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Abstract. We study optimal design problems in which the goal is to choose a set of linear
measurements to obtain the most accurate estimate of an unknown vector. We study the
A-optimal design variant where the objective is to minimize the average variance of the er-
ror in the maximum likelihood estimate of the vector being measured. We introduce the
proportional volume sampling algorithm to obtain nearly optimal bounds in the asymptotic
regime when the number k of measurements made is significantly larger than the dimen-
sion d and obtain the first approximation algorithms whose approximation factor does not
degrade with the number of possible measurements when k is small. The algorithm also
gives approximation guarantees for other optimal design objectives such as D-optimality
and the generalized ratio objective, matching or improving the previously best-known re-
sults. We further show that bounds similar to ours cannot be obtained for E-optimal design
and that A-optimal design is NP-hard to approximate within a fixed constant when k � d.
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1. Introduction
Given a collection of vectors, a common problem is to select a subset of size k ≤ n that represents the given vectors.
To quantify the representability of the chosen set, typically one considers spectral properties of certain natural ma-
trices defined by the vectors. Such problems arise as experimental design (Fedorov [23], Pukelsheim [43]) in statis-
tics; feature selection (Boutsidis and Magdon-Ismail [8]) and sensor placement problems (Joshi and Boyd [27]) in
machine learning; matrix sparsification (Batson et al. [6], Spielman and Srivastava [45]); and column subset selec-
tion (Avron and Boutsidis [5]) in numerical linear algebra. In this work, we consider the optimization problem of
choosing the representative subset that aims to optimize the A-optimality criterion in experimental design.

Experimental design is a classical problem in statistics (Pukelsheim [43]) with recent applications in machine learn-
ing (Joshi and Boyd [27], Wang et al. [50]). Here the goal is to estimate an unknown vectorw ∈ R

d via linear measure-
ments of the form yi � v�i w+ ηi, where vi are possible experiments and ηi is assumed to be small independently and
identically distributed unbiasedGaussian error introduced in themeasurement. Given a set S of linearmeasurements,
themaximum likelihood estimate ŵ ofw can be obtained via a least-squares computation. The error vectorw− ŵ has
a Gaussian distributionwithmean zero and covariancematrix

(
Σi∈S viv�i

)−1. In the optimal experimental design prob-
lem, the goal is to pick a cardinality k set S out of the n vectors such that themeasurement error isminimized.Minimal-
ity is measured according to different criteria, which quantify the size of the covariance matrix. In this paper, we study
the classical A-optimality criterion, which aims to minimize the average variance over directions, or equivalently, the
trace of the covariancematrix, which is also the expectation of the squared Euclidean normof the error vectorw− ŵ.

We let V denote the d × n matrix whose columns are the vectors v1, : : : ,vn and [n] � {1, : : : ,n}. For any set S⊆[n],
we letVS denote the d × |S| submatrix ofVwhose columns correspond to vectors indexed by S. Formally, in theA-op-
timal design problem our aim is to find a subset S of cardinality k that minimizes the trace of

(
VSV�

S
)−1 � (

Σi∈S viv�i
)−1.
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Wealso consider theA-optimal design problemwith repetitions, where the chosen S can be amultiset, thus allowing a
vector to chosenmore than once.

Apart from experimental design, this formulation finds application in other areas such as sensor placement in wire-
less networks (Joshi and Boyd [27]), sparse least-squares regression (Boutsidis et al. [9]), feature selection for k-means
clustering (Boutsidis andMagdon-Ismail [8]), andmatrix approximation (Avron andBoutsidis [5]). For example, inma-
trix approximation (Avron and Boutsidis [5], deHoog andMattheij [15, 16]) given a d × nmatrixV, one aims to select a
set S of k such that the Frobenius norm of the Moore-Penrose pseudoinverse of the selected matrix VS is minimized. It
is easy to observe that this objective equals theA-optimality criterion for the vectors given by the columns ofV.

1.1. Our Contributions and Results
Our main contribution is to introduce the proportional volume sampling class of probability measures to obtain im-
proved approximation algorithms for the A-optimal design problem. We obtain improved algorithms for the
problem with and without repetitions in regimes where k is close to d and in the asymptotic regime where k ≥ d.
The improvement is summarized in Table 1. Let Uk denote the collection of subsets of [n] of size exactly k and
U≤k denote the subsets of [n] of size at most k. We will consider distributions on sets in Uk and U≤k and state the
following definition more generally.

Definition 1. Let μ be probability measure on sets in Uk (or U≤k). Then the proportional volume sampling with
measure μ picks a set S ∈ Uk (or U≤k) with probability proportional to μ(S) det (VSV�

S ).
Observe that when μ is the uniform distribution and k ≤ d then we obtain the standard volume sampling

(Deshpande et al. [21]) where one picks a set S proportional to det (VSV�
S ), or, equivalently, to the volume of the

parallelopiped spanned by the vectors indexed by S. The volume sampling measure has received much attention
and efficient algorithms are known for sampling from it (Deshpande and Rademacher [19], Deshpande and
Vempala [20], Guruswami and Sinop [26]). More recently, efficient algorithms were obtained even when
k ≥ d (Li et al. [31], Singh and Xie [44]). We discuss the computational issues of sampling from proportional
volume sampling in Lemma 1 and Section 6.2.

Our first result shows that approximating the A-optimal design problem can be reduced to finding distribu-
tions on Uk (or U≤k) that are approximately independent. First, we define the exact formulation of approximate
independence needed in our setting.

Definition 2. Given integers d ≤ k ≤ n and a vector x ∈ [0,1]n such that 1�x � k, we call a measure μ on sets in Uk
(or U≤k), α-approximate (d− 1,d)-wise independent with respect to x if for any subsets T,R⊆ [n] with |T| � d− 1
and |R| � d, we have

Pr S~μ[T⊆S]
Pr S~μ[R⊆S] ≤ α

xT

xR
,

where xL :� ∏
i∈L xi for any L⊆[n]. We omit “with respect to x” when the context is clear.

Observe that if the measure μ corresponds to picking each element i independently with probability xi, then
Pr S~μ[T ⊆ S]
Pr S~μ[R⊆S] � xT

xR

However, this distribution has support on all sets and not just sets in Uk or U≤k, so it is not allowed by the previ-
ous definition.

Our first result reduces the search for approximation algorithms for A-optimal design to construction of approx-
imate (d− 1,d)-wise independent distributions. This result generalizes the connection between volume sampling
and A-optimal design established in Avron and Boutsidis [5] to proportional volume sampling, which allows us
to exploit the power of the convex relaxation and get a significantly improved approximation.

Theorem 1. Given integers d ≤ k ≤ n, suppose that for any a vector x ∈ [0, 1]n such that 1�x � k, there exists a distribution
μ on sets in Uk (or U≤k) that is α-approximate (d− 1,d)-wise independent. Then the proportional volume sampling with
measure μ gives an α-approximation algorithm for the A-optimal design problem.

Table 1. Summary of approximation ratios of A-optimal results. We list the best applicable previous work for comparison.

Problem Our result Previous work

Case k � d da n− d+ 1 (Avron and Boutsidis [5])
Asymptotic k� d without repetitions 1+ ε, for k ≥Ω

(
d=ε+ log (1=ε)=ε2) 1+ ε, for k ≥Ω

(
d=ε2

)
(Allen-Zhu et al. [2])

Arbitrary k and d with repetitions k=k− d+ 1a n− d+ 1 (Avron and Boutsidis [5])
Asymptotic k� d with repetitions 1+ ε, for k ≥ d+ (d=ε)a 1+ ε, for k ≥Ω

(
d=ε2

)
(Allen-Zhu et al. [2])

aRatios are tight with matching integrality gap of the convex relaxation (1)–(3).
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In this theorem, we in fact only need an approximately independent distribution μ for the optimal solution x
of the natural convex relaxation for the problem, which is given in (1)–(3). The result also bounds the integrality
gap of the convex relaxation by α. Theorem 1 is proved in Section 2.

Theorem 1 reduces our aim to constructing distributions that have approximate (d− 1,d)-independence. We fo-
cus our attention on the general class of hard-core distributions. We call μ a hard-core distribution with parameter
λ ∈ R

n
+ if μ(S)∝λS :� ∏

i∈S λi for each set in Uk (or U≤k). Convex duality implies that hard-core distributions have
the maximum entropy among all distributions which match the marginals of μ (Boyd and Vandenberghe [10]).
Observe that, although μ places nonzero probability on exponentially many sets, it is enough to specify μ suc-
cinctly by describing λ. Hard-core distributions over various structures including spanning trees (Gharan et al.
[25]) or matchings (Kahn [28, 29]) in a graph display approximate independence, and this has found use in combina-
torics and algorithm design. Following this theme, we show that certain hard core distributions on Uk and U≤k ex-
hibit approximate (d− 1,d)-independence when k � d and in the asymptotic regime when k� d.

Theorem 2. Given integers d ≤ k ≤ n and a vector x ∈ [0, 1]n such that 1�x � k, there exists a hard-core distributionμ on sets in
Uk that is d-approximate (d− 1,d)-wise independent when k � d.Moreover, for any ε > 0, if k �Ω

(
d=ε+ (1=ε2)log (1=ε)), then

there is a hard-core distribution μ on U≤k that is (1+ ε)-approximate (d− 1,d)-wise independent. Thus we obtain a d-approxima-
tion algorithm for the A-optimal design problem when k � d and (1+ ε)-approximation algorithm when k �Ω

(
d=ε

+(1=ε2)log (1=ε)).
This theorem relies on two natural hard-core distributions. In the first one, we consider the hard-core distribu-

tion with parameter λ � x on sets in Uk and in the second we consider the hard-core distribution with parameter
λ � (1 − ε)x=1 − (1 − ε)x (defined coordinate-wise) on sets in U≤k. We prove the theorem in Section 3.

Our techniques also apply to the A-optimal design problem with repetitions where we obtain an even stronger re-
sult, described later. The main idea is to introduce multiple, possibly exponentially many, copies of each vector, de-
pending on the fractional solution, and then apply proportional volume sampling to obtain the following result.

Theorem 3. For all k ≥ d and 0 < ε ≤ 1, there is a
((
k=(k− d+ 1))+ ε

)
-approximation algorithm for the A-optimal design

problem with repetitions. In particular, there is a (1+ ε)-approximation when k ≥ d+ d=ε.

We remark that the integrality gap of the natural convex relaxation is at least k=(k− d+ 1) (see Section 7.2), and
thus the previous theorem results in an exact characterization of the integrality gap of the convex program (1)–(3),
stated in the following corollary. The proof of Theorem 3 appears in Section 6.3.

Corollary 1. For any integers k ≥ d, the integrality gap of the convex program (1)–(3) for the A-optimal design with
repetitions is exactly k=(k− d+ 1).

We also show thatA-optimal design is NP-hard for k � d andmoreover, hard to approximate within a constant factor.

Theorem 4. There exists a constant c > 1 such that the A-optimal design problem is NP-hard to c-approximate when k � d.

The k ≤ d case.
The A-optimal design problem has a natural extension to choosing fewer than d vectors: our objective in this

case is to select a set S⊆[n] of size k so that we minimize Σk
i�1λ

−1
i , where λ1, : : : ,λk are the k largest eigenvalues of

the matrix VSV�
S . Although this problem no longer corresponds to minimizing the variance in an experimental

design setting, we will abuse terminology and still call it the A-optimal design problem. This is a natural formu-
lation of the geometric problem of picking a set of vectors that are as spread out as possible. If v1, : : : ,vn are the
points in a data set, we can see an optimal solution as a maximally diverse representative sample of the data set.
Similar problems, but with a determinant objective, have been widely studied in computational geometry, linear
algebra, and machine learning: for example, the largest volume simplex problem and the maximum subdetermi-
nant problem (see Nikolov [36] for references to prior work). Çivril and Magdon-Ismail [13] also studied an
analogous problem with the sum in the objective replaced by a maximum (which extends E-optimal design).

Although our rounding extends easily to the k ≤ d regime, coming up with a convex relaxation becomes less
trivial. We do find such a relaxation and obtain the following result whose proof appears in Section 5.1.

Theorem 5. There exists a poly(d,n)-time k-approximation algorithm for the A-optimal design problem when k ≤ d.

1.1.1. General Objectives. Experimental design problems come with many different objectives including A, D, E, G,
T, and V, each corresponding to a different function of the covariance matrix of the errorw− ŵ. Any algorithm that
solves A-design can solve V-optimal design by prepossessing vectors with a linear transformation. In addition, we
show that the proportional volume sampling algorithm gives approximation algorithms for other optimal design

Nikolov, Singh, and Tantipongpipat: PVS and Approx Alg for A-Optimal Design
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objectives (such as D-optimal design, Singh and Xie [44]; and generalized ratio objective, Mariet and Sra [34])
matching or improving previous best-known results. We refer the reader to Section 5.3 for details.

1.1.2. Integrality Gap and E-Optimality. Given the results mentioned previously, a natural question is whether all
objectives for optimal design behave similarly in terms of approximation algorithms. Indeed, recent results of
Allen-Zhu et al. [1, 2] and Wang et al. [50] give the (1+ ε)-approximation algorithm in the asymptotic regime, k ≥
Ω
(
d=ε2

)
and k ≥Ω

(
d2=ε

)
, for many of these variants. In contrast, we show the optimal bounds that can be obtained

via the standard convex relaxation are different for different objectives. We show that for the E-optimality criteri-
on (in which we minimize the largest eigenvalue of the covariance matrix) getting a (1+ ε)-approximation with
the natural convex relaxation requires k �Ω

(
d=ε2

)
, both with and without repetitions. This is in sharp contrast to

results we obtain here for A,D-optimality and other generalized ratio objectives. Thus, different criteria behave
differently in terms of approximability. Our proof of the integrality gap (in Section 7.1) builds on a connection to
spectral graph theory and in particular on the Alon-Boppana bound (Alon [3], Nilli [40]). We prove an Alon-Bop-
pana style bound for the unnormalized Laplacian of not necessarily regular graphs with a given average degree.

1.1.3. Restricted Invertibility Principle for Harmonic Mean. As an application of Theorem 5, we prove a restricted
invertibility principle (RIP) (Bourgain and Tzafriri [7]) for the harmonic mean of singular values. The RIP is a robust
version of the elementary fact in linear algebra that, if V is a d × n rank r matrix, then it has an invertible submatrix
VS for some S⊆[n] of size r. The RIP shows that if V has stable rank r, then it has a well-invertible submatrix consist-
ing of Ω(r) columns. Here the stable rank of V is the ratio (||V||2HS=||V||2), where || · ||HS �

�����������
tr(VV�)√

is the Hilbert-
Schmidt, or Frobenius, norm of V, and || · || is the operator norm. The classical restricted invertibility principle (Bour-
gain and Tzafriri [7], Spielman and Srivastava [46], Vershynin [49]) shows that, when the stable rank of V is r, then
there exists a subset of its columns S of size k �Ω(r) so that the kth singular value of VS is Ω

(||V||HS=
���
m

√ )
. Nikolov

[36] showed there exists a submatrix VS of k columns of V so that the geometric mean of its top k singular values is
on the same order, even when k equals the stable rank. We show an analogous result for the harmonic mean when k
is slightly less than r. Although this is implied by the classical restricted invertibility principle, the dependence on pa-
rameters is better in our result for the harmonic mean. For example, when k � (1− ε)r, the harmonic mean of
squared singular values of VS can be made at least Ω

(
ε||V||2HS=m

)
, whereas the tight restricted invertibility principle

of Spielman and Srivastava [45] would only give ε2 in the place of ε. This restricted invertibility principle can also be
derived from the results of Naor et al. [35], but their arguments, unlike ours, do not give an efficient algorithm to
compute the submatrix VS. See Section 5.2 for the precise formulation of our restricted invertibility principle.

1.1.4. Computational Issues. Although it is not clear whether sampling from proportional volume sampling is
possible under general assumptions (e.g., given a sampling oracle for μ), we obtain an efficient sampling algo-
rithm when μ is a hard-core distribution.

Lemma 1. There exists a poly(d,n)-time algorithm that, given a matrix d × n matrix V, integer k ≤ n, and a hard-core distri-
bution μ on sets in Uk (or U≤k) with parameter λ, efficiently samples a set from the proportional volume measure defined by μ.

