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1. Introduction

Given an undirected multigraph G = (V, E) with non-negative
edge costs and a cut requirement function f:2Y — Zo, the Sur-
vivable Network Design Problem asks to find a subgraph of G with
the minimum cost that satisfies the cut requirements. A widely
studied special case of this problem is the generalized Steiner net-
work problem where we are given a pairwise connectivity function
r:V xV — Zso and the goal is to find a minimum-cost sub-
graph of G that contains at least rj; edge-disjoint paths for each
pair (i, j) € V x V. This problem captures several classical and
widely studied connectivity problems like the minimum Steiner
tree, minimum k-edge connected subgraph, etc. While even these
special cases are NP-hard, several techniques have been devel-
oped to successfully design approximation algorithms for them.
The culmination of this line of work was Jain's [11] elegant 2-
factor approximation for the setting when the cut requirement
function is skew supermodular, a condition that includes the gen-
eralized Steiner network problem. In his paper, Jain introduced the
technique of iterative rounding of linear programming relaxations
for combinatorial optimization, which has since been applied to
many other problems.

In this paper, we consider the multi-criteria Survivable network
design problem (MCSNDP). In this generalization, we are given
an undirected multigraph, G = (V, E), and cut requirements (as
before), along with ¢ non-negative cost functions on the edges,
c',c2,...,ct: E— R,. We wish to find a subgraph of G that min-
imizes the maximum, over the ¢ cost functions of a subgraph that
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has the required number of edges crossing every cut. The prob-
lem is motivated by network design where multiple players have
different or competing valuations and must agree on a common
network (e.g., infrastructure design). In this setting, one candidate
for a fair solution is to minimize the maximum cost to one of the
players.

Related work The appearance of multiple and possibly conflicting
objective functions is a common phenomenon, and many real-
world optimization problems involve finding a solution that finds a
trade-off between these objectives. Multi-criteria optimization is a
widely studied area of Operations Research, Economics, and Com-
puter Science [6,8,17]. Several different techniques have been used
to deal with multi-criteria optimization including Goal Program-
ming [1], Pareto Optimality [4,16], Multi-objective Approximation
Algorithms [9,17]. In this paper, we focus on the Max-linear ap-
proach to multi-criteria optimization. Given a combinatorial opti-
mization problem and multiple linear cost functions, the objective
is to find a feasible solution that minimizes the maximum over all
the cost functions. Formally, given a feasible set P and ¢ > 2 lin-
ear cost functions ¢!, c2, ..., ct with ¢ : P — R for all i € [¢], the
goal of Max-linear optimization problem is to find

min maxc' (X).

XeP iell]

Max-linear versions of the assignment problem and other combi-
natorial optimization problems occur in the modeling of printed
circuit boards assembly [5,14]. The Max-linear version of the min-
imum spanning tree problem was proved to be NP-hard in [10].
Recently, multi-criteria formulations similar to the Max-linear ob-
jective were used in [18,20] to give algorithms for fair PCA, and in
[2,3] for approximating simultaneous Max-Cut.
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Before we proceed further on fair network design, let us recall
the classical approach for the problem with one cost function.

Iterative rounding The network design problem specified by a
graph G = (V, E), cut requirement function f :2Y — Z, and a cost
function c: E — R, is solved by the following integer program
and its natural linear programming relaxation:

IP
minimize Z CeXe
ecE(G)
subject to Z Xe > f(S),
eesg(S)
Xe €{0, 1},
LP

VSCV

Ve € E(G)

minimize Z CeXe
ecE(G)
subject to Z Xe > f(S),
eesg(S)
1>% >0,

VSCV

Ve € E(G)

We can now state Jain’s seminal result.

Theorem 1 (Jain [11]). The network design problem with a skew super-
modular requirement function can be approximated to within a factor of
2 in polynomial time, given access to an oracle that solves its LP relax-
ation.

In particular, the LP relaxation for the generalized Steiner net-
work problem is polytime solvable. The following structural theo-
rem is at the core of the above result.

