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Abstract— Magnetic component as one of the most lossy and
bulky components in power electronic converters has been
researched on optimization through calculation, experimental
and FEM simulation. However, the traditional methods are
normally time-consuming or inaccurate. A novel method that
combined FEM simulation and convolutional neural network
(CNN) is discussed in this paper, which can predict the
inductance and core loss efficiently and accurately.
Experimental result shows the accuracy of CNN prediction.
Based on the CNN inductor inductance and loss prediction, a
novel optimization method is presented which can
comprehensively and quickly provide the optimization result
considering power loss and power density.

Keywords—inductor design, finite element analysis,
convolutional neural network
1. INTRODUCTION
Nowadays, due to the development of power

semiconductors, such as silicon carbide and gallium nitride-
based switching devices, the switching frequency of power
converter can be increased to enhance the power density and
efficiency. In these high-efficiency power converters,
magnetic devices can contribute to 50% of the weight and
volume[1]. Therefore, to continue increasing the power
density of the converter, it is critical to research the
optimization of inductors, including volume design, loss
estimation, and evaluation.

In [2], the authors present a method of inductor’s
inductance and core loss calculation. And in [3], a calculation
method is presented for inductor copper and core losses
optimization, considering the temperature rise of the inductor
core. However, the calculation optimization method cannot
be utilized on different inductor topologies. So in [4], coupled
inductors are analyzed and optimized through Matlab. A
finite element analysis method is presented in [5]-[7] for
inductor core loss simulation. For example, in [6], finite
element analysis is implemented for magnetic core loss
calculation in complex core structures and under dc bias
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conditions. In [7], a 3D nonlinear inductor model with a
voltage excitation is built to efficiently analyze the eddy
current problem using finite element method (FEM).
Nonetheless, the 3D inductor FEM models in simulations are
normally time-consuming. The experimental inductor loss
measurement method is shown in [8]-[10]. There are two
ways of measuring the inductor core loss through
experiments [11]. The first method is the thermal approach.
The total power losses dissipate as heat. The inductor core
loss is represented as a function of the temperature rise of the
coolant. However, the measurement process is time-
consuming, and the experimental setup is complicated. The
second method is the electric approach. The product of
voltage and current through the inductor is integrated to
calculate the inductor loss. However, this method is sensitive
to phase discrepancy since reactive energy in the inductor is
much higher than inductor loss [8]. The High-frequency
inductor design is shown in [12]-[14]. At high frequency
(3~30MHz), inductor power losses due to skin effect and
proximity effect are hard to calculate and reduce. So new
structure has been proposed and tested under high-frequency
conditions. For example, in [12] and [14], a new structure of
high frequency, low loss inductor has been proposed and
shows the potential of achieving low loss under different
applications and to produce economically. However, the
design and optimization of the inductor are under analytical
design guide which may loss accuracy in some
circumstances.

The fast-growing artificial intelligence brought a new
concept of inductor optimization. To optimize the inductor
efficiently and accurately, the artificial neural network is used
for fast inductor model and design in [15]. However, the
inductor analysis is in the stationary domain. In [16],
magnetic core loss is modeled by implementing a machine
learning framework but still requires an experimental testing
procedure for data acquisition.

Therefore, to predict the inductor inductance and core
loss quickly and efficiently, a novel method that combines the
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accuracy of FEM and fast prediction benefit of convolutional
neural network (CNN) is proposed in this paper. Firstly, a 3D
planar inductor model has been built in COMSOL, and the
database which contains the parameters of the planar inductor
is generated with inductance and loss information. Secondly,
CNN is implemented for the inductance and core loss
prediction of the planar inductor by using Python
TensorFlow. The CNN prediction result has been compared
with the experimental result. Finally, a novel inductor
optimization approach is proposed by using the pre-trained
CNN prediction model. The optimization result will be
provided considering inductor power loss and area-related
power density.

II. PLANAR INDUCTOR DESIGN AND FEM SIMULATION

Planar inductor plays an important role in increasing the
system power density in switched tank converter (STC)
topologies[17]. And it has been analyzed in [18]-[20]. Since
the resonant frequency is high, resonant inductance can be
quite small for STC topology. Besides, planar inductor
provides flexibility for adjusting inductance by simply
modifying the air gap between the top and bottom core.
Therefore, planar inductor is chosen as a sample model for
the inductance and core loss analysis.