When k ≤ d and μ is a hard-core distribution, the proportional volume sampling can be implemented by the
standard volume sampling after scaling the vectors appropriately. When k > d, such a method does not suffice,
and we appeal to properties of hard-core distributions to obtain the result. We also present an efficient implemen-
tation of Theorem 3, which runs in time polynomial in log (1=ε). This requires more work since the basic descrip-
tion of the algorithm involves implementing proportional volume sampling on an exponentially sized ground set.
This is done in Section 6.3.

We also outline efficient deterministic implementation of algorithms in Theorems 2 and 3 in Sections 6.2 and 6.4.

1.2. Related Work
Experimental design is the problem of maximizing information obtained from selecting subsets of experiments
to perform, which is equivalent to minimizing the covariance matrix (Σi∈S viv�i )−1. We focus on A-optimality, one
of the criteria that has been studied intensely. We restrict our attention to approximation algorithms for these
problems and refer the reader to Purkelsheim [43] for a broad survey on experimental design.

Avron and Boutsidis [5] studied the A- and E-optimal design problems and analyzed various combinatorial al-
gorithms and algorithms based on volume sampling, and achieved approximation ratio (n− d+ 1)=(k− d+ 1).
Wang et al. [50] found connections between optimal design and matrix sparsification and used these connections
to obtain a (1+ ε)-approximation when k ≥ d2=ε, and also approximation algorithms under certain technical as-
sumptions. More recently, Allen-Zhu et al. [1, 2] obtained a (1+ ε)-approximation when k �Ω

(
d=ε2

)
both with and

Nikolov, Singh, and Tantipongpipat: PVS and Approx Alg for A-Optimal Design
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without repetitions. We remark that their result also applies to other criteria such as E and D-optimality that aim
to maximize the minimum eigenvalue, and the geometric mean of the eigenvalues of Σi∈S viv�i , respectively. More
generally, their result applies to any objective function that satisfies certain regularity criteria.

Improved bounds for D-optimality were obtained by Singh and Xie [44], who give an e-approximation for all k
and d, and (1+ ε)-approximation algorithm when k �Ω

(
d=ε+ (1=ε2)log (1=ε)), with a weaker condition of k ≥

(2d)=ε if repetitions are allowed. The D-optimality criterion when k ≤ d has also been extensively studied. It cap-
tures maximum a posteriori inference in constrained determinantal point process models (Kulesza et al. [30])
and the maximum volume simplex problem. Nikolov [36], improving on a long line of work, gave a e-approxi-
mation. The problem has also been studied under more general matroid constraints rather than cardinality con-
straints (Anari and Gharan [5], Nikolov and Singh [37], Straszak and Vishnoi [48]).

Çivril and Magdon-Ismail [13] also studied several related problems in the k ≤ d regime, including D- and
E-optimality. We are not aware of any prior work on A-optimality in this regime.

The criterion of E-optimality, whose objective is to maximize the minimum eigenvalue of Σi∈S viv�i , is closely
related to the problem of matrix sparsification (Batson et al. [6], Spielman and Srivastava [45]) but incomparable.
In matrix sparsification, we are allowed to weigh the selected vectors but need to bound both the largest and the
smallest eigenvalue of the matrix we output.

The restricted invertibility principle was first proved in the work of Bourgain and Tzafriri [7] and was later strength-
ened by Vershynin [49], Spielman and Srivastava [46], and Naor and Youssef [35]. Spielman and Srivastava [46] gave a
deterministic algorithm to find the well-invertible submatrix whose existence is guaranteed by the theorem. Besides its
numerous applications in geometry (Vershynin [49], Youssef [51]), the principle has also found applications to differen-
tial privacy (Nikolov et al. [39]) and to approximation algorithms for discrepancy (Nikolov and Talwar [38]).

Volume sampling where a set S is sampled with probability proportional to det
(
VSV�

S
)
has been studied ex-

tensively, and efficient algorithms were given by Deshpande and Rademacher [19] and improved by Guruswami
and Sinop [26]. The probability distribution is also called a determinantal point process (DPP) and finds many ap-
plications in machine learning (Kulesza et al. [30]). Recently, fast algorithms for volume sampling have been con-
sidered in Dereziński and Warmuth [17, 18].

Although NP-hardness is known for the D- and E-optimality criteria (Çivril and Magdon-Ismail [13]), to the
best of our knowledge, no NP-hardness for A-optimality was known prior to our work. Proving such a hardness
result was stated as an open problem in Avron and Boutsidis [5].

2. Approximation via Near Independent Distributions
In this section, we prove Theorem 1 and give an α-approximation algorithm for the A-optimal design problem
given an α-approximate (d− 1,d)-independent distribution μ.

We first consider the convex relaxation for the problem given below for the settings without and with repetitions. This
relaxation is classical, and already appears in Chernoff [12]. It is easy to see that the objective tr (Σn

i�1xiviv
�
i )−1 is convex

(Boyd and Vandenberghe [10], section 7.5). For this section, we focus on the case when repetitions are no allowed.

Let us denote the optimal value of (1)–(3) by CP (convex program). By plugging in the indicator vector of an opti-
mal integral solution for x, we see that CP ≤ OPT, where OPT (optimal) denotes the value of the optimal solution.

2.1. Approximately Independent Distributions
Let us use the notation xS � ∏

i∈S xi, VS a matrix of column vectors vi ∈ R
d for i ∈ S, and VS(x) a matrix of column vec-

tors
���
xi

√
vi ∈ R

d for i ∈ S. Let ek(x1, : : : ,xn) be the degree k elementary symmetric polynomial in the variables x1, : : : ,xn,
that is, ek(x1, : : : ,xn) � ΣS∈Uk x

S. By convention, e0(x) � 1 for any x. For any positive semidefinite n × n matrix M, we

With repetitions Without repetitions

min tr
(∑n
i�1

xiviv�i

)−1
s:t:

∑n
i�1

xi � k

0 ≤ xi ∀i ∈ n[ ]

min tr
(∑n
i�1

xiviv�i

)−1
(1)

s:t:
∑n
i�1

xi � k (2)

0 ≤ xi ≤ 1 ∀i ∈ n[ ] (3)
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define Ek(M) to be ek(λ1, : : : ,λn), where λ(M) � (λ1, : : : ,λn) is the vector of eigenvalues of M. Notice that E1(M) �
tr(M) and En(M) � det (M).

To prove Theorem 1, we give Algorithm 1, which is a general framework to sample S to solve the A-optimal
design problem.

Algorithm 1 (The Proportional Volume Sampling Algorithm)
1: Given an input V � [v1, : : : ,vn]where vi ∈ R

d, k a positive integer, and measure μ on sets in Uk (or U≤k).
2: Solve convex relaxation CP to get a fractional solution x ∈ R

n
+ with Σn

i�1 xi � k.
3: Sample set S (from U≤k or Uk) where Pr[S � S]∝μ(S) det (VSV�

S ) for any S ∈ Uk (or U≤k). � μ(S) may be de-
fined using the solution x

4: Output S (If |S| < k, add k− |S| arbitrary vectors to S first).

We first prove the following lemma that is needed for proving Theorem 1.

Lemma 2. Let T⊆[n] be of size no more than d. Then,

det
(
VT

(
x
)�VT

(
x
)) � xTdet

(
V�

T VT
)
:

Proof. The statement is true by multilinearity of the determinant and the exact formula for VT(x)�VT(x) as fol-
lows. The matrix VT(x)�VT(x) has (i, j) entry(

VT
(
x
)�VT

(
x
))
i,j �

���
xi

√
vi · ���

xj
√

vj � �����
xixj

√
vi · vj

for each pair i, j ∈ [|T|]. By the multilinearity of the determinant, we can take the factor
���
xi

√
out from each row i of

VT(x)�VT(x) and the factor ���xj√ out from each column j of VT(x)�VT(x). This gives
det

(
VT

(
x
)�VT

(
x
)) � ∏

i∈[|T|]

���
xi

√ ∏
j∈[|T|]

���
xj

√
det

(
V�

T VT
) � xTdet

(
V�

T VT
)
: w

We also need the following identity, which is well known and extends the Cauchy-Binet formula for the determi-
nant to the functions Ek.

Ek (VV�) � Ek (V�V
) � ∑

S∈Uk

det
(
V�

S VS
)
: (4)

Identity (4) appeared in Mariet and Sra [34] and, specifically for k � d− 1, as lemma 3.8 in Avron and Boutsidis [5].
Now we are ready to prove Theorem 1.

Proof of Theorem 1. Let μ′ denote the sampling distribution over U, where U � Uk or U≤k, with probability of
sampling S ∈ U proportional to μ(S)det (VSV�

S
)
. Because tr (Σi∈[n] xiviv�i )−1 � CP ≤OPT, it is enough to show that

E
S~μ′

[
tr
(∑
i∈S

viv�i

)−1]
≤ αtr

(∑
i∈[n]

xiviv�i

)−1
: (5)

In case |S| < k, algorithm A adds k− |S| arbitrary vector to S, which can only decrease the objective value of the
solution.

First, a simple but important observation (Avron and Boutsidis [5]): for any d × d matrixM of rank d, we have

tr M−1 �∑d
i�1

1
λi
(
M
) � ed−1

(
λ
(
M
))

ed
(
λ
(
M
)) � Ed−1

(
M
)

det M
: (6)

Therefore, we have

E
S~μ′

[
tr
(∑
i∈S

viv�i

)−1]
� ∑

S∈U
Pr
μ′ [S � S] tr (VSV�

S
)−1

� ∑
S∈U

μ
(
S
)
det (VSV�

S
)∑

S′∈Uμ
(
S′
)
det

(
VS′V�

S′
)Ed−1

(
VSV�

S
)

det (VSV�
S

)
�

∑
S∈Uμ

(
S
)
Ed−1

(
VSV�

S
)∑

S∈Uμ
(
S
)
det

(
VSV�

S

) :
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We can now apply the Cauchy-Binet Equation (4) for Ed−1, Ed � det , and the matrix VSV�
S to the numerator and

denominator on the right hand side, and we get

E
S~μ′

[
tr
(∑
i∈S

viv�i

)−1]
�

∑
S∈U

∑
|T|�d−1, T⊆S μ

(
S
)
det

(
V�

T VT
)∑

S∈U μ
(
S
)∑

|R|�d, R⊆S det
(
V�

RVR
)

�
∑

|T|�d−1, T⊆[n] det
(
V�

T VT
)∑

S∈U, S ⊇ T μ
(
S
)∑

|R|�d, R⊆[n] det
(
V�

RVR
)∑

S∈U, S ⊇ R μ
(
S
)

�
∑

|T|�d−1, T⊆[n] det
(
V�

T VT
)
Pr
μ
[S⊇T]∑

|R|�d, R⊆[n] det
(
V�

RVR
)
Pr
μ
[S⊇R] ,

where we change the order of summation at the second to last equality. Next, we apply (6) and the Cauchy-Binet
Equation (4) in a similar way to the matrix V(x)V(x)�:

tr
(
V
(
x
)
V
(
x
)�)−1 � Ed−1

(
V
(
x
)
V
(
x
)�)

det
(
V
(
x
)
V
(
x
)�) �

∑
|T|�d−1,T⊆[n] det

(
VT

(
x
)�VT

(
x
))∑

|R|�d,R⊆[n] det
(
VR

(
x
)�VR

(
x
))

�
∑

|T|�d−1,T⊆[n] det
(
V�

T VT
)
xT∑

|R|�d,R⊆[n] det
(
V�

RVR
)
xR

,

where we use the fact that det
(
VR(x)�VR(x)) � xRdet

(
V�

RVR
)
and det

(
VT(x)�VT(x)) � xTdet

(
V�

T VT
)
in the last

equality by Lemma 2.
Hence, Inequality (5), which we want to show is equivalent to∑

|T|�d−1,T⊆[n] det
(
V�

T VT
)
Pr
μ
[S⊇T]∑

|R|�d,R⊆[n] det
(
V�

RVR
)
Pr
μ
[S⊇R] ≤ α

∑
|T|�d−1,T⊆[n] det

(
V�

T VT
)
xT∑

|R|�d,R⊆[n] det
(
V�

RVR
)
xR

, (7)

which is equivalent to ∑
|T|�d−1, |R|�d

det (V�
T VT

)
det

(
V�

RVR
) · xR · Pr

μ
[S⊇T]

≤ α
∑

|T|�d−1, |R|�d
det (V�

T VT
)
det

(
V�

RVR
) · xT · Pr

μ
[S⊇R]:

(8)

By the assumption that
Pr
μ [S⊇T]
Pr
μ [S⊇R] ≤ α

xT

xR

for each subset T,R⊆[n]with |T| � d− 1 and |R| � d,

det
(
V�

T VT
)
det

(
V�

RVR
) · xR · Pr

μ
[S⊇T] ≤ α det

(
V�

T VT
)
det

(
V�

RVR
) · xT ·Pr

μ
[S⊇R]: (9)

Summing (9) over all T,R proves (8). w

3. Approximating Optimal Design Without Repetitions
In this section, we prove Theorem 2 by constructing α-approximate (d− 1,d)-independent distributions for appropri-
ate values of α. We first consider the case when k � d and then the asymptotic case when k �Ω

( d
ε+ 1

ε2 log
1
ε

)
. We also re-

mark that the argument for k � d can be generalized for all k ≤ d, and we discuss this generalization in Section 5.1.

3.1. The d-Approximation for k5d
We prove the following lemma that, together with Theorem 1, implies the d-approximation for A-optimal design
when k � d.

Lemma 3. Let k � d. The hard-core distribution μ on Uk with parameter x is d-approximate (d− 1,d)-independent.
Proof. Observe that for any S ∈ Uk, we have μ(S) � xS=Z, where Z � ΣS′∈Uk x

S′ is the normalization factor. For any
T⊆[n] such that |T| � d− 1, we have

Pr
S~μ

[S⊇T] � ∑
S∈Uk:S⊇T

xS

Z
� xT

Z
·
( ∑
i∈[n]\T

xi

)
≤ d

xT

Z
:
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We use k � d and Σi∈[n]\T xi ≤ k � d. For any R⊆[n] such that |R| � d, we have

Pr
S~μ

[S⊇R] � ∑
S∈Uk:S⊇R

xS

Z
� xR

Z
:

Thus, for any T,R⊆[n] such that |T| � d− 1 and |R| � d, we have

Pr
S~μ

[S⊇T]
Pr
S~μ

[S⊇R] ≤ d
xT

xR
: w

3.2. The (11e)-Approximation
Now, we show that there is a hard-core distribution μ on U≤k that is (1+ ε)-approximate (d− 1,d)-independent
when k �Ω

(
d=ε+ (1=ε2)log (1=ε)).

