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ABSTRACT ARTICLE HISTORY
Comprehensive understanding of complex biological systems Received 14 January 2022
necessitates the use of computational models because they  Accepted 16 August 2022
facilitate visualisation and interrogation of system dynamics and
data-driven analysis. Computational model-based (CMB) activities C .

. . . . , omputational model-based
have demonstrated effectiveness in improving students activity; predict-observe-
understanding and their ability to use and reason with models. explain (POE) strategy;

To maximise the effectiveness of computational modelling, this undergraduate life sciences
study examined an improved cognitive scaffolding and its impact education
on student learning of cellular respiration. This scaffolding

proposes the predict-observe-revise-explain (PORE) sequence of

tasks that explicitly challenge students to revise their predictions

and computational models to resolve cognitive conflict. Based on

revision work in a CMB activity, a sample of n=362
undergraduate biology students were categorised into three

groups — not expected to revise (NR, n=109), required-revised

(RR, n=179), and required-did not revise (RDNR, n = 74). Students’
performance in predict, revise, and explain tasks were significantly

associated with post-test performance. RR students were more

than twice as likely to demonstrate a positive learning gain in the

post-test (odds ratio=2.47) compared to RDNR students. While

science education has implicitly acknowledged revision as a

critical cognitive process in modelling, this study presents

evidence that making revision an explicit cognitive task in a CMB

activity supports student learning of a complex biological system.

KEYWORDS

Introduction

Computational modelling has become a central feature of scientific investigations to sup-
plement both theoretical and experimental work as an imperative methodological
approach (Bartocci & Lio, 2016; Brodland, 2015). In undergraduate life science edu-
cation, computational modelling experiences are essential for understanding complex
biological systems (Helikar et al., 2015; Sweeney & Sterman, 2007) because modelling
is the way of knowing in science and the method by which scientific knowledge is gen-
erated (Gilbert, 1991; Lehrer & Schauble, 2000; Nersessian, 2009; Windschitl et al., 2008).
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Specifically, modelling can support the development of cognitive skills that enhance the
acquisition of domain-specific conceptual knowledge and scientific reasoning (Buckley
et al, 2004; Clement, 2000; Doerr, 1997). As computational modelling resources
become increasingly available for the educational purposes of data manipulation and
visualisation (de Jong & van Joolingen, 1998; Rutten et al., 2012), embedding quantitative
activities into existing biology courses has transformed traditional, descriptive biology to
interdisciplinary, quantitative biology curricula to address complex problems (NRC,
2003; Usher et al., 2010). This trend in life science education is expected to continue
and expand since other areas of science such as physics, with its long-standing tradition
of using mathematical techniques, have demonstrated the use of computer simulations as
a fundamental aspect of research and education for decades (Perkins et al., 2006; Sarma &
Faundez, 2017).

Biological systems are often the targets of computational modelling because learning
environments that take advantage of simulations offer affordances for developing a
coherent understanding of complex systems. The use of computer simulations has
made investigations of biological systems on a wide scale possible and resulted in
greater access to opportunities for data processing, visualisation, and testing of models
(de Jong, 2006; de Jong & van Joolingen, 1998; Quintana et al., 2004). Learners benefit
from the use of computer-based modelling tools in environments that prompt them to
engage in the practices of generating hypotheses from partially complete models
(Mulder et al., 2016), assessing tentative theories by comparing models and concurrent
experimental results (Fuhrmann et al., 2018), confronting ideas with evidence and cor-
recting errors (Wijnen et al., 2015), and collaborating and co-constructing knowledge
with peers (van Joolingen et al., 2005; Wilkerson et al., 2017). There is a growing body
of literature showing that these modelling practices are associated with desirable learning
outcomes. Computational model-based (CMB) activities have shown that computational
modelling supports undergraduate life science students’ explanatory and evaluative
reasoning, improves foundational systems thinking skills and conceptual knowledge,
and enhances students’ ability to retrieve their conceptual models (Bergan-Roller et al.,
2018; Dauer & Long, 2015; King et al., 2019). Although these affordances point to the
need for extensive curricular integration and increased implementation of CMB activities
in life science education (AAAS, 2011; Qudrat-Ullah, 2010; Svoboda & Passmore, 2013),
the use of simulations to study biological complexity is still in the early stages (Sarma &
Faundez, 2017), which could explain why there are few computational modelling experi-
ences for post-secondary students (Mulder et al., 2016; Seel, 2017).

The aim of this study is two-fold. First, we present the implementation of a CMB
activity in cellular respiration in an undergraduate life science course to add to the
increasing body of knowledge on how computational modelling facilitates the learning
of complex biological systems. Second, we build upon the literature on predict-observe-
explain (POE) learning strategy to examine the cognitive processes that are essential in
guiding students to develop an increasingly sophisticated understanding of a complex
biological system. We implemented a CMB activity in which students followed a
predict-observe-revise-explain (PORE) sequence of cognitive tasks to scaffold their com-
putational modelling experience. We find that the lack of emphasis on the cognitive task
of revision in scientific investigations is exemplified in the commonly known POE learn-
ing strategy. In the following sections, we discuss how the PORE sequence of cognitive
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tasks can facilitate modelling-based learning and why revision was conceptualised as an
essential cognitive task to support error detection in the process of modelling,

Embedding cognitive tasks in CMB learning activities

In CMB activities, sense-making is emphasised as students construct and modify
models of biological systems that can be simulated with a computer (Penner, 2000).
The parameters of a mathematical model are controlled and manipulated to examine
different possible outcomes and study the dynamical behaviour of complex systems
(NIBIB, 2018; Seel, 2017; Sins et al., 2005). One such complex and fundamental
system that students encounter in undergraduate life science courses is cellular respir-
ation (Bergan-Roller et al., 2020; Booth et al., 2021). Students struggle with understand-
ing the multiple biochemical steps and molecular components. They often end up with
a fragmented understanding of functions and specialisations of cell organelles and a
vague conception of interconnections between the series of fundamental biochemical
reactions in the system (Songer & Mintzes, 1994; van Mil et al., 2013). Learning
occurs when specific cognitive processes for knowledge construction are activated
(Krajcik et al., 2002; NRC, 2000b). Students’ understanding of scientific phenomena
become more sophisticated through the iterative practice of cognitive processes (Seel,
2017). These cognitive processes typically include identifying variables and relation-
ships, formulating hypotheses or models, making predictions, changing variable
values, interpreting outcomes, reaching conclusions, reflecting upon the learning
process and newly acquired knowledge, planning inquiry, and monitoring developing
knowledge (de Jong, 2006).