A 3D planar inductor model has been built in COMSOL
as shown in Fig. 1. UI core shape is utilized in this design.
The material of the inductor core is chosen as P material from
Magnetics. In the middle of the core, there is copper that can
be changed by adjusting the PCB winding layout, including
changing layout layer numbers and the thickness of each
layer.

1_core_H|

irgap H

|8 Copper L
/ U_core H|| e -
. o Window_L

U Core L U_core W

Fig. 1. Planar inductor shape and dimension

Inductance value is simulated and calculated through
FEM simulation in frequency domain analysis at 340 kHz.
The magnetic field distribution in the inductor core and
current distribution through the copper are shown in Fig. 3
and Fig. 3. The effect of eddy current is presented clearly in
Fig. 3 which shows the FEM simulation performance in
inductance simulation under high-frequency conditions.
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Fig. 2. Magnetic field distribution in planar inductor core
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Fig. 3. Current density distribution in planar inductor coil

Planar inductor core loss is calculated in the time domain.
In this paper, an RL circuit connected with a 340 kHz AC
sinusoidal voltage source is used for simulation of the
inductor loss as a sample, as shown in Fig. 4. It needs to be
mentioned that the same method to simulate the inductor loss
through FEM simulation can be applied to any circuit
topologies, such as STC topology. Then, through the “Time
to Frequency Losses” study, a forward FFT from time domain
to frequency domain is performed to compute the loss of the
inductor core. Core loss is calculated by using the Steinmetz
equation
P, = kf%B® D
where k=3200 W/m?, a = 1.46, b =2.75 for P material which
is used in this paper.

Vac R

(®)
Fig. 4. FEM core loss simulation topology (a) Loss calculation topology
and (b) Inductor current waveform

To build a database for the analysis of inductance and
core loss, planar inductor model with different randomly
generated geometry features needs to be simulated in
COMSOL. Considering the geometry constrain that the
window size cannot exceed the U core size and the coil size
cannot exceed the window size, firstly, the U_core_L ,
U_core_ W, U_core_H,I_core_H and Airgap are randomly
generated in Matlab. Other geometry parameters are defined
as follow:

Window;, = a * Ucgre, (2)
Windowy = B * Ucorey (3)
Coppery, = y * Windowy, 4)
Coppery, = & * Windowy, (5)
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The range of the inductor geometry parameters is listed in
TABLE L.

TABLE L PLANAR INDUCTOR DIMENSIONAL FEATURE
Features Range | Unit | Features | Range | Unit
U_core_L | 5~25 mm o 0.1~0.9 | p.u.
U_core W | 5~25 mm S 0.1~0.9 | p.u.
U_core_H | 5~25 mm y 0.1~0.9 | p.u.
I Core_H | 3~23 mm 0 0.1~0.9 | p.u.

Airgap | 20~200 | um

III. CONVOLUTIONAL NEURAL NETWORK (CNN) ON PLANAR
INDUCTOR PREDICTION

FEM simulation can typically provide an authentic
prediction for inductance and core loss of planar inductors.
However, it is quite time-consuming by using the 3D FEM
simulation. Therefore, we are eager to find a solution that can
predict the inductance and core loss value without
implementing 3D FEM simulation after knowing the
dimensional data. In this chapter, convolutional neural
network will be used for inductance and core loss prediction.
The process of generating the inductor inductance and core
loss dataset and CNN training procedure is shown in Fig. 5.

A. CNN model

CNN is a powerful tool for processing data that come in
the form of multiple arrays. To utilize natural signals, there
are four key ideas: local connections, shared weights,
pooling, and the use of many layers[21].

In this paper, the dataset is split into 70% of training data
and 30% of testing data. Before the training process, the
training and test data must be scaled. Feature scaling is one
of the most important steps before building a CNN training
model. In this paper, the standard scaler is chosen which
assumes the data is uniformly distributed. The distribution
center of the new training data is 0 with a standard deviation
of 1. The mathematical equation of training data scaling is
shown below.

x . —_ .
_ train #t?"llln (6)

xtrainscale - Otrai
rain

where [ qin 1S the mean value of each feature in training data
and O,-qin 1S the standard deviation of each feature in training
data. It needs to be mentioned that the test data is also scaled
using the mean and standard deviation of the training data.
The scaling equation of test data is shown below.

