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1. Introduction
Given a collection of vectors, a common problem is to select a subset of size k < n that represents the given vectors.
To quantify the representability of the chosen set, typically one considers spectral properties of certain natural ma-
trices defined by the vectors. Such problems arise as experimental design (Fedorov [23], Pukelsheim [43]) in statis-
tics; feature selection (Boutsidis and Magdon-Ismail [8]) and sensor placement problems (Joshi and Boyd [27]) in
machine learning; matrix sparsification (Batson et al. [6], Spielman and Srivastava [45]); and column subset selec-
tion (Avron and Boutsidis [5]) in numerical linear algebra. In this work, we consider the optimization problem of
choosing the representative subset that aims to optimize the A-optimality criterion in experimental design.
Experimental design is a classical problem in statistics (Pukelsheim [43]) with recent applications in machine learn-
ing (Joshi and Boyd [27], Wang et al. [50]). Here the goal is to estimate an unknown vector w € R? via linear measure-
ments of the form y; = v w + n,, where v; are possible experiments and 1), is assumed to be small independently and
identically distributed unbiased Gaussian error introduced in the measurement. Given a set S of linear measurements,
the maximum likelihood estimate @ of w can be obtained via a least-squares computation. The error vector w — 7@ has
a Gaussian distribution with mean zero and covariance matrix (Zies viviT)_l. In the optimal experimental design prob-
lem, the goal is to pick a cardinality k set S out of the 1 vectors such that the measurement error is minimized. Minimal-
ity is measured according to different criteria, which quantify the size of the covariance matrix. In this paper, we study
the classical A-optimality criterion, which aims to minimize the average variance over directions, or equivalently, the
trace of the covariance matrix, which is also the expectation of the squared Euclidean norm of the error vector w — @.
We let V denote the d X n matrix whose columns are the vectors vy, ...,v, and [n] ={1,...,n}. For any set SC[n],
we let Vs denote the d X |S| submatrix of V whose columns correspond to vectors indexed by S. Formally, in the A-op-
timal design problem our aim is to find a subset S of cardinality k that minimizes the trace of (VsV{) = = (Zies vo7)”!
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We also consider the A-optimal design problem with repetitions, where the chosen S can be a multiset, thus allowing a
vector to chosen more than once.

Apart from experimental design, this formulation finds application in other areas such as sensor placement in wire-
less networks (Joshi and Boyd [27]), sparse least-squares regression (Boutsidis et al. [9]), feature selection for k-means
clustering (Boutsidis and Magdon-Ismail [8]), and matrix approximation (Avron and Boutsidis [5]). For example, in ma-
trix approximation (Avron and Boutsidis [5], de Hoog and Mattheij [15, 16]) given a d X n matrix V, one aims to select a
set S of k such that the Frobenius norm of the Moore-Penrose pseudoinverse of the selected matrix Vg is minimized. It
is easy to observe that this objective equals the A-optimality criterion for the vectors given by the columns of V.

1.1. Our Contributions and Results

Our main contribution is to introduce the proportional volume sampling class of probability measures to obtain im-
proved approximation algorithms for the A-optimal design problem. We obtain improved algorithms for the
problem with and without repetitions in regimes where k is close to d and in the asymptotic regime where k > d.
The improvement is summarized in Table 1. Let I/, denote the collection of subsets of [1] of size exactly k and
U< denote the subsets of [1] of size at most k. We will consider distributions on sets in U/} and U<, and state the
following definition more generally.

Definition 1. Let u be probability measure on sets in Uy (or U<). Then the proportional volume sampling with
measure y picks a set S € Uy (or U<) with probability proportional to u(S) det(VsVY).

Observe that when p is the uniform distribution and k <d then we obtain the standard volume sampling
(Deshpande et al. [21]) where one picks a set S proportional to det (VsV{), or, equivalently, to the volume of the
parallelopiped spanned by the vectors indexed by S. The volume sampling measure has received much attention
and efficient algorithms are known for sampling from it (Deshpande and Rademacher [19], Deshpande and
Vempala [20], Guruswami and Sinop [26]). More recently, efficient algorithms were obtained even when
k>d (Lietal. [31], Singh and Xie [44]). We discuss the computational issues of sampling from proportional
volume sampling in Lemma 1 and Section 6.2.

Our first result shows that approximating the A-optimal design problem can be reduced to finding distribu-
tions on Uy (or U) that are approximately independent. First, we define the exact formulation of approximate
independence needed in our setting.

Definition 2. Given integers d <k <7 and a vector x € [0,1]" such that 17x =k, we call a measure y on sets in U
(or U), a-approximate (d — 1,d)-wise independent with respect to x if for any subsets T,R C[n] with |[T|=d -1
and |R| = d, we have
Prs. [TCS]  «T
———<a—,
Prs., [RES] xR
where x := [, x; for any LC[n]. We omit “with respect to x” when the context is clear.
Observe that if the measure p corresponds to picking each element i independently with probability x;, then

PI'SNH[T Cc S] _ xT

Prs.u[RCS] xR
However, this distribution has support on all sets and not just sets in U or U, so it is not allowed by the previ-
ous definition.

Our first result reduces the search for approximation algorithms for A-optimal design to construction of approx-
imate (d —1,d)-wise independent distributions. This result generalizes the connection between volume sampling
and A-optimal design established in Avron and Boutsidis [5] to proportional volume sampling, which allows us
to exploit the power of the convex relaxation and get a significantly improved approximation.

Theorem 1. Given integers d < k < n, suppose that for any a vector x € [0, 1]" such that 17 x = k, there exists a distribution
u on sets in Uy (or U) that is a-approximate (d —1,d)-wise independent. Then the proportional volume sampling with
measure i gives an a-approximation algorithm for the A-optimal design problem.

Table 1. Summary of approximation ratios of A-optimal results. We list the best applicable previous work for comparison.

Problem Our result Previous work

Case k=d d? n—d+1 (Avron and Boutsidis [5])
Asymptotic k > d without repetitions 1+¢, for k> Q(d/e+1log (1/€)/€?) 1+e¢, for k> Q(d/e?) (Allen-Zhu et al. [2])
Arbitrary k and d with repetitions k/k—-d+1° n—d+1 (Avron and Boutsidis [5])
Asymptotic k > d with repetitions 1+e¢, fork>d+(d/ )’ 1+e¢, for k> Q(d /ez) (Allen-Zhu et al. [2])

“Ratios are tight with matching integrality gap of the convex relaxation (1)-(3).
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In this theorem, we in fact only need an approximately independent distribution u for the optimal solution x
of the natural convex relaxation for the problem, which is given in (1)~(3). The result also bounds the integrality
gap of the convex relaxation by a. Theorem 1 is proved in Section 2.

Theorem 1 reduces our aim to constructing distributions that have approximate (d — 1, d)-independence. We fo-
cus our attention on the general class of hard-core distributions. We call u a hard-core distribution with parameter
A €R" if p(S)oc A° := [, A: for each set in Uy (or U;). Convex duality implies that hard-core distributions have
the maximum entropy among all distributions which match the marginals of u (Boyd and Vandenberghe [10]).
Observe that, although p places nonzero probability on exponentially many sets, it is enough to specify u suc-
cinctly by describing A. Hard-core distributions over various structures including spanning trees (Gharan et al.
[25]) or matchings (Kahn [28, 29]) in a graph display approximate independence, and this has found use in combina-
torics and algorithm design. Following this theme, we show that certain hard core distributions on ¢/, and U< ex-
hibit approximate (d — 1,d)-independence when k = d and in the asymptotic regime when k > d.

Theorem 2. Given integers d < k < nand a vector x € [0, 1]" such that 1" x = k, there exists a hard-core distribution . on sets in
Uy that is d-approximate (d — 1,d)-wise independent when k = d. Moreover, for any € > 0, ifk = Q(d /e + (1/€*)log (1/€)), then
there is a hard-core distribution u on U< that is (1 + €)-approximate (d — 1, d)-wise independent. Thus we obtain a d-approxima-
tion algorithm for the A-optimal design problem when k=d and (1+ €)-approximation algorithm when k= Q(d/e
+(1/€>)log (1/e€)).

This theorem relies on two natural hard-core distributions. In the first one, we consider the hard-core distribu-
tion with parameter A = x on sets in Uy and in the second we consider the hard-core distribution with parameter
A=(1 —-¢e)x/1 — (1 — €)x (defined coordinate-wise) on sets in U x. We prove the theorem in Section 3.

Our techniques also apply to the A-optimal design problem with repetitions where we obtain an even stronger re-
sult, described later. The main idea is to introduce multiple, possibly exponentially many, copies of each vector, de-
pending on the fractional solution, and then apply proportional volume sampling to obtain the following result.

Theorem 3. For all k>d and 0 <e <1, there is a ((k/(k — d + 1)) + €)-approximation algorithm for the A-optimal design
problem with repetitions. In particular, there is a (1 + €)-approximation when k > d +d/e.

We remark that the integrality gap of the natural convex relaxation is at least k/(k —d + 1) (see Section 7.2), and
thus the previous theorem results in an exact characterization of the integrality gap of the convex program (1)-(3),
stated in the following corollary. The proof of Theorem 3 appears in Section 6.3.

Corollary 1. For any integers k > d, the integrality gap of the convex program (1)-(3) for the A-optimal design with
repetitions is exactly k/(k —d +1).

We also show that A-optimal design is NP-hard for k = d and moreover, hard to approximate within a constant factor.
Theorem 4. There exists a constant ¢ > 1 such that the A-optimal design problem is NP-hard to c-approximate when k = d.

The k < d case.

The A-optimal design problem has a natural extension to choosing fewer than d vectors: our objective in this
case is to select a set SC[n] of size k so that we minimize X A7, where A;, ..., A are the k largest eigenvalues of
the matrix VsV{. Although this problem no longer corresponds to minimizing the variance in an experimental
design setting, we will abuse terminology and still call it the A-optimal design problem. This is a natural formu-
lation of the geometric problem of picking a set of vectors that are as spread out as possible. If vy, ... ,v, are the
points in a data set, we can see an optimal solution as a maximally diverse representative sample of the data set.
Similar problems, but with a determinant objective, have been widely studied in computational geometry, linear
algebra, and machine learning: for example, the largest volume simplex problem and the maximum subdetermi-
nant problem (see Nikolov [36] for references to prior work). Civril and Magdon-Ismail [13] also studied an
analogous problem with the sum in the objective replaced by a maximum (which extends E-optimal design).

Although our rounding extends easily to the k < d regime, coming up with a convex relaxation becomes less
trivial. We do find such a relaxation and obtain the following result whose proof appears in Section 5.1.

Theorem 5. There exists a poly(d, n)-time k-approximation algorithm for the A-optimal design problem when k < d.

1.1.1. General Objectives. Experimental design problems come with many different objectives including A, D, E, G,
T, and V, each corresponding to a different function of the covariance matrix of the error w — @. Any algorithm that
solves A-design can solve V-optimal design by prepossessing vectors with a linear transformation. In addition, we
show that the proportional volume sampling algorithm gives approximation algorithms for other optimal design
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objectives (such as D-optimal design, Singh and Xie [44]; and generalized ratio objective, Mariet and Sra [34])
matching or improving previous best-known results. We refer the reader to Section 5.3 for details.

1.1.2. Integrality Gap and E-Optimality. Given the results mentioned previously, a natural question is whether all
objectives for optimal design behave similarly in terms of approximation algorithms. Indeed, recent results of
Allen-Zhu et al. [1, 2] and Wang et al. [50] give the (1 + €)-approximation algorithm in the asymptotic regime, k >
Q(d/€®) and k > Q(d? /), for many of these variants. In contrast, we show the optimal bounds that can be obtained
via the standard convex relaxation are different for different objectives. We show that for the E-optimality criteri-
on (in which we minimize the largest eigenvalue of the covariance matrix) getting a (1 + €)-approximation with
the natural convex relaxation requires k = Q(d/€?), both with and without repetitions. This is in sharp contrast to
results we obtain here for A, D-optimality and other generalized ratio objectives. Thus, different criteria behave
differently in terms of approximability. Our proof of the integrality gap (in Section 7.1) builds on a connection to
spectral graph theory and in particular on the Alon-Boppana bound (Alon [3], Nilli [40]). We prove an Alon-Bop-
pana style bound for the unnormalized Laplacian of not necessarily regular graphs with a given average degree.