Lemma 4. Fix some 0 < ε ≤ 2, and let k �Ω
(
d=ε+ log (1=ε)=ε2). The hard-core distribution μ on U≤k with parameter λ, de-

fined by

λi � xi
1+ ε

4− xi
,

is (1+ ε)-approximate (d− 1,d)-wise independent.
Proof. For simplicity of notation, let us denote β � 1+ ε=4, and ξi � xi=β. Observe that the probability mass under

μ of any set S of size at most k is proportional to
(∏

i∈S ξi
)(∏

i∉S(1− ξi)). Thus, μ is equivalent to the following dis-
tribution: sample a set B⊆[n] by including every i ∈ [n] in B independently with probability ξi; then we have
μ(S) � Pr [B � S| |B| ≤ k] for every S of size at most k. Let us fix for the rest of the proof arbitrary sets T,R⊆[n] of
size d− 1 and d, respectively. By the previous observation, for S sampled according to μ, and B as earlier, we have

Pr [S⊇T]
Pr [S⊇R] �

Pr [B⊇T and |B| ≤ k]
Pr [B⊇R and |B| ≤ k] ≤

Pr [B⊇T]
Pr [B⊇R and |B| ≤ k] :

We have Pr [B⊇T] � ξT � xT=βd−1. To simplify the probability in the denominator, let us introduce, for each

i ∈ [n], the indicator random variable Yi, defined to be one if i ∈ B and zero otherwise. By the choice of B, the Yi s
are independent Bernoulli random variables with mean ξi, respectively. We can write

Pr [B⊇R and |B| ≤ k] � Pr
[
∀i ∈ R : Yi � 1 and

∑
i∉R

Yi ≤ k− d
]

� Pr [∀i ∈ R : Yi � 1] Pr
[∑
i∉R

Yi ≤ k− d
]
,

where the last equality follows by the independence of the Yi. The first probability on the right-hand side is just
ξR � xR=βd, and plugging into the previous inequality, we get

Pr [S⊇T]
Pr [S⊇R] ≤ β

xT

xRPr
[∑

i∉RYi ≤ k− d
] : (10)

We claim that

Pr
[∑
i∉R

Yi ≤ k− d
]
≥ 1− ε

4

as long as k �Ω
(
d=ε+ (1=ε2)log (1=ε)). The proof follows from standard concentration of measure arguments. Let

Y � Σi∉RYi, and observe that E[Y] � (
1=β

)(
k− x(R)), where x(R) is shorthand for Σi∈R xi. By Chernoff’s bound,

Pr [Y > k− d] < e−
δ2
3β (k−x(R)), (11)

where

δ � β
(
k− d

)
k− x (R)− 1 �

(
β− 1

)
k+ x (R)− βd
k− x (R) :
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The exponent on the right-hand side of (11) simplifies to

δ2
(
k− x

(
R
))

3β
�
((
β− 1

)
k+ x (R)− βd

)2
3β

(
k− x

(
R
)) ≥

((
β− 1

)
k− βd

)2
3βk

:

For the bound Pr [Y > k− d] ≤ ε=4, it suffices to have(
β− 1

)
k− βd ≥

�����������������
3β log

(
4=ε

)
k

√
:

Assuming that k ≥ (C log (4=ε))=ε2 for a sufficiently big constant C, the right-hand side is at most εk
8 . Therefore, as

long as k ≥ (βd)= β− 1− ε
8

( )
, the inequality is satisfied and Pr [Y > k− d] < ε

4, as we claimed.

The proof of the lemma now follows because for any |T| � d− 1 and |R| � d, we have

Pr [S⊇T]
Pr [S⊇R] ≤ β

xT

xR Pr
[∑

i∉RYi ≤ k− d
] ≤ 1+ ε

4

1− ε
4

xT

xR
, (12)

and
1+ ε

4

1− ε
4
≤ 1+ ε: w

The (1+ ε)-approximation for large enough k in Theorem 2 now follows directly from Lemma 4 and Theorem 1.

4. Approximately Optimal Design with Repetitions
In this section, we consider the A-optimal design without the bound xi ≤ 1 and prove Theorem 3. That is,
we allow the sample set S to be a multiset. We obtain a tight bound on the integrality gap in this case. In-
terestingly, we reduce the problem to a special case of A-optimal design without repetitions that allows
us to obtain an improved approximation.

We first describe a sampling Algorithm 2 that achieves a (k(1+ ε))=(k− d+ 1)-approximation for any ε > 0.
In the algorithm, we introduce poly(n, 1=ε) number of copies of each vector to ensure that the fractional so-
lution assigns equal fractional value for each copy of each vector. Then we use the proportional volume
sampling where the measure distribution μ is defined on sets of the new larger ground set U over copies of
the original input vectors. The distribution μ is just the uniform distribution over subsets of size k of U , and
we are effectively using traditional volume sampling over U . Notice, however, that the distribution over
multisets of the original set of vectors is different. The proportional volume sampling used in the algorithm
can be implemented in the same way as the one used for without repetition setting, as described in Section
6.1, which runs in poly(n,d,k, 1=ε) time.

In Section 6.3, we describe a new implementation of proportional volume sampling procedure that improves
the running time to poly(n,d,k, log (1=ε)). The new algorithm is still efficient even when U has exponential size
by exploiting the facts that μ is uniform and that U has only at most n distinct vectors.

Algorithm 2 (Approximation Algorithm for A-Optimal Design with Repetitions)
1: Given x ∈ R

n
+ with Σn

i�1xi � k, ε > 0, and vectors v1, : : : ,vn.
2: Let q � (2n)=(εk). Set x′i :�

((k− n=q)=k)xi for each i, and round each x′i up to a multiple of 1=q.
3: If Σn

i�1x
′
i < k, add 1=q to any x′i until Σ

n
i�1x

′
i � k.

4: Create qx′i copies of vector vi for each i ∈ [n]. DenoteW the set of size Σn
i�1qx

′
i � qk of all those copies of vectors.

Denote U the new index set ofW of size qk. � This implies that we can assume that our new fractional solution
yi � 1=q is equal over all i ∈U

5: Sample a subset S of U of size kwhere Pr [S � S]∝det
(
WSW�

S
)
for each S⊆U of size k.

6: Set Xi � Σw∈WS
1
(
w is a copy of vi

)
for all i ∈ [n] � Get an integral solution X by counting numbers of copies

of vi in S.
7: OutputX.

Lemma 5. Algorithm 2, when given as input x ∈ R
n
+ s.t. (such that) Σn

i�1 xi � k, 1 ≥ ε > 0, and v1, : : : ,vn, outputs a random
X ∈ Z

n
+ with Σn

i�1 Xi � k such that

E

[
tr
(∑n
i�1

Xiviv�i

)−1]
≤ k (1+ ε

)
k− d+ 1

tr
(∑n
i�1

xiviv�i

)−1
:
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Proof. Define x′i ,y,W,U ,S,X as in the algorithm. We will show that

E

[
tr
(∑n
i�1

Xiviv�i

)−1]
≤ k
k− d+ 1

tr
(∑n
i�1

x′iviv
�
i

)−1
≤ k (1+ ε

)
k− d+ 1

tr
(∑n
i�1

xiviv�i

)−1
:

The second inequality is by observing that the scaling x′i :�
((k− n=q)=k)xi multiplies the objective tr(Σn

i�1xiviv�i )−1 by a
factor of (

k− n=q
k

)−1
�
(
1− ε

2

)−1
≤ 1+ ε

and that rounding xi up and adding 1=q to any xi can only decrease the objective.
To show the first inequality, we first translate the two key quantities tr(Σn

i�1xi
′viv�i )−1 and tr(Σn

i�1 Xiviv�i )−1 from
the with-repetition setting over V and [n] to the without-repetition setting over W and U . First, tr

(
Σn
i�1 xi

′viv�i )−1 �
tr (Σi∈U yiwiwi

�)−1, where yi � 1=q are all equal over all i ∈U , and wi is the copied vector inW at index i ∈U . Second,
tr (Σn

i�1Xiviv�i )−1 � tr (Σi∈S⊆U wiwi
�)−1.

Let μ′ be the distribution over subsets S of U of size k defined by μ′(S) ∝det
(
WSW�

S
)
. It is, therefore, sufficient

to show that the sampling distribution μ′ satisfies

E
S~μ′

[
tr
( ∑
i∈S⊆U

wiwi
�
)−1]

≤ k
k− d+ 1

tr
(∑
i∈U

yiwiwi
�
)−1

: (13)

Observe that μ′ is the same as sampling a set S⊆U of size k with probability proportional to μ(S) det (WSW�
S
)

where μ is uniform. Hence, by Theorem 1, it is enough to show that for all T,R⊆U with |T| � d− 1, |R| � d,

Pr
μ [S⊇T]
Pr
μ [S⊇R] ≤

(
k

k− d+ 1

)
yT

yR
, (14)

With μ being uniform and yi being all equal to 1=q, the calculation is straightforward:

Pr
μ [S⊇T]
Pr
μ [S⊇R] �

(
qk− d+ 1
k− d+ 1

)
=

(
qk
k

)
(
qk− d
k− d

)
=

(
qk
k

) � qk− d+ 1
k− d+ 1

and
yT

yR
� 1
yi
� q: (15)

Therefore, (14) holds because

Pr
μ [S⊇T]
Pr
μ [S⊇R] ·

(
yT

yR

)−1
� qk− d+ 1

k− d+ 1
· 1
q
≤ qk
k− d+ 1

· 1
q
� k
k− d+ 1

: w

Remark 1. The approximation ratio for A-optimality with repetitions for k ≥ d is tight because it matches the inte-
grality gap lower bound stated in Theorem 20.

5. Generalizations
In this section, we show that our arguments extend to the regime k ≤ d and give a k-approximation (without repe-
titions), which matches the integrality gap of our convex relaxation. We also derive a restricted invertibility prin-
ciple for the harmonic mean of eigenvalues.

5.1. The k-Approximation Algorithm for k£d
Recall that our aim is to select a set S⊆[n] of size k ≤ d that minimizes Σk

i�1λ
−1
i , where λ1, : : : ,λk are the k largest

eigenvalues of the matrix VSV�
S . We need to reformulate our convex relaxation because when k < d, the inverse
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ofM(S) � Σi∈S viv�i for |S| � k is no longer well defined. We write a new convex program:

min
Ek−1

(∑n
i�1xiviv

�
i

)
Ek

(∑n
i�1xiviv

�
i

) , (16)

s:t:∑n
i�1

xi � k,
(17)

0 ≤ xi ≤ 1 ∀i ∈ [n]: (18)

Once again we denote the optimal value of (16)–(18) by CP. Although the proof that this relaxes the original problem
is easy, the convexity is nontrivial. Fortunately, ratios of symmetric polynomials are known to be convex.

Lemma 6. The optimization problem (16)–(18) is a convex relaxation of the A-optimal design problem when k ≤ d.

Proof. To prove convexity, we first note that the function f (M) � (Ek(M))=(Ek−1(M)) is concave on positive semi-
definite matrices M of rank at least k. This was proved by Bullen and Marcus [11, theorem 4] for positive definite
M, and can be extended to M of rank at least k by a limiting argument. Alternatively, we can use the theorem of

Marcus and Lopes [33] that the function g(λ) � (ek(λ))=(ek−1(λ)) is concave on vectors λ ∈ R
d with nonnegative en-

tries and at least k positive entries. Because g is symmetric under permutations of its arguments and concave,
and f (M) � g(λ(M)), where λ(M) is the vector of eigenvalues of M, by a classical result of Davis [14], the function
f is concave on positive semidefinite matrices of rank at least k.

Notice that Objective (16) equals 1=
(
f (M(x))) for the linear matrix-valued function M(x) � Σn

i�1xiviv
�
i . Therefore, to

prove that (16) is convex in x for nonnegative x, it suffices to show that 1=f (M) is convex inM for positive semidefinite
M. Because the function 1=z is convex and monotone decreasing over positive reals z, and f is concave and nonnegative
over positive semidefinite matrices of rank at least k, we have that 1=

(
f (M)) is convex inM, as desired. Then (16)–(18) is

an optimization problemwith a convex objective and affine constraints, so we have a convex optimization problem.
Let OPT be the optimal value of the A-optimal design problem and let S be an optimal solution. We need to

show that CP ≤OPT. To this end, let x be the indicator vector of S, that is, xi � 1 if and only if i ∈ S, and xi � 0
otherwise. Then,

CP ≤ Ek−1
(
M
(
S
))

Ek
(
M
(
S
)) �

∑k
i�1

∏
j≠i λj

(
M
(
S
))

∏
iλi

(
M
(
S
)) �∑k

i�1

1

λi
(
M
(
S
)) �OPT:

Previously, λ1(M(S)), : : : ,λk(M(S)) are, again, the nonzero eigenvalues ofM(S) � ∑
i∈S viv

�
i . w

We shall use the natural analog of proportional volume sampling: given a measure μ on subsets of size k, we
sample a set S with probability proportional to μ(S)Ek(M(S)). In fact, we will only take μ(S) proportional to xS, so
this reduces to sampling S with probability proportional to Ek

(∑
i∈Sxiviv

�
i
)
, which is the standard volume sam-

pling with vectors scaled by
���
xi

√
, and can be implemented efficiently using, for example, the algorithm of Desh-

pande and Rademacher [19].
The following version of Theorem 1 still holds with this modified proportional volume sampling. The proof is

exactly the same, except for mechanically replacing every instance of determinant by Ek, of Ed−1 by Ek−1, and in
general of d by k.

Theorem 6. Given integers k ≤ d ≤ n and a vector x ∈ [0, 1]n such that 1�x � k, suppose there exists a measure μ on Uk
that is α-approximate (k− 1,k)-wise independent. Then for x the optimal solution of (16)–(18), proportional volume sam-
pling with measure μ gives a polynomial time α-approximation algorithm for the A-optimal design problem.

We can now give the main approximation guarantee we have for k ≤ d.

Theorem 7. For any k ≤ d, proportional volume sampling with the hard-core measure μ on Uk with parameter x equal to
the optimal solution of (16)–(18) gives a k-approximation to the A-optimal design problem.

Proof. In view of Theorem 6, we only need to show that μ is k-approximate (k− 1,k)-wise independent. This is a
straightforward calculation: for S ~ μ, and any T⊆[n] of size k− 1 and R⊆[n] of size k,

Pr [S⊇T]
Pr [S⊇R] �

xT
∑

i∉T xi
xR

≤ k
xT

xR
:

This completes the proof. w
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The algorithm can be derandomized using the method of conditional expectations analogously to the case of
k � d that we will show in Theorem 14.

The k-approximation also matches the integrality gap of (16)–(18). Indeed, we can take a k-dimensional inte-
grality gap instance v1, : : : ,vn and embed it in R

d for any d > k by padding each vector with zeros. On such an in-
stance, the convex program (16)–(18) is equivalent to the convex program (1)–(3). Thus, the integrality gap that
we will show in Theorem 20 implies an integrality gap of k for all d ≥ k.

5.2. Restricted Invertibility Principle for Harmonic Mean
Next, we state and prove our restricted invertibility principle for harmonic mean in a general form. In this section
we use the notation ||M||p � (Σd

i�1|λi|p)1=p for the Schatten-p norm of a symmetric d by dmatrixM with eigenvalues
λ1, : : : ,λd. When M is positive semidefinite, this is simply ||M||p � tr(Mp)1=p. The Schatten-infinity norm ||M||∞
equals the largest absolute value of the eigenvalues ofM.

Theorem 8. Let v1, : : : ,vn ∈ R
d, and c1, : : : , cn ∈ R+, and define M � Σn

i�1 civiv
�
i . For any p ∈ (1,∞] and q ∈ [1,∞) such

that 1
p+ 1

q � 1, and any integer k ≤ rp � ||M||q1=||M||qp, there exists a subset S⊆[n] of size k such that the k largest eigenvalues

λ1, : : : ,λk of the matrix Σi∈S viv�i satisfy (
1
k

∑k
i�1

1
λi

)−1
≥
(
1−

(
k− 1
rp

)1
q
)
· tr (M)∑n

i�1 ci
:

Moreover, such a set S can be computed in deterministic polynomial time.

The proof of Theorem 8 relies on the following lemma.

Lemma 7. Let v1, : : : ,vn ∈ R
d, and c1, : : : , cn ∈ R+, and define M � Σn

i�1 civiv
�
i . For any k ≤ d, there exists a set S of size k

such that the k largest eigenvalues λ1, : : : ,λk of Σi∈S viv�i satisfy(
1
k
Σk
i�1 1

λi

)−1
≥ Ek(M)
Ek−1(M) ·

k
Σn
i�1ci

:

Moreover, such a set can be found in deterministic polynomial time.

Proof. Without loss of generality we can assume that Σn
i�1 ci � k. Then, by Theorem 7, proportional volume sam-

pling with the hard-core measure μ on Uk with parameter c � (c1, : : : , cn) gives a random set S of size k such that

E
1
k

∑k
i�1

1

λi
(
M
(
S
))⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ≤ Ek−1

(
M
)

Ek
(
M
) ,

where λi(M(S)) is the ith largest eigenvalues of M(S) � ∑
i∈S viv

�
i . This implies the existence of the claimed set.

