general social media studies,?® we did not find

any social media studies that addressed either sample bias or misclassification errors directly.

Based on our findings above and by exploring strategies of addressing biases that is used in
studies on social media from fields other than public health surveillane,?® we discuss 5 types of
biases below and recommend more up-to-date tools for each type of the bias that can be

considered for future public health surveillance system of using social media data as follows.

Demographic bias

Stratifying social media users based on their demographic distributions to get representative
results from social media data is a useful approach. However, demographic information is
unavailable on many social media platforms (e.g., Twitter), so that researchers often have to
build models to infer those information.®> Further, beyond simple demographics (e.g., age,
gender, race, and ethnicity), researchers have been able to create models to infer other social
media user attributes. For example, Daniel et al. (2015) tested support vector machine (SVM)
and linear regression models to predict the income level of Twitter users.®* Michael et al. (2011)

used a SVM model to predict the political alignment of Twitter users based on their posts.®* As
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many other kinds of sociodemographic information are possible to be extracted from social
media data using advanced inference models, stratifying social media users by those attributes
for public health surveillance can potentially provide more insights into the different
subpopulations. Nevertheless, these inference models will also introduce misclassification

errors because of the imperfection of these models.

Keyword bias

Both ML-based and rule-based methods are often applied to mitigate the keyword bias in
studies we reviewed; nevertheless, Culotta et al. (2013) found that ML-based classifiers are more
adept than rule-based methods for filtering out irrelevant information.* However, the
irrelevant information introduced by ambiguous keywords is only one aspect of the keyword
bias, where the coverage or completeness of all the potentially relevant data that the keywords
can retrieve is another issue. When we developed search keywords for content filtering in our
previous social media studies,® we considered keyword variations, misspellings, and
vocabulary changes over time to collect as much relevant social media data as possible. Other
approaches have been proposed outside of the topic of using social media data for public health
surveillance. For example, Magdy et al. (2014) used an unsupervised machine learning
approach to track dynamic topics and theme changes in Twitter data.®® Nevertheless, without
knowing the complete universe of the social media data space, the representativeness of the

collected data and the generalizability of the study results are difficult to assess.

Platform bias
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Different social media platforms often attract different user groups due to its unique
characteristics, but the user behaviors on the different social media platforms might also be
different. For example, Linkedin is designed to be business- and employment-oriented online
service, where the posts and communications on Linkedin are mostly expressed more formally
in a professional manner. On the other hand, other social media platforms such as Twitter and
Facebook are geared toward making sharing content and communicating among families and
friends, where the content posted are causal and less formal. The same user may behavior
differently between social media platforms like Linkedin and Twitter. Only 1 article by Elkin et
al. (2020)* discussed platform bias, where they found more negative vaccine-related content on

Facebook than YouTube.

All the three types of biases discussed above (i.e., demographic bias, keyword bias, and
platform bias) identified from the 20 studies are related to concept of selection bias in classific
public health surveillance literature, where the bias is introduced by the selection of individuals
(or their data) in a way that proper randomization is not achieved, which leads to an
unrepresentative sample of the population intenteded to be studied. It is yet unclear how such
selection bias can be addressed, given the inherent limitation of what data and information can
be obtained from the different social media platforms. For example, Twitter although provides
APIs for end-users to access public tweets, the sampling strategies that Twitter internally used
for these API end-points are unknown to end-users, leading to difficult to migitating the
introduced sampling bias. In studies outside of public health surveliance domain, a number of

social media studies have discussed selection (and sampling) bias. For example, Morstatter et
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al. (2013) measured the representativeness of Twitter streaming API to the full archive dataset
by comparing topics, geographic distributions, and networks of Twitter users between the two
datasets.”” Pfeffer et al. (2018) also used multi-crawlers to circumvent the API limits and