Theorem 2 (Jain [11]). For any network design problem with a skew
supermodular requirement function, any extreme point solution to its
LP relaxation with x, > O for each e contains at least one edge e with
Xe >1/2.

This theorem is the foundation of iterative rounding — the al-
gorithm includes the edge of weight at least half in its solution,
adjusts the requirements, solves the residual LP (which again has
an edge of weight at least 1/2), and continues. Similar struc-
tural theorems have been discovered for other problems, notably
the bounded-degree MST problem [19]. The book [13] provides a
comprehensive discussion of iterative rounding methods for com-
binatorial optimization.

Multi-criteria (fair) network design When we have two (or more)
cost functions, can we (approximately) minimize the maximum of
the two costs? Would iterative rounding still work, and if so with
what approximation guarantee?

This multi-criteria problem can be captured by the following
integer program and the corresponding linear programming relax-

ation denoted by LPpcsndp <G, f, {c"}i:l):

IPmcsndp (G, f, {Ci}le)
minimize z
subject to Z Xe > f(S), VSCV
e€dég(S)

Y cxe<z, Vie{l,....t)
ecE(G)
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Fig. 1. Tight Example for LPycsnap-

Xe € {0, 1},
LPmesnap (G, f, {Ci}f=1)
minimize z

subject to Z Xe > f(S), VSCV

Ve € E(G)

ecdg(S)
Z céxefz, Vie{l,...,¢}
ecE(G)
1>x%x.>0, VeeE(G)

Our main result is the following.

Theorem 3. For ¢ > 2, there is a polynomial time ¢-approximation al-
gorithm for the Fair generalized Steiner network problem with ¢ cost
functions. The algorithm and guarantee extend to multi-criteria network
design problem with a skew supermodular cut requirement function pro-
vided the LP relaxation can be solved in polynomial time.

Corollary 4. For ¢ > 2, given bounds Cq,Ca,...,C, in addition to
G, f, {ci}f:1), there is a polynomial time algorithm that finds (if pos-
sible) a subgraph which satisfies the cut function requirements and for
which the i-th cost function is at most £ - C;j.

The algorithm is based on iterative rounding and the following
structural result.

Theorem 5. For ¢ > 2 and any skew supermodular integral function
f, let x be an extreme point solution to LPycsngp (G, f, {ci}i.=]>. Then
there exists an edge e with x, > 1/¢.

Perhaps most surprising is that for two cost functions, the ap-
proximation factor is 2, the same as for a single cost function. In
other words, fair network design for 2 players has no penalty in
the approximation factor.

Tight example The following simple example (see Fig. 1) shows
that ¢ is a tight bound for iterative rounding as well as for the
integrality gap of the LP relaxation. For ¢ > 2, consider a multi-
graph containing 2 nodes u,v with ¢ edges {ei,ez,...,e¢}. The
demand function is f({u}) = f({v}) = 1. For i € [£], the cost func-
tion ¢! : E — Ry is defined as

i
Cc, =
€j {

The optimal integral solution simply selects one of the edges
with cost 1. However, the extreme point solution for LPpcsdp is
Xe; =1/¢ for all i € {1,..., £} with maxieje) Y, chxe = 1/¢.

1 ifi=j
0 otherwise.
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Hardness of approximation Consider the multi-criteria Shortest
Path problem where given a graph G = (V, E), 2 vertices s,t € V,
and ¢ non-negative cost functions on the edges, c!,c?,...,ct: E —
R, the goal is to find a path between s and t that minimizes the
maximum of the ¢ cost functions over all paths between s and t.

In [12], they prove inapproximability results for multi-criteria
versions of polynomially solvable network design problems, includ-
ing the multi-criteria Shortest Path problem. We rephrase Theorem
1 from [12] in terms of multi-criteria network design.

Theorem 6 (Theorem 1, [12]). The multi-criteria Shortest Path problem
with € cost functions is not approximable within log' ~€ ¢ for any € > 0,
unless NP C DTIME (nPoy(logm)y,

As a consequence of this theorem, we get the following result
about the inapproximability of multi-criteria network design.