Although CMB activities present an array of potential benefits for students, the inte-
gration of software tools in the curriculum does not guarantee improved student learning
(Krajcik & Mun, 2014). Providing students access to computational modelling resources
makes new learning opportunities possible but students may also find cognitive tasks
overwhelming due to heavy demands on working memory (Kirschner et al., 2006). Cog-
nitive scaffolding is necessary to enhance student learning compared to free exploration
that often leads to confusion and frustration (Alfieri et al., 2011; Lazonder & Harmsen,
2016). Thus, the design of a CMB activity should integrate computational tools and
scaffolding for cognitive tasks to foster learning by modelling.

Adding revision to the predict-observe-explain (POE) learning strategy

To support modelling-based learning, we implemented a CMB activity in a collabora-
tive setting in an undergraduate life science classroom. The structure of the CMB
activity was motivated by the predict-observe-explain (POE) strategy developed by
White and Gunstone (1992) to uncover individual students’ initial ideas about a
phenomenon and understand their reasoning. The POE strategy has demonstrated
effectiveness in helping students develop scientific explanations by first making a
hypothesis about a phenomenon, defending their hypothesis, making an observation
by experimenting, and then explaining the phenomenon using data from their obser-
vations (Cinici & Demir, 2013; Haysom & Bowen, 2010; Liew & Treagust, 1998;
Zacharia, 2005).
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In a modelling-based learning approach, students assess their understanding when
observing and detecting errors in their models and prior knowledge (Fugelsang &
Dunbar, 2005). Evaluating initial models should not only result in further discussion
but also in corresponding revisions of experiments and predicted outcomes that demon-
strate a model-based understanding of a phenomenon (Louca & Zacharia, 2012; Schwarz
et al,, 2009). The POE strategy lacks an emphasis on error detection that should occur
after testing a hypothesised model (Wijnen et al., 2015). Error detection is a primal
neural process that disciplinary experts readily engage in when determining model
plausibility (Nenciovici et al.,, 2019). Variations of the POE strategy expect students to
reflect upon their work. However, this is only implied through the addition of activities
that might lead students to engage in error detection. For instance, the POE strategy has
been implemented in different ways using related sequences of cognitive tasks such as
predict-observe-explain-explore (POEE) and predict-discuss-explain-observe-discuss-
explain (PDEODE) to assist students in improving their conceptual understanding and
problem-solving skills (Costu et al., 2012; Savander-Ranne & Kolari, 2003). These
modifications encourage learners to further explore and discuss their ideas after
having the opportunity to observe or gather data. The added tasks to the basic POE strat-
egy suggest a need to further guide students in assessing and communicating their learn-
ing. Thus, in the CMB activity used in the present study, revision was conceptualised as
an essential cognitive task of POE, and we structured the modelling activity using a
predict-observe-revise-explain (PORE) sequence of cognitive tasks.

The PORE strategy offers scaffolding for cognitive tasks that students typically find
difficult to accomplish without external support. Although cognition is implicated in
the model-building process (MacLeod & Nersessian, 2018), the PORE scaffolding
makes the cognitive tasks explicit for students. This may contribute to students’
control of their own learning as they engage in an iterative modelling process to under-
stand and eventually explain the phenomenon being investigated (Papaevripidou &
Zacharia, 2015).

Applying the PORE sequence in university biology

The CMB activity used in this study focused on investigations analysing context-rich
phenomena and building scientific explanations supported by computational models.
For example, students were asked to explain how the inhibition of one of the cellular res-
piration processes would affect the rest of the system resulting in written explanations
about the causal implications of the inhibition. The PORE sequence of cognitive tasks
in the CMB activity guided students to examine, critique, and modify their understand-
ing of cellular respiration.

The purpose of prediction tasks was to enhance learning by making students cognizant
of their initial understanding of the entities and activities in the processes of cellular res-
piration. Formally communicating predictions about how a computational model would
behave provided students with a reference point when monitoring their changing con-
ceptions through the modelling process (Lesh & Doerr, 2000). The observation tasks
guided students through investigations and engaged them in the practices of graph
reading and translation between quantitative interpretation and model representations
(Mayes et al., 2014). Making predictions focused students’ attention on relationships
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between cellular respiration processes and primed them to observe specific graphical and
mathematical effects as a result of manipulating variables in their computational models.
The explanation tasks served as a cognitive follow-through requiring students to apply
higher-order thinking to analyse and synthesise their learning from model-based
investigations.

The predict-observe sequence of cognitive tasks can bring about ‘cognitive conflict’
(Piaget, 1985), which is necessary to foster conceptual change. Higher-level reasoning
and scientific expertise are associated with the ability to address cognitive conflicts
(Bartley et al., 2019; Brookman-Byrne et al., 2018; Pennycook et al., 2015; Wijnen
etal, 2015). The discrepancy between prior knowledge and experimental results presents
a conflict between two different cognitive structures (Hewson & Hewson, 1984) that need
to be reconciled through revision, such as repeating a computational experiment or chan-
ging expected outcomes. While cognitive conflict is necessary, alone, it is insufficient for
conceptual change. The revision component is integral to the POE approach to prompt
students to reflect on their computational models and prior knowledge when they experi-
enced inconsistencies stimulated by conflicting predictions and evidence from the com-
putational experiment (Fuhrmann et al., 2018; Krajcik & Merritt, 2012).