1.1.3. Restricted Invertibility Principle for Harmonic Mean. As an application of Theorem 5, we prove a restricted
invertibility principle (RIP) (Bourgain and Tzafriri [7]) for the harmonic mean of singular values. The RIP is a robust
version of the elementary fact in linear algebra that, if V is a d X n rank r matrix, then it has an invertible submatrix
Vs for some S C[n] of size r. The RIP shows that if V has stable rank 7, then it has a well-invertible submatrix consist-
ing of ()(r) columns. Here the stable rank of V is the ratio (||V||1%1,S / IVIP»), where ||- llgs = Vtr(VVT) is the Hilbert-
Schmidt, or Frobenius, norm of V, and || - || is the operator norm. The classical restricted invertibility principle (Bour-
gain and Tzafriri [7], Spielman and Srivastava [46], Vershynin [49]) shows that, when the stable rank of V is r, then
there exists a subset of its columns S of size k = Q(r) so that the kth singular value of Vs is Q(||V||ys/+/m). Nikolov
[36] showed there exists a submatrix Vs of k columns of V so that the geometric mean of its top k singular values is
on the same order, even when k equals the stable rank. We show an analogous result for the harmonic mean when k
is slightly less than r. Although this is implied by the classical restricted invertibility principle, the dependence on pa-
rameters is better in our result for the harmonic mean. For example, when k = (1 —€)r, the harmonic mean of
squared singular values of Vs can be made at least Q(e||V|[7;s /1), whereas the tight restricted invertibility principle
of Spielman and Srivastava [45] would only give €? in the place of €. This restricted invertibility principle can also be
derived from the results of Naor et al. [35], but their arguments, unlike ours, do not give an efficient algorithm to
compute the submatrix V. See Section 5.2 for the precise formulation of our restricted invertibility principle.

1.1.4. Computational Issues. Although it is not clear whether sampling from proportional volume sampling is
possible under general assumptions (e.g., given a sampling oracle for p), we obtain an efficient sampling algo-
rithm when p is a hard-core distribution.

Lemma 1. There exists a poly(d, n)-time algorithm that, given a matrix d X n matrix V, integer k < n, and a hard-core distri-
bution 1 on sets in Uy (or Uy) with parameter A, efficiently samples a set from the proportional volume measure defined by p1.

When k <d and p is a hard-core distribution, the proportional volume sampling can be implemented by the
standard volume sampling after scaling the vectors appropriately. When k > d, such a method does not suffice,
and we appeal to properties of hard-core distributions to obtain the result. We also present an efficient implemen-
tation of Theorem 3, which runs in time polynomial in log (1/€). This requires more work since the basic descrip-
tion of the algorithm involves implementing proportional volume sampling on an exponentially sized ground set.
This is done in Section 6.3.

We also outline efficient deterministic implementation of algorithms in Theorems 2 and 3 in Sections 6.2 and 6.4.

1.2. Related Work

Experimental design is the problem of maximizing information obtained from selecting subsets of experiments
to perform, which is equivalent to minimizing the covariance matrix (Zjes viviT)_l. We focus on A-optimality, one
of the criteria that has been studied intensely. We restrict our attention to approximation algorithms for these
problems and refer the reader to Purkelsheim [43] for a broad survey on experimental design.

Avron and Boutsidis [5] studied the A- and E-optimal design problems and analyzed various combinatorial al-
gorithms and algorithms based on volume sampling, and achieved approximation ratio (n—d+1)/(k—d+1).
Wang et al. [50] found connections between optimal design and matrix sparsification and used these connections
to obtain a (1 + €)-approximation when k > d* /e, and also approximation algorithms under certain technical as-
sumptions. More recently, Allen-Zhu et al. [1, 2] obtained a (1 + €)-approximation when k = Q(d/e?) both with and



Downloaded from informs.org by [130.207.93.57] on 05 October 2022, at 12:25 . For personal use only, all rights reserved.

Nikolov, Singh, and Tantipongpipat: PVS and Approx Alg for A-Optimal Design
Mathematics of Operations Research, 2022, vol. 47, no. 2, pp. 847-877, © 2022 INFORMS 851

without repetitions. We remark that their result also applies to other criteria such as E and D-optimality that aim
to maximize the minimum eigenvalue, and the geometric mean of the eigenvalues of Xics v,-viT, respectively. More
generally, their result applies to any objective function that satisfies certain regularity criteria.

Improved bounds for D-optimality were obtained by Singh and Xie [44], who give an e-approximation for all k
and d, and (1 + €)-approximation algorithm when k = Q(d/e + (1/€*)log(1/e)), with a weaker condition of k >
(2d)/e if repetitions are allowed. The D-optimality criterion when k < d has also been extensively studied. It cap-
tures maximum a posteriori inference in constrained determinantal point process models (Kulesza et al. [30])
and the maximum volume simplex problem. Nikolov [36], improving on a long line of work, gave a e-approxi-
mation. The problem has also been studied under more general matroid constraints rather than cardinality con-
straints (Anari and Gharan [5], Nikolov and Singh [37], Straszak and Vishnoi [48]).

Civril and Magdon-Ismail [13] also studied several related problems in the k < d regime, including D- and
E-optimality. We are not aware of any prior work on A-optimality in this regime.

The criterion of E-optimality, whose objective is to maximize the minimum eigenvalue of Zicsv;v;, is closely
related to the problem of matrix sparsification (Batson et al. [6], Spielman and Srivastava [45]) but incomparable.
In matrix sparsification, we are allowed to weigh the selected vectors but need to bound both the largest and the
smallest eigenvalue of the matrix we output.

The restricted invertibility principle was first proved in the work of Bourgain and Tzafriri [7] and was later strength-
ened by Vershynin [49], Spielman and Srivastava [46], and Naor and Youssef [35]. Spielman and Srivastava [46] gave a
deterministic algorithm to find the well-invertible submatrix whose existence is guaranteed by the theorem. Besides its
numerous applications in geometry (Vershynin [49], Youssef [51]), the principle has also found applications to differen-
tial privacy (Nikolov et al. [39]) and to approximation algorithms for discrepancy (Nikolov and Talwar [38]).

Volume sampling where a set S is sampled with probability proportional to det (VsV{) has been studied ex-
tensively, and efficient algorithms were given by Deshpande and Rademacher [19] and improved by Guruswami
and Sinop [26]. The probability distribution is also called a determinantal point process (DPP) and finds many ap-
plications in machine learning (Kulesza et al. [30]). Recently, fast algorithms for volume sampling have been con-
sidered in Dereziniski and Warmuth [17, 18].

Although NP-hardness is known for the D- and E-optimality criteria (Civril and Magdon-Ismail [13]), to the
best of our knowledge, no NP-hardness for A-optimality was known prior to our work. Proving such a hardness
result was stated as an open problem in Avron and Boutsidis [5].

2. Approximation via Near Independent Distributions
In this section, we prove Theorem 1 and give an a-approximation algorithm for the A-optimal design problem
given an a-approximate (d — 1,d)-independent distribution p.

We first consider the convex relaxation for the problem given below for the settings without and with repetitions. This
relaxation is classical, and already appears in Chernoff [12]. It is easy to see that the objective tr (X7, x,0:0; )" is convex
(Boyd and Vandenberghe [10], section 7.5). For this section, we focus on the case when repetitions are no allowed.

With repetitions Without repetitions

n -1
n -1
min tr (Z xiviviT) min tr (Z x,-viv,.T) )

=1 i=1

.t ,‘Zk 2
S ;x s.t. Zl]x,. =k )
0<x Vie[n] 0<x <1 Vie[n] 3)

Let us denote the optimal value of (1)~(3) by CP (convex program). By plugging in the indicator vector of an opti-
mal integral solution for x, we see that CP < OPT, where OPT (optimal) denotes the value of the optimal solution.

2.1. Approximately Independent Distributions

Let us use the notation x° = [ Tics Xi» Vs @ matrix of column vectors v; € RY forie $,and Vg (x) a matrix of column vec-
tors \/x;v; € RY forieS. Let ex(x1,...,x,) be the degree k elementary symmetric polynomial in the variables x1, ..., x,,
that is, eg(x1, ..., %) = Zsey, x°. By convention, ¢y(x) =1 for any x. For any positive semidefinite # X n matrix M, we
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define Ex(M) to be e,(Aq,...,A,), where A(M) =(A4,...,A,) is the vector of eigenvalues of M. Notice that E;(M) =
tr(M) and E, (M) = det (M).

To prove Theorem 1, we give Algorithm 1, which is a general framework to sample S to solve the A-optimal
design problem.
Algorithm 1 (The Proportional Volume Sampling Algorithm)

1: Given an input V = [0y, ...,v,] where v; € RY ka positive integer, and measure u on sets in Uy (or U ).

2: Solve convex relaxation CP to get a fractional solution x € R} with 2! ; x; = k.

3: Sample set S (from U< or Uy) where Pr[S = S]oc u(S) det (VsV{) for any S € Uy (or U). > p(S) may be de-
fined using the solution x

4: Output S (If |S| < k, add k — |S| arbitrary vectors to S first).

We first prove the following lemma that is needed for proving Theorem 1.

Lemma 2. Let T C[n] be of size no more than d. Then,
det (Vr(x)" Vr(x)) = x"det (V7 V7).

Proof. The statement is true by multilinearity of the determinant and the exact formula for Vr(x)" Vr(x) as fol-
lows. The matrix Vr(x)" Vr(x) has (i,j) entry

(Vi) Vi), = Vi v, = yET 0

for each pair i,j € [|T|]. By the multilinearity of the determinant, we can take the factor /x; out from each row i of
Vr(x)" Vr(x) and the factor /%j out from each column j of Vr(x) " Vr(x). This gives

det (Vr(x) Vr(x) = [ ] vai [ | v det (VIVr)=xTdet (VIVy). O

i€(|T] jeliT]

We also need the following identity, which is well known and extends the Cauchy-Binet formula for the determi-
nant to the functions Ej.

Ex(VVT) = E(VTV) = D> det (V§ V). @)
Sely

Identity (4) appeared in Mariet and Sra [34] and, specifically for k =d —1, as lemma 3.8 in Avron and Boutsidis [5].
Now we are ready to prove Theorem 1.

Proof of Theorem 1. Let ' denote the sampling distribution over I/, where U = Uy or U, with probability of
sampling S € U proportional to p(S) det (VsV{). Because tr (Ziepy) Xiviv; )7l =CP<OPT, itis enough to show that

-1
& [tr (Z v;0; ) <atr (Z xiviv?) . (5)
- ie[n]

€S
In case |S| <k, algorithm A4 adds k —|S| arbitrary vector to S, which can only decrease the objective value of the
solution.
First, a simple but important observation (Avron and Boutsidis [5]): for any d x d matrix M of rank d, we have

a1 _eaa(AM) _Eia(M)
trM _Z/\i(M)_ es(A(M)) ©detM

(6)

i=1

Therefore, we have

1
[tr(Zvv ) } ZPr [S = S]tr (VsVI)™
S~ i€S Seu M
Z [J( )det (V5VT) E4_ 1(V5V;—)
Seu ZS’EZ/IH det Vsr V;—,) det (V5VT)
st (S)Ea-1(VsVi)
2 sqii(S) det (VsVI)
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We can now apply the Cauchy-Binet Equation (4) for E;_q, E; = det, and the matrix VsV{ to the numerator and
denominator on the right hand side, and we get

E [tr (Z v-yT)_l] — Z:SEMZ‘AIleal—L TCS p(S) det (V; VT)
8~‘u/ 7 ZSEZ/{ u(S)Z‘RIZd, RQS det (VI-QI—VR)
Zm:d—l' rep det (ViVr) s 5o M)

Z|R|:d, ke det (Vi V) ZSEL{, sor H(S)
det (VI Vr)Pr[S2T]
u

ieS

Tj=d-1, TC[n

Z|R|= 4, ke det (Vz VR)I;r [SOR] '

where we change the order of summation at the second to last equality. Next, we apply (6) and the Cauchy-Binet
Equation (4) in a similar way to the matrix V(x)V(x)":
4 Eia(V)V(r)' —srrerndet (Vr(x) Vr(x
e (Vv = EVEVE)) Zumeanrep det (Vi) Vi)
det (V(x)V(x) ) Z|R\:d,Rg[n] det (Vr(x) V()
_ ZITl:d—l,Tg[n] det (V7 Vr)x'
ZlRl:d/an] det (Vg Vg) xR

where we use the fact that det (Vr(x)" Vr(x)) = xRdet (Vi Vr) and det (Vr(x)' Vr(x)) = x"det (V1 Vr) in the last
equality by Lemma 2.
Hence, Inequality (5), which we want to show is equivalent to

B
2 -y reqm det (Vo V) I;T[S 2T < D riear e det (Vi Vo)

<a , @)
Z|R|:d,R i det (Ve Vi) IZT[S 2R] Z|R|:d,R cpmpdet (Vg Vg)x®
which is equivalent to
> det (ViVr)det (VEVg)-xR-Pr[S2T]
T|=d—1, |R|=d # ®)
<a >, det(ViVr)det(ViVg)-xT-Pr[S2R].
T|=d—1, |R|=d t#
By the assumption that
Pr[S2T] 4T
L — S a—
Prisor] = R
for each subset T,RC [n] with |T|=d -1 and |R| =4,
det (VI Vr)det (Vg Vr) xR - Pr[S2T] < adet (V] Vr)det (Vg V) x" -Pr[S2R]. )
H u

Summing (9) over all T, R proves (8). O

3. Approximating Optimal Design Without Repetitions

In this section, we prove Theorem 2 by constructing a-approximate (d — 1,d)-independent distributions for appropri-
ate values of a. We first consider the case when k = d and then the asymptotic case when k = Q(£+ Llog 1). We also re-
mark that the argument for k = d can be generalized for all k < d, and we discuss this generalization in Section 5.1.