Theorem 7. The multi-criteria generalized Steiner network problem with
¢ cost functions is not approximable within log' ~€ ¢ for any € > 0, un-
less NP C DTIME (nPoy(logm)y,

A very interesting question for future work is whether the fac-
tor £ can be improved.

1.1. Approach

We use iterative rounding to construct a feasible integral so-
. il . .
lution for LPpesndp (G, f, {Cl}i=1> whose value is at most £ times

worse than the optimal. Using the combinatorial properties of the
set of tight cuts in an extreme point solution, we prove that any
fractional extreme point solution contains an edge with value at
least 1/¢. This is proved using a token counting technique with
fractional tokens in Section 4.

2. Preliminaries

Definition 1 (Skew supermodular). A function f :2Y — Z is called
skew supermodular if for any A, B C V, at least one of the follow-
ing holds:

e f(A+fB)=f(ANB)+ f(AUB)
e f(A)+ f(B) = f(A\B)+ f (A\B).

Any function defined by f(S) = maxyes,v¢s{ruv} is skew super-
modular. This generalizes the minimum Steiner tree problem, the
minimum Steiner forest problem, the minimum k-edge-connected
problem.

Lemma 8 ([7]). Let G = (V, E) be a graph and f : 2V — Z be a skew
supermodular function. Then for any subgraph of G, H, the function
f(S) — 18y (S) | is also skew supermodular.

Definition 2 (Laminar family). A set family S € {S1, So, ...} is called
laminar if for any S;,Sj €S, SiNSj=@or S; €S or S; C ;.

Lemma 9 (Rank Lemma [13]). Let P = {Ax > b, x > 0} be a polytope
and let x be an extreme point solution of P such that x, > 0 for each e.
Then any maximal number of linearly independent tight constraints of
the form Ajx = b; for some row i of A equals the number of variables.

For a set F C E, let x(F) denote the characteristic vector of X,
ie, x(F) e RIEl and has 1 corresponding to each edge e € F, and
0 otherwise. As a consequence of the Rank lemma and Lemma 4.3
from [11], we get the following theorem.
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Theorem 10 (Extreme point support). Let x be an extreme point solution

to LPmcsndp (G’ f. {Ci}le

there exists a laminar family, BB, of tight sets and a set of cost function
constraints, C satisfying the following:

) with 0 < x, < 1 for each edge e € E. Then

e |B|+|C|=|E|+1.

e The vectors {x (§(S)).S € B} and {x (S), S € C} are linearly inde-
pendent.

e ForeverysetSe BB, f(S)>1.

3. Algorithm

To make the notation consistent across iterations, we introduce
a variable «; for each i in {1,...,k} and restate LPpcsndp (G,f,

{c"}f:1 ) as LPmesndp (G, f, {c"}f:1 , {ai}f:1>:

minimize z

subject to Z Xe>f(S) VSCV
e€dg(S)
Z céxe <z—a; Vie{l,..., t}
ecE(G)
z>0

1>%x>0 VecE(G).

Algorithm 1 Iterative Multi-Criteria Network Design Algorithm.
Input: A graph G, a skew supermodular function f, and a set of £ > 2 cost functions

{c }le'

1. Initialize F =, o; =0 for all i € [£].
2. While E (G) # 0,

(a) Find an optimal extreme point solution, x to LPmCS,.dp(G,f,

e}y teulizy ).
(b) Delete every edge e with x, =0 from E (G).
(c) Let Eqjp+ ={e € E(G) :xe > 1/¢}.
e Foreveryiefl,..., ¢}, update o < o + ZEEEU” cixe.
e For every S C V (G), update f(S) < f(S) — 86 (S) N Eq e+
e Set F <~ FUEq,+ and delete Ey,+ from E(G).
3. Return F.

The next lemma implies Theorem 3. It crucially uses Theorem 5
about the existence of a large edge value in an extreme point so-
lution.