Research questions

The CMB activity on cellular respiration was used in a prior study and has demonstrated
improvement in students’ conceptual knowledge of cellular respiration and systems
thinking skills based on pre - and post- concept models drawn by students to represent
their mental models (Bergan-Roller et al., 2018). In the present study, we focused on
investigating the impact of specific cognitive tasks in the CMB activity to explain how
the CMB activity facilitated conceptual change.

Overall, this study investigated how undergraduate biology students’ performance in
cognitive tasks — prediction, observation, revision, and explanation - is associated with
learning outcomes (i.e. post-test score and learning gains) in a CMB activity on cellular
respiration. The overarching research aim was to determine cognitive tasks that are
associated with positive learning outcomes in a CMB activity. To achieve this aim, we
investigated the following questions: (1) Does revision work influence students’ learning
gain? and (2) To what extent do cognitive tasks in a CMB activity applied in a PORE
sequence predict student post-test performance in cellular respiration after controlling
for student differences?

Methods

This study was conducted in one semester in a large-enrolment introductory biology lab
course run by three instructors in a public, research-intensive Midwestern USA univer-
sity. Students who participated in the study came from 41 lab sections, each guided by a
teaching assistant (usually a graduate student). The modelling-based learning activity on
cellular respiration used in this study is available in Cell Collective (https://cellcollective.
org; Helikar et al., 2012, 2015), a web-based modelling and simulation software. The lab
activity design was similar in all sections. Teaching materials, resources, and details of the
CMB activity are available in CourseSource (Bergan-Roller et al., 2017). Since there were
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Table 1. Study population and sample.

Course Instructor Population of enrolled students, N Consenting students, n Final sample, n
A 151 80 38
B 432 382 215
C 243 210 109
Total 826 672 362

no introduced differences in instruction and learning activities, we hypothesised that
instructor effects were minimal and negligible to be included in our analyses. Results
of a multivariate analysis of variance (MANOVA) indicated an overall non-significant
difference (F(4,718) =1.25, p=0.29) for students’ pre-test and post-test examined
together by course instructor. Table 1 shows that the final sample includes 44% of the
entire population of recruited students. The final sample (n=362) was selected from
the group of consenting students based on the completeness of collected data. Thus,
the data set used in this study had no missing data.

Computational model-based (CMB) activity implementation

The CMB activity was implemented in Week 7 of a regular semester to achieve the objec-
tives of describing the processes of cellular respiration and explaining its dynamic prop-
erties (Figure 1). To familiarise students with the modelling functions of Cell Collective,
they completed a training activity in Week 6 using direct instruction. Teaching assistants
demonstrated how to access and use Cell Collective, including adding or modifying com-
ponents and relationships to a computational model. Students were also shown examples
of how to report and interpret the results of a computational model. After completing the
training activity, the cellular respiration activity was introduced to students, and they
were asked to complete a pre-test.

In this activity, students first explored a scientific model of cellular respiration and its
underlying component processes such as glycolysis, lactic acid fermentation, and the
citric acid cycle. Students used their understanding of the model to make predictions
about phenomena to be investigated in the activity using computational models. For

Model-based Investigations

Cellular respiration Investigation #1 #2 #3 Cellular respiration
pre-test Predict-Observe-Revise-Explain P-O-R-E P-O-R-E post-test
I | |
I | I
Week 6 Week 7
Objectives Objectives
» Add/delete + Identify the 5 processes that comprise
components/relationships cellular respiration
to model + Describe the inputs and outputs for each of
* Interpret model output, the cellular respiration processes
draw conclusions from « Describe the behavior of cellular respiration
semi-quantitative data in motion

+ Describe how external stimuli can impact
various processes within cellular respiration

Figure 1. Timeline of lesson activities and objectives. The CMB activity included three model-based
investigations providing students with multiple opportunities to iterate the predict-observe-revise-
explain (PORE) sequence in their modelling practice.
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v,. Exploring the 5 Processes of Cellular Respiration (17416) -

Figure 2. Simulation controls in the CMB activity for cell respiration. A simulation graph for a selected
process of cellular respiration is generated after running a computational model.

instance, students were asked to investigate cases such as cancer cells damaging the mito-
chondria and the use of a drug that inhibits the enzyme that releases electrons into the
electron transport chain. Students manipulated the simulation by selecting entities to be
included in a cellular respiration model and controlling the activity level of entities
involved in the processes of cellular respiration. After setting up a computational
model, they ran their simulation and observed a simulation graph of the activity levels
of specified cellular respiration processes (Figure 2).

Data

Demographic variables
Demographic data were collected for consenting students from the university registrar’s
office using unique student identification numbers and signed consent forms. The fol-
lowing data were collected: age, sex, degree-major, ethnicity, first-generation status,
class level, and ACT composite score (ACTC). The ethnicity variable had two categories:
(a) White, Non-Hispanic, and (b) Non-White. Students who did not identify as White
were categorised as Non-White. The variable degree-major catalogued students into
three groups: (a) declared-science, (b) declared-non-science, (c) undeclared. Undeclared
students were those who were still deciding upon a major, transitioning between majors,
or working on meeting the requirements to declare a desired major. Students were con-
sidered science majors if they had a declared degree in the fields of environmental and life
sciences, agriculture, technology, engineering, and physical sciences. Students were cate-
gorised as non-science majors if they had a declared degree in the arts and human
sciences. Class level referred to students’ current standing in the university from first
(freshmen) to fourth (senior) year.

Nearly two-thirds (62%) of the participants were female, and ages ranged from 17 to
29 (M =18.64, SD =1.23, Table 2). The majority of the students self-identified as Non-
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Table 2. Characteristics of study participants, n = 362.

Variable n (%)

Sex Male 138 (38.12)
Female 224 (61.88)

Age, M+ SD 18.64 +£1.23

Ethnicity White, Non-Hispanic 311 (85.91)
Non-White 51 (14.09)

First-generation status Yes 108 (29.83)
No 254 (70.17)

ACTC, M+ 5D 2530 +£4.05

Class level Freshman 255 (70.44)
Sophomore 66 (18.23)
Junior/Senior 41 (11.33)

Degree-major Declared-Science 205 (56.63)
Declared-Non-Science 42 (11.60)
Undeclared 115 (31.77)

Note. M and SD are used to represent mean and standard deviation, respectively.