The fact that the set can be found in deterministic polynomial time follows by Theorem 14. w

A similar result is implicit in Naor and Youssef [35]. In particular, combining lemma 18 and equality (12) in
Naor and Youssef [35] shows that, in the setting of Lemma 7, for any k ≤ rank M, there exists a set S of size k
such that the k largest eigenvalues λ1, : : : ,λk of the matrix

∑
i∈S viv

�
i satisfy(

1
k

∑k
i�1

1
λi

)−1
≥
∑d

i�k λi(M)∑n
i�1 ci

, (19)

where λ1(M) ≥ : : : ≥ λd(M) are the eigenavalues ofM. Our Lemma 7 is stronger in a couple of ways. First, it gives
an efficient algorithm to compute the set S. Furthermore, it gives a bound which dominates the one in (18).
Namely, for any vector λ ∈ R

d
+, such that λ1 ≥ : : : ≥ λd, we have

k · ek(λ) � ∑
T⊆[d]:|T|�k−1

λT
∑
i∉T

λi ≥
∑

T⊆[d]:|T|�k−1
λT

∑d
i�k

λi � ek−1
(
λ
) · (∑d

i�k
λi

)
: (20)

Proof of Theorem 8. Equation (5) in Naor and Youssef [35] shows that, for any k ≤ d,∑d
i�k

λi
(
M
) ≥ (

1−
(k− 1

rp

)1
q

)
· tr (M)

:

This inequality, together with Lemma 7 and (20) imply the theorem. w
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5.3. Generalized Ratio Objective
InA-optimal design, givenV � [v1: : : vn] ∈ R

d×n, we state the objective asminimizing

tr
(∑
i∈S

viv�i

)−1
� Ed−1

(
VSV�

S
)

Ed (VSV�
S

) :

over subsets S⊆[n] of size k. In this section, for any given pair of integers 0 ≤ l′ < l ≤ d, we consider the following
generalized ratio problem:

min
S⊆[n], |S|�k

(
El′

(
VSV�

S
)

El
(
VSV�

S

) ) 1
l−l′
: (21)

This problem naturally interpolates between A-optimality and D-optimality. This follows because for l � d and
l′ � 0, the objective reduces to

min
S⊆[n], |S|�k

(
1

det
(
VSV�

S

))1d: (22)

A closely related generalization between A- and D-criteria was considered in Mariet and Sra [34]. Indeed, their
generalization corresponds to the case when l � d and l′ takes any value from 0 and d− 1.

In this section, we show that our results extend to solving generalized ratio problem. We begin by describing a
convex program for the generalized ratio problem. We then generalize the proportional volume sampling algorithm
to proportional l-volume sampling. Following the same plan as in the proof of A-optimality, we then reduce the approx-
imation guarantee to near-independence properties of certain distribution. Here again, we appeal to the same prod-
uct measure and obtain identical bounds, summarized in Table 2, on the performance of the algorithm. The efficient
implementations of approximation algorithms for generalized ratio problem are described in Section 6.5.

5.3.1. Convex Relaxation. As in solving A-optimality, we may define relaxations for with and without repetitions
as (23)–(25).

We now show that
(
El′
(
V(x)V(x)�

)
El

(
V(x)V(x)�

) ) 1
l−l′

is convex in x.

Lemma 8. Let d be a positive integer. For any given pair 0 ≤ l′ < l ≤ d, the function

fl′, l
(
M
) � (

El′
(
M
)

El
(
M
) ) 1

l−l′
(26)

is convex over d × d positive semidefinite matrix M.

Table 2. Summary of approximation ratio obtained by our work on generalized ratio problem.

Problem
A-optimal

(l′ � d− 1, l � d)
min|S|�k

El′ (VSV�
S )

El(VSV�
S )

( ) 1
l−l′ D-optimal

(l′ � 0, l � d)

Case k � d d l · [(l− l′)!]− 1
l−l′ ≤ el

l−l′ e

Asymptotic k� d without Repetitions 1+ ε, for

k ≥Ω d
ε+ log 1=ε

ε2

( ) 1+ ε, for

k ≥Ω l
ε+ log 1=ε

ε2

( ) 1+ ε, for

k ≥Ω d
ε+ log 1=ε

ε2

( )
Arbitrary k and d with Repetitions k

k−d+1
k

k−l+1
k

k−d+1
Asymptotic k� d with Repetitions 1+ ε, for k ≥ d+ d

ε 1+ ε, for k ≥ l+ l
ε 1+ ε, for k ≥ d+ d

ε

With repetitions Without repetitions

min El′ V x( )V x( )�( )
El V x( )V x( )�( )
( ) 1

l−l′

s:t:
∑n
i�1

xi � k

0 ≤ xi ∀i ∈ n[ ]

min El′ V x( )V x( )�( )
El V x( )V x( )�( )
( ) 1

l−l′
(1)

s:t:
∑n
i�1

xi (2)� k

0 ≤ xi ≤ 1 ∀i ∈ n[ ] (3)
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Proof. By theorem 3 in Bullen and Marcus [11], (fl′, l(M))−1 � ((
El(M))=(El′ (M)))1=l−l′ is concave on positive semide-

finite matrices M for each 0 ≤ l′ < l ≤ d. The function 1
z is convex and monotone decreasing over the positive reals

z, and this, together with the concavity of (fl′, l(M))−1 and that
(
fl′, l(M))−1 > 0, implies that fl′, l(M) is convex in

M. w

5.3.2. Approximation via (l′, l)-Wise Independent Distribution. Let 0 ≤ l′ < l ≤ d and U ∈ {Uk,U≤k}. We first show

connection of approximation guarantees on objectives
((El′ (VSV�

S ))=(El(VSV�
S )))1=l−l

′
and (El′ (VSV�

S ))=(El(VSV�
S )).

Suppose we already solve the convex relaxation of generalized ratio problem (23)–(25) and get a fractional solution
x ∈ R

n. Suppose that a randomized algorithmA, on receiving input V ∈ R
d×n and x ∈ R

n, outputs S ∈ U such that

E
S~A

El′
(
VSV�

S
)

El
(
VSV�

S

)[ ]
≤ α′ El′

(
V
(
x
)
V
(
x
)�)

El
(
V
(
x
)
V
(
x
)�) (27)

for some constant α′ > 0. By the convexity of the function f (z) � zl−l′ over positive reals z, we have

E
El′

(
M
)

El (M)[ ]
≥ E

(
El′ (M)
El (M) ) 1

l−l′
[ ]l−l′

(28)

for any semipositive definite matrixM. Combining (27) and (28) gives

E
S~A

(
El′ (VSV�

S
)

El (VSV�
S

) ) 1
l−l′

[ ]
≤ α

(
El′

(
V
(
x
)
V
(
x
)�)

El
(
V
(
x
)
V
(
x
)�)

) 1
l−l′

, (29)

where α � (α′)1=(l−l′). Therefore, it is sufficient for an algorithm to satisfy (27) and give a bound on α′ in order to
solve the generalized ratio problem up to factor α.

To show (27), we first define the proportional l-volume sampling and α-approximate (l′, l)-wise independent
distribution.

Definition 3. Let μ be probability measure on sets in Uk (or U≤k). Then the proportional l-volume sampling with
measure μ picks a set of vectors indexed by S ∈ Uk (or U≤k) with probability proportional to μ(S)El

(
VSV�

S
)
.

Definition 4. Given integers d, k,n, a pair of integers 0 ≤ l′ ≤ l ≤ d, and a vector x ∈ [0,1]n such that 1�x � k, we call
a measure μ on sets in Uk (or U≤k), α-approximate (l′, l)-wise independent with respect to x if for any subsets
T′,T⊆[n]with |T′| � l′ and |T| � l, we have

PrS~μ[T′ ⊆S]
PrS~μ[T⊆S] ≤ αl−l′ · x

T′

xT
,

where xL :� ∏
i∈Lxi for any L⊆[n]. We omit “with respect to x” when the context is clear.

The following theorem reduces the approximation guarantee in (27) to α-approximate (l′, l)-wise independence
properties of a certain distribution μ by using proportional l-volume sampling.

Theorem 9. Given integers d,k,n, V � [v1: : :vn] ∈ R
d×n, and a vector x ∈ [0, 1]n such that 1�x � k, suppose there exists a

distribution μ on sets in Uk (or U≤k) and is α-approximate (l′, l)-wise independent for some 0 ≤ l′ < l ≤ d. Then the proportional

l-volume sampling with measure μ gives an α-approximation algorithm for minimizing
((
El′

(
VSV�

S
))=(El

(
VSV�

S )
))1=(l−l′) over

subsets S⊆[n] of size k.
Proof. Let μ′ denote the sampling distribution over U, where U � Uk or U≤k, with probability of sampling S ∈ U
proportional to μ(S)El

(
VSV�

S
)
. We mechanically replace T,R,d− 1,d, and det in the proof of Theorem 1 with

T′,T, l′, l, and El to obtain

E
S~μ′

[
tr
(∑
i∈S

viv�i

)−1]
≤ αl−l′tr

(∑
i∈[n]

xiviv�i

)−1
:

We finish the proof by observing that (27) implies (29), as discussed earlier. w
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The following subsections generalize algorithms and proofs for with and without repetitions. The algorithm
for generalized ratio problem can be summarized in Algorithm 3. Efficient implementation of the sampling is de-
scribed in Section 6.5.

Algorithm 3 (Generalized Ratio Approximation Algorithm)
1: Given an inputV � [v1, : : : ,vn]where vi ∈ R

d, k a positive integer, and a pair of integers 0 ≤ l′ < l ≤ d.
2: Solve the convex relaxation

x � argminx∈Jn:1�x�k
(
El′

(
V(x)V(x)�)

El
(
V(x)V(x)�)

)1=l−l′
where J � [0, 1] if without repetitions or R+ if with repetitions.

3: if k � l then
4: Sample μ′(S)∝ xSEl

(
VSV�

S
)
for each S ∈ Uk

5: else ifwithout repetition setting and k ≥Ω
(
d=ε+ (log (1=ε))=ε2

)
then

6: Sample μ′(S)∝λSEl
(
VSV�

S
)
for each S ∈ U≤k where λi :� xi=

(
1+ ε=4− xi

)
7: else ifwith repetition setting then
8: Run Algorithm 2, except modifying the sampling step to sample a subset S of U of size k with

Pr [S � S]∝El
(
WSW�

S
)
.

9: end if
10: Output S (If |S| < k, add k− |S| arbitrary vectors to S first).

5.3.3. Approximation Guarantee for Generalized Ratio Problem Without Repetitions. We prove the following
theorem that generalizes Lemmas 3 and 4. The α-approximate (l′, l)-wise independence property, together with
Theorem 9, implies an approximation guarantee for generalized ratio problem without repetitions for k � l and
asymptotically for k �Ω

(
l=ε+ (1=ε2)log (1=ε)).

Theorem 10. Given integers d,k,n, a pair of integers 0 ≤ l′ ≤ l ≤ d, and a vector x ∈ [0,1]n such that 1�x � k, the hard-core
distribution μ on sets in Uk with parameter x is α-approximate (l′, l)-wise independent when k � l for

α � l · [(l− l′
)
!]− 1

l−l′ ≤ el
l− l′

: (30)

Moreover, for any 0 < ε ≤ 2 when k �Ω
( l
ε+ 1

ε2 log
1
ε

)
, the hard-core distribution μ on U≤k with parameter λ, defined by

λi � xi
1+ ε

4− xi
,

is (1+ ε)-approximate
(
l′ − l

)
-wise independent.

Thus for minimizing the generalized ratio problem
((
El′

(
VsVs�

))
=
(
El
(
VsVs�

)))1=(l−l′) over subsets S⊆[n] of size k, we
obtain

• ( el
l−l′

)
-approximation algorithm when k � 1, and

• 1+ ε-approximation algorithm when k �Ω
(
l=ε+ (l=ε2)log (l=ε)).

Proof. We first prove the result for k � 1. For all T′,T⊆[n] such that |T′| � l′, |T| � l,

Pr
S~μ

[S⊇T′]
Pr
S~μ

[S⊇T] �
∑

|S|�k, S ⊇ T′xS∑
|S|�k, S ⊇ Tx

S �
xT

′∑
L∈
( [n]\T′

k− l′

)xL
xT

≤
xT

′∑
L∈
( [n]
k− l′

)xL
xT

:

We now use Maclaurin’s inequality (Lin and Trudinger [31]) to bound the quantity on the right-hand side∑
L∈
( [n]
k − l′

) xL � el−l′
(
x
) ≤ ( n

l − l′
) (
e1
(
x
)
=n

)l−l′ ≤ nl−l′(
l − l′

)
!

(
l=n

)l−l′ � ll−l′(
l − l′

)
!
: (31)

Therefore,
Pr
S~μ

[S⊇T′]
Pr
S~μ

[S⊇T] ≤ ll−l′(
l − l′

)
!

xT
′

xT
, (32)

which proves the (l′, l)-wise independent property of μ with required approximation ratio from (30).
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We now prove the result for k �Ω
(
l= ∈ +(l=∈2)log (l= ∈ ))

. The proof follows similarly from Lemma 4 by replac-
ing T,R with T′,T of sizes l′, l instead of sizes d− 1,d. In particular, Equation (10) becomes

Pr [S⊇T′]
Pr [S⊇T] ≤

(
1+ ε

4

)l−l′ xT
′

xTPr
[∑

i∉TYi ≤ k− l
] : (33)

The Chernoff’s bound (11) still holds by mechanically replacing d,R with l,T respectively. The resulting approxi-
mation ratio α satisfies

αl−l′ �
(
1+ ε

4

)l−l′
1− ε

4
≤ (

1+ ε
)l−l′ ,

where the inequality holds because ε ≤ 2. w

5.3.4. Approximation Guarantee for Generalized Ratio Problem with Repetitions. We now consider the general-
ized ratio problem with repetitions. The following statement is a generalization of Lemma 5.

Theorem 11. Given V � [v1 v2: : :vn], where vi ∈ R
d, a pair of integers 0 ≤ l′ ≤ l ≤ d, an integer k ≥ l, and 1 ≥ ε > 0, there

is an α-approximation algorithm for minimizing
((
El′

(
VsV�

s
))
=
(
El
(
VsV�

s
)))1=(l−l′)

over subsets S⊆[n] of size k with repeti-

tions for

α ≤ k (1+ ε
)

k− l+ 1
: (34)

Proof. We use the algorithm similar to Algorithm 2 except that in Step 5, we sample S⊆U of size k where Pr [S �
S]∝E1

(
WsWs

T) in place of Pr [S � S]∝E1
(
WsW�

s
)
. The analysis follows on the same line as in Lemma 5. In Lemma 5,

it is sufficient to show that the uniform distribution μ over subsets S⊆U of size k is k=
(
k− d+ 1

)
-approximate

(d− 1,d)-wise independent (as in (13)). Here, it is sufficient to show that the uniform distribution μ is

k=
(
k− l+ 1)-approximate

(
l′, l

)
-wise independent. For T,T′ ⊆[n] of size

(
l′, l

)
, the calculation of

(
Pr
μ [S⊇T′]

)/
(
Pr
μ [S⊇T]

)
and yT

′

yT is straightforward

Pr
μ [S⊇T′]
Pr
μ [S⊇T] �

(qk− l′
k− l′

)
=
(qk
k

)
(qk− l
k− l

)
=
(qk
k

) ≤ (
qk
)l−l′ (k− l

)
!(

k− l′
)
!

and
yT

′

yT
� ql−l

′
: (35)

Therefore, μ is α-approximate
(
l′, l

)
-wise independent for

α �
(Pr

μ
[S⊇T′]

Pr
μ
[S⊇T] ·

yT

yT′

) 1
l−l′

≤
( (

qk
)l−l′ (

k−l
)
!(

k−l′
)
!

ql
′−l
) 1
l−l′

� k

[(k− l′
)(
k− l′ − 1

)
⋯

(
k− l+ 1

)] 1
l−l′

≤ k
k− l+ 1

as we wanted to show. w

We note that the l-proportional volume sampling in the proof of Theorem 11 can be implemented efficiently,
and the proof is outlined in Section 6.5.

5.3.5. Integrality Gap. Finally, we state an integrality gap for minimizing generalized ratio objective((
El′

(
VsV�

s
))
=
(
El
(
VsV�

s
)))1=(l−l′) over subsets S⊆[n] of size k. The integrality gap matches our approximation ratio of

our algorithm with repetitions when k is large.