_ Xtest — Htrain (7)
xtEStscale - Otrai
rain

CNN information is shown in Table II. The activation
function is set as rectified linear unit (ReLU). The
mathematical function of ReLu is shown as:

y = max{0, x} (8)
The loss function is set as mean square error loss (MSE):
n
1 .
MSE =" (%~ £’ ©
i=1

In this case, Y; is FEM simulated inductance or core loss
value and ¥; is CNN predicted inductance or core loss value.
CNN inductance prediction result has been shown in Fig.
6. The predicted inductance is compared to FEM simulation
inductance in Fig. 6 (b). The data points are perfectly located
around the reference target y = x. The R-squared score is
commonly used for predicted result evaluation.
_R_SS= 1— Ly —»? (10)
TSs (i — f(x))?
where y; is the FEM simulation value and f(x;) is the CNN
predicted value in this case. The higher R squared score
means the prediction value is closer to the targeted value. The
R squared score in the CNN inductance prediction is 98%.

R?=1

TABLE IL CNN MODEL PARAMETER
Layer (type) Output shape Parameter #
Convld (Convld) | (None, 3, 16) 64
Convld 1 (None, 1, 32) 1568
flatten (Flatten) (None, 32) 0
Dense (Dense) (None, 30) 990
Dense 1 (Dense) | (None, 1) 31

Set operation condition parameter
VinR ...

J

Randomly generate inductor geometry
parameter dataset
i=12.k
L

)

Load the i-th geometry parameter to FEM simulation

J

Compute inductance and power loss using FEM simulation

i=itl

Assemble the dataset generated by FEM simulation with geometry information
and corresponding inductance and loss

J

Split dataset: training set and testing set

J

Train CNN model using training set and evaluate CNN
model performance using testing set

Generate performance score of CNN model by comparing
FEM simulation result and CNN prediction result

Fig. 5. Flowchart of inductor database built and CNN prediction
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Fig. 6. CNN inductance prediction result (a) CNN training loss and

validation loss (b) CNN predicted inductance and FEM simulation result
comparison

120 140

Core loss prediction results are shown in Fig. 7. It is also
aligned at the reference target y = x, where the CNN predicted
inductor core loss value is compared with FEM simulation
inductor core loss value. R-squared score in the core loss
prediction is 94%. One of the reasons the accuracy of core
loss prediction is not as high as inductance prediction is the
dataset of core loss prediction is smaller than inductance
prediction.
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Fig. 7. CNN core loss prediction result (a) CNN training loss and
validation loss (b) CNN predicted core loss and FEM simulation result
comparison

The calculation time between FEM simulation and CNN
prediction is compared in Table III. It can be told from this
table that CNN prediction can be thousands of times faster
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than FEM simulation. The result shows the advantage of CNN
prediction which can provide the planar inductance and core
loss value prediction much faster than before. The accuracy
and fast CNN prediction model provide the foundation for
further inductor optimization.

TABLE IIL FEM AND CNN TIME COMPARISON
Running Time Inductance Core loss
FEM simulation ~180s ~480s
CNN prediction ~0.03s ~0.03s

B. k-Fold cross-validation

Cross-validation is a statistical method of evaluating and
comparing learning algorithms by dividing data into two
segments: one is used to learn or train a model and the other
is used to validate the model[22]. The training and validation
dataset needs to be cross-over so each data point can be
validated data. In this paper, the k-fold cross-validation is
chosen as the form of cross-validation.

In the k-fold cross-validation, firstly the dataset is
shuffled randomly and split into & groups. For each unique
group, it is taken as the test group and the remaining &-1
groups are taken as the training data. Then the model is
compiled using CNN, fitted the model on training data, and
evaluated using testing data. The evaluation score is retained
and summarized for total model evaluation.

In this paper, the number of the folder & is chosen as 10,
which means each geometry data and its inductance and core
loss value is randomly set into one group. The mean R-
squared score for inductance prediction is 98% and for core,
loss prediction is 94%. The k-Fold cross-validation result
proves the accuracy of CNN prediction inductance and core
loss value.

IV. EXPERIMENTAL VERIFICATION

An inductor model has been built to verify the accuracy
of FEM simulation and CNN prediction inductance and core
loss results. In this planar inductor model, U_core_L = 10.85
mm, U_core W = 63 mm, U_.core_H = 195 mm,
Window_H = 2.24 mm, Window_L = 7 mm, I_Core_H =
1.83 mm, Copper_L = 6.492mm, Copper_H = 0.854 mm
which equal to 6 layers of 2 0z per layer PCB copper height,
Airgap =50 um.