3.1. The d-Approximation for k=d
We prove the following lemma that, together with Theorem 1, implies the d-approximation for A-optimal design
when k =d.

Lemma 3. Let k = d. The hard-core distribution p on Uy with parameter x is d-approximate (d — 1,d)-independent.

Proof. Observe that for any S € Uy, we have u(S) = x°/Z, where Z = Lg.¢y, x° is the normalization factor. For any
TC[n] such that |T| =d -1, we have

S T T
Pr(soT]= 3 %:%(le.)gd%

S~u Self:52T ie[n\T
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We use k =d and Zic,)\r x; < k =d. For any RC[n] such that [R| = d, we have

SoR] 5 S 4R
Pr[SDR]|= —=—.
S~u sesor L 2

Thus, for any T,RC[n] such that |T| =d -1 and |R| = d, we have

Pr [S 2 T] XT

S L
Pr[S2R] _de'
S~p

3.2. The (1+¢)-Approximation

Now, we show that there is a hard-core distribution u on U that is (1 + €)-approximate (d — 1, d)-independent
when k = Q(d/e + (1/€*)log (1/€)).

Lemma 4. Fix some 0 < € <2, and let k = Q(d /e +1og (1/€)/€?). The hard-core distribution u on Uy with parameter A, de-
fined by

Xi

=TT ey’

is (1 + €)-approximate (d — 1,d)-wise independent.

Proof. For simplicity of notation, let us denote =1+ ¢/4, and &; = x;/B. Observe that the probability mass under

u of any set S of size at most k is proportional to ([ ;s &)([ T;e5(1 — &:))- Thus, i is equivalent to the following dis-
tribution: sample a set BC[n] by including every i € [n] in B independently with probability &;; then we have
u(S) =Pr[B=5||B| <k] for every S of size at most k. Let us fix for the rest of the proof arbitrary sets T,RC[n] of
size d — 1 and d, respectively. By the previous observation, for S sampled according to i, and B as earlier, we have
Pr[S2T] Pr[B2T and |B|Sk]< Pr[B2T]
Pr[S2R] Pr[B2R and |B/<k] ~ Pr[B2R and |B| <k]’

We have Pr[B2T]=&" =T /%L, To simplify the probability in the denominator, let us introduce, for each

i € [n], the indicator random variable Y;, defined to be one if i € B and zero otherwise. By the choice of 5, the Y; s
are independent Bernoulli random variables with mean &;, respectively. We can write

Pr[B2R and |[B|<k]=Pr| VieR:Y;=1 and ZYiSk—d]
iR
=Pr[VieR:Y;=1]Pr ZYiSk—d},
ieR
where the last equality follows by the independence of the Y;. The first probability on the right-hand side is just
ER = xR /g4, and plugging into the previous inequality, we get
Pr[SDT] xT
PrisoR] =Fix '
r[S2R] xPr[ZiQRY,-Sk—d]

(10)

We claim that

€
Pr[ZYisk—d >1-

i¢R

as long as k = Q(d/e + (1/€*)log (1/€)). The proof follows from standard concentration of measure arguments. Let
Y = ZirY, and observe that E[Y] = (1/8)(k — x(R)), where x(R) is shorthand for Zicr x;. By Chernoff’s bound,
2
Pr[Y >k—d] <e 5E®) (11)
where

S _Bl=d) . _(B-1k+x(R)-pd

“k-x(R) k—x(R)




Downloaded from informs.org by [130.207.93.57] on 05 October 2022, at 12:25 . For personal use only, all rights reserved.

Nikolov, Singh, and Tantipongpipat: PVS and Approx Alg for A-Optimal Design
Mathematics of Operations Research, 2022, vol. 47, no. 2, pp. 847-877, © 2022 INFORMS 855

The exponent on the right-hand side of (11) simplifies to
2 2
8%(k = x(R) _ ((B=1)k+x(R)—pd)” _((B-1)k—pd)
# 38 (k- x(R) 3pk
For the bound Pr[Y > k — d] < €/4, it suffices to have

(B—1)k—pd = /3Blog(4/€) k.

Assuming that k > (Clog(4/€))/e? for a sufficiently big constant C, the right-hand side is at most %k. Therefore, as
long as k > (Bd)/(B — 1 —§), the inequality is satisfied and Pr[Y > k —d] < §, as we claimed.

The proof of the lemma now follows because for any |T| =d — 1 and |R| = d, we have
Pr[S2T] xT T+aT
<p < e TR’
Pr[SOR] ™" xRPr[> ] Yi<k-d]~ 1-gx

and

—_

+

W=

<l+e O

—_

=

The (1 + €)-approximation for large enough k in Theorem 2 now follows directly from Lemma 4 and Theorem 1.

4. Approximately Optimal Design with Repetitions

In this section, we consider the A-optimal design without the bound x; <1 and prove Theorem 3. That is,
we allow the sample set S to be a multiset. We obtain a tight bound on the integrality gap in this case. In-
terestingly, we reduce the problem to a special case of A-optimal design without repetitions that allows
us to obtain an improved approximation.

We first describe a sampling Algorithm 2 that achieves a (k(1 +¢€))/(k —d + 1)-approximation for any € > 0.
In the algorithm, we introduce poly(n,1/€) number of copies of each vector to ensure that the fractional so-
lution assigns equal fractional value for each copy of each vector. Then we use the proportional volume
sampling where the measure distribution u is defined on sets of the new larger ground set U over copies of
the original input vectors. The distribution p is just the uniform distribution over subsets of size k of U, and
we are effectively using traditional volume sampling over U. Notice, however, that the distribution over
multisets of the original set of vectors is different. The proportional volume sampling used in the algorithm
can be implemented in the same way as the one used for without repetition setting, as described in Section
6.1, which runs in poly(n,d, k,1/e) time.

In Section 6.3, we describe a new implementation of proportional volume sampling procedure that improves
the running time to poly(n,d, k,log (1/€)). The new algorithm is still efficient even when U has exponential size
by exploiting the facts that u is uniform and that U has only at most n distinct vectors.

Algorithm 2 (Approximation Algorithm for A-Optimal Design with Repetitions)

1: Given x € R} with X7 ;x; =k, € > 0, and vectors vy, . .., vy.

2:Letg = (2n)/(ek). Set x;} := ((k — n/q)/k)x; for each i, and round each x/ up to a multiple of 1/.

3:If X x; <k, add 1/g to any x; until X7 ,x} = k.

4: Create qx; copies of vector v; for each i € [n]. Denote W the set of size X} ,gx; = gk of all those copies of vectors.
Denote U the new index set of W of size gk. > This implies that we can assume that our new fractional solution
yi=1/qisequal overallie U

5: Sample a subset S of U of size k where Pr[S = S]ocdet (WsW{ ) for each SCU of size k.

6: Set X; = Zyew, 1(w is a copy of v;) for all i € [n] > Get an integral solution X by counting numbers of copies

of v;in S.
7: Output X.
Lemma 5. Algorithm 2, when given as input x € RY} s.t. (such that) Z ; x; =k, 1 > € >0, and vy, ..., vy, outputs a random
X € 7!, with Xi_; X; = k such that
k (1+¢) 1 !
a1 (Z Xi0;0; ) .

n
E [tr (Z XiviviT)
i=1

-1
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Proof. Define x/,y, W, U, S, X as in the algorithm. We will show that
k

n -1 n 1 ; »
E|tr( > X | |£—— ol | < .
[tr(i—lxvzvi) }_k—d+ltr(;xlvvl) k— d+1t1‘(§‘x,vv)

The second inequality is by observing that the scaling x} := ((k — 1/4) /k)x; multiplies the objective tr(Z xv07) " by a

factor of
-1 -1
(k_”/q) =(1—§) <l+e

k

and that rounding x; up and adding 1/g to any x; can only decrease the ob]ectlve
To show the first inequality, we first translate the two key quantities tr(Z™,x;/v;07 )" and tr(Z", X;0,07)" from

the with-repetition setting over V and [] to the without-repetition setting over W and U'. First, tr (X7, x/'v;0] )™ =
tr (Ziey yiwiw; "), where y; = 1/q are all equal over all i € U, and w; is the copied vector in W at index i € U Second,
tr (S, Xioi0] ) = tr (Ziescu wiw") .

Let y’ be the distribution over subsets S of U of size k defined by u’(S) ccdet (WsWJ ). It is, therefore, sufficient
to show that the sampling distribution i’ satisfies

K -1
<iz d+1tr(2y,wlwl ) . (13)

ieU

-1
oy T
S]El, [tr( E w;w; )

ieScU

Observe that ' is the same as sampling a set SCU of size k with probability proportional to u(S) det (WsW{)
where p is uniform. Hence, by Theorem 1, it is enough to show that for all T,RC U with |T|=d -1,|R| =4,

I;r[sg 7l < k £ (14)
Iir[SQR] “\k—d+1)yR’
With u being uniform and y; being all equal to 1/4, the calculation is straightforward:
gk—d+1 / gk
IZI‘[S:_JT]: k—d+1 k)_qk—d+1 . £=l=q_ (15)
Pr(S2R] (qkk—;l)/(c;(k) k—d+1 yR oy,

Therefore, (14) holds because

DIS2T] (y\' _gk-d+11_ gk 1_ k
Y A o<
lzlr[SQR] yR k—d+1 g k-d+1 q Tk—d+1

Remark 1. The approximation ratio for A-optimality with repetitions for k > d is tight because it matches the inte-
grality gap lower bound stated in Theorem 20.

5. Generalizations

In this section, we show that our arguments extend to the regime k < d and give a k-approximation (without repe-
titions), which matches the integrality gap of our convex relaxation. We also derive a restricted invertibility prin-
ciple for the harmonic mean of eigenvalues.

5.1. The k-Approximation Algorithm for k<d
Recall that our aim is to select a set SC[n] of size k < d that minimizes Z’i‘:l)\; 1, where Ay, ..., Ax are the k largest
eigenvalues of the matrix VsV{. We need to reformulate our convex relaxation because when k < d, the inverse
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of M(S) = Zies vv] for |S| = k is no longer well defined. We write a new convex program:

n T
Ekfl (Zz’:l Xi0;0; )

min - , (16)
Ek (Zizlxivivf)
s.t.
S ok, (17)
i=1
0<x;<1 Viel[n]. (18)

Once again we denote the optimal value of (16)—(18) by CP. Although the proof that this relaxes the original problem
is easy, the convexity is nontrivial. Fortunately, ratios of symmetric polynomials are known to be convex.

Lemma 6. The optimization problem (16)—(18) is a convex relaxation of the A-optimal design problem when k < d.

Proof. To prove convexity, we first note that the function f(M) = (Ex(M))/(Ex-1(M)) is concave on positive semi-
definite matrices M of rank at least k. This was proved by Bullen and Marcus [11, theorem 4] for positive definite
M, and can be extended to M of rank at least k by a limiting argument. Alternatively, we can use the theorem of
Marcus and Lopes [33] that the function g(A) = (ex(4))/(er_1(A)) is concave on vectors A € R? with nonnegative en-
tries and at least k positive entries. Because g is symmetric under permutations of its arguments and concave,
and (M) = g(A(M)), where A(M) is the vector of eigenvalues of M, by a classical result of Davis [14], the function
f is concave on positive semidefinite matrices of rank at least k.

Notice that Objective (16) equals 1/(f(M(x))) for the linear matrix-valued function M(x) = /L, x;v;0; . Therefore, to
prove that (16) is convex in x for nonnegative x, it suffices to show that 1/f(M) is convex in M for positive semidefinite
M. Because the function 1/z is convex and monotone decreasing over positive reals z, and f is concave and nonnegative
over positive semidefinite matrices of rank at least k, we have that 1/( f(M)) is convex in M, as desired. Then (16)~(18) is
an optimization problem with a convex objective and affine constraints, so we have a convex optimization problem.

Let OPT be the optimal value of the A-optimal design problem and let S be an optimal solution. We need to
show that CP < OPT. To this end, let x be the indicator vector of S, that is, x; =1 if and only if i€ S, and x; =0

otherwise. Then, ‘
_EaM(E) _ 2l T HMO) ﬁ 1
 EdM(9) [ T4 (M(S)) =1 A,(M(S))

Previously, A1(M(S)), ..., Ax(M(S)) are, again, the nonzero eigenvalues of M(S) = > s viv]. O

CP =OPT.

We shall use the natural analog of proportional volume sampling: given a measure u on subsets of size k, we
sample a set S with probability proportional to p(S)Ex(M(S)). In fact, we will only take u(S) proportional to x°, so
this reduces to sampling S with probability proportional to Ex(3sxviv; ), which is the standard volume sam-
pling with vectors scaled by 4/x;, and can be implemented efficiently using, for example, the algorithm of Desh-
pande and Rademacher [19].