Hispanic White (86%). About 30% of the students reported that they were the first person
in their family to go to college. The ACT composite scores (ACTC) of the whole group
ranged from 12 to 35 (M = 25.30, SD = 4.05). The majority of the students were freshmen
(70%) and had declared to pursue a bachelor’s degree in a science discipline (57%).

Cellular respiration pre-test and post-test
The conceptual test was designed to measure students’ knowledge about cellular respir-
ation before and after the computational modelling activity was implemented as a lab
activity. Test items included four factual items in a multiple-choice format and an expla-
nation task in the form of a constructed response item. The content of the test was
directly tied to concepts addressed in the CMB activity. Items intensified in rigour
from easy to difficult questions, that is, from identifying an entity in the cellular respir-
ation system to explaining how the processes in the system are reliant on each other.
The multiple-choice items were given one point each. The constructed-response item
was given two points based on a satisfactory mechanistic explanation (Machamer et al.,
2000), one point for a partially correct response, and zero for an incorrect response or no
response at all (Table 3). Students’ responses in explanation tasks in the CMB activity are
scored in the same way. For the constructed-response item, research assistants were
trained to assess entities and activities from mechanisms described by students. About
20% of the 724 student-constructed responses from the pre- and post-test were co-
coded by two research assistants and the first author. Coding discrepancies were resolved
by consensus. Krippendorff’s alpha test (Krippendorff, 2011) was used to estimate the
inter-rater reliability. After determining that the inter-rater reliability was acceptable
(00=0.93), the remaining 80% of the responses were divided among the three coders
for independent scoring.

Cognitive tasks

The PORE tasks were integrated into three model-based investigations comprising the
CMB activity. The maximum CMB activity score based on the satisfactory completion
of POE tasks in three model-based investigations was 14 points. Raw scores were
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Table 3. Scoring example for student explanations in CMB activity and conceptual test.
Why did the carbon dioxide levels

decrease to zero when the drug was Incorrect
added? (No point) Partially correct (1 point) Correct (2 points)
Model needed to construct a correct  No response Correct but incomplete e.g.  Correct entities and activities
explanation: or incorrect If the citric acid cycle was e.g. If the citric acid cycle
inhibited by the drug, (1) was inhibited by the drug,
the cell would no longer (1) the cell would no longer
. 4 produce CO,. produce CO,. Also, (2)
: acetyl-CoA would
co, accumulate and (3) inhibit
pyruvate processing.
2 Therefore, pyruvate

processing would also be
inactive and (4) not produce
CO,.

citric acid cycl

converted to percentage scores for ease of comparison. Revision work was used as a
grouping variable to investigate variations in learning outcomes.

Prediction scores were derived from student responses to four objective type tasks in
the CMB activity prompting them to predict how one variable might change when
another variable was manipulated in the interconnected processes of cellular respiration.
Students responded to these prediction prompts prior to manipulating and running their
computational models. Students were provided with a diagram to guide their prediction
and subsequent modelling in Cell Collective. The diagram represents a partially worked-
out model (Mulder et al., 2016) of unknown entities that interact in an identified cellular
respiration phenomenon. After students test their predictions by manipulating a compu-
tational model using the cellular respiration simulation, they record the output of their
computational models in response to four objective type observation tasks.

The CMB activity included prompts for students to evaluate their predictions and
observations and write changes based on the results of their simulation of the compu-
tational model. Instead of deleting their initial responses to prediction and observation
tasks, changes were recorded as revisions. Revision work was unique for each student
based on the accuracy of their predictions and observations in each of the three investi-
gations. Specifically, students who made correct predictions and observations were not
expected to revise their work. Among the group of students who were required to
revise, some students did not complete the task. Based on students’ revision work,
three groups of students were identified: (a) not expected to revise (NR), (b) required:
revised (RR), and (c) required: did not revise (RDNR) (Figure 3).

The explanation tasks at the end of each investigation required students to construct a
mechanistic response demonstrating their understanding of entities and activities in the
cellular respiration processes involved in the phenomena they investigated through com-
putational modelling. Responses were given a score ranging from 0 to 2 corresponding to
incorrect, partially correct, and correct explanations (Table 3).

Analytic approach

To address research question 1, we analysed the impact of student revision on learning
gains using binary logistic regression on a smaller sample (n=212) after applying
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Did the student'’s prediction and observation
completely match?

Yes No
Not expected Required to revise,
to revise Did the student revise?
Yes No
NR RR RDNR

Figure 3. Student groups based on revision work. All students engaged in error detection by compar-
ing predictions and observations.

appropriate data filters. Students were grouped into two categories: positive (gaingroup =
1) or negative learning gain (gaingroup = 0) from pre- to post-test. Students who had a
zero learning gain (n = 14) were removed from this analysis to aid in the interpretability
of results. While it is intuitive to label a positive gain as an ideal learning outcome and a
negative gain as a problematic one, a zero learning gain cannot be interpreted in a
straightforward manner. Specifically, a zero learning gain was ideal when a student main-
tained a relatively high score from pre- to post-test but not for a student with a low score
on both pre- and post-test. Students who were not expected to revise (NR) (n = 109) were
also removed from this analysis to focus on investigating the effect of revision on students
who were required to resolve cognitive conflicts between their predictions and compu-
tational models. Lastly, we removed students who had a zero or a perfect score (n=
27) on the pre-test. These scores create a ceiling that results in measurement inaccuracy
for this analysis because the range of possible learning gains is not inclusive of values
beyond those points. The probability that a student with a perfect pre-test score would
get a positive learning gain is zero. Similarly, the probability that a student with a zero
score in the pre-test would get a negative learning gain is also zero. In effect, a smaller
sample was used for this analysis, which only included students who could potentially
get a negative or positive learning gain upon completion of the cognitive tasks in the
CMB activity.