discussed the possibility of collecting complete data using this strategy.*

Misclassification errors

Misclassification errors is a frequently discussed issue in public health surveillance literature
and a common issue in studies that use classification models, while rule-based or ML-based
algorithms are often used in social media studies to filter out irrelevant information.
Nevertheless, none of the 20 studies discussed misclassification issues. Although most studies
that use classification strategies have tested multiple classifiers and adept the one with the best
performance, it is not sufficient. Classification models including ML-based classifiers are
sensitive to biases that occurred in every step of the social media data processing and analysis
pipeline (e.g., because of sample bias and sampling errors introduced in the data preprocessing
step). For example, Thomas et al. (2020) pointed out that the representativeness of the training
samples is extremely important to build reliable ML-based classification models.* To mitigate
this bias, besides using more advanced ML models such as deep learners, we also need to solve
and consider the biases that occurred in the data processing steps prior to building the actual
ML models. Further, no model can achieve perfect performance; thus, systematic studies that
provide insights on how biases in social media data would affect the performance of ML models

and subsequently affect the final study results are warranted. For example, sensitivity analysis
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with varying performance.”

Final remarks

Real-world people

Figure 2. A conceptual view of the Tweet space.

For public health surveillance, biases not only exist inherently in the data itself but also can be
introduced from the methods used to collect, process, and analyze the data. Nevertheless,
issues around these biases are rooted in the question of whether the collected data samples
represent the topic or individuals of interest. Figure 2 shows a conceptual view of the social
media data universe using Twitter as an example. The sample data that are collectable through
Twitter APIs are not only just a subset of the optimal, desired search results, but also may
contain irrelevant information from bots or fake accounts. Further, even within the relevant

tweets, for the purpose of public health surveillance, we would need to consider the different
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user characteristics (e.g., active user vs. retweeters) that affect incidence and prevalence
estimates that are critical in surveillance systems. Moreover, we have to keep in mind that even
the entire Tweet space may not represent the real-world populations of interest, considering
those disadvantaged populations who may not even have access to the internet or those are not
Twitter users. So, an ultimate question that every researcher who aims to develop a public
health surveillance system based on social media data should consider is whether the data
source available can meet the surveillance question of interest? For example, social media data
like tweets may be an excellent supplementary data source to identify novel symptoms of long
COVID but may not be the right or sole data source for estimating the prevalence of COVID

infections.

Ultimately, public health surveillance will need to be designed in ways that avoid or reduce the
potential biases to “guarantee” the accuracy of the results and the robustness of the systems. It is
critical to identify where these biases may come from, subsequently understand the issues that
these biases bring to the studies of public health surveillance and address them with correct
approaches considering the specific context of the studies. Based on all previous discussions,
we suggest Table 5 for researchers to quickly evaluate their study goals and design their public

health surveillance systems with the appropriate tools to address potential biases.

Table 5. Summary of the type of biases, the potential issues they will cause, and

recommendations for addressing the biases.



Type of bias Potential issues Recommended approaches to
address the corresponding bias

Demographic bias Selection or sampling bias | Stratify and social media users
that will lead to an based on their demographic
unrepresentative sample of | distributions.>5%60

Keyword bias the population intended to | (1) Use ML-based or rule-based
be studied filter to filter irrelevant

information introduced by
ambiguous keywords.*

(2) Track dynamic topics and
theme changes in Twitter data.®

Platform bias Evaluate data property of
different social media platforms
and utilize the APIs provided by
platforms.®>¢4

Misclassification errors | Affect the performance of | (1) Evaluate model

models and subsequently | representativeness when building
affect the final study results | ML/DL models.®

(2) Use sensitivity analysis to
obtain confidence intervals.*

LIMITATIONS

This review has two limitations. First, there is no standard taxonomy of bias and the definition
of each bias term. The bias terms used in this review were summarized from the literature:
on the topic of bias in public health surveillance. To provide the full picture of bias in using
social media data, the taxonomy and clear definition of bias terms should be thoroughly
developed from multiple fields in future research. Second, we only reviewed the articles on the
topic of public health surveillance using social media data. Some biases are not unique to social
media studies for public health surveillance but are shared among other social media data
analysis studies. Further investigation on how bias in social medial data and analytic methods

would affect study results should be systematically studied.
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CONCLUSION

In this review, we identified the methods used to assess and address different biases in studies
that use social media data for public health surveillance. We found that very few studies have
been conducted on this topic, and we identified research gaps that warrant further
investigations more systematically. The strategies of addressing bias in social media studies
from other fields can be introduced for future public health surveillance systems that use social
media data. But ultimately, researcher who aims to develop public health surveillance systems
using social media should consider is whether the data source available can meet the

surveillance question of interest.
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