The following version of Theorem 1 still holds with this modified proportional volume sampling. The proof is
exactly the same, except for mechanically replacing every instance of determinant by Ey, of E;_; by E;_1, and in
general of d by k.

Theorem 6. Given integers k <d <n and a vector x € [0,1]" such that 17x =k, suppose there exists a measure 1 on Uy
that is a-approximate (k —1,k)-wise independent. Then for x the optimal solution of (16)-(18), proportional volume sam-
pling with measure u gives a polynomial time a-approximation algorithm for the A-optimal design problem.

We can now give the main approximation guarantee we have for k <d.

Theorem 7. For any k < d, proportional volume sampling with the hard-core measure p on Uy with parameter x equal to
the optimal solution of (16)—(18) gives a k-approximation to the A-optimal design problem.

Proof. In view of Theorem 6, we only need to show that u is k-approximate (k — 1,k)-wise independent. This is a
straightforward calculation: for S ~ u, and any T C[n] of size k —1 and RC[n] of size k,
Pr(S2T] T3 pxi Tl
= <k—:.
Pr[{S2R] xR xR

This completes the proof. O
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The algorithm can be derandomized using the method of conditional expectations analogously to the case of
k = d that we will show in Theorem 14.

The k-approximation also matches the integrality gap of (16)—(18). Indeed, we can take a k-dimensional inte-
grality gap instance vy, . ..,v, and embed it in R for any d > k by padding each vector with zeros. On such an in-
stance, the convex program (16)—(18) is equivalent to the convex program (1)-(3). Thus, the integrality gap that
we will show in Theorem 20 implies an integrality gap of k for all d > k.

5.2. Restricted Invertibility Principle for Harmonic Mean

Next, we state and prove our restricted invertibility principle for harmonic mean in a general form. In this section
we use the notation ||M||, = (Zfl:l |Ai|p )1/ P for the Schatten-p norm of a symmetric d by d matrix M with eigenvalues
M, ...,As. When M is positive semidefinite, this is simply [|M]|, = tr(MP)l/ P. The Schatten-infinity norm ||M]|.,
equals the largest absolute value of the eigenvalues of M.

Theorem 8. Let vq,...,0, €R? and ¢1,...,c, €R,, and define M = E!_, c;ov] . For any p € (1,00] and q € [1,00) such

i=

that %+ % =1, and any integer k < r, = ||M||?/||M||", there exists a subset SC[n] of size k such that the k largest eigenvalues

A1, ..., Ay of the matrix Zies vv] satisfy
14 1) k—1Y1\ tr (M)
k25 =005 =%
= p 1) 2

Moreover, such a set S can be computed in deterministic polynomial time.

The proof of Theorem 8 relies on the following lemma.

Lemma 7. Let vy,...,v, € R, and c1,...,c, € Ry, and define M = X', cio0] . For any k < d, there exists a set S of size k
such that the k largest eigenvalues Ay, ..., A of Zies 00 satisfy

T )y EBM) ko
k =1 _Ek_l(M) Z;l:lci.

Moreover, such a set can be found in deterministic polynomial time.

Proof. Without loss of generality we can assume that X_; c; = k. Then, by Theorem 7, proportional volume sam-

pling with the hard-core measure u on U/, with parameter c = (cy, ..., ¢,) gives a random set S of size k such that

_Ea(M)

k
o[ L] /
Ex(M)

KE M)

where A;(M(S)) is the ith largest eigenvalues of M(S) = 3,csv;v; . This implies the existence of the claimed set.
The fact that the set can be found in deterministic polynomial time follows by Theorem 14. O

A similar result is implicit in Naor and Youssef [35]. In particular, combining lemma 18 and equality (12) in
Naor and Youssef [35] shows that, in the setting of Lemma 7, for any k < rank M, there exists a set S of size k
such that the k largest eigenvalues A4, ..., A of the matrix 3. v;0; satisfy

d
1& 1\ DL AWM
(‘Z_) > Zun WD) 19)
k i=1 Ai Zi:l Ci
where A1(M) = ... > A;(M) are the eigenavalues of M. Our Lemma 7 is stronger in a couple of ways. First, it gives
an efficient algorithm to compute the set S. Furthermore, it gives a bound which dominates the one in (18).
Namely, for any vector A € Rﬂ, such that A; > ... > A;, we have

ka()= >, ADAh= D) )\Ti)\izek_l()\)-(é/\i). (20)

TC[d]|T|=k-1 i¢T TC[d]:|T|=k-1 i=k

Proof of Theorem 8. Equation (5) in Naor and Youssef [35] shows that, for any k <4,

k‘l)) e (M),

iZj};/\i(M)z(l—( -

This inequality, together with Lemma 7 and (20) imply the theorem. O

p
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5.3. Generalized Ratio Objective
In A-optimal design, given V = [0;.... v,] € R™", we state the objective as minimizing

-1

Eq1 (VsVT)
'I(Z. ”f”f) AR
i€S a\VsVg

over subsets SC[n] of size k. In this section, for any given pair of integers 0 < /" <[ < d, we consider the following
generalized ratio problem:

Er(VsVi) ))_ (1)

scr[ﬂ]l,ﬁlﬂ:k( E(VsVY)

This problem naturally interpolates between A-optimality and D-optimality. This follows because for [ =d and
I’ =0, the objective reduces to

1
1 d

i —_ . 22

SQI[%I,IIISI—k(det (Vs VST)) 2)

A closely related generalization between A- and D-criteria was considered in Mariet and Sra [34]. Indeed, their
generalization corresponds to the case when I = d and I’ takes any value from 0 and d — 1.

With repetitions Without repetitions
1 .
(B (Vv By (Vv )\
o (EI (V(x)vm*)) min{voven) O
n n
s.t. le- =k st > xk ()
i=1 i=1
0<x Vie[n] 0<x;<1 Vie[n] 3)

In this section, we show that our results extend to solving generalized ratio problem. We begin by describing a
convex program for the generalized ratio problem. We then generalize the proportional volume sampling algorithm
to proportional I-volume sampling. Following the same plan as in the proof of A-optimality, we then reduce the approx-
imation guarantee to near-independence properties of certain distribution. Here again, we appeal to the same prod-
uct measure and obtain identical bounds, summarized in Table 2, on the performance of the algorithm. The efficient
implementations of approximation algorithms for generalized ratio problem are described in Section 6.5.

5.3.1. Convex Relaxation. As in solving A-optimality, we may define relaxations for with and without repetitions

as (23)—(25). (Ew (vive)

1
=
We now show that ) is convex in x.

E(V@veT)
Lemma 8. Let d be a positive integer. For any given pair 0 <1’ <1 < d, the function

Ey (M))ﬁ
0(M) = —F— (20)
is convex over d X d positive semidefinite matrix M.

Table 2. Summary of approximation ratio obtained by our work on generalized ratio problem.

T
A-optimal min [ErVsVY) 1= D-optimal
Problem '=d-1,1=4d) ISI=k \ E(VsV7) =0,1=4d
1
— T 1
Case k=d d l-[(l—l’)!] [ glfl, e
Asymptotic k > d without Repetitions 1+e, for 1+e€, for 1+e€, for
sz(§+]°i—§/€) sz(g#“ge—z‘/s) sz(ng"’ge—j/e)
~ - iti k k k
Arbitrary k and d with Repetitions e i o]

Asymptotic k > d with Repetitions 1+€¢, fork>d +§ 1+e, fork>1 +é 1+e, fork>d +§
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Proof. By theorem 3 in Bullen and Marcus [11], (f,;(M))™" = ((E/(M))/(E; (M)))l/ " is concave on positive semide-
finite matrices M for each 0 <!’ <1 <d. The function ! is convex and monotone decreasing over the positive reals

z, and this, together with the concavity of (fy,1(M))™" and that (f]r/](M))_l >0, implies that f;,;(M) is convex in
M. O

5.3.2. Approximation via (/, I)-Wise Independent Distribution. Let 0 <!' <! <d and U € {Uy,U}. We first show

connection of approximation guarantees on objectives ((E;(VsV{))/(E/(Vs VST)))l/ =" and (Ex(VsVI)/(E(Vs V).
Suppose we already solve the convex relaxation of generalized ratio problem (23)-(25) and get a fractional solution
x € R". Suppose that a randomized algorithm A, on receiving input V € R*" and x € R", outputs S € U such that

Ey (VsVI)
E (VsVY)

Er (VV()')

E/(V(x)V())

<a

(27)

S~A

for some constant a’ > 0. By the convexity of the function f(z) = z

=T
E; (M) Ey (M)
EI(M)IZE (Ez(M)) l )

over positive reals z, we have

E

for any semipositive definite matrix M. Combining (27) and (28) gives

1
(E,, (vsvg))z-w <
E; (VsV])

1
-

Er (V)V(x)')

2 (29)
E (V)V(x)')

S~A

where a = (a’)l/ =) Therefore, it is sufficient for an algorithm to satisfy (27) and give a bound on &’ in order to
solve the generalized ratio problem up to factor a.

To show (27), we first define the proportional [-volume sampling and a-approximate (I, [)-wise independent
distribution.

Definition 3. Let u be probability measure on sets in Uy (or U/ <). Then the proportional I-volume sampling with
measure 1 picks a set of vectors indexed by S € Uy (or U<) with probability proportional to 1(S)E;(VsVY).

Definition 4. Given integers d, k, 1, a pair of integers 0 < I’ <1 <d, and a vector x € [0,1]" such that 17x = k, we call
a measure p on sets in Uy (or U), a-approximate (I, [)-wise independent with respect to x if for any subsets
T’,TC[n] with |T’| =’ and |T| = I, we have
PI‘SNF[T'QS] < Ocl_l/ -i,
Prs-, [TcS] xT

’

where xl := [, x; for any LC[n]. We omit “with respect to x” when the context is clear.

The following theorem reduces the approximation guarantee in (27) to a-approximate (I, [)-wise independence
properties of a certain distribution u by using proportional I-volume sampling.

Theorem 9. Given integers d,k,n, V =[v1...v,] € R and a vector x € [0, 11" such that 17x = k, suppose there exists a
distribution u on sets in Uy (or Ui) and is a-approximate (I, 1)-wise independent for some 0 <1’ <1< d. Then the proportional

l-volume sampling with measure y gives an a-approximation algorithm for minimizing ((Ey (VsV))/(Er (Vs Vg)))l/ 1) oper
subsets SC[n] of size k.

Proof. Let u’ denote the sampling distribution over U/, where U = U or U, with probability of sampling S € U
proportional to y(S)El(VSVST). We mechanically replace T,R,d—1,d,and det in the proof of Theorem 1 with
T',T,lI',1,and E; to obtain

1
<atr (Z xiviviT) )

i€[n]

-1
o
SIEU [tr( E 0;0; )

ieS

We finish the proof by observing that (27) implies (29), as discussed earlier. [
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The following subsections generalize algorithms and proofs for with and without repetitions. The algorithm
for generalized ratio problem can be summarized in Algorithm 3. Efficient implementation of the sampling is de-
scribed in Section 6.5.

Algorithm 3 (Generalized Ratio Approximation Algorithm)
1: Given an input V = [vy,...,v,] where v; € RY ka positive integer, and a pair of integers 0 < I’ <1 <d.

2: Solve the convex relaxation

EI’ (V(X)V(X)T ))1/1—1'
E(V(x)V(x)")
where | = [0, 1] if without repetitions or R if with repetitions.

3:if k = [ then
4:  Sample p'(S) < x°E;(VsV?) for each S € Uy

5: else if without repetition setting and k > Q (d /e +(log(1/€))/ ez) then

6: Sample p1/(S) o A°E)(Vs V) for each S € U, where A; := x;/(1+€/4 — x;)
7: else if with repetition setting then
8:  Run Algorithm 2, except modifying the sampling step to sample a subset S of U of size k with
Pr[S = S]oc E(WsWJ).
9: end if
10: Output S (If |S| < k, add k — |S| arbitrary vectors to S first).

X = arg mir Lyen:17 x=k (

5.3.3. Approximation Guarantee for Generalized Ratio Problem Without Repetitions. We prove the following
theorem that generalizes Lemmas 3 and 4. The a-approximate (I, [)-wise independence property, together with
Theorem 9, implies an approximation guarantee for generalized ratio problem without repetitions for k =1 and
asymptotically for k = Q (I/e + (1/e*)log (1/€)).