The purpose of this analysis was to understand how student revision in the CMB
activity impacted student learning based on the probability of demonstrating a positive
learning gain or performing better in the post-test on cellular respiration compared to a
baseline score. Since the outcome was a categorical variable, a binomial logistic
regression was used to predict the probability of having a positive or negative learning
gain in the cellular respiration test given a student’s performance in the CMB activity’s
cognitive tasks. Scores in each of the cognitive tasks were combined to generate a total
activity score to represent students’ performance in the CMB activity. The odds ratio
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and predicted probabilities of having a positive versus negative learning gain were calcu-
lated for RR and RDNR students.

To address research question 2, we evaluated the impact of the specific cognitive tasks
in the CMB activity using the whole sample (# = 362) and distinguished them from the
impact of student characteristics using hierarchical linear regression. This method
allowed the independent variables to be entered sequentially based on theoretical foun-
dations related to research questions. Step 1 included the pre-test score as the baseline of
students’ background knowledge about cellular respiration. We used students’ pre-test
performance as a covariate. Step 2 included demographic variables that represented
incoming student differences, specifically sex, ethnicity, ACTC, class standing, and
declared degree-major. Age was excluded in the set of potential predictors since it was
not statistically correlated with the criterion. Step 3 included students’ performance in
each cognitive task activated by the computational modelling activity. To choose the
best subset from the list of potential demographic variables in Step 2, we used stepwise
regression with forward and backward elimination. Variables were included in the final
set of models if they significantly improved the model fit (probability of F for change in
R?<0.05). Step 3 variables were included successively to examine how each of the activ-
ity’s cognitive tasks contributed to explaining students’ performance in the post-test.
Residual analysis was performed to check potential violations of the assumptions of
linear regression. Semi-partial correlation coefficients were reported to assess the effect
of individual predictors in lieu of standardised beta weights since only the continuous
predictor variables were standardised with a mean of zero and standard deviation of
one to aid in the interpretability of model results. To compare the final model’s predictive
power in applying hierarchical linear regression, we also extracted a maximal model
using all the potential predictors by Akaike Information Criterion (AIC) in a stepwise
algorithm. Statistical analyses were conducted using packages in R (R Core Team, 2019).

Results

Overall, students’ performance in the cellular respiration assessment improved from pre-
to post-test. Students who engaged in revision (RR) were more than twice as likely to
demonstrate a positive learning gain compared to students who did not revise despite
being guided to do so (RDNR). Post-test scores were associated with students’ perform-
ance in the cognitive tasks after controlling for student differences.

Student performance in the CMB activity

Students’ performance increased from a mean pre-test percent score of 40.5 to a post-test
score of 70.0 (Table 4). Their average scores on cognitive tasks were in the middle range:
prediction, 42.0; observation, 66.4; and explanation, 49.0 (Table 4).

We hypothesised that students’ performance in the cognitive tasks were likely to be
correlated with each other and may each have a varying degree of association with stu-
dents’ post-test performance. Table 4 shows that students’ prediction performance had a
stronger positive association with observation performance (r=.28, p <.01) than expla-
nation performance (r=.14, p <.01). Correspondingly, students’ performance in the
observation tasks was strongly associated with their performance in the explanation
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Table 4. Means, standard deviations, and correlations with confidence intervals.

Variable M SD 1 2 3 4 5 6
1. Age 18.6 1.2
2. ACTC 253 4.1 -.05
[-.15, .05]
3. Pre-test 40.5 19.5 .06 31
[-.05, .16] [.21, .40]
4. Prediction 42.0 26.6 .03 2% 1%
[-.08, .13] [.02, .22] [.00, .21]
5. Observation 66.4 299 -.01 21%* JT**F 28%*
[-.17,.10] [.11, .31] [.06, .26] [.18,.37]
6. Explanation 49.0 329 .01 24%* 4% 4% A1F*
[-.09, .12] [.14, 33] [.04, .24] [.04, .24] [.32, 49]
7. Post-test 70.0 222 -03 32%* 20%* 9% 27% 43
[-.13, .08] [.23, 41] [.09, .29] [.09, .29] [17, .36] [.35, .51]

Note. M and 5D are used to represent mean and standard deviation, respectively. Values in square brackets indicate the
95% confidence interval for each correlation.
*p <0.05, **p < 0.01, ***p < 0.001

tasks (r= .41, p <.01). Out of these three cognitive activities, students’ performance in the
explanation tasks had the strongest correlation with post-test performance (r= .43,
p<.01).

Revision and learning gains

To examine the effect of revision and other cognitive tasks on learning gains in the CMB
activity, a binomial logistic regression was used to predict the probability of a student
having a positive learning gain upon completion of the CMB activity. RDNR students
had the lowest learning gain (M =22.3, SD =25.9) compared to RR (M =29.5, SD=
27.5) and NR (M =34.6, SD =24.4) students (Table 5). RDNR and RR students had a
relatively similar mean pre-test performance (RDNR: M =39.0, SD=16.2; RR: M=
38.5, SD = 18.7) suggesting a similar baseline knowledge in cellular respiration but RR
students outperformed RDNR students in the post-test (RDNR: M =61.3, SD = 22.3;
RR=68.0, SD=222).

Although the mean learning gains in Table 5 indicate that students who engaged in
revision work performed better on the post-test than those who did not revise, at the indi-
vidual level, students may have a positive or negative learning gain. The binomial logistic
regression model showed that students’ performance in the POE tasks in the CMB
activity (B=0.04, p <.01) and their revision work (B=0.90, p <.05) were both signifi-
cantly associated with the log odds of a positive learning gain (Figure 4). The predicted
probabilities plotted in Figure 4 show that the advantage of RR students compared to
RDNR students varied depending on their performance in the POE tasks in the CMB

Table 5. Means and standard deviations for pretest, posttest, and raw learning gains across students’
revision work.