Theorem 12. For any given positive integers k,d and a pair of integers 0 ≤ l′ ≤ l ≤ d with k > l′, there exists an instance V �
[v1, : : : ,vn] ∈ R

d×n to the problem of minimizing
((
El′

(
VsV�

s
))
=
(
El
(
VsV�

s
)))1=(l−l′) over subsets S⊆[n] of size k such that

OPT ≥
(

k
k− l′

− δ

)
·CP

for all δ > 0, where OPT denotes the value of the optimal integral solution and CP denotes the value of the convex program.
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This implies that the integrality gap is at least k
k−l′ for minimizing

((
El′

(
VsV�

s
))=(El

(
VsV�

s
)))1=(l−l′) over subsets

S⊆[n] of size k. The theorem applies to both with and without repetitions.

Proof. The instance V � [v1, : : : ,vn] will be the same for with and without repetitions. For each 1 ≤ i ≤ d, let ei de-
note the unit vector in the direction of axis i. Choose

vi �
���
N

√ · ei for i � 1, : : : , l′
ei for i � 1, : : : , l′

,

{
where N > 0 is a constant to be chosen later. Set vi, i > l to be at least k copies of each of these vi for i ≤ l, as we can
make n as big as needed. Hence, we may assume that we are allowed to pick only vi, i ≤ l, but with repetitions.

Let S∗ represent the set of vectors in OPT and yi be the number of copies of vi in S∗ for 1 ≤ i ≤ l. Clearly yi ≥ 1
for all i � 1, : : : , l (else the objective is unbounded). The eigenvalues of VS∗V�

S∗ are

λ
(
VS∗V�

S∗
) � (

y1N,y2N, : : : ,yl′N,yl′+1,yl′+2, : : : ,yl, 0, : : : , 0
)
:

Hence, both El′ (VS∗V�
S∗ ) � el′ (λ) and El(VS∗V�

S∗ ) � el(λ) are polynomials in variables N of degree l′.

Now let N→∞. To compute (OPT)l−l′ � (El′ (VS∗V�
S∗ ))=(El(VS∗V�

S∗ )), we only need to compute the coefficient of
the highest degree monomial Nl′ . The coefficient of Nl′ in el′ (λ), el(λ) are exactly ∏l′

i�1yi,
∏l′

i�1yi, and therefore

(
OPT

)l−l′ � El′
(
VS∗V�

S∗
)

El
(
VS∗V�

S∗
) →∏l′

i�1 yi∏l
i�1 yi

�
( ∏l

i�l′+1
yi

)−1
:

Observe that
∏l

i�l′+1yi is maximized under the budget constraint Σl
i�1 yi � |S∗| � k when yj � 1 for j � 1, : : : , l′.

Therefore,

∏l

i�l′+1
yi ≤

(
1

l− l′
∑l

i�l′+1
yi

)l−l′
�
(
k− l′

l− l′

)l−l′
,

where the inequality is by AM-GM (arithmetic mean and geometric mean). Hence, OPT is lower bounded by a
quantity that converges to (l− l′)=(k− l′) as N→∞.

We now give a valid fractional solution x to upper bound CP for each N > 0. Choose

xi �

k���
N

√ for i � 1, : : : , l′

k− kl′���
N

√
l− l′

for i � l′ + 1, : : : , l

0 for i > l

:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
Then, eigenvalues of V(x)V(x)� are

λ′ :� λ
(
V
(
x
)
V
(
x
)�) � (

x1N,x2N, : : : ,xl′N,xl′+1,xl′+2, : : : ,xl, 0, : : : , 0
)

� (
k

���
N

√
,k

���
N

√
, : : : ,k

���
N

√
,xl′+1,xl′+2, : : : ,xl, 0, : : : , 0

)
:

Now as N→∞, the dominating terms of El′ (V(x)V(x)�) � el′ (λ′) is ∏l′
i�1(k

���
N

√ ) � kl
′ ( ���

N
√ )l′ . Also, we have

El
(
V
(
x
)
V
(
x
)�) � el

(
λ′) �∏l′

i�1

(
k

���
N

√ ) ∏l

i�l′+1
xi

� kl
′
( k− kl′��

N
√

l−l′
)l−l′ ( ���

N
√ )l′ → kl

′ ( k
l−l′

)l−l′ ( ���
N

√ )l′
:

Hence,

CP ≤
(
El′

(
V
(
x
)
V
(
x
)�)

El
(
V
(
x
)
V
(
x
)�)

)l−l′
→ l− l′

k
:

Nikolov, Singh, and Tantipongpipat: PVS and Approx Alg for A-Optimal Design
Mathematics of Operations Research, 2022, vol. 47, no. 2, pp. 847–877, © 2022 INFORMS 863

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.o

rg
 b

y 
[1

30
.2

07
.9

3.
57

] o
n 

05
 O

ct
ob

er
 2

02
2,

 a
t 1

2:
25

 . 
Fo

r p
er

so
na

l u
se

 o
nl

y,
 a

ll 
rig

ht
s r

es
er

ve
d.

 



Therefore, OPTCP is lower bounded by a ratio that converges to

l− l′

k− l′
· k
l− l′

� k
k− l′

: w

6. Efficient Algorithms
In this section, we outline efficient sampling algorithms, as well as deterministic implementations of our round-
ing algorithms, both for with and without repetition settings.

6.1. Efficient Randomized Proportional Volume
Given a vector λ ∈ R

n
+, we show that proportional volume sampling with μ(S) ∝λS for S ∈ U, where U ∈ {Uk,U≤k}

can be done in time polynomial in the size n of the ground set. We start by stating a lemma which is very useful
both for the sampling algorithms and the deterministic implementations.

Lemma 9. Let λ ∈ R
n
+,v1, : : : ,vn ∈ R

d, and V � [v1, : : : ,vn]. Let I, J⊆[n] be disjoint. Let 1 ≤ k ≤ n, 0 ≤ d0 ≤ d. Consider the
following function:

F
(
t1, t2, t3

) � det
(
In + t1diag

(
y
)+ t1t2diag

(
y
)1=2VV�diag

(
y
)1=2)

where t1, t2, t3 ∈ R are indeterminate, In is the n × n identity matrix, and y ∈ R
n with

yi �
λit3, if i ∈ I
0, if i ∈ J
λi, otherwise

:
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Then F(t1, t2, t3) is a polynomial and the quantity∑
|S|�k, I⊆S, J∩S�∅

λS
∑

|T|�d0,T⊆S
det

(
V�

T VT
)

(36)

is the coefficient of the monomial tk1t
d0
2 t

|I|
3 . Moreover, this quantity can be computed in O

(
n3d0k|I| · log (d0k|I|)) number of ar-

ithmetic operations.

Proof. Let us first fix some S⊆[n]. Then we have∑
|T|�d0,T⊆S

det
(
V�

T VT
) � Ed0

(
V�

S VS
) � [td02 ]det

(
IS + t2VSV�

S
)
,

where the notation [td02 ]p(t2) denotes the coefficient of td0 in the polynomial p(t2) � det (IS + t2VSV�
S ). The first

equality is just Cauchy-Binet, and the second one is standard and follows from the Leibniz formula for the deter-
minant. Therefore, (36) equals [

td02
] ∑
|S|�k, I⊆S, J∩S�∅

λSdet
(
IS + t2VSV�

S
)
:

To complete the proof, we establish the following claim.

Claim 1. Let L be an n × n matrix, and let λ, I, J, k,y be as in the statement of the lemma. Then,∑
|S|�k, I⊆S, J∩S�∅

λSdet
(
LS,S

) � [
t|I|3
]
Ek

(
diag

(
y
)1=2L diag

(
y
)1=2)

�
[
tk1t

|I|
3

]
det

(
In + t1diag

(
y
)1=2L diag

(
y
)1=2)

:

Proof. By Cauchy-Binet,

Ek

(
diag

(
y
)1=2L diag

(
y
)1=2) � ∑

|S|�k
ySdet

(
LS,S

)
� ∑

|S|�k, J∩S�∅
t|S∩I|3 λSdet

(
LS,S

)
:

The first equality follows. The second is, again, a consequence of the Leibniz formula for the determinant. w
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Plugging in L � In + t2VV� in Claim 1 gives that (36) equals[
tk1t

d0
2 t

|I|
3

]
det

(
In + t1diag

(
y
)1=2(In + t2VV�)diag(y)1=2)
�
[
tk1t

d0
2 t

|I|
3

]
det

(
In + t1diag

(
y
)+ t1t2diag

(
y
)1=2VV�diag

(
y
)1=2)

:

This completes the proof. For the running time, the standard computation time of matrix multiplication and
determinant of n × n matrices is O(n3) entry-wise arithmetic operations. We need to keep all monomials in the
form ta1t

b
2t

c
3, where a ≤ k,b ≤ d0, c ≤ |I|, of which there are O(d0k|I|). By representing multivariate monomials in

single variable (Pan [41]), we may use fast Fourier transform to do one polynomial multiplication of entries
of the matrix in O

(
d0k|I| · log (d0k|I|)) number of arithmetic operations. This gives the total running time of

O
(
n3d0k|I| · log (d0k|I|)). w

Using the previous lemma, we now prove the following theorem that will directly imply Lemma 1.

Theorem 13. Let λ ∈ R
n
+,v1, : : : ,vn ∈ R

d, 1 ≤ k ≤ n, U ∈ {Uk,U≤k}, and V � [v1, : : : ,vn]. Then there is a randomized algo-
rithm A that outputs S ∈ U such that

Pr
S~A

[S � S] � λSdet
(
VSV�

S
)∑

S′∈Uλ
S′det

(
VS′V�

S′
) �: μ′(S):

That is, the algorithm correctly implements proportional volume sampling μ′ with hard-core measure μ on U with parame-
ter λ.Moreover, the algorithm runs in O

(
n4dk2log (dk)) number of arithmetic operations.

Observation 1. Wang et al. [50] show that we may assume that the support of an extreme fractional solution of
convex relaxation has size at most k+ d2. Thus, the runtime of proportional volume sampling is O

((k+ d2)4
dk2log (dk)). Although the degrees in d,k are not small, this runtime is independent of n.

Observation 2. It is true in theory and observed in practice that solving the continuous relaxation rather than the
rounding algorithm is a bottleneck in computation time, as discussed in Allen-Zhu et al. [2]. In particular, solving
the continuous relaxation of A-optimal design takes O

(
n2+ω log n

)
number of iterations by standard ellipsoid

method and O
((n+ d2)3:5) number of iterations by SDP (semi-definite program), where O(nω) denotes the runtime

of n × nmatrix multiplication. In most applications where n� k, these running times dominates one of proportional
volume sampling.

Proof. We can sample by starting with an empty set S � ∅. Then, in each step i � 1, 2, : : : ,n, the algorithm decides
with the correct probability

Pr
S~μ′[i ∈ S|I⊆S, J∩S � ∅],

whether to include i in S or not, given that we already know that we have included I in S and excluded J from S
from previous steps 1, 2, : : : , i− 1. Let I′ � I ∪{i}. This probability equals

Pr
S~μ′[i ∈ S|I⊆S, J∩S � ∅] �

Pr
S~μ′[I′ ⊆S, J∩S � ∅]
Pr
S~μ′[I⊆S, J∩S � ∅]

�
∑

S∈U,I′ ⊆S,J∩S�∅λ
Sdet

(
VSV�

S
)∑

S∈U,I⊆S,J∩S�∅λ
Sdet

(
VSV�

S

)
�
∑

S∈U,I′ ⊆S,J∩S�∅λ
S
∑

|R|�d,R⊂Sdet
(
VRV�

R
)∑

S∈U,I⊆S,J∩S�∅λ
S
∑

|R|�d,R⊂Sdet
(
VRV�

R
) ,

where we apply the Cauchy-Binet formula in the last equality. For U � Uk, both the numerator and denominator
are summations over S restricted to |S| � k, which can be computed inO

(
n3dk2log (dk)) number of arithmetic oper-

ations by Lemma 9. For the case U � U≤k, we can evaluate summations in the numerator and denominator re-
stricted to |S| � k0 for each k0 � 1, 2, : : : k by computing polynomial F(t1, t2, t3) in Lemma 9 only once and then sum
those quantities over k0. w
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6.2. Efficient Deterministic Proportional Volume
We show that for hard-core measures there is a deterministic algorithm that achieves the same objective value as
the expected objective value achieved by proportional volume sampling. The basic idea is to use the method of
conditional expectations.

Theorem 14. Let λ ∈ R
n
+,v1, : : : ,vn ∈ R

d, 1 ≤ k ≤ n, U ∈ {Uk, U≤k}, and V � [v1, : : : ,vn]. Then there is a deterministic al-
gorithmA′ that outputs S∗ ⊆[n] of size k such that

tr
(
VS∗V�

S∗
)−1 ≥ E

μ′ [tr
(
VSV�

S

)−1],
where μ′ is the probability distribution defined by μ′(S) ∝λSdet (VSV�

S ) for all S ∈ U. Moreover, the algorithm runs in
O
(
n4dk2log (dk)) number of arithmetic operations.

Again, with the assumption that n ≤ k+ d2 (Observation 1), the runtime for deterministic proportional volume
sampling is O

((k+ d2)4dk2log (dk)).
Proof. To prove the theorem, we derandomize the sampling algorithm in Theorem 13 by the method of condi-
tional expectations. The deterministic algorithm starts with S∗ � ∅, and then chooses, at each step i � 1, 2, : : : ,n,
whether to pick i to be in S∗ or not, given that we know from previous steps to include or exclude each element
1, 2, : : : , i− 1 from S∗. The main challenge is to calculate exactly the quantity of the form

X
(
I, J

)
:� E

S~μ′[tr
(
VSV�

S

)−1∣∣I⊂S, J∩S � ∅]

where I, J ⊆ [n] are disjoint. If we can efficiently calculate the quantity of such form, the algorithm can, at each
step i � 1, 2, : : : ,n, calculate X(I′ ∪{i}, J′) and X(I′, J′ ∪{i}), where I′, J′ ⊆ [i− 1] denote elements we have decided to
pick and not to pick, respectively, and then include i to S∗ if and only if X(I′ ∪{i}, J′) ≥ X(I′, J′ ∪{i}):
The quantity X(I, J) equals

E
S~μ′[tr

(
VSV�

S

)−1|I⊂S, J∩S � ∅] � ∑
I⊆S, J∩S�∅

S∈U,
Pr
μ′ [S � S|I ⊆ S,S∩J � ∅]tr

[(
VSV�

S
)−1]

� ∑
I⊆S, J∩S�∅

S∈U,

λS det
(
VSV�

S
)∑

S′∈U,I⊆S,J∩S�∅λ
S′det

(
VS′V�

S′
) tr[(VSV�

S
)−1]

�
∑

S∈U,I⊆S,J∩S�∅ λ
SEd−1

(
VSV�

S
)∑

S∈U,I⊆S,J∩S�∅ λ
S
∑

|R|�d,R⊂S det
(
VRV�

R
)

�
∑

S∈U,I⊆S,J∩S�∅ λ
S
∑

|T|�d−1,T⊂S det
(
V�

T VT
)∑

S∈U,I⊆S,J∩S�∅ λ
S
∑

|R|�d,R⊂S det
(
VRV�

R
) ,

where we write inverse of trace as ratio of symmetric polynomials of eigenvalues in the third equality and use
the Cauchy-Binet formula for the third and the fourth equality. The rest of the proof is now identical to the proof
of Theorem 13, except with different parameters d0 � d− 1,d in f (t1, t2, t3)when applying Lemma 9. w

6.3. Efficient Randomized Implementation of k/(k2d11) -Approximation Algorithm with Repetitions
First, we need to state several lemmas needed to compute particular sums. The main motivation that we need a
different method from Sections 6.1 and 6.2 to compute a similar sum is that we want to allow the ground set U
of indices of all copies of vectors to have an exponential size. This makes Lemma 9 not useful, as the matrix need-
ed to be computed has dimension |U | × |U |. The main difference, however, is that the parameter λ is now a cons-
tant, allowing us to obtain sums by computing a more compact d × d matrix.