Theorem 10. Given integers d,k,n, a pair of integers 0 < I' <1 < d, and a vector x € [0,1]" such that 17 x = k, the hard-core
distribution u on sets in Uy with parameter x is a-approximate (I', I)-wise independent when k =1 for

1 el

=L [a-ryer st (30)
Moreover, for any 0 < € <2 when k = Q(L+ Llog 1), the hard-core distribution y on Uy, with parameter A, defined by
Xi
Ai = 1+ fI — Xi !

is (1 + e)-approximate (I’ — I)-wise independent. e
Thus for minimizing the generalized ratio problem ((Ep(VsVsT))/(E(VsVsT))) 1 over subsets SC[n] of size k, we
obtain

o (:%)-approximation algorithm when k = 1, and
o 1+ e-approximation algorithm when k = Q(I/e + (1/€*)log (1 /¢€)).
Proof. We first prove the result for k = 1. For all T", TC[n] such that |T"| =1V, |T| =,

, T L T L
Pr[SZ_DT] Z\S| som S_X ZLe([;(I]_\IT/’)x <x ZLe(k[flp)x

Pr [S2T1 3 g sor’ Xt B xt
We now use Maclaurin’s 1nequahty (Lin and Trudinger [31]) to bound the quantity on the right-hand side
I-r -1
L n - n -r 1
> o =an) () ) @@m T < = (31)

("))

Therefore,
D £[5 2Tl g 1

<
— 1\ AT’
SII[SQT] (I-r)x

which proves the (I, I)-wise independent property of y with required approximation ratio from (30).
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We now prove the result for k = Q(I/ € +(I/€*)log (I/ € )). The proof follows similarly from Lemma 4 by replac-
ing T,R with T”, T of sizes I, | instead of sizes d — 1, d. In particular, Equation (10) becomes
Pr[S2T'] e\l x
ST (g |
Pr[S2T] 4 ATPr[D L Yi <k

The Chernoff’s bound (11) still holds by mechanically replacing d, R with I, T respectively. The resulting approxi-
mation ratio « satisfies

(33)

v
. (1+€ _r
ol :( ;'11) <(1+e,

ST

where the inequality holds because e <2. O

5.3.4. Approximation Guarantee for Generalized Ratio Problem with Repetitions. We now consider the general-
ized ratio problem with repetitions. The following statement is a generalization of Lemma 5.

Theorem 11. Given V = [v1 0,...v,], where v; € RY, a pair of integers 0 <1’ <1<d, an integer k > 1, and 1 > € > 0, there
1/(-1)
is an a-approximation algorithm for minimizing ((E;/(VS I’A )) / (EI(VSVST ))) over subsets S C[n] of size k with repeti-

tions for
k(1+e)
<—.

k-1 G
Proof. We use the algorithm similar to Algorithm 2 except that in Step 5, we sample SC U of size k where Pr[S =
S]oc E1(WsW,T) in place of Pr[S = S] oc E1(W;W). The analysis follows on the same line as in Lemma 5. In Lemma 5,
it is sufficient to show that the uniform distribution p over subsets SCU of size k is k/(k —d + 1)-approximate
(d—1,d)-wise independent (as in (13)). Here, it is sufficient to show that the uniform distribution p is

k/(k—1+1)-approximate (,l)-wise independent. For T,T'C[n] of size (I,]), the calculation of (Pﬁ [S QT’]) /
(Pﬁ [S2 T]) and yyiT is straightforward
qgk=1"y /(qk -
psor)_ (o /) @ e v,
Prisor] (qk—l)/(qk) (k=1)! y
k-1 k

Therefore, u is a-approximate (I’, I)-wise independent for

1

Pr[S2T'] | r Ay T

“%W'%) 5(%‘714)
[J

_ k Lk
(k=) k=1 —=1) - (k=1+1)]7 ~ k=1+1

as we wanted to show. O

We note that the [-proportional volume sampling in the proof of Theorem 11 can be implemented efficiently,
and the proof is outlined in Section 6.5.

5.3.5. Integrality Gap. Finally, we state an integrality gap for minimizing generalized ratio objective

(Ev(VsVI)/(E(VSV] )))1/ ") over subsets SC[n] of size k. The integrality gap matches our approximation ratio of
our algorithm with repetitions when k is large.

Theorem 12. For any given positive integers k,d and a pair of integers 0 <1’ <1< d with k > I, there exists an instance V =

[v1,...,04] € R™" to the problem of minimizing (Ep(VsV))/(Ei(Vs Vs'r)))l/ 1 over subsets SC [1] of size k such that
k
> ——— .
OPT_(k—l’ 6) cP

forall 6 > 0, where OPT denotes the value of the optimal integral solution and CP denotes the value of the convex program.
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This implies that the integrality gap is at least /% for minimizing ((Ey(VsV{))/(E/(VsV] )))1/ =) over subsets
SC[n] of size k. The theorem applies to both with and without repetitions.

Proof. The instance V = [vy, ..., v,] will be the same for with and without repetitions. For each 1 <i <d, lete; de-
note the unit vector in the direction of axis i. Choose

v:{‘/ﬁ-ei fori=1,...,I

e; fori=1,...,I"

where N > 0 is a constant to be chosen later. Set v;,i > [ to be at least k copies of each of these v; for i </, as we can
make 1 as big as needed. Hence, we may assume that we are allowed to pick only v;,i <[, but with repetitions.

Let 5 represent the set of vectors in OPT and y; be the number of copies of v; in S* for 1 <i <. Clearly y; > 1
foralli=1,...,I (else the objective is unbounded). The eigenvalues of V. V. are

A(VS" V;—*) = (le/yZN/ .. ~/yl'N/yl’+1/yl’+2/ .. ~/y110/ oo /0)

Hence, both E; (Vs V() =ey(A) and E/(Vs-V{.) = ¢(A) are polynomials in variables N of degree I’

Now let N — co. To compute (OPT)H' = (Er(Vs VL)) /(Ei(Vs-VS.)), we only need to compute the coefficient of
the highest degree monomial N*. The coefficient of N in e (1), e,(A) are exactly [T-,i, [ T-1i, and therefore

, -1
v EI/(VS*VST*) — ni:lyi = ﬁ yi) :

B EZ(VS* V;—) I_Ii':l Yi i=I'+1

Observe that []'_,,,y: is maximized under the budget constraint Xi_ y; = |S*| = k when yi=1forj=1,...,1I.
Therefore,
-
k-1
l—l’) ’

where the inequality is by AM-GM (arithmetic mean and geometric mean). Hence, OPT is lower bounded by a
quantity that converges to (I -1")/(k—1') as N — oo.
We now give a valid fractional solution x to upper bound CP for each N > 0. Choose

(opT)”

! 1
l_[]/iﬁ(l_l,

i=l'+1

I -
>, yf) =

i=I'+1

K fori=1,...,I

fori=I'+1,...,1
0 for i>1

Then, eigenvalues of V(x)V(x)" are

T

A= MV(x)V(x) )= (21N, %N, ..., 2y N, Xp 41, Xp42, - . ., %1,0,...,0)
= (k\/ﬁ,k\/ﬁ, .. .,k\/N,x,/H,xlurz, .. .,xl,O, .. ,0)

Now as N — oo, the dominating terms of E;(V(x)V(x)") = ey (1) is ]—]Ll(k\/ﬁ) =K' (VN)". Also, we have

EAVIVEE)) = eld') = [J0VR) [ ]

’
_K , ,

k() R - # )

Hence,
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Therefore, %E is lower bounded by a ratio that converges to
I-r k k

k—r =1 k-1 "

6. Efficient Algorithms
In this section, we outline efficient sampling algorithms, as well as deterministic implementations of our round-
ing algorithms, both for with and without repetition settings.

6.1. Efficient Randomized Proportional Volume

Given a vector A € R”, we show that proportional volume sampling with p(S) o A° for S € U, where U € {Uy, U<}
can be done in time polynomial in the size 1 of the ground set. We start by stating a lemma which is very useful
both for the sampling algorithms and the deterministic implementations.

Lemma 9. Let A R}, vq,...,0, € RY, and V =[vy,...,v,]. Let L] C[n] be disjoint. Let 1 <k <n,0 < dy < d. Consider the
following function:
F(t1,to, t3) = det (I, + t1diag(y) + t1t2diag(y)l/ ZVVTdiag(y)l/ 2)
where t1,ty,t3 € R are indeterminate, I, is the n X n identity matrix, and y € R" with
Aits, l'fi el
¥i=30, ifie]

Ai,  otherwise
Then F(t1, t2, t3) is a polynomial and the quantity

A5 > det(ViVr) (36)
IS|=k,1CS,JNS=0  |T|=do, TSS

is the coefficient of the monomial tkt% t|31|. Moreover, this quantity can be computed in O(n®doklI| - log (dok|I|)) number of ar-
ithmetic operations.

Proof. Let us first fix some SC[n]. Then we have

> det(VEVr) = Eg(VEVs) = [t]det (Is + Vs VY),
IT|=do, TCS

where the notation [tgo]p(tz) denotes the coefficient of t% in the polynomial p(t,) = det (Is + £,VsV{). The first
equality is just Cauchy-Binet, and the second one is standard and follows from the Leibniz formula for the deter-
minant. Therefore, (36) equals

] X A%det(ls+HVsVY).
|S|=k,1CS,]NS=0
To complete the proof, we establish the following claim.
Claim 1. Let L be an n X n matrix, and let A, L, ], k, y be as in the statement of the lemma. Then,

ASdet (Lss) = [tg]Ek(diag(y)l/zL diag(y)l/z)
IS|=k,ICS, JNS=0

= [t’{tgl]det (In + tldiag(y)l/zL diag(y)l/z).

Proof. By Cauchy-Binet,

Ei|diag(y)'’L diag(y)” 2) = > yidet (Lss)
iSI=k

= Z tgsmlﬂsdet (Ls,s).
IS|=k, JnS=0

The first equality follows. The second is, again, a consequence of the Leibniz formula for the determinant. O



Downloaded from informs.org by [130.207.93.57] on 05 October 2022, at 12:25 . For personal use only, all rights reserved.

Nikolov, Singh, and Tantipongpipat: PVS and Approx Alg for A-Optimal Design
Mathematics of Operations Research, 2022, vol. 47, no. 2, pp. 847-877, © 2022 INFORMS 865

Plugging in L = I, + £,VVT in Claim 1 gives that (36) equals

|ttt |det (1, + ding(y)"*(1 + vV ")diag(y)"?)

= [t’{tg(‘tgl]det (In + tydiag(y) + t1t,diag(y ) 2VVT diag(y )1/2 .

This completes the proof. For the running time, the standard computation time of matrix multiplication and
determinant of 1 X n matrices is O(n%) entry-wise arithmetic operations. We need to keep all monomials in the
form #t5t5, where a <k,b <do,c <|I|, of which there are O(dok|I|). By representing multivariate monomials in
single variable (Pan [41]), we may use fast Fourier transform to do one polynomial multiplication of entries
of the matrix in O(dok|I| - log (dok|I|)) number of arithmetic operations. This gives the total running time of
O(n®doklI| - log (doklI))). O

Using the previous lemma, we now prove the following theorem that will directly imply Lemma 1.

Theorem 13. Let AeR"},vq,...,0, € RY1<k<n Ue {Uy, U}, and V =[v1,...,v,]. Then there is a randomized algo-
rithm A that outputs S € U such that

ASdet (VsVT ,
Pris=s]= S,( sVs) — =1 1/(S).
- Zs'euA det (Vs V§)

That is, the algorithm correctly implements proportional volume sampling p’ with hard-core measure y on U with parame-
ter A. Moreover, the algorithm runs in O(n*dk*log (dk)) number of arithmetic operations.

Observation 1. Wang et al. [50] show that we may assume that the support of an extreme fractional solution of
convex relaxation has size at most k+d?. Thus, the runtime of proportional volume sampling is O((k+d2)
dk?log (dk)). Although the degrees in d, k are not small, this runtime is independent of n.

Observation 2. It is true in theory and observed in practice that solving the continuous relaxation rather than the
rounding algorithm is a bottleneck in computation time, as discussed in Allen-Zhu et al. [2]. In particular, solving
the continuous relaxation of A-optimal design takes O(n**® log 1) number of iterations by standard ellipsoid
method and O((1 +d%)*>°) number of iterations by SDP (semi-definite program), where O(1¢’) denotes the runtime
of n X n matrix multiplication. In most applications where 1 > k, these running times dominates one of proportional
volume sampling.

Proof. We can sample by starting with an empty set S = (. Then, in each step i =1,2,...,n, the algorithm decides
with the correct probability

Pr [iesSlcs,Jns=10],
S

whether to include i in S or not, given that we already know that we have included I in S and excluded ] from S
from previous steps 1,2,...,i — 1. Let I’ = ] U{i}. This probability equals

Pr [I’QS,]OS=(Z)]
[IcS NS =0]

_ ZSEM,I' gs,ms:m/\ det (VsVg)

B ZSGM,I c s,ms:w/\sdet (VsVY)

_ Dlseurs S,]mS:(D/\SZ\m:d,Rcsdet (VrRVR)
Dseuic S,]nS:(Z)/\SZml:d,Rcsdet (VrVy)’

where we apply the Cauchy-Binet formula in the last equality. For U = U, both the numerator and denominator
are summations over S restricted to |S| = k, which can be computed in O(n*dk*log (dk)) number of arithmetic oper-
ations by Lemma 9. For the case U = U, we can evaluate summations in the numerator and denominator re-
stricted to |S| = ko for each kg = 1,2, ...k by computing polynomial F(t1, t,t3) in Lemma 9 only once and then sum
those quantities over k. O

Pr liesSIcS,ns=0]=
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6.2. Efficient Deterministic Proportional Volume

We show that for hard-core measures there is a deterministic algorithm that achieves the same objective value as
the expected objective value achieved by proportional volume sampling. The basic idea is to use the method of
conditional expectations.