Pre-test Post-test Gains
n M sD M sD M SD
Not expected (NR) 109 448 221 79.4 18.8 34.6 24.4
Did not revise (RDNR) 74 39.0 16.2 61.3 223 223 259

Revised (RR) 179 385 187 68.0 22.2 29.5 27.5
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J—

Predicted Probability (Positive Learning Gain)

Y

revision
Did not revise

= Revised

Computational ModelfBa-s‘ed (CMB) Activity Score

Figure 4. Predicted probabilities of a positive learning gain. The plot was generated from the results
of a binomial logistic regression model using the Computational Model-Based (CMB) activity score and
revision as predictors of demonstrating a positive, raw learning gain. Ribbons indicate 95% confidence
intervals.

activity. A likelihood ratio test indicated that this model (Nagelkerke R” = .12) fits signifi-
cantly better than an empty model (x*(2) = 14.58, p <.001).

The exponentiated coefficients (Table 6) show that a one-point increase in score in the
CMB activity increases the odds of having a positive learning gain by a factor of 1.04.
Revision work increases the odds by 2.47; that is, the odds of demonstrating a positive
learning gain is more than two times higher for RR students than RDNR students.
The result of this analysis does not apply to students with zero learning gain because
only the students with positive and negative learning gain were compared. This analysis
is limited and does not tell us the impact of revision for all students. Thus, we offer a
second analysis in the next section which is a more comprehensive model that includes
the whole sample and takes student differences into account.

Predictors of post-test performance

A hierarchical regression analysis was performed to examine the effect of students’ per-
formance in cognitive tasks in the CMB activity on their post-test performance after con-
trolling for student differences. The initial model (Model 1) showed pre-test performance
to be a significant predictor of post-test performance (adj. R° = .04; Table 7, Table A1).

Table 6. Logistic regression predicting positive learning gain from CMB activity score and revision.
Predictor B Wald y° p 0dds Ratio

CMB activity score 0.04 8.90 .03 1.04
Revision (RR vs. RDNR) 0.90 4.70 <.01 2.47
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When demographic variables were added in Model 2 using forward and backward elim-
ination, ACTC, ethnicity, and degree-major significantly improved model fit (F (4,356) =
14.55, p <.001, adj. R?=.14). In Models 3-6, the cognitive tasks were included in the
same order that students engaged in them during the CMB activity (Supplementary
Material, Table Al). Specifically, the temporal order of modelling activities in each inves-
tigation in the CMB activity followed the PORE sequence and resulted in a statistically
significant improvement in model fit with each addition.

Model 6 included all the demographic factors and students’ performance in cognitive
tasks in the previous models and added explanation as a predictor. Model 6 had an
adjusted R® of .28, which was a significant improvement in model fit compared to
Model 5 (F(1, 351) =39.34, p <.001). This model indicated that students’ performance
on the explanation tasks was the strongest predictor of their performance on the post-
test assessment (sr=.28, p <.001). Revision remained a statistically significant predictor
after the performance on the explanation tasks was added in the model. Additionally,
performance in the explanation tasks was lowest among RDNR students (M =34.7,
SD =29.0) compared to RR (M =44.0, SD = 32.1) and NR (M = 67.0, SD = 28.8) students
(Supplementary Material, Table A2).

Model selection

We compared the full model (Model 6) with a best-subset model generated from stepwise
regression. Model 6 and the best-subset model did not differ in terms of model fit (F
(2,351) =0.54, p=.59) but Model 6 included two predictors that lacked explanatory
power (i.e. pre-test and observation) and therefore added unnecessary complexity.
Without these two predictors, the best-subset model indicated that the prediction task
was statistically significant (p <.05). This result was consistent with the hierarchical
regression models where the contribution of prediction to model fit was stable even
with the addition of other cognitive tasks. Model 6 was more complex and failed to
improve the fit to the data to justify the increased complexity; therefore, we chose the
parsimonious, best-subset model as the final result of our regression analysis.

Final Model. The final model of post-test performance (R*=.30) included ethnicity
(sr=.10, p=.07), ACTC (sr=.17, p<.001), degree-major (declared: non-science, sr
=-.17, p<.001; undeclared, sr=.00, p=.26), prediction (sr=.10 p<.05), revision
(RDNR, sr=-.10, p<.0l; R, sr=.00, p=.26) and explanation (sr=.28, p<.001).
Among the cognitive tasks in the CMB activity, students’ performance on the explanation
tasks was the strongest predictor of performance on the post-test. RDNR students had
the lowest post-test performance. Residual analysis showed that the regression results
are valid. The residuals followed a normal distribution when plotted in a histogram
and there was an independence of residuals as assessed by the Durbin-Watson statistic
of 2.01 (p = .95).

Discussion

The implementation of the PORE sequence of cognitive tasks to provide a learning
scaffolding for the CMB activity demonstrated that revision was strongly associated
with learning outcomes. This result provides empirical support for the importance of
revision in modelling to help students develop increasingly sophisticated explanatory
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models of complex biological systems (Louca & Zacharia, 2012; Schwarz et al., 2009; Seel,
2017).

Students who revise perform better

In Research Question 1, we asked: ‘(1) Does revision work influence students’ learning
gain? Revision was associated with higher odds of demonstrating a positive learning
gain. The odds ratio for revision indicates that holding POE score constant, RR students
are 2.47 times more likely to demonstrate a positive learning gain in the cellular respir-
ation post-test than RDNR students. Examining learning gains is important because stu-
dents may have different baselines, and learning gains represent students’ change in
ability and knowledge targeted by the lesson’s objectives (Rogaten et al., 2019). RR
and RDNR students had similar mean pre-test scores, which suggests that the degree
of prior knowledge they possessed about cellular respiration was likely the same prior
to the CMB activity. In the pre-test, students were asked to predict how inhibiting the
electron transport chain would affect the citric acid cycle and the common responses
were typically incorrect descriptions of entities and activities (e.g. “‘When you stop the
electron transport chain, citric acid cycle would stop because there would be no electrons
to transport to the citric acid cycle.”) Students also reasoned that because the processes
were interconnected, the inhibition of one process halts the other processes. These
responses exemplified the difficulties encountered by students when explaining biological
phenomena that are intangible and abstract. After completing the CMB activity, the
mean post-test score of the RR group was higher than the RDNR group and more stu-
dents from the RR group (90%) had a positive learning gain compared to the RDNR
group (78%). RR students benefited the most from the PORE scaffolding embedded in
the CMB activity.