Lemma 10. Let V � [v1, : : : ,vm] be a matrix of vectors vi ∈ R
d with n ≥ d distinct vectors. Let F⊆[m] and let 0 ≤ r ≤ d

and 0 ≤ d0 ≤ d be integers. Then the quantity Σ|T|�d0,|F∩R|�r det (V�
T VT) is the coefficient of td−d01 td0−r2 tr3 in

f
(
t1, t2, t3

) � det
(
t1Id +

∑
i∈F

t3viv�i +∑
i∉F

t2viv�i

)
, (37)

where t1, t2, t3 ∈ R are indeterminate and Id is the d × d identity matrix. Furthermore, this quantity can be computed in
O
(
n(d− d0 + 1)d20d2logd

)
number of arithmetic operations.
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Proof. First, note that det
(
t1I +Σi∈Ft3viv�i +Σi∉Ft2viv�i

) � ∏d
i�1(t1 + νi), where ν(M) � {ν1, : : : ,νd} is the vector of ei-

genvalues of the matrix M � Σi∈Ft3viv�i +Σi∉Ft2viv�i . Hence, the coefficient of td−d01 in det
(
t1I+Σi∈Ft3viv�i +

Σi∉Ft2viv�i
)
is ed0(ν(M)):

Next, observe that M is in the form V′V′� where V′ is the matrix where columns are
���
t3

√
vi, i ∈ F and���

t2
√

vi, i ∉ F. Applying Cauchy-Binet to Ed0(V′V′�), we get

Ed0

(∑
i∈F

t3viv�i +∑
i∉F

t2viv�i

)
� Ed0

(
V′V′�) � ∑

|T|�d0
det

(
V

′�
T V′

T
)

�∑|F|
l�0

∑
|T|�d0, |T∩F|�l

det
(
V

′�
T V′

T
)

�∑|F|
l�0

∑
|T|�d0, |T∩F|�l

tl3t
d0−l
2 det

(
V�

T VT
)
,

where we use Lemma 2 for the last equality. The desired quantity
∑

|T|�d0,|F∩R|�rdet (V�
T VT) is then exactly the co-

efficient at l � r in the sum on the righ- hand side.
To compute the running time, because there are only n distinct vectors, we may represent sets V,F compactly

with distinct vi’s and number of copies of each distinct vi’s. Therefore, computing the matrix sum takes O
(
nd2

)
entry-wise operations. Next, the standard computation time of determinant of d × dmatrix is O(d3) entry-wise ar-
ithmetic operations. This gives a total of O

(
nd2 + d3

) �O
(
nd2

)
entry-wise operations.

For each entry-wise operation, we keep all monomials in the form ta1t
b
2t

c
3, where a ≤ d− d0,b ≤ d0 − r, c ≤ r, of

which there are O((d− d0 + 1)d20). By representing multivariate monomials in a single variable (Pan [41]) of degree
O((d− d0 + 1)d20), we may use fast Fourier transform to do one polynomial multiplication of entries of the matrix
in O

((
d− d0 + 1

)
d20 log d

)
number of arithmetic operations. This gives the total runtime of O

(
n
(
d− d0 + 1

)
d20d

2log d
)

arithmetic operations. w

Lemma 11. Let V � [v1, : : : ,vm] be a matrix of vectors vi ∈ R
d with n ≥ d distinct vectors. Let F⊆[m] and let 0 ≤ r ≤ d

and 0 ≤ d0 ≤ d be integers. There is an algorithm to compute Σ|S|�k,S ⊇ F Ed0
(
VSV�

S
)
with O

(
n(d− d0 + 1)d20d2log d

)
number

of arithmetic operations.

Proof. We apply Cauchy-Binet:∑
|S|�k, S⊇F

Ed0
(
VSVT

S
) � ∑

|S|�k,S⊇F

∑
|T|�d0,T⊂S

det
(
V�

T VT
)

� ∑
|T|�d0

det
(
V�

T VT
) (m − |F| − d0 + |F∩T|

k − |F| − d0 + |F∩T|
)

� ∑d
r�0

(
m − |F| − d0 + r
k − |F| − d0 + r

) ∑
|T|�d0, |F∩T|�r

det
(
V�

T VT
)
,

where we change the order of summations for the second equality and enumerate over possible sizes of F∩ T to
get the third equality. We compute f (t1, t2, t3) in Lemma 10 once with O

(
n(d− d0 + 1)d20d2log d

)
number of arith-

metic operations, so we obtain values of Σ|T|�d0,|F∩T|�r det
(
V�

T VT
)
for all r � 0, : : : ,d0. The rest is a straightforward

calculation. w

We now present an efficient sampling procedure for Algorithm 2. We want to sample S proportional to
det (WSW�

S ). The set S is a subset of all copies of at most n distinct vectors, and there can be exponentially many
copies. However, the key is that the quantity f (t1, t2, t3) in (37) is still efficiently computable because exponentially
many of these copies of vectors are the same.

Theorem 15. Given inputs n,d,k,ε,x ∈ R
n
+ with Σn

i�1xi � k, and vectors v1, : : : ,vn to Algorithm 2 we define q,U,W as in
Algorithm 2. Then, there exists an implementation A that samples S from the distribution μ′ over all subsets S⊆ U of size
k, where μ′ is defined by Pr S~μ′ [S � S]∝det

(
WSW�

S
)
for each S⊆U, |S| � k. Moreover, A runs in O

(
n2d4k log d

)
number

of arithmetic operations.

Theorem 15 says that Steps 4 and 5 in Algorithm 2 can be efficiently implemented. Other steps except 4 and 5
obviously use O

(
n2d4k log d

)
number of arithmetic operations, so the previous statement implies that Algorithm
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2 runs in O
(
n2d4k log d

)
number of arithmetic operations. Again, by Observation 1, the number of arithmetic op-

erations is in fact O
((k+ d2)2d4k log d

)
.

Proof. Let mi � qx′i be the number of copies of vector vi (recall that q � (2n)=(εk)). Let wi,j denote the jth copy of
vector vi. Write U � {(i, j) : i ∈ [n], j ∈ [mi]} be the new set of indices after the copying procedure. Denote S a ran-
dom subset (not multiset) of U that we want to sample. Write W as the matrix with columns wi,j for all (i, j) ∈U.
Let Ei � {wi,j : j � 1, : : : ,mi} be the set of copies of vector vi. For any A⊆U, we say that A has ki copies of vi to mean
that |A∩Ei| � ki.

We can define the sampling algorithm A by sampling, at each step t � 1, : : : ,n, how many copies of vi are to be
included in S⊆U. Denote μ′ the volume sampling on W we want to sample. The problem then reduces to effi-
ciently computing

Pr
μ′ [S has kt copies of vt|S has ki copies of vi, ∀i � 1, : : : , t− 1]

�
Pr
μ′ [S has ki copies of vi, ∀i � 1, : : : , t]

Pr
μ′ [S has ki copies of vi, ∀i � 1, : : : , t− 1]

(38)

for each kt � 0, 1, : : : ,k−Σt−1
i�1 ki. Thus, it suffices to efficiently compute quantity (38) for any given 1 ≤ t ≤ n and

k1, : : : , kt such that Σt
i�1ki ≤ k.

We now fix t, k1, : : : ,kt. For any i ∈ [n], getting any set of ki copies of vi is the same, that is, events S ∩ Ei � Fi
and S ∩ Ei � F′i under S ~ μ′ have the same probability for any subsets Fi,F′i ⊆ Ei of the same size. Therefore, we
fix one set of ki copies of vi to be Fi � {wi,j : j � 1, : : : ,ki} for all i ∈ [n] and obtain

Pr[S has ki copies of vi, ∀i � 1, : : : , t] �∏t

i�1

(mi
ki

)
Pr[S ∩ Ei � Fi, ∀i � 1, : : : t]:

Therefore, (38) equals∏t
i�1

(mi

ki

)
Pr [S ∩ Ei � Fi, ∀i � 1, : : : t]

/∏t−1
i�1

(mi

ki

)
Pr [S ∩ Ei � Fi, ∀i � 1, : : : t − 1]

�
(
mt

kt

) ∑
|S|�k,S∩Ei�Fi,∀i�1,: : : t det

(
WSW�

S
)∑

|S|�k,S∩Ei�Fi,∀i�1,: : : t−1 det
(
WSW�

S

) : (39)

To compute the numerator, define W′ a matrix of vectors in W restricted to indices U \(∪t
i�1Ei\Fi), and

F :�∪ t
i�1Fi, then we have ∑

|S|�k,S⊆W,S∩Ei�Fi,∀ i�1, : : : t
det

(
WSW�

S
) � ∑

|S|�k,S⊆W′,S⊇F
det

(
W′

SW
′
S
�): (40)

By Lemma 11, the number of arithmetic operations to compute (40) is O
(
n(d− d0 + 1)d20d2 log d

) �O
(
nd4 log d

)
(by

applying d0 � d). Therefore, because in each step t � 1, 2, : : : ,n, we compute (38) at most k times for different
values of kt, the total number of arithmetic operations for sampling algorithm A is O

(
n2d4k log d

)
. w

Remark 2. Although Theorem 15 and Observation 1 imply that randomized rounding for A-optimal design with

repetition takes O
((k+ d2)2d4k log d

)
number of arithmetic operations, this does not take into account the size of

numbers used in the computation which may scale with input ε. It is not hard to see that the sizes of coefficients

f (t1, t2, t3) in Lemma 10, of the number
(m− |F| − d0 + r
k− |F| − d0 + r

)
in the proof of Lemma 11 and of

(mt
kt

)
in (39) scale linearly

with O(k log (m)), where m � ∑n
i�1mi. As we apply m ≤ qk � (2n)=ε in the proof of Theorem 15, the runtime of ran-

domized rounding for A-optimal design with repetition, after taking into account the size of numbers in the com-

putation, has an extra factor of k log
(
n=ε

)
and becomes O

((k+ d2)2d4k2 log d log
(
k+ d2=ε

)))
.

6.4. Efficient Deterministic Implementation of k=(k2d11) -Approximation Algorithm with Repetitions
We show a deterministic implementation of proportional volume sampling used for the k=(k− d+ 1)-approx-
imation algorithm with repetitions. In particular, we derandomized the efficient implementation of Steps 4
and 5 of Algorithm 2 and show that the running time of deterministic version is the same as that of the ran-
domized one.
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Theorem 16. Given inputs n,d, k,ε,x ∈ R
n
+ with Σn

i�1xi � k, and vectors v1, : : : ,vn to Algorithm 2, we define q,U ,W as in
Algorithm 2. Then, there exists a deterministic algorithm A′ that outputs S∗ ⊆U of size k such that

tr
(
WS∗W�

S∗
)−1 ≥ E

S~μ′[tr
(
WSW�

S

)−1],
where μ′ is a distribution over all subsets S⊆U of size k defined by μ′(S) ∝det (WSW�

S ) for each set S⊆U of size k.More-
over,A′ runs in O

(
n2d4k log d

)
number of arithmetic operations.

Again, together with Observation 1 and Remark 2, Theorem 16 implies that the k=(k− d+ 1)-approximation

algorithm for A-optimal design with repetitions can be implemented deterministically in O
((k+ d2)2d4k log d

)
number of arithmetic operations and, after taking into account the size of numbers in the computation, in

O
((
k+ d2

)2d4k2 logd log ((k+ d2)=ε)) time.

Proof. We can define the deterministic algorithm A′ by deciding, at each step t � 1, : : : ,n, how many copies of vi
are to be included in S∗ ⊆U . The problem then reduces to efficiently computing

X
(
k1, : : : ,kt

)
:� E

μ′

[
tr
(
WSW�

S

)−1 ∣∣ S has ki copies of vi, ∀i � 1, : : : , t− 1, t
]
, (41)

where k1, : : : , kt−1 is already decided by previously steps of the algorithm, and now we compute (41) for each
kt � 0, 1, : : : , k−Σt−1

i�1 ki. A
′ then chooses value of kt that maximizes (41) to complete step t.

Recall the definitions from proof of Theorem 15 that Fi,Ei are the sets of fixed ki copies and all copies of vi,
respectively, W′ is the matrix of vectors in W restricted to indices U \(∪t

i−1Ei\Fi), and F :�∪t
i�1Fi. Consider

that

X
(
k1, : : : ,kt

) � ∑
S ⊆U ;|S|�k;

|S∩Ei |�ki,∀i�1, : : :,t

Pr
μ′ [S � S|S has ki copies of vi, ∀i � 1, : : : , t]tr[(WSW�

S
)−1]

� ∑
S⊆U ;|S|�k;

|S∩Ei |�ki,∀i�1, : : :,t

det
(
WSW�

S
)∑

S′ ⊆U ;|S′ |�k;|S′∩Ei |�ki,∀i�1,: : : ,t det
(
WS′W�

S′
) tr[(WSW�

S
)−1]

�
∑

S⊆U ;|S|�k;|S∩Ei |�ki,∀i�1,: : : ,t Ed−1
(
WSW�

S
)∑

S⊆U ;|S|�k;|S∩Ei |�ki ,∀i�1,: : : ,t det
(
WSW�

S

)
�
∏t

i�1

(
mi
ki

)∑
S⊆U ;|S|�k;S⊇F Ed−1

(
W′

SW
′
S
�)

∏t
i�1

(
mi
ki

)∑
S⊆U ;|S|�k;S⊇F det

(
W′

SW
′
S
�)

�
∑

S⊆U ;|S|�k;S⊇F Ed−1
(
W′

SW
′
S
�)∑

S⊆U ;|S|�k;S⊇F det
(
W′

SW
′
S
�) :

By Lemma 11, we can compute the numerator and denominator inO
(
n(d− d0 + 1)d20d2 log d

) �O
(
nd4 logd

)
(by apply-

ing d0 � d− 1,d) number of arithmetic operations. Therefore, because in each step t � 1, 2, : : : ,n, we compute (41) at
most k times for different values of kt, the total number of arithmetic operations for sampling algorithm A is
O (n2d4k log d

)
.

6.5. Efficient Implementations for the Generalized Ratio Objective
In Sections 6.1 and 6.2, we obtain efficient randomized and deterministic implementations of proportional vol-
ume sampling with measure μ when μ is a hard-core distribution over all subsets S ∈ U (where U ∈ {Uk,U≤k})
with any given parameter λ ∈ R

n
+. Both implementations run in O

(
n4dk2 log (dk)) number of arithmetic opera-

tions. In Sections 6.3 and 6.4, we obtain efficient randomized and deterministic implementations of proportional
volume sampling over exponentially-sized matrix W � [wi,j] of m vectors containing n distinct vectors in
O
(
n2d4k logd

)
number of arithmetic operations. In this section, we show that the results from Sections 6.1 to

6.4 generalize to proportional l-volume sampling for generalized ratio problem.

Theorem 17. Let n,d,k be positive integers, λ ∈ R
n
+, U ∈ {Uk,U≤k}, V � [v1, : : : ,vn] ∈ R

d×n, and 0 ≤ l′ < l ≤ d be a pair of
integers. Let μ′ be the l-proportional volume sampling distribution over U with hard-core measure μ of parameter λ, that is
μ′(S)∝λSEl

(
VSV�

S
)
for all S ∈ U. There are
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• an implementation to sample from μ′ that runs in O
(
n4lk2 log (lk)) number of arithmetic operations, and

• a deterministic algorithm that outputs a set S∗ ∈ U of size k such that(
El′

(
VS∗V�

S∗
)

El
(
VS∗V�

S∗
) ) 1

l−l′ ≥ E
S~μ′

(
El′

(
VSV�

S

)
El
(
VSV�

S

) ) 1
l−l′

[ ]
(42)

that runs in O
(
n4lk2 log (lk)) number of arithmetic operations.

Moreover, let W � [wi,j] be a matrix of m vectors where wi,j � vi for all i ∈ [n] and j. Denote U the index set of W. Let μ′
be the l-proportional volume sampling over all subsets S⊆U of size k with measure μ that is uniform, that is,
μ′(S)∝El

(
WSW�

S
)
for all S⊆U , |S| � k. There are

• an implementation to sample from μ′ that runs in O
(
n2(d− l+ 1)l2d2k log d

)
number of arithmetic operations, and

• a deterministic algorithm that outputs a set S∗ ∈ U of size k such that(
El′

(
WS∗W�

S∗
)

El
(
WS∗W�

S∗
) ) 1

l−l′ ≥ E
S~μ′

(
El′

(
WSW�

S

)
El
(
WSW�

S

) ) 1
l−l′

[ ]
(43)

that runs in O
(
n2
((d− l′ + 1)l′2 + (d− l+ 1)l2) d2k logd) number of arithmetic operations.