The experiment planar inductor model and test
inductance result is shown in Fig. 8. The experimental test
result at 340 kHz is 62.4 nH. With the same dimensional data,
FEM simulation result is 63.9 nH and CNN prediction result
is 64.3 nH. From time consumption perspective, 3D FEM
simulation takes more than 3 min, and CNN prediction results
can be calculated for less than 1 s. The error of the inductance
prediction may also be introduced from the manufacture of
core loss material. Therefore, the conclusion can be generated
that the new CNN prediction method can predict the
inductance efficiently and correctly. The result of core loss
experimental verification will be provided in the following
research.
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(b)

Fig. 8. Planar inductor inductance measurement (a) planar inductor model
(b) inductance measurement result

V. INDUCTOR OPTIMIZATION USE CNN MODEL

In [23], an inductor optimization procedure is presented
in the paper where the geometry parameter is loaded into the
FEM simulator to calculate the efficiency and area-related
power density. However, as we discussed before, it requires
a long time to generate the FEM simulation result. So, the
predefined sets of geometry variables cannot be large enough
considering the time complexity, leading to the consequence
that the optimal efficiency or power density point can be
further improved.

As we mentioned above, CNN can predict the inductance
and power loss value quickly and accurately. Therefore, in
the optimization design procedure, instead of using FEM
simulation, CNN can build a much larger and comprehensive
dataset. Under the equal time condition, CNN dataset can be
thousands of times larger than FEM dataset. So, the optimal
efficiency and power density point are much convincing than
before. The flowchart of CNN prediction is shown below in
Fig. 9.

In the optimization procedure, the geometry parameters are
swept using CNN prediction. The optimization design
procedure is proposed below.

1)  Determine the required current, voltage, power, and
inductance of the planar inductor.

2)  Determine the lower and upper boundary of
geometry parameters. For example, as shown in TABLE 1. ,
the geometry range of the inductor are determined.

3)  Determine the resolution of the swept parameters.
For example, 1 mm can be taken as the minimum swept
resolution for core and coil geometry and 10 pm can be taken
as the minimum swept resolution for planar inductor airgap.

4)  Implement CNN prediction of the inductance and
core loss at each given geometry data point. Considering that
CNN prediction is thousands of times faster than FEM
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simulation without losing the accuracy, the total optimization
time using CNN prediction should also be thousands of times
faster than FEM simulation on inductance and core loss.

A more comprehensive optimization experimental test
result will be provided in the following research.

Set operation condition parameter
VinR ..

Define the geometry parameter dataset
i=12.k

k

N
Load the i-th geometry parameter to CNN model

i

Compute inductance and power loss using CNN

L

Compute inductance and power loss

i=itl

Calculate the optimal loss and power
density geometry parameters

Fig. 9. Flowchart of planar inductor optimization use CNN

VI. CONCLUSION AND FUTURE WORK

In this paper, a novel efficient way of calculating
inductance has been introduced and verified. A 3D planer
inductor model has been built in COMSOL and a database is
built based on the model. Through implementing the CNN on
the regression of the database, 98% of accuracy on inductance
value prediction and 94% of accuracy on core loss value
prediction have been achieved. Instead of implementing the
time-consuming FEM simulation, CNN prediction can
provide the inductance and core loss evaluation quickly and
accurately. It needs to be mentioned that although this paper
only shows the planer inductor modeling and prediction, this
method can be used in any shape of inductors and any circuit
topologies. The planar inductor optimization method is
invested in the paper. The CNN prediction result is compared
with FEM simulation result which shows the accuracy of the
optimization result. At the same time, from a time
consumption perspective, CNN prediction can be thousands
of times faster than FEM simulation.

Future work will focus on three parts. Firstly, a more
comprehensive database will be built. Because of time
limitations, there are only 6400 inductance data and 1800
core loss data used for CNN prediction. That’s also the reason
core loss prediction is not as precise as the inductance
prediction. With more training data the prediction accuracy
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will increase. Secondly, an experimental result will be
presented for inductor core loss and optimization result
verification. Thirdly, different structures of core shape and
inductor geometry shape can be analyzed using the same
method. The optimized inductor design can be compared
between different inductor models.
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