The majority of students in our sample were in the RR group (49%) and they likely
represent a typical learner beginning to understand the interactive processes of cellular
respiration compared to the NR group (30%) who appeared to have advanced knowledge
about cellular respiration. Also, the RR group was the only group that engaged in revision
tasks although all groups interacted with error detection prompts after their first obser-
vation of the output from their computational model simulations. RR and RDNR stu-
dents shared the common factor of having incorrect or incomplete models of cellular
respiration after they engaged in making predictions and recording observations.
However, for the RR group, improvement in learning gains suggests metacognitive affor-
dances of engaging in revision work.

Empirical results in this study support the theoretical body of work emphasising the
role of revision in the modelling process; students should be guided to compare observed
outcomes of simulated models with expected results as a developmental step toward error
detection in prior knowledge and subsequent reconciliation of competing cognitive
structures (Fuhrmann et al., 2018; Hewson & Hewson, 1984; Wijnen et al., 2015).
Although learning a complex biological system, which involves a vast amount of infor-
mation, tends to overwhelm biology students (NRC, 2003; Seymour & Hewitt, 2000),
iterative revisions during cycles of modelling can be used to manage the complexity to
develop an increasingly sophisticated understanding of scientific phenomena (Dauer
et al., 2013; Hmelo-Silver et al., 2007; Schwarz et al., 2009).
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The impact of revision on conceptual change can be attributed to how RR and RDNR
students learned differently within the CMB activity. Specifically, the difference in learn-
ing gains between RR and RDNR students highlighted the recognisable learning advan-
tage of PORE over POE for students. Explicitly prompting students to engage in error
detection did not lead to revision for the RDNR group, which comprised one-third of
the sample of students (29%). They chose to short-cut their investigation by directly
responding to explanation tasks. RDNR students may have tended to make quick
interpretations without sufficient evaluation and focused on generating required pro-
ducts, a practice that has been observed in previous studies (Klahr, 2000; Krajcik et al.,
1998). They may have also learned to ‘game’ the system by completing each investigation
with minimum effort (Baker et al., 2008). Additionally, revision is typically implied in the
POE sequence of tasks when used as a learning strategy; that is, students are expected to
notice inconsistencies between their initial predictions and observations. However, in
our implementation of PORE to provide structure for a CMB activity, results suggest
that revision may not be a natural strategy for students, Spending time to rework prior
learning products might be viewed as extra work (Kallick & Zmuda, 2017). Revision
should be made an explicit step and a required product in the modelling process
because the RR group outperformed the RDNR group in terms of learning gains.

Students’ performance in prediction, revision, and explanation tasks predict
learning

In Research Question 2, we asked: “To what extent do cognitive tasks in a CMB activity
applied in a predict-observe-revise-explain (PORE) sequence predict student post-test
performance in cellular respiration after controlling for student differences?” Students’
performance in prediction, revision, and explanation tasks were significantly associated
with post-test performance after accounting for student differences. The final regression
model accounted for ethnicity, ACTC, and degree-major due to their unique contri-
bution to the amount of variance explained by the model; ACTC and degree-major
were significantly associated with student learning. Because ACTC reflects general
high school knowledge level, the model may be improved with the inclusion of the
type and extent of cellular respiration instruction that students experienced in high
school to account for student differences. Prior studies in K-12 biology instruction
reveal that students hold many misconceptions about the processes of cellular respiration
(Driver et al., 2014; Flores et al., 2003; Songer & Mintzes, 1994) but exposure to reform-
based instruction has shown success in improving high school students’ conceptual
knowledge of cellular respiration (Brown, 2003; Cakir et al., 2002; Dam et al., 2019).

Prediction

Students’ performance in prediction tasks was significantly associated with performance
in the post-test, although the effect was small after including revision and explanation as
predictors of learning. This result indicates that incorrect predictions could be productive
for students because they lay the groundwork for cognitive conflict and subsequent revi-
sion needed to improve their understanding of a complex system such as cellular respir-
ation. Making predictions and creating a hypothesis about a model were previously
shown to help students evaluate models effectively and perform better in a subsequent
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test of conceptual knowledge (Lohner et al., 2005). As students became cognitively aware
of what they initially knew about cellular respiration, they were primed to compare their
predictions with the results of a computational investigation. Prediction was weakly
associated with students’ performance in the explanation tasks which is likely due to
change in students’ understanding shaped by model observations and revisions in the
CMB activity (Louca et al., 2011; Pennington et al., 2016). Students who make incorrect
predictions, and they are likely to do so due to the complex nature of cellular respiration,
may still perform well in constructing scientific explanations depending on their per-
formance in other cognitive tasks in the CMB activity.

Observation

Because students’ conception of cellular respiration processes was developing as they
work through the CMB activity, it was expected that their predictions and observations
would present cognitive conflicts (Posner et al., 1982). In the observation phase, the CMB
activity prescribed the variables to observe and report and therefore left little room to
consider alternatives, deliberate why they were reporting certain values, or actively inter-
pret the results. Thus, students’ responses to the observation prompts did not reflect what
they learned regarding the relationships between processes in the system. This could also
explain why students’ performance in the observation tasks was not significantly associ-
ated with post-test results. Compared to other tasks in PORE, the observation tasks in the
CMB activity were easier to accomplish because students simply reported the output of
their computational models. Nonetheless, students’ performance during the observation
tasks remained an integral part of the learning process to develop students’ understand-
ing of the interactive processes of cellular respiration. The strong association between
students’ performance in the observation and explanation tasks indicates that what stu-
dents observe in their investigations with computational models is associated with the
quality of their scientific explanations.