As in Observation 1, we can replace n � k+ d2 in all running times in Theorem 17 so that running times of all variants
of proportional volume sampling are independent of n. We also note, as in Remark 2, that running times of l-proportion-
al volume sampling over m vectors with n distinct vectors have an extra factor of k logm after taking into account the
size of numbers in computation, allowing us to do sampling over exponential-sized ground set [m].
Proof. By the convexity of f (z) � zl−l′ over positive reals z, we have E [X] ≥ (E [X1=(l−l′)])l−l′ for a nonnegative ran-
dom variable X. Therefore, to show (42), it is sufficient to show that

El′ (VS∗V�
S∗
)

El (VS∗V�
S∗
) ≥ E

S~μ′
El′ (VSV�

S
)

El (VSV�
S

) : (44)

That is, it is enough to derandomized with respect to the objective (El′ (VSV�
S ))=(El(VSV�

S )), and the same is true
for showing (43). Hence, we choose to calculate the conditional expectations with respect to this objective.

We follow the exact same calculation for l-proportional volume sampling for generalized ratio objective as
original proofs of efficient implementations of all four algorithms in A-optimal objective. We observe that those
proofs in A-optimal objective ultimately rely on the ability to, given disjoint I, J⊆[n] (or in the other case, [m]),
efficiently compute ∑

S∈U, I⊆S, J∩S�φ
λS

∑
|R|�d,R⊆S

det
(
VRV�

R
)
and

∑
S∈U, I⊆S, J∩S�φ

λS
∑

|T|�d−1,T⊆S
det

(
V�

T VT
)

(or in the other case, replace V with W and λS � 1 for all S). The proofs for generalized ratio objective follow the
same line as those proofs of four algorithms, except that we instead need to efficiently compute∑

S∈U, I⊆S, J∩S�φ
λS

∑
|T|�l,R⊆S

det
(
V�

T VT
)
and

∑
S∈U, I⊆S, J∩S�φ

λS
∑

|T′ |�l′,T′ ⊆S
det

(
V�

T′VT′
)

(note the change of R,T of size d,d− 1 to T,T′ of size l, l′, respectively). However, the computations can indeed be
done efficiently by using different d0 � l′, l instead of d0 � d− 1,d when applying Lemmas 9–11 in the proofs and
then following a similar calculation. The proofs for running times are identical. w

7. Integrality Gaps
In this section, we show the integrality gap of the natural convex relaxations of A- and E-optimal problems.

7.1. Integrality Gap for E-Optimality
Here we consider another objective for optimal design of experiments, the E-optimal design objective and show
that our results in the asymptotic regime do not extend to it. Once again, the input is a set of vectors
v1, : : : ,vn ∈ R

d, and our goal is to select a set S⊆[n] of size k, but this time we minimize the objective
‖(Σi∈S viv�i

)−1‖, where || · || is the operator norm, that is, the largest singular value. By taking the inverse of the
objective, this is equivalent to maximizing λ1

(
Σi∈S viv�i

)
, where λi(M) denotes the ith smallest eigenvalue of M.
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This problem also has a natural convex relaxation, analogous to the one we use for the A objective:

maxλ1

(∑n
i�1

xiviv�i

)
, (45)

s:t:∑n
i�1

xi � k,
(46)

0 ≤ xi ≤ 1 ∀i ∈ [n]: (47)

We prove the following integrality gap result for (45)–(47).

Theorem 18. There exists a constant c > 0 such that the following holds. For any small enough ε > 0, and all integers
d ≥ d0(ε), if k < cd

ε2, then there exists an instance v1, : : :vn ∈ R
d of the E-optimal design problem, for which the value CP of

(45)–(47) satisfies

CP >
(
1+ ε

)
OPT � (

1+ ε
)

max
S⊆[n]:|S|�k

λ1

(∑
i∈S

viv�i

)
:

Recall that for the A-objective, we achieve a (1+ ε)-approximation for k �Ω
(
d=ε+ (log (1=ε))=ε2). Theorem 18

shows that such a result is impossible for the E-objective, for which the results in Allen-Zhu et al. [1] cannot be
improved.

Our integrality gap instance comes from a natural connection to spectral graph theory. Let us first describe the
instance for any given d. We first define n � (

d+ 1
2

)
vectors in R

d+1, one for each unordered pair (i, j) ∈ ( [d+ 1]
2

)
. The vec-

tor corresponding to (i, j), i < j, is uij and has value 1 in the ith coordinate, −1 in the jth coordinate, and 0 every-
where else. In other words, the uij vectors are the columns of the vertex by edge incidence matrix U of the com-
plete graph Kd+1, and UU � � (d+ 1)Id+1 − Jd+1 is the (unnormalized) Laplacian of Kd+1. (We use Im for the m ×m
identity matrix, and Jm for the m ×m all-ones matrix.) All the uij are orthogonal to the all-ones vector 1; we define
our instance by writing uij in an orthonormal basis of this subspace: pick any orthonormal basis b1, : : : ,bd of the

subspace of R
d+1 orthogonal to 1 and define vij � B�uij for B � (bi)di�1. Thus, M � ∑d+1

i�1
∑d+1

j�i+1vijv�ij �
(
d+ 1

)
Id:

We consider the fractional solution x � (
k= d+ 1

2

( ))
1, that is, each coordinate of x is k=

(
d+ 1
2

)
. Then M(x)

� Σd+1
i�1 Σ

d+1
j�i+1 xijvijv

�
ij � (2k)=(dId), and the objective value of the solution is (2k)=d.

Consider now any integral solution S⊆ ( [d+ 1]
2

)
of the E-optimal design problem. We can treat S as the edges of a

graph G � ([d+ 1],S), and the Laplacian LG of this graph is LG � Σ(i,j)∈S uiju�ij . If the objective value of S is at most

(1+ ε)CP, then the smallest eigenvalue of M(S) � Σ(i,j)∈S vijv�ij is at least (2k)=(d(1+ ε)) ≥ (1− ε)(2k)=(d). Because
M(S) � B�LGB, this means that the second smallest eigenvalue of LG is at least (1− ε)(2k)=(d). The average degree
Δ of G is (2k)=(d+ 1). Therefore, we have a graph G on d+ 1 vertices with average degree Δ for which the second

smallest eigenvalue of its Laplacian is at least (1− ε)(1− (
1)=(d+ 1

))
Δ ≥ (1− 2ε)Δ, where the inequality holds for d

large enough. The classical Alon-Boppana bound (Alon [3], Nilli [40]) shows that, up to lower order terms, the
second smallest eigenvalue of the Laplacian of a Δ-regular graph is at most Δ− 2

���
Δ

√
. If our graph Gwere regular,

this would imply that (2k)=(d+ 1) � Δ ≥ 1=ε2. In order to prove Theorem 18, we extend the Alon-Boppana bound
to not necessarily regular graphs, but with worse constants. There is an extensive body of work on extending the
Alon-Boppana bound to nonregular graphs: see the recent preprint (Srivastava and Trevisan [47]) for an over-
view of prior work on this subject. However, most of the work focuses either on the normalized Laplacian or the
adjacency matrix of G, and we were unable to find the statement below in the literature.

Theorem 19. Let G � (V,E) be a graph with average degree Δ � (2|E|)=|V|, and let LG be its unnormalized Laplacian ma-
trix. Then, as long as Δ is large enough, and |V| is large enough with respect to Δ,

λ2
(
LG

) ≤ Δ− c
���
Δ

√
,

where λ2(LG) is the second smallest eigenvalue of LG, and c > 0 is an absolute constant.

Proof. By the variational characterization of eigenvalues, we need to find a unit vector x, orthogonal to one, such
that x�LGx ≤ Δ− c

���
Δ

√
. Our goal is to use a vector x similar to the one used in the lower bound on the number of

edges of a spectral sparsifier in Batson et al. [6]. However, to apply this strategy, we need to make sure that G
has a low degree vertex most of whose neighbors have low degree. This requires most of the work in the proof.
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So that we do not have to worry about making our “test vector” orthogonal to one, observe that

λ2
(
LG

) � min
x∈RV

x�LGx
x�x − (

1�x
)2
=|V|

: (48)

Indeed, the denominator equals y�y for the projection y of x orthogonal to one, and the numerator is equal to
y�LGy. Here, and in the remainder of the proof, we work in R

V , the space of |V|-dimensional real vectors indexed
by V, and think of LG as being indexed by V as well.

Observe that if G has a vertex u of degree Δ(u) at most Δ− 1=10
���
Δ

√
, we are done. In that case we can pick x ∈

R
V such that xu � 1 and xv � 0 for all v≠ u. Then

x�LGx
x�x− (

1�x
)2
=n

�
∑(

u,v
)
∈E
(
xu − xv

)2
1− 1

|V|
≤ Δ− 1

10

���
Δ

√
1− 1

|V|
,

which, by (48), implies the theorem for all large enough |V|. Therefore, for the rest of the proof, we will assume
that Δ(u) ≥ Δ− 1=10

���
Δ

√
for all u ∈ V.

Define T � {u ∈ V : Δ(u) ≥ Δ+ 1=2
���
Δ

√ } to be the set of large-degree vertices and let S � V\T. Observe that

|V|Δ ≥ |T|
(
Δ+ 1

2

���
Δ

√ )
+ |S|

(
δ− 1

10

���
Δ

√ )
� |V|Δ+

(
1
2
|T| − 1

10
|S|
) ���

Δ
√

:

Therefore, |S| ≥ 5|T|, and, because T and S partition V, we have |S| ≥ 5=6|V|.
Define α �min {|{v ~ u : v ∈ T}|=(Δ− 1=10

���
Δ

√ ) : u ∈ S},where v ~ u means that v is a neighbor of u. We need to
find a vertex in S such that only a small fraction of its neighbors is in T; that is, we need an upper bound on α. To
show such an upper bound, let us define E(S,T) to be the set of edges between S and T; then

1
2
Δ|V| � |E| ≥ |E(S,T)| ≥ |S|α

(
Δ− 1

10

���
Δ

√ )
≥ 5
6
|V|αΔ

(
1− 1

10
���
Δ

√
)
:

Therefore, α ≤ 3=5
(
1− 1=10

���
Δ

√ )−1.
Let u ∈ S be a vertex with at most αΔ− α=10

���
Δ

√
neighbors in T, and let δ � |{v ~ u : v ∈ S}|. By the choice of u,

δ ≥ Δ
(
u
)−αΔ+ α

10

���
Δ

√ ≥ (
1− α

)
Δ

(
1− 1

10
���
Δ

√
)
:

Assume that Δ is large enough so that
(
1− 1=(10 ���

Δ
√ )

)
≥ 16=25. Then, δ ≥ 16=25(1−α)Δ.

We are now ready to define our test vector x and complete the proof. Let xu � 1, xv � 1=
��
δ

√
for any neighbor v

of u, which is in S, and xw � 0 for anywwhich is in T or is not a neighbor of u. We calculate

x�LGx � |{v ~ u : v ∈ S}|
(
1− 1��

δ
√
)2 + |{v ~ u : v ∈ T}| + ∑

v~u,v∈S

∑
w~v,w≠u

1
δ

≤ δ
(
1− 1��

δ
√
)2 +Δ

(
u
)− δ+Δ+ 1

2

���
Δ

√ − 1,

where we used the fact for any v ∈ S, Δ(v) ≤ Δ+ 1=2
���
Δ

√
by definition of S. The right-hand side simplifies to

Δ
(
u
)− 2

��
δ

√ +Δ+ 1
2

���
Δ

√ ≤ 2Δ−
(8
5

���������(
1− α

)√
− 1
2

) ���
Δ

√
:

Because α ≤ 3=5
(
1− 1=10

���
Δ

√ )−1, 8=5 ���������(1−α)√ − 1=2 ≥ 1=2 for all large enough Δ, and by (48), we have

λ2
(
G
) ≤ x�LGx

x�x− (
1�x

)2 ≤ 2Δ− 1
2

���
Δ

√

2
(
1− 1+ ��

Δ
√

2|V|

) � (
Δ− 1

4

���
Δ

√ )(
1− 1+ ���

Δ
√

2|V|

)−1
:

The theorem now follows as long as |V| ≥ CΔ for a sufficiently large constant C. w

To finish the proof of Theorem 18, recall that the existence of a (1+ ε)-approximate solution S to our instance
implies that, for all large enough d, the graph G � ([d+ 1],S) with average degree Δ � (2k)=(d+ 1) satisfies
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λ2(LG) ≥ (1− 2ε)Δ. By Theorem 19, λ2(LG) ≤ Δ− c
���
Δ

√
for large enough d with respect to Δ. We have Δ ≥ c2=(4ε2),

and rearranging the terms proves the theorem.
The proof of Theorem 19 does not require the graph G to be simple; that is, parallel edges are allowed. This

means that the integrality gap in Theorem 18 holds for the E-optimal design problem with repetitions as well.

7.2. Integrality Gap for A-Optimality
The integrality gap of A-optimal design problem can be stated as follows.

Theorem 20. For any given positive integers k,d, there exists an instance V � [v1, : : : ,vn] ∈ R
d×n to the A-optimal design

problem such that

OPT ≥
( k
k− d+ 1

− δ
)
·CP

for all δ > 0, where OPT denotes the value of the optimal integral solution and CP denotes the value of the convex program.

This implies that the gap is at least k=(k− d+ 1). The theorem statement applies to both with and without
repetitions.

Proof. The instance V � [v1, : : : ,vn] will be the same with or without repetitions. For each 1 ≤ i ≤ d, let ei denote
the unit vector in direction of axis i. Let vi �N · ei for each i � 1, : : : ,d− 1, where N > 0 is a constant to be chosen
later and vd � ed. Set the rest vi, i > d to be at least k copies of each of these vi for i ≤ d, as we can make n as big as
needed. Hence, we may assume that we are allowed to pick only vi, i ≤ d, but with repetitions.

The fractional optimal solution which can be calculated by Lagrange’s multiplier technique is y∗ � (δ0,δ0, : : : ,δ0, k−
(d− 1)δ0) for small δ0 � k=( ���

N
√ + d− 1). The optimal integral solution is x∗ � (1, 1, : : : , 1,k− d+ 1). Therefore, as

N→∞, we have CP � (d− 1)=(δ0N) + 1=
(
k− (d− 1)δ0) → 1=k, and OPT � (d− 1)=N + 1=(k− d) + 1→ 1=(k− d+ 1).

Hence,

OPT

CP
→ k

k− d+ 1
,

proving the theorem. w

8. Hardness of Approximation
In this section, we show that the A-optimal design problem is NP-hard to approximate within a fixed constant
when k � d. To the best of our knowledge, no hardness results for this problem were previously known. Our re-
duction is inspired by the hardness of approximation for D-optimal design proved in Di Summa et al. [22]. The
hard problem we reduce from is an approximation version of Partition into Triangles.

Before we prove our main hardness result, Theorem 4, we describe the class of instances we consider, and prove
some basic properties. Given a graph G � ([d],E), we define a vector ve for each edge e � (i, j) so that its ith and jth
coordinates are equal to one, and all its other coordinates are equal to zero. Then the matrix V � (ve)e∈E is the undi-
rected vertex by edge incidence matrix of G. The main technical lemma needed for our reduction follows.

Lemma 12. Let V be the vertex by edge incidence matrix of a graph G � ([d],E), as described previously. Let S⊆E be a set
of d edges of G so that the submatrix VS is invertible. Then each connected component of the subgraph H � ([d],S) is the dis-
joint union of a spanning tree and an edge. Moreover, if t of the connected components of H are triangles, then

• for t � d=3, tr((VSV�
S )−1) � 3d=4; and

• for any t, tr((VSV�
S )−1) ≥ d− 3t=4.