Theorem 14. Let A € R}, vq,...,0, € RY,1<k<n Ue {Up, U}, and V = [vy,...,0v,]. Then there is a deterministic al-
gorithm A’ that outputs S* C[n] of size k such that

tr (Ve VE) " 2 Etr (VsVI) ],
E

where ' is the probability distribution defined by p'(S)oc A°det (VsV) for all S € U. Moreover, the algorithm runs in
O(n*dk*1og (dk)) number of arithmetic operations.

Again, with the assumption that n < k + d*> (Observation 1), the runtime for deterministic proportional volume
sampling is O((k + d2)*dk*log (dk)).

Proof. To prove the theorem, we derandomize the sampling algorithm in Theorem 13 by the method of condi-
tional expectations. The deterministic algorithm starts with S* =, and then chooses, at each step i=1,2,...,n,
whether to pick i to be in S* or not, given that we know from previous steps to include or exclude each element
1,2,...,i—1from S*. The main challenge is to calculate exactly the quantity of the form

X(L]) = SEI,[’CY(VSVE)_”ICS,]nS = 0]

where I,] C [n] are disjoint. If we can efficiently calculate the quantity of such form, the algorithm can, at each
stepi=1,2,...,n, calculate X(I' U{i},]’) and X(I’,J’ U{i}), where I,]’ C [i — 1] denote elements we have decided to
pick and not to pick, respectively, and then include i to S* if and only if X(I' U{i},]') > X(I’, ]’ U{i}).

The quantity X(I,]) equals

E [tr(VsVD) T IcS,Ins=01= > Pr[S=S[IcS,Sn]= w]tr[(vsvg )‘1]
~H sar, W
1CS,]NS=0

Sel, ’ =
1c s, Trs=0 s eu,1<8,JnS=0

_ st,ms,ms:w ASEdfl(stsT)
Zsaug $,JNS=0 A° Z|R|:d,RCS det(VrVy)
_ Dseuicsns=o N 2 res det(VTVr)
ZSGM,IQ S,JNS=0 A® Z|R\:d,RcS det(VrV3)

where we write inverse of trace as ratio of symmetric polynomials of eigenvalues in the third equality and use
the Cauchy-Binet formula for the third and the fourth equality. The rest of the proof is now identical to the proof
of Theorem 13, except with different parameters dy =d —1,d in f(t1,t», t3) when applying Lemma 9. O

A® det (VsVY)
A% det (Vs VY)

l(VsvI) |

6.3. Efficient Randomized Implementation of k/(k—d+1)-Approximation Algorithm with Repetitions
First, we need to state several lemmas needed to compute particular sums. The main motivation that we need a
different method from Sections 6.1 and 6.2 to compute a similar sum is that we want to allow the ground set U
of indices of all copies of vectors to have an exponential size. This makes Lemma 9 not useful, as the matrix need-
ed to be computed has dimension |U| X |U|. The main difference, however, is that the parameter A is now a cons-
tant, allowing us to obtain sums by computing a more compact d X d matrix.

Lemma 10. Let V =[vy,...,v,] be a matrix of vectors v; € R? with n > d distinct vectors. Let FC[m] and let 0 <r<d
and 0 < dy < d be integers. Then the quantity Zyi_g, rorjr det (V1 Vr) is the coefficient of #0711 in

f(tl, tr, t3) =det (t1I; + Z tgv,-viT + Z tzviviT P (37)
icF ieF
where t1,t,t3 € R are indeterminate and 1; is the d X d identity matrix. Furthermore, this quantity can be computed in
O(n(d — do + 1)d3d?log d) number of arithmetic operations.
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Proof. First, note that det (1] + Zicrt300, + Zigrt00] ) = ]_[le(tl +v;), where v(M) = {v1,...,v4} is the vector of ei-
genvalues of the matrix M = Xicrt3v0; + Ziertov0] . Hence, the coefficient of t’f‘do in det (1] + Ziertsviv] +
Zigrtaviv] ) is eq,(v(M)).

Next, observe that M is in the form V’'V’T where V’ is the matrix where columns are \fv;, i € F and
vVt i ¢ F. Applying Cauchy-Binet to E;, (V'V'T), we get

Ego| D tsviw] + D o |=Eg(V'V'T)= D) det(V{ V4)

ieF i¢F [T|=do
|F| )
=27 >, det(vivy)
=0 |T|=dq, |TNF|=!
|F|
=, Y dHeldet (vivy),
1=0 |T|=dy, |TNF|=I

where we use Lemma 2 for the last equality. The desired quantity Z\TI: do JFrRj=r9€t (VL Vr) is then exactly the co-
efficient at [ = v in the sum on the righ- hand side.

To compute the running time, because there are only # distinct vectors, we may represent sets V,F compactly
with distinct v;’s and number of copies of each distinct v;’s. Therefore, computing the matrix sum takes O(nd?)
entry-wise operations. Next, the standard computation time of determinant of d X d matrix is O(d®) entry-wise ar-
ithmetic operations. This gives a total of O(nd? + d°) = O(nd?) entry-wise operations.

For each entry-wise operation, we keep all monomials in the form t{ tlz’tg, where a <d—dy,b<dy—r,c<r, of
which there are O((d — dy + 1)d3). By representing multivariate monomials in a single variable (Pan [41]) of degree
O((d — do + 1)d3), we may use fast Fourier transform to do one polynomial multiplication of entries of the matrix
in O((d — do + 1)d3 log d) number of arithmetic operations. This gives the total runtime of O(n(d — do + 1)d3d*log d)
arithmetic operations. 0O

Lemma 11. Let V =[vy,...,v,] be a matrix of vectors v; € R with n > d distinct vectors. Let FC[m] and let 0<r<d
and 0 < do < d be integers. There is an algorithm to compute Xigi— s 5 r Eq,(VsV§) with O(n(d — do + 1)d3d*log d) number
of arithmetic operations.

Proof. We apply Cauchy-Binet:

T
> Ea(VsVi)
IS1=k, 52 F IS|=k, 5 2F [Tl=dy, TCS

det (V}— VT)

> det(VIVr)

m—|F|—do + |FNT]
k—|F| = do + |[FNT]

[T|=do
d
m — |F| — dy + r)
= det (VT VT ,
rZ:c; ( k=IF| =do+r ITI:d(%;ﬂTlﬂ e

where we change the order of summations for the second equality and enumerate over possible sizes of FN T to
get the third equality. We compute f(t1, t,,t3) in Lemma 10 once with O(n(d — dy + 1)d3d?log d) number of arith-
metic operations, so we obtain values of Xirj_4, rn1j=r det (V1 V) for all ¥ =0,...,do. The rest is a straightforward
calculation. O

We now present an efficient sampling procedure for Algorithm 2. We want to sample S proportional to
det (WsWJ). The set S is a subset of all copies of at most 1 distinct vectors, and there can be exponentially many
copies. However, the key is that the quantity f(t1, f», f3) in (37) is still efficiently computable because exponentially
many of these copies of vectors are the same.

Theorem 15. Given inputs n,d, k,e,x € R} with X x; =k, and vectors vy, ...,v, to Algorithm 2 we define q, U, W as in
Algorithm 2. Then, there exists an implementation A that samples S from the distribution u’ over all subsets SC U of size
k, where ' is defined by Pr s.,/[S = S]ocdet (WsW{) for each SCU, |S| = k. Moreover, A runs in O(n*d*k log d) number
of arithmetic operations.

Theorem 15 says that Steps 4 and 5 in Algorithm 2 can be efficiently implemented. Other steps except 4 and 5
obviously use O(n?d*k log d) number of arithmetic operations, so the previous statement implies that Algorithm
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2 runs in O(n?d*k log d) number of arithmetic operations. Again, by Observation 1, the number of arithmetic op-
erations is in fact O((k + d%)*d*k log d).

Proof. Let m; = qx] be the number of copies of vector v; (recall that g = (211)/(ek)). Let w;; denote the jth copy of
vector v;. Write U ={(i,) : i € [n],]j € [m;]} be the new set of indices after the copying procedure. Denote S a ran-
dom subset (not multiset) of U that we want to sample. Write W as the matrix with columns w;; for all (i,j) € U.
Let E;={w;;:j=1,...,m;} be the set of copies of vector v;. For any AC U, we say that A has k; copies of v; to mean
that |AOEZ| = k,‘.

We can define the sampling algorithm .4 by sampling, at each step ¢ =1, ...,n, how many copies of v; are to be
included in SCU. Denote i’ the volume sampling on W we want to sample. The problem then reduces to effi-
ciently computing

Pr[S has k; copies of S has k; copies of v;, Vi=1,...,t-1]

u
I;; [S has k; copies of v;, Vi=1,...,1] (38)

~Pr [S has k; copies of v;, Vi=1,...,t—1]
W

for each k; =0,1,...,k— X!Z] k;. Thus, it suffices to efficiently compute quantity (38) for any given 1<t <n and
ki, ...,k such that Zt_ k; < k.

We now fix t,ky,..., k. For any i € [n], getting any set of k; copies of v; is the same, that is, events SNE; = F;
and SN E; =F; under S ~ i’ have the same probability for any subsets F;, F; C E; of the same size. Therefore, we
fix one set of k; copies of v; tobe F; = {w;;:j=1,...,k} for all i € [n] and obtain

t .
Pr[S has k; copies of v;, Vi=1,...,t] = H(’;:l )Pr[Sﬁ E;=F;, Vi=1,...1].
i=1 "
Therefore, (38) equals
t (M . t=1( M .
[T . JPrisnE=F, vi=1,...0/[ T L JPrISNE =F, Vi=1,..t-1]

(39)

_ (mt) Z|5|:k,5m£,-:a,v:1,.“t det(WsWy)
ke Z|s|=k,5n5,-:a,v:1,. . det (WsWg)

To compute the numerator, define W’ a matrix of vectors in W restricted to indices U\(U;zlEi\F[), and
F:=U!_|F;, then we have

det(WsWg)= >, det(WiW"). (40)
ISI=k, SCW, SNEi=F;, ¥ i=1,...t IS|=k, SCW’, S2F
By Lemma 11, the number of arithmetic operations to compute (40) is O(n(d — dy + 1)d3d? log d) = O(nd* log d) (by
applying dy = d). Therefore, because in each step t=1,2,...,n, we compute (38) at most k times for different
values of k;, the total number of arithmetic operations for sampling algorithm A is O(n*d*k log d). O

Remark 2. Although Theorem 15 and Observation 1 imply that randomized rounding for A-optimal design with

repetition takes O((k +d%)*d*k log d) number of arithmetic operations, this does not take into account the size of
numbers used in the computation which may scale with input €. It is not hard to see that the sizes of coefficients
m—|F|—dy+7r un
k—|F|—do+r k;
with O(k log(m)), where m = >/, m;. As we apply m < gk = (2n) /€ in the proof of Theorem 15, the runtime of ran-
domized rounding for A-optimal design with repetition, after taking into account the size of numbers in the com-

putation, has an extra factor of k log(11/€) and becomes O((k + d2)*d*k? log d log (k + d2/))).

f(t1,t2,t3) in Lemma 10, of the number ( ) in the proof of Lemma 11 and of ( ) in (39) scale linearly

6.4. Efficient Deterministic Implementation of k/(k—d+1) -Approximation Algorithm with Repetitions
We show a deterministic implementation of proportional volume sampling used for the k/(k —d + 1)-approx-
imation algorithm with repetitions. In particular, we derandomized the efficient implementation of Steps 4
and 5 of Algorithm 2 and show that the running time of deterministic version is the same as that of the ran-
domized one.
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Theorem 16. Given inputs n,d, k,e,x € R} with X}, x; = k, and vectors v1,...,v, to Algorithm 2, we define q, U, W as in
Algorithm 2. Then, there exists a deterministic algorithm A’ that outputs S*C U of size k such that

tr (Ws WE) ™ > E [tr(WsWT) ],
N#l

where y’ is a distribution over all subsets SC U of size k defined by 1’(S) oc det (WsW{) for each set SC U of size k. More-
over, A’ runs in O(n*d*k log d) number of arithmetic operations.

Again, together with Observation 1 and Remark 2, Theorem 16 implies that the k/(k — d + 1)-approximation

algorithm for A-optimal design with repetitions can be implemented deterministically in O((k +d%)*d*k log d)
number of arithmetic operations and, after taking into account the size of numbers in the computation, in

O((k + d?)’d*k? log d log ((k + d?) /€)) time.

Proof. We can define the deterministic algorithm A" by deciding, at each step t =1,...,1, how many copies of v;
are to be included in S*C U. The problem then reduces to efficiently computing

X(ki, ... k)= il:;[tr (WSWE)_1 | S has k; copies of v;, Vi=1,...,t-1,t], (41)

where ki, ..., ki1 is already decided by previously steps of the algorithm, and now we compute (41) for each
ki=0,1,...,k—X!Z] k;. A’ then chooses value of k; that maximizes (41) to complete step t.