Revision
An important finding of the study is that RR students performed just as well as NR stu-
dents in the post-test. Students who encountered cognitive conflicts in the modelling
process likely improved their conceptual understanding of cellular respiration system
dynamics through engagement in revision tasks. Although each cognitive task in the
PORE sequence could have an indirect effect on the post-test through their association
with the next task, adding revision was particularly important to facilitate student learning.
When students engage in revision, they demonstrate retrospective action (Xenofontos
et al., 2019). Returning to previous stages of a learning activity sequence enhances
student learning especially among students who did not devote adequate time to
working on certain tasks on their first pass (Xenofontos et al., 2019). The revision
phase was the students’ second attempt to make predictions and record observations
to resolve their cognitive conflicts. Model-based activities can be improved by providing
opportunities for students to return to their initial models and modify them instead of
focusing only on model generation which remains pervasive in modelling instruction
(Abrahamson et al., 2007; Soderberg & Price, 2003). Additionally, when RR students
reasoned about cellular respiration after engaging in a predict-observe-revise sequence
of cognitive tasks, they performed better in explanation tasks and in the post-test than
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RDNR students. RDNR students’ poorer performance in explaining cellular respiration
system dynamics and retrieving key concepts needed to demonstrate knowledge in the
post-test reflects a lack of development of deeper understanding.

Explanation

Students’ performance in the explanation tasks was the strongest predictor of their per-
formance on the post-test because it required processing of knowledge gained from collec-
tive learning experiences following the PORE sequence. Students’ performance in each of
the cognitive tasks completed prior to constructing a scientific explanation was signifi-
cantly correlated with their performance in the explanation tasks, respectively. These cor-
relations suggest that explanations provided by students were likely model-based, drawing
from their predictions and observations of their computational models. The PORE tasks in
the CMB activity guided students to construct a model-based explanation of cellular res-
piration system dynamics as opposed to using an experiment to confirm an instructor-
provided scientific explanation. This is important because guiding students through
cycles of modelling to build their own explanations for scientific phenomena instead of
learning explanations brings authenticity to science learning (Hester et al., 2018). When
students explained phenomena in cellular respiration in the CMB activity, responses to
the explanation tasks showed that they drew from knowledge gained from a complex inter-
action between their simulation data and computational model characterising modelling-
based learning (Hester et al., 2018; Passmore et al., 2009; Wilensky & Rand, 2015).

We also found that students’ performance in explanation tasks was strongly associated
with students’ performance on observation and revision tasks. This means that students
can be supported to successfully construct scientific explanations through investigations
and opportunities to reflect upon initial predictions and to revise models. Because stu-
dents are likely to make incorrect predictions about complex biological systems such
as cellular respiration, the CMB activity had the potential to support students to tran-
sition toward a more sophisticated understanding of the system through engagement
in cognitive tasks that characterised practices scientists use in explaining the behaviours
of complex phenomena (de Jong, 2006; de Jong & van Joolingen, 1998; Wilensky & Rand,
2015). Scientists constantly modify their conceptions that are found to be inconsistent
with empirical evidence and use revised models for communicating and explaining
their findings so that they may be further scrutinised and updated by the scientific com-
munity (Nersessian, 2009). When students are guided through a similar process and
learn to use models to explain phenomena in an observed biological system, their con-
ceptual understanding becomes more nuanced and the modelling experience refines
their science literacy (Ke et al., 2021).

Overall, the use of the PORE sequence of cognitive tasks in the CMB activity appeared
to support conceptual change in cellular respiration. The process leading to students’
construction of scientific explanations in the CMB activity reflects how students learn
in science through modelling (Gilbert, 1991; Lehrer & Schauble, 2000; Windschitl
et al., 2008). Providing a cognitive scaffolding for the CMB activity also emphasised
the learning of science concepts through the process of doing science as opposed to tra-
ditional curricula designed to teach scientific skills and concepts separately. Previous
studies have shown that the lack of integration of scientific practices in learning
science has resulted in inaccurate views about how scientific knowledge is generated



20 L. LUCAS ET AL.

and overemphasis on a vast amount of fragmented science facts that students report as
difficult to learn (Hester et al., 2018; McComas & Kampourakis, 2015; Southard et al.,
2016). The PORE sequence emphasised an explanation-oriented approach which cogni-
tively activated students to formulate predictions, analyse and interpret computational
data patterns, connect observational data with theoretical concepts, revise their model,
and construct an evidence-based explanation of a scientific phenomenon.

Implications for teaching and future research

Results of this study can be used to guide the development of CMB activities for the
learning of complex biological systems. Cognitive scaffolding for CMB activities that
can increase engagement in revision is necessary to be developed. The present study
showed that even with the inclusion of explicit revision prompts such as the use of the
PORE structure for the CMB activity, students may still resort to quick interpretations
and favour minimum effort. This implies the need to identify which students choose
to engage in the revision process and why students may ignore inconsistencies
between predictions and observations.

Research in cognitive science about how people learn emphasises the necessity of
scaffolding learning situated in one context to facilitate transferability in solving pro-
blems in another context (NRC, 2000a; Quellmalz et al., 2016). Using the PORE sequence
in CMB activities can provide students with a cognitive scaffolding that may be transfer-
able to other scientific investigations that integrate practices and content.

It is also important to note that in the CMB activity used in this study, the iterative
process of engaging in PORE tasks was conducted using three successive investigations
about processes in cellular respiration. The repetition of the use of PORE tasks in these
investigations may have contributed to learning outcomes because it resembled the fre-
quent use of cognitive tools displayed by scientists when reasoning with models. Exam-
ining the impact of deliberate practice would be worthwhile because students can
improve in making predictions, observing, revising, and explaining, due to the repetition
of cognitive tasks in each model-based investigation. Additionally, the PORE tasks can be
used by educators to track student thinking through their written responses to guide
questions within each task. These tasks result in learning products that can provide valu-
able insight for monitoring student learning.
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