Figure 1. Values of the coordinates of ue for e ∈ Cℓ.
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Proof. Let H1, : : : ,Hc be the connected components of H. First we claim that the invertibility of VS implies that none
of theHℓ is bipartite. Indeed, if someHℓ were bipartite, with bipartition L∪R, then the nonzero vector x defined by

xi �
1 i ∈ L
−1 i ∈ R
0 otherwise,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
is in the kernel of VS. In particular, each Hℓ must have at least as many edges as vertices. Because the number of
edges of H equals the number of vertices, it follows that every connected component Hℓ must have exactly as
many edges as vertices, too. In particular, this means that every Hℓ is the disjoint union of a spanning tree and an
edge, and the edge creates an odd-length cycle.

Let us explicitly describe the inverse V−1
S . For each e ∈ S we need to give a vector ue ∈ R

d so that u�e ve � 1 and
u�e vf � 0 for every f ∈ S, f ≠ e. Then U � � V−1

S , where U � (ue)e∈S is the matrix whose columns are the ue vectors. Let
Hℓ be, as above, one of the connected components of H. We will define the vectors ue for all edges e in Hℓ; the vectors
for edges in the other connected components are defined analogously. Let Cℓ be the unique cycle of Hℓ. Recall that Cℓ

must be an odd cycle. For any e � (i, j) in Cℓ, we set the ith and the jth coordinate of ue to 1
2. Let T be the spanning tree

of Hℓ derived from removing the edge e. We set the coordinates of ue corresponding to vertices of Hℓ other than i and
j to either −1=2 or +1=2, so that the vertices of any edge of T receive values with opposite signs. This can be done by
setting the coordinate of ue corresponding to vertex k in Hℓ to 1=2(−1)δT(i,k), where δT(i, k) is the distance in T between
i and k. Because Cℓ is an odd cycle, δT(i, j) is even, and this assignment is consistent with the values we already deter-
mined for i and j. Finally, the coordinates of ue that do not correspond to vertices of Hℓ are set to zsero. Figure 1 pro-
vides an example. It is easy to verify that u�e ve � 1 and u�e vf � 0 for any edge f ≠ e. Notice that ||ue||22 � dℓ=4, where dℓ
is the number of vertices (and also the number of edges) ofHℓ.

It remains to describe ue when e � (i, j) ∉ Cℓ. Let T be the tree derived from Hℓ by contracting Cℓ to a vertex r,
and set r as the root of T. Without loss of generality, assume that j is the endpoint of e, which is further from r in
T. We set the jth coordinate of ue equal to one. We set the coordinates of ue corresponding to vertices in the sub-
tree of T below j to either −1 or +1 so that the signs alternate down each path from j to a leaf of T below j. This
can be achieved by setting the coordinate of ue corresponding to vertex k to (−1)δT(j,k), where δT(j, k) is the distance
between j and k in T. All other coordinates of ue are set equal to zero. Figure 2 provides an example. Notice that
||ue||22 ≥ 1 (and in fact equals the number of nodes in the subtree of T below the node j).

We are now ready to finish the proof. Clearly if [d] can be partitioned into t � d=3 disjoint triangles, and the
union of their edges is S, then

tr
((
VSVS

T)−1) � tr
(
UU T

)
�∑

e∈S
‖ue‖22 �

3|S|
4

� 3d
4
:

In the general case, we have

tr
((
VSVS

T)−1) � tr (UU T) � ∑
e∈S

‖ue‖22

≥ ∑c
ℓ�1

|Cℓ| : dℓ
4

+ dℓ − |Cℓ|

≥ 9t
4
+ d − 3t � d − 3t

4
,

where |Cℓ| is the length of Cℓ, and dℓ is the number of edges (and also the number of vertices) in Hℓ. The final in-
equality follows because any connected component Hℓ that is not a triangle contributes at least dℓ to the sum. w

Recall that in the Partition into Triangles problem, we are given a graph G � (W,E) and need to decide whether
W can be partitioned into |W|=3 vertex-disjoint triangles. This problem is NP-complete (Garey and Johnson [24]
present a proof in chapter 3 and cite personal communication with Schaeffer), and this, together with Lemma 12,
suffices to show that the A-optimal design problem is NP-hard when k � d. To prove hardness of approximation,

Figure 2. Values of the coordinates of ue for e ∉ Cℓ.
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we prove hardness of a gap version of Partition into Triangles. In fact, we just observe that the reduction from
three-dimensional matching to Partition into Triangles in Garey and Johnson [24] and known hardness of ap-
proximation of three-dimensional matching give the result we need.

Lemma 13. Given a graph G � (W,E), it is NP-hard to distinguish the two cases:
1.W can be partitioned into |W|=3 vertex-disjoint triangles;and
2. every set of vertex-disjoint triangles in G has cardinality at most α|W|=3,
where α ∈ (0, 1) is an absolute constant.

To prove Lemma 13, we use a theorem of Petrank.

Theorem 21 (Petrank [42]). Given a collection of triples F⊆X × Y × Z, where X, Y, and Z are three disjoint sets of size m
each, and each element of X ∪ Y ∪ Z appears in at most three triples of F, it is NP-hard to distinguish the two cases:

1. there is a set of disjoint triples M⊆F of cardinality m; and
2. every set of disjoint triples M⊆F has cardinality at most βm,
where β ∈ (0, 1) is an absolute constant.

We note that Petrank gives a slightly different version of the problem, in which the setM is allowed to have in-
tersecting triples, and the goal is to maximize the number of elements X∪ Y∪ Z that are covered exactly once.
Petrank shows that it is hard to distinguish between the cases when every element is covered exactly once, and
the case when at most 3βm elements are covered exactly once. It is immediate that this also implies Theorem 21.

Proof of Lemma 13. We will show that the reduction in Garey and Johnson [24] from three-dimensional match-
ing to Partition into Triangles is approximation preserving. This follows in a straightforward way from the argu-
ment in Garey and Johnson [24], but we repeat the reduction and its analysis for the sake of completeness.

Given F⊆X ∪ Y ∪ Z such that each element of X ∪ Y ∪ Z appears in at most three triples of F, we construct a
graph G � (W,E) on the vertices X ∪ Y ∪ Z and 9|F| additional vertices: af1, : : : af9 for each f ∈ F. For each triple
f ∈ F, we include in E the edges Ef shown in Figure 3. The subgraphs spanned by the sets Ef , Eg for two different
triples f and g are edge-disjoint, and the only vertices they share are in X ∪ Y∪ Z.

First, we show that, if F has a matching M covering all elements of X ∪ Y ∪ Z, then G can be partitioned into
vertex-disjoint triangles. Indeed, for each f � {x,y,z} ∈M we can take the triangles {x,af1,af2}, {y, af4,af5},
{z,af7,af8}, and {af3,af6,af9}. For each f ∉M, we can take the triangles {af1, af2,af3}, {af4, af5,af6}, and {af7, af8,af9}.

In the other direction, assume there exists a set T of at least α(|W|=3) vertex disjoint triangles in G, for a value
of α to be chosen shortly. We need to show that F contains a matching of at least βm triples. To this end, we con-
struct a set M that contains all triples f , for each Ef that contains at least four triangles of T. Notice that the only
way to pick three vertex disjoint triangles from Ef is to include the lower three triangles (see Figure 3), so any
two triples f and g inM must be disjoint. The cardinality of T is at most 4|M| + 3(|F| − |M|) � |M| + 3|F|.

Therefore,

|M| + 3|F| ≥ α
|W|
3

� α
(
m + 3|F|),

and we have |M| ≥ αm− (1− α)3|F| ≥ (10α− 9)m, where we used the fact that |F| ≤ 3m because each element of X
appears in at most three triples of F. Then, if α ≥ (9+ β)=10 we have |M| ≥ βm. This finishes the proof of the
lemma. w

Figure 3. Subgraph with edges Ef for the triple f � {x,y, z} (adapted from Garey and Johnson [24]).
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We now have everything in place to finish the proof of our main hardness result.

Proof of Theorem 4. We use a reduction from (the gap version of) Partition into Triangles to the A-optimal de-
sign problem. In fact, the reduction was already described in the beginning of the section: given a graph
G � ([d],E), it outputs the columns ve of the vertex by edge incidence matrix V of G.

Consider the case in which the vertices of G can be partitioned into vertex-disjoint triangles. Let S be the union of
the edges of the triangles. Then, by Lemma 12, tr

((VSV�
S )−1

) � 3d=3.
Next, consider the case in which every set of vertex-disjoint triangles in G has cardinality at most α(d=3). Let S

be any set of d edges in E such that VS is invertible. The subgraph H � ([d],S) of G can have at most α(d=3) con-
nected components that are triangles, because any two triangles in distinct connected components are necessarily

vertex-disjoint. Therefore, by Lemma 12, tr
((
VSV�

S
)−1) ≥ ((4−α)d)=4.

It follows that a c-approximation algorithm for theA-optimal design problem, for any c < (4−α)=3, can be used to dis-
tinguish between the two cases of Lemma 13, and therefore, the A-optimal design problem is NP-hard to
c-approximate. w
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[17] Dereziński M, Warmuth MK (2017) Subsampling for ridge regression via regularized volume sampling. Preprint, submitted February 23,

https://arxiv.org/abs/1710.05110.
[18] Dereziński M, Warmuth MK (2017) Unbiased estimates for linear regression via volume sampling. NIPS'17: Proc. 31st Internat. Conf. Neu-

ral Inform. Processing Systems, 3087–3096.
[19] Deshpande A, Rademacher L (2010) Efficient volume sampling for row/column subset selection. 51th Annual IEEE Sympos. Foundations

Comput. Sci. (IEEE Computer Society, New York), 329–338.
[20] Deshpande A, Vempala S (2006) Adaptive sampling and fast low-rank matrix approximation. Approximation, Randomization, and Combina-

torial Optimization. Algorithms and Techniques (Springer, Berlin), 292–303.
[21] Deshpande A, Rademacher L, Vempala S, Wang G (2006) Matrix approximation and projective clustering via volume sampling. Proc.

17th Annual ACM-SIAM Sympos. Discrete Algorithm (Society for Industrial and Applied Mathematics, Philadelphia), 1117–1126.
[22] Di Summa M, Eisenbrand F, Faenza Y, Moldenhauer C (2015) On largest volume simplices and sub-determinants. Proc. 26th Annual

ACM-SIAM Sympos. Discrete Algorithms (Society for Industrial and Applied Mathematics, Philadelphia), 315–323.
[23] Fedorov VV (1972) Theory of Optimal Experiments (Elsevier, New York).
[24] Garey MR, Johnson DS (1979) Computers and Intractability (W. H. Freeman and Co., San Francisco).
[25] Gharan SO, Saberi A, Singh M (2011) A randomized rounding approach to the traveling salesman problem. IEEE 52nd Annual Sympos.

on Foundations of Comput. Sci. (IEEE, New York), 550–559.
[26] Guruswami V, Sinop AK (2012) Optimal column-based low-rank matrix reconstruction. Proc. 23rd Annual ACM-SIAM Sympos. Discrete

Algorithms (SIAM, Philadelphia), 1207–1214.
[27] Joshi S, Boyd S (2009) Sensor selection via convex optimization. IEEE Trans. Signal Processing 57(2):451–462.
[28] Kahn J (1996) Asymptotics of the chromatic index for multigraphs. J. Combinatorial Theory Ser. B 68(2):233–254.
[29] Kahn J (2000) Asymptotics of the list-chromatic index for multigraphs. Random Structures Algorithms 17(2):117–156.

Nikolov, Singh, and Tantipongpipat: PVS and Approx Alg for A-Optimal Design
876 Mathematics of Operations Research, 2022, vol. 47, no. 2, pp. 847–877, © 2022 INFORMS

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.o

rg
 b

y 
[1

30
.2

07
.9

3.
57

] o
n 

05
 O

ct
ob

er
 2

02
2,

 a
t 1

2:
25

 . 
Fo

r p
er

so
na

l u
se

 o
nl

y,
 a

ll 
rig

ht
s r

es
er

ve
d.

 

https://arxiv.org/abs/
http://1711.05174
https://arxiv.org/abs/
http://1710.05110


[30] Kulesza A, Taskar B (2012) Determinantal point processes for machine learning. Foundations Trends Machine Learning 5(2–3):123–286.
[31] Li C, Jegelka S, Sra S (2017) Column subset selection via polynomial time dual volume sampling. Preprint, submitted November 16,

https://arxiv.org/abs/1703.02674.
[32] Lin M, Trudinger NS (1993) On some inequalities for elementary symmetric function. Bull. Australian Math. Soc. 50(2):317–326.
[33] Marcus M, Lopes L (1957) Inequalities for symmetric functions and Hermitian matrices. Canadian J. Math. 9:305–312.
[34] Mariet ZE, Sra S (2017) Elementary symmetric polynomials for optimal experimental design. 31st Conf. Neural Inform. Processing Systems (NIPS

2017), Long Beach, CA, 2136–2145.
[35] Naor A, Youssef P (2017) Revisited RI (Springer International Publishing, Cham, Switzerland).
[36] Nikolov A (2015) Randomized rounding for the largest simplex problem. Proc. 47th Annual ACM Sympos. Theory of Comput. (ACM), 861–870.
[37] Nikolov A, Singh M (2016) Maximizing determinants under partition constraints. Proc. Forty-Eighth Annual ACM Symp. Theory Comput.

(STOC) (Association for Computing Machinery, New York).
[38] Nikolov A, Talwar K (2015) Approximating hereditary discrepancy via small width ellipsoids. Indyk P, ed. Proc. 26th Annual ACM-SIAM

Sympos. Discrete Algorithms (SIAM, Philadelphia), 324–336.
[39] Nikolov A, Talwar K, Zhang L (2016) The geometry of differential privacy: The small database and approximate cases. SIAM J. Comput.

45(2):575–616.
[40] Nilli A (1991) On the second eigenvalue of a graph. Discrete Math. 91(2): 207–210.
[41] Pan VY (1994) Simple multivariate polynomial multiplication. J. Symbolic Comput. 18(3):183–186.
[42] Petrank E (1994) The hardness of approximation: Gap location. Comput. Complexity 4(2):133–157.
[43] Pukelsheim F (2006) Optimal Design of Experiments (SIAM, Philadelphia).
[44] Singh M, Xie W (2018) Approximate positive correlated distributions and approximation algorithms for d-optimal design. Proc. Twenty-

Ninth Annual ACM-SIAM Sympos. Discrete Algorithms (Society for Industrial and Applied Mathematics), 2240–2255.
[45] Spielman DA, Srivastava N (2011) Graph sparsification by effective resistances. SIAM J. Comput. 40(6):1913–1926.
[46] Spielman DA, Srivastava N (2012) An elementary proof of the restricted invertibility theorem. Israel J. Math. 190:83–91.
[47] Srivastava N, Trevisan L (2017) An alon-boppana type bound for weighted graphs and lowerbounds for spectral sparsification. Proc.

Twenty-Ninth Annual ACM-SIAM Sympos. Discrete Algorithms (Society for Industrial and Applied Mathematics), 1306–1315.
[48] Straszak D, Vishnoi NK (2017) Real stable polynomials and matroids: Optimization and counting. Hatami H, McKenzie P, King V, eds.

Proc. 49th Annual ACM SIGACT Sympos. Theory of Comput. (ACM), 370–383.
[49] Vershynin R (2001) John’s decompositions: Selecting a large part. Israel J. Math. 122(1):253–277.
[50] Wang Y, Yu AW, Singh A (2016) On computationally tractable selection of experiments in regression models. Preprint, submitted December

20, https://arxiv.org/abs/1601.02068.
[51] Youssef P (2014) Restricted invertibility and the Banach-Mazur distance to the cube. Mathematika 60(1):201–218.

Nikolov, Singh, and Tantipongpipat: PVS and Approx Alg for A-Optimal Design
Mathematics of Operations Research, 2022, vol. 47, no. 2, pp. 847–877, © 2022 INFORMS 877

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.o

rg
 b

y 
[1

30
.2

07
.9

3.
57

] o
n 

05
 O

ct
ob

er
 2

02
2,

 a
t 1

2:
25

 . 
Fo

r p
er

so
na

l u
se

 o
nl

y,
 a

ll 
rig

ht
s r

es
er

ve
d.

 

https://arxiv.org/abs/
http://1703.02674
https://arxiv.org/abs/
http://1601.02068