Recall the definitions from proof of Theorem 15 that F;, E; are the sets of fixed k; copies and all copies of v;,
respectively, W’ is the matrix of vectors in W restricted to indices U\(UfflEi\Fi), and F:= UleF,'. Consider
that

X(ky, ... ki) = > Pr[S = S|S has k; copies of v;, Vi= 1,...,t]tr[(W5WST)_1]
ScU;|S|=k; #
|SﬂEi|Lik!-,|Vi=l,.,.,t .
det (WsW _
-5 WS 1%) ] (W) ]
SCU ISl=k; s CU IS/ [=ki|S NEi|=ki, Vi=1,.. . t det(Ws Wg,)
ISNE,|=k;, Vi=1,..¢

_ ZSQ U ;|S|=k;|SNE;|=k;,Yi=1,... t Ed—l(WS WsT )
v det(WS Wg—)

SCU;|S|=k;|SNE;|=k;,Vi=1,..
t m; TN’ T
I—[i:1( k; )ZSQ U ;|S|=k;S2F Ed—l(WS WS )

t m; , ,
I—L'=1( k; )ZSQ U ;|S|=k;S2F det(WsW¢T)

_ Zs C U ;|S|=k;S2F Ed—l(wéwéT)
ng U ;|S|=k;S2F det(WWgT)
By Lemma 11, we can compute the numerator and denominator in O (n(d — do + 1)d3d* log d) = O (nd* logd) (by apply-
ing dgp =d —1,d) number of arithmetic operations. Therefore, because in each step t=1,2,...,1n, we compute (41) at
most k times for different values of k;, the total number of arithmetic operations for sampling algorithm A is
O (n*d*klog d).

6.5. Efficient Implementations for the Generalized Ratio Objective

In Sections 6.1 and 6.2, we obtain efficient randomized and deterministic implementations of proportional vol-
ume sampling with measure u when yu is a hard-core distribution over all subsets S € U (where U € {Uy,U<})
with any given parameter A € R. Both implementations run in O (n*dk* log(dk)) number of arithmetic opera-
tions. In Sections 6.3 and 6.4, we obtain efficient randomized and deterministic implementations of proportional
volume sampling over exponentially-sized matrix W = [w;;] of m vectors containing n distinct vectors in
O(n*d*k logd) number of arithmetic operations. In this section, we show that the results from Sections 6.1 to
6.4 generalize to proportional /-volume sampling for generalized ratio problem.

Theorem 17. Let n,d, k be positive integers, A € R, U € {Uy, U<}, V =[v1,...,04] € R™" and 0<l'<1<dbea pair of
integers. Let 11’ be the I-proportional volume sampling distribution over U with hard-core measure u of parameter A, that is
' (S)oc A°E((VsVT) for all S € U. There are
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e an implementation to sample from y’ that runs in O (n*Ik* log (Ik)) number of arithmetic operations, and
o a deterministic algorithm that outputs a set S* € U of size k such that

(E”(VS*V;))WZ . (El,(vsvg))W 2)
El(Ver;) S~u EI(VSVE)

that runs in O(n*Ik* log (Ik)) number of arithmetic operations.

Moreover, let W = [w;;] be a matrix of m vectors where w;; = v; for all i € [n] and j. Denote U the index set of W. Let 11’
be the I-proportional volume sampling over all subsets SCU of size k with measure u that is uniform, that is,
W (S)oc E(WsW3) for all SCU, |S| = k. There are

o an implementation to sample from y’ that runs in O (n*(d — 1 + 1)[?d*k log d) number of arithmetic operations, and

o a deterministic algorithm that outputs a set S* € U of size k such that

TV
(El’(WS*WS*))“ >

El,(wswg))tlt'l
E [| ———=Z 43
EWsWI)) s (E,(wgwg) “3)

that runs in O(n*((d — " + V)I"* + (d — [ + 1)I?) d’k log d) number of arithmetic operations.

As in Observation 1, we can replace n = k + 42 in all running times in Theorem 17 so that running times of all variants
of proportional volume sampling are independent of 1. We also note, as in Remark 2, that running times of [-proportion-
al volume sampling over m vectors with n distinct vectors have an extra factor of k logm after taking into account the
size of numbers in computation, allowing us to do sampling over exponential-sized ground set [11].

Proof. By the convexity of f(z) = z/~" over positive reals z, we have E [X] > (E [X"/ (l‘l')])l_ll for a nonnegative ran-
dom variable X. Therefore, to show (42), it is sufficient to show that

E (VsVE), o Er(VsVd)
E; (VS*V;;) T osw E; (VSV;—)
That is, it is enough to derandomized with respect to the objective (E;(VsV{))/(E/(VsV{)), and the same is true

for showing (43). Hence, we choose to calculate the conditional expectations with respect to this objective.

We follow the exact same calculation for [-proportional volume sampling for generalized ratio objective as
original proofs of efficient implementations of all four algorithms in A-optimal objective. We observe that those
proofs in A-optimal objective ultimately rely on the ability to, given disjoint I,JC[n] (or in the other case, [m]),
efficiently compute

(44)

A>T det(VrVE) and ST A>T det(ViVr)

Sel,I1CS,JNS=¢  |R]=d,RCS Sel,ICS,JNS=¢  |T|=d-1,TCS

(or in the other case, replace V with W and A° =1 for all S). The proofs for generalized ratio objective follow the
same line as those proofs of four algorithms, except that we instead need to efficiently compute

A5 > det(ViVr) and > A5 > det(V4Vr)
SeU,15,jnS=¢  [TI=[,RCS Seu,1CS,jns=¢  |T'|=1,T'C$

(note the change of R, T of sized,d —1to T, T’ of size I,I’, respectively). However, the computations can indeed be
done efficiently by using different dy = I, | instead of dy = d — 1,d when applying Lemmas 9-11 in the proofs and
then following a similar calculation. The proofs for running times are identical. O

7. Integrality Gaps

In this section, we show the integrality gap of the natural convex relaxations of A- and E-optimal problems.

1. Integrality Gap for E-Optimality
Here we consider another objective for optimal design of experiments, the E-optimal design objective and show
that our results in the asymptotic regime do not extend to it. Once again, the input is a set of vectors
V1,...,0p eRd, and our goal is to select a set SC[n] of size k, but this time we minimize the objective
(Zies viv; ) |l, where || - || is the operator norm, that is, the largest singular value. By taking the inverse of the
objective, this is equivalent to maximizing A1(Zies v;v ), where A;(M) denotes the ith smallest eigenvalue of M.
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This problem also has a natural convex relaxation, analogous to the one we use for the A objective:

max /\1(2 xiviv:), (45)
i=1

s.t.

Z X = k, (46)

=1

0<xi<1 Viel[n]. 47)

We prove the following integrality gap result for (45)—(47).

Theorem 18. There exists a constant ¢ > 0 such that the following holds. For any small enough € >0, and all integers
d > do(e), if k <<, then there exists an instance vy,...v, € R? of the E-optimal design problem, for which the value CP of
(45)—(47) satisfies

— T
CP>(1+€)OPT=(1+ E)Sg%}ﬁ)si:k Al(; v )
Recall that for the A-objective, we achieve a (1 +¢)-approximation for k = Q(d/e + (log(1/€))/€?). Theorem 18
shows that such a result is impossible for the E-objective, for which the results in Allen-Zhu et al. [1] cannot be
improved.
Our integrality gap instance comes from a natural connection to spectral graph theory. Let us first describe the
instance for any given d. We first define n = ;) vectors in R%*1, one for each unordered pair (i, ) € (3V)- The vec-

tor corresponding to (i,f), i <j, is u; and has value 1 in the ith coordinate, —1 in the jth coordinate, and 0 every-
where else. In other words, the u;; vectors are the columns of the vertex by edge incidence matrix U of the com-
plete graph Ky.1, and UU " = (d + 1)I341 — J411 is the (unnormalized) Laplacian of Ky.1. (We use I, for the m X m
identity matrix, and ], for the m X m all-ones matrix.) All the u;; are orthogonal to the all-ones vector 1; we define
our instance by writing #;; in an orthonormal basis of this subspace: pick any orthonormal basis by, ..., bs of the

subspace of R™! orthogonal to 1 and define v = BTu; for B = (b;).,. Thus, M= %] 7:1.1101-]401; = (d+1)I,.

We consider the fractional solution x = (k/(";))1, that is, each coordinate of x is k/(*;'}. Then M(x)

= z;?’:fzf:;l xivijv;; = (2k)/(dls), and the objective value of the solution is (2k)/d.
Consider now any integral solution 5C(1*;") of the E-optimal design problem. We can treat S as the edges of a

graph G = ([d +1],5), and the Laplacian L¢ of this graph is Lg = Z(;es uiju;. If the objective value of S is at most
(1+€)CP, then the smallest eigenvalue of M(S) = X;j)es UUZJ; is at least (2k)/(d(1 +€)) > (1 —€)(2k)/(d). Because

M(S) = BTL¢B, this means that the second smallest eigenvalue of L is at least (1 — €)(2k)/(d). The average degree
A of G is (2k)/(d + 1). Therefore, we have a graph G on d + 1 vertices with average degree A for which the second

smallest eigenvalue of its Laplacian is at least (1 —¢€)(1 —(1)/(d + 1))A > (1 — 2¢)A, where the inequality holds for d
large enough. The classical Alon-Boppana bound (Alon [3], Nilli [40]) shows that, up to lower order terms, the
second smallest eigenvalue of the Laplacian of a A-regular graph is at most A —2VA. If our graph G were regular,
this would imply that (2k)/(d + 1) = A > 1/€2. In order to prove Theorem 18, we extend the Alon-Boppana bound
to not necessarily regular graphs, but with worse constants. There is an extensive body of work on extending the
Alon-Boppana bound to nonregular graphs: see the recent preprint (Srivastava and Trevisan [47]) for an over-
view of prior work on this subject. However, most of the work focuses either on the normalized Laplacian or the
adjacency matrix of G, and we were unable to find the statement below in the literature.

Theorem 19. Let G = (V,E) be a graph with average degree A = (2|E|)/|V|, and let L¢ be its unnormalized Laplacian ma-
trix. Then, as long as A is large enough, and |V| is large enough with respect to A,

Aa(Lg) < A=cVA,
where Ay(Lg) is the second smallest eigenvalue of Lg, and ¢ > 0 is an absolute constant.

Proof. By the variational characterization of eigenvalues, we need to find a unit vector x, orthogonal to one, such
that x"Lox < A — cVA. Our goal is to use a vector x similar to the one used in the lower bound on the number of
edges of a spectral sparsifier in Batson et al. [6]. However, to apply this strategy, we need to make sure that G
has a low degree vertex most of whose neighbors have low degree. This requires most of the work in the proof.
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So that we do not have to worry about making our “test vector” orthogonal to one, observe that

.
Aa(Lg) = min * Lox

S = e (48)
xeRV xTx - (17x)°/|V]

Indeed, the denominator equals y "y for the projection y of x orthogonal to one, and the numerator is equal to
y"Lcy. Here, and in the remainder of the proof, we work in R”, the space of |V|-dimensional real vectors indexed
by V, and think of L¢ as being indexed by V as well.

Observe that if G has a vertex u of degree A(u) at most A —1/10VA, we are done. In that case we can pick x €
RY such that x, =1 and x, = 0 for all v # u. Then

2
XTLGX Z(u,v)EE(xu - xv) < A— % \/Z

2, 1 1
xTx—(17x)"/n I-w I-w

7

which, by (48), implies the theorem for all large enough |V|. Therefore, for the rest of the proof, we will assume
that A(u) > A—1/10VA forallu e V.
DefineT={ueV:Alu)>A+1/ 2vA} to be the set of large-degree vertices and let S = V\T. Observe that

[VIA > |T| (A+%\/K) +|9] (5 —%\/K)
1 1
_|V|A+(2|T|—1O|S|)x/Z.

Therefore, |S| > 5|T|, and, because T and S partition V, we have |S| > 5/6|V|.

Define a = min {[{v ~u: v € T}|/(A-1/10VA) : u € S}, where v ~ u means that v is a neighbor of 1. We need to
find a vertex in S such that only a small fraction of its neighbors is in T; that is, we need an upper bound on a. To
show such an upper bound, let us define E(S, T) to be the set of edges between S and T; then

1 1 5 1
—A|V|=|E| = |E(S,T)| = A——VA| == |V]aA |l -——|.
V1= E12 [E(5, )1 ISla{ A= 5 VB 2 2 Viaa (1)
Therefore, o <3/5(1 - 1/10VA) .
Let u € S be a vertex with at most aA—a/lO\/Zneighbors inT, and let 6 = |{v ~ u: v € S}|. By the choice of u,
a 1
6> Au)—ar+—VA>(1-a A(l——).
)=+ VA= (1-a) A1
Assume that A is large enough so that (1 - 1/(10\/3)) >16/25. Then, 6 > 16/25(1 — a)A.

We are now ready to define our test vector x and complete the proof. Let x, =1, x, =1/ V6 for any neighbor v
of u, which is in S, and x,, = 0 for any w which is in T or is not a neighbor of u. We calculate

xTLGx:|{v~u:veS}l(l—%)2+|{v~u:veT}|+ Z Z 1

U~U, VES W~V, WHU

2 1
1
<5(1-%) +A@)-5+A+5VA-1,

where we used the fact for any v € S, A(v) < A +1/2VA by definition of S. The right-hand side simplifies to

A(u)—2\/S+A+%x/KszA—(§,/(1—a)—%)\/&

Because a <3/5(1 - 1/10@)_1, 8/5+(1—a)—1/2>1/2 for all large enough A, and by (48), we have
T 2A = 14/A
clex 2\/_:(A—1\/K)1——1“/Z
xTx—(17x) 2(1 _ M) 4 2|V|
21V

The theorem now follows as long as |V| > CA for a sufficiently large constant C. O

-1

A (G) <

To finish the proof of Theorem 18, recall that the existence of a (1 + €)-approximate solution S to our instance
implies that, for all large enough d, the graph G =([d+1],S) with average degree A =(2k)/(d+1) satisfies
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A2(Lg) = (1-2€)A. By Theorem 19, A5(Lg) < A — cVA for large enough d with respect to A. We have A > c2/(4€?),
and rearranging the terms proves the theorem.

The proof of Theorem 19 does not require the graph G to be simple; that is, parallel edges are allowed. This
means that the integrality gap in Theorem 18 holds for the E-optimal design problem with repetitions as well.

7.2. Integrality Gap for A-Optimality
The integrality gap of A-optimal design problem can be stated as follows.

Theorem 20. For any given positive integers k,d, there exists an instance V = [vy,...,v,] € R™" to the A-optimal design
problem such that

OPTz( —(S)-CP

k
k—-d+1
forall 6 > 0, where OPT denotes the value of the optimal integral solution and CP denotes the value of the convex program.

This implies that the gap is at least k/(k—d+1). The theorem statement applies to both with and without
repetitions.

Proof. The instance V = [vy,...,v,] will be the same with or without repetitions. For each 1 <i <d, let e; denote
the unit vector in direction of axis i. Let v; = N -¢; foreachi=1,...,d — 1, where N > 0 is a constant to be chosen
later and v; = ¢;. Set the rest v;,i > d to be at least k copies of each of these v; for i < d, as we can make 7 as big as
needed. Hence, we may assume that we are allowed to pick only v;,i < d, but with repetitions.

The fractional optimal solution which can be calculated by Lagrange’s multiplier technique is y* = (o, 0o, - - ., 80, k —
(d—1)dg) for small 6y = k/(\/ﬁ +d—1). The optimal integral solution is x*=(1,1,...,1,k—d +1). Therefore, as

N — oo, we have CP = (d—1)/(60N)+1/(k—(d—1)60) —1/k,and OPT=(d-1)/N+1/(k—d)+1—>1/(k—d+1).
Hence,

OPT k
—_— —
CP  k-d+1
proving the theorem. O

8. Hardness of Approximation

In this section, we show that the A-optimal design problem is NP-hard to approximate within a fixed constant
when k =d. To the best of our knowledge, no hardness results for this problem were previously known. Our re-
duction is inspired by the hardness of approximation for D-optimal design proved in Di Summa et al. [22]. The
hard problem we reduce from is an approximation version of Partition into Triangles.

Before we prove our main hardness result, Theorem 4, we describe the class of instances we consider, and prove
some basic properties. Given a graph G = ([d], E), we define a vector v, for each edge e = (i,}) so that its ith and jth
coordinates are equal to one, and all its other coordinates are equal to zero. Then the matrix V = (v,),¢f is the undi-
rected vertex by edge incidence matrix of G. The main technical lemma needed for our reduction follows.

Lemma 12. Let V be the vertex by edge incidence matrix of a graph G = ([d], E), as described previously. Let SCE be a set
of d edges of G so that the submatrix Vg is invertible. Then each connected component of the subgraph H = ([d], S) is the dis-
joint union of a spanning tree and an edge. Moreover, if t of the connected components of H are triangles, then

o fort=d/3,tr(VsVI)™") =3d/4; and

o forany t, tr(VsVI)™") > d - 3t /4.

Figure 1. Values of the coordinates of u, for e € Cy.




Downloaded from informs.org by [130.207.93.57] on 05 October 2022, at 12:25 . For personal use only, all rights reserved.

Nikolov, Singh, and Tantipongpipat: PVS and Approx Alg for A-Optimal Design
874 Mathematics of Operations Research, 2022, vol. 47, no. 2, pp. 847-877, © 2022 INFORMS

Proof. Let Hj, ..., H, be the connected components of H. First we claim that the invertibility of Vs implies that none
of the H is bipartite. Indeed, if some H,; were bipartite, with bipartition LUR, then the nonzero vector x defined by

1 iel
x;i=4-1 ieR
0 otherwise,

is in the kernel of V. In particular, each H, must have at least as many edges as vertices. Because the number of
edges of H equals the number of vertices, it follows that every connected component H, must have exactly as
many edges as vertices, too. In particular, this means that every Hy is the disjoint union of a spanning tree and an
edge, and the edge creates an odd-length cycle.

Let us explicitly describe the inverse V;!. For each e € S we need to give a vector u, € R so that u]v, =1 and
u;vf =0foreveryfeS,f#e.ThenU' = Vs‘l, where U = (1,),cg is the matrix whose columns are the u, vectors. Let
Hy be, as above, one of the connected components of H. We will define the vectors u, for all edges ¢ in Hy; the vectors
for edges in the other connected components are defined analogously. Let C, be the unique cycle of H;. Recall that C,
must be an odd cydle. For any ¢ = (i, ) in Cy, we set the ith and the jth coordinate of , to 1. Let T be the spanning tree
of H, derived from removing the edge e. We set the coordinates of 1, corresponding to vertices of H, other than i and
j to either —1/2 or +1/2, so that the vertices of any edge of T receive values with opposite signs. This can be done by
setting the coordinate of 1, corresponding to vertex k in Hy to 1/2( —1)bT(i’k), where 67(i, k) is the distance in T between
i and k. Because C; is an odd cycle, 57(i, ) is even, and this assignment is consistent with the values we already deter-
mined for i and j. Finally, the coordinates of u, that do not correspond to vertices of H, are set to zsero. Figure 1 pro-
vides an example. It is easy to verify that u, v, = 1 and u, vr = 0 for any edge f # e. Notice that llueell5 = de /4, where d;
is the number of vertices (and also the number of edges) of H,.

It remains to describe u, when e = (7,) ¢ C;. Let T be the tree derived from H; by contracting C, to a vertex r,
and set r as the root of T. Without loss of generality, assume that j is the endpoint of e, which is further from r in
T. We set the jth coordinate of u, equal to one. We set the coordinates of u, corresponding to vertices in the sub-
tree of T below j to either —1 or +1 so that the signs alternate down each path from j to a leaf of T below j. This
can be achieved by setting the coordinate of 1, corresponding to vertex k to (—1)6T(f’k), where 07(j, k) is the distance
between j and k in T. All other coordinates of u, are set equal to zero. Figure 2 provides an example. Notice that
||ue||§ >1 (and in fact equals the number of nodes in the subtree of T below the node j).

We are now ready to finish the proof. Clearly if [d] can be partitioned into ¢t = d/3 disjoint triangles, and the
union of their edges is S, then

tr ((VsVsT)‘l) = tr(U UT) = Dl = @ = %

e€S
In the general case, we have

" ((vsvsT)l) —tr (UU) = X Il

eeS
|Ce| . d

> S gl
=1

ot 3t

2+ d-3t=d 1

where |C,| is the length of C;, and d, is the number of edges (and also the number of vertices) in H,. The final in-
equality follows because any connected component H, that is not a triangle contributes at least d; to the sum. O
Recall that in the Partition into Triangles problem, we are given a graph G = (W, E) and need to decide whether
W can be partitioned into |W|/3 vertex-disjoint triangles. This problem is NP-complete (Garey and Johnson [24]
present a proof in chapter 3 and cite personal communication with Schaeffer), and this, together with Lemma 12,
suffices to show that the A-optimal design problem is NP-hard when k = d. To prove hardness of approximation,

Figure 2. Values of the coordinates of u, for e ¢ Cy.
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Figure 3. Subgraph with edges E for the triple f = {x,,z} (adapted from Garey and Johnson [24]).

ars are afo
agp/ af2)  faps \ o |0f7 \Af8
G f5
x Y 2

we prove hardness of a gap version of Partition into Triangles. In fact, we just observe that the reduction from
three-dimensional matching to Partition into Triangles in Garey and Johnson [24] and known hardness of ap-
proximation of three-dimensional matching give the result we need.

Lemma 13. Given a graph G = (W, E), it is NP-hard to distinguish the two cases:
1. W can be partitioned into |W|/3 vertex-disjoint triangles;and
2. every set of vertex-disjoint triangles in G has cardinality at most a|W|/3,
where a € (0,1) is an absolute constant.

To prove Lemma 13, we use a theorem of Petrank.

Theorem 21 (Petrank [42]). Given a collection of triples FCX XY X Z, where X, Y, and Z are three disjoint sets of size m
each, and each element of X U'Y U Z appears in at most three triples of F, it is NP-hard to distinguish the two cases:

1. there is a set of disjoint triples M CF of cardinality m; and

2. every set of disjoint triples MCF has cardinality at most fm,

where B € (0,1) is an absolute constant.

We note that Petrank gives a slightly different version of the problem, in which the set M is allowed to have in-
tersecting triples, and the goal is to maximize the number of elements X U Y U Z that are covered exactly once.
Petrank shows that it is hard to distinguish between the cases when every element is covered exactly once, and
the case when at most 35m elements are covered exactly once. It is immediate that this also implies Theorem 21.

Proof of Lemma 13. We will show that the reduction in Garey and Johnson [24] from three-dimensional match-
ing to Partition into Triangles is approximation preserving. This follows in a straightforward way from the argu-
ment in Garey and Johnson [24], but we repeat the reduction and its analysis for the sake of completeness.

Given FCX U Y U Z such that each element of XU Y U Z appears in at most three triples of F, we construct a
graph G = (W, E) on the vertices XU Y U Z and 9|F| additional vertices: as1,...as9 for each f € F. For each triple
f € F, we include in E the edges E; shown in Figure 3. The subgraphs spanned by the sets Ef, E, for two different
triples f and g are edge-disjoint, and the only vertices they share are in XU Y U Z.

First, we show that, if F has a matching M covering all elements of X UY U Z, then G can be partitioned into
vertex-disjoint triangles. Indeed, for each f ={x,y,z} € M we can take the triangles {x,ar1,ar}, {y, a5, as},
{z,a57,as5}, and {ays3, a6, ap9}. For each f ¢ M, we can take the triangles {as1, a5, a3}, {as4, 055, a56}, and {ag7, ass, ago}.

In the other direction, assume there exists a set T of at least a(|W|/3) vertex disjoint triangles in G, for a value
of a to be chosen shortly. We need to show that F contains a matching of at least fm triples. To this end, we con-
struct a set M that contains all triples f, for each E that contains at least four triangles of T. Notice that the only
way to pick three vertex disjoint triangles from Ey is to include the lower three triangles (see Figure 3), so any
two triples f and g in M must be disjoint. The cardinality of T is at most 4|M]| + 3(|F| — |M]) = |M] + 3|F|.

Therefore,

W]
M+ 31 2 a2 a(m + 3F),
3

and we have [M| = am — (1 — a)3|F| = (10 — 9)m, where we used the fact that |F| < 3m because each element of X
appears in at most three triples of F. Then, if a > (9 +f)/10 we have |M| > fm. This finishes the proof of the
lemma. O
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We now have everything in place to finish the proof of our main hardness result.

Proof of Theorem 4. We use a reduction from (the gap version of) Partition into Triangles to the A-optimal de-
sign problem. In fact, the reduction was already described in the beginning of the section: given a graph
G = ([d], E), it outputs the columns v, of the vertex by edge incidence matrix V of G.

Consider the case in which the vertices of G can be partitioned into vertex-disjoint triangles. Let S be the union of
the edges of the triangles. Then, by Lemma 12, tr((VsV)™") = 34/3.

Next, consider the case in which every set of vertex-disjoint triangles in G has cardinality at most a(d/3). Let S
be any set of d edges in E such that Vg is invertible. The subgraph H = ([d],S) of G can have at most a(d/3) con-
nected components that are triangles, because any two triangles in distinct connected components are necessarily

vertex-disjoint. Therefore, by Lemma 12, tr(VsVI) ") = (4 - a)d) /4.

It follows that a c-approximation algorithm for the A-optimal design problem, for any ¢ < (4 — a)/3, can be used to dis-
tinguish between the two cases of Lemma 13, and therefore, the A-optimal design problem is NP-hard to
c-approximate. [
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