Lemma 11. Let (z*, x*) be an optimal extreme point of LPpcsndp (G, f,
{c"}f:1 it ) and F be a solution returned by Algorithm 1 on input

(G, f, {ci}f:]>, then

Sd<t (o) Vie{l.....0).

ecF

4

Proof. For any extreme point solution of LPmcsndp (G, oAt

{oc,-}f:] ) Eije+ 0 from Theorem 5. So, the size of the set of
edges, E (G), is strictly decreasing in every iteration of Algorithm 1.
We will prove the lemma by induction. After the first iteration of

Algorithm 1, let E..s denote the set of edges that are not deleted,
then the residual LP is:
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minimize z
subject to Y x=f(S)- > 1.Vscv
ee€dG (S)NEres eeEl/ﬁﬂSG(S)
Zcéxesz—ai— Z céxe vVie{l,...,¢}
ecEpes eeEl/ﬁ.
z>0

1>Xx.>0 Vee€ Eres.

By Lemma 8, the requirement function for the residual LP
is skew supermodular. Let zj,, denote the optimal value of
the residual LP. By the induction hypothesis, ZeeF\E]/ﬁ G <

L. (z;‘es - — ZeeE]/ﬁ Cf_,xj). Clearly, z* and x* restricted to Ejes

is a feasible solution for the residual LP. Thus, z* < z%,., and

res’
i_ i i
2= D, et D, &

ecF eeEl/ﬂ. eeF\EW.;.
= Z Cle (@XZ‘) +e- Z;kes — i — Z Céxﬁ
e€Ey p+ ecky o+

<t (-wa). O

Algorithm 1 can be implemented in strongly polynomial time
for the generalized Steiner network case using the Algorithm

from Section 9 in [11] to solve LPpmcsndp <G, f, {c"}f=1 , {oei}le) in
strongly polynomial time.

4. Proof of Theorem 4

4

Let x be an extreme point solution to LPpcondp (G, fAdt_,,

{oz,'}l‘?:1 ) If xe =0 for any edge e, then we can delete it and x

is still an extreme point solution for the residual LP. So, we can
assume X, > 0 for each e € E. Let B be the laminar family of tight
sets from Theorem 10. We form a directed forest, 7, whose node
set is the laminar family B. F contains an edge from U to V if U
is the smallest set in F containing V. An edge crosses a node if
one of its endpoints is inside the node and the other one is outside
the node.

From Theorem 10, we get |[E| — (£ — 1) <|F| < |E| + 1. We will
use the fractional token assignment procedure described in [15].
Each edge e = (u, v) is given 1 token which it distributes as fol-
lows:

1. Let S be the smallest set in F containing u, and R be the
smallest set in F containing v. Then e assigns x. tokens to
each of S and R.

2. Let T be the smallest set in F containing both u and v. Then
e assigns 1 — 2x, tokens to T.

We will prove that if 0 < x, < 1/¢ for every edge e in E, then
|F| < |E| — (£ — 1), a contradiction.

Lemma 12. [15] Every node in F contains at least 1 token.
For the reader’s convenience, we restate the proof from [15].

Proof. For a node U € F with children {Vi}ile, let
A= {e: |emU|:1,|em(u§.‘=1v,-)|:o},

B:{e:|emU|:2,|em(u§<=1v,-)|=1},

Operations Research Letters 50 (2022) 536-540

cz{e:|emU|=2, |em(u{.‘=1vi)|=2}.

Since U, {V;}¥_, are tight sets,

k k
FO) =Y FVy=x@WU) > x@E (Vi)
i=1 i=1
=x(A) —x(B) —2x(C).

Note that AU B U C # ¢, otherwise x (8 (U)) = ZL] x (6 (V).
The set U gets x. tokens from every edge e in A, 1 — x, tokens
from every edge e in B and 1 — 2x, tokens from every edge e in
C. So, the total amount of tokens received by U equals

D oxe+ ) (=X + ) (1—2%)

ecA ecB eeC

=|B| 4+ |C| +x(A) —x(B) —2x(C)

k
=Bl +ICI+fU)=>_f(Vy)
i=1
which is positive due to the LHS and integral due to the RHS and
hence at least one. 0O

We proceed to the proof of Theorem 5.

Proof. From Lemma 12, every set in F contains at least 1 token.
Now, we will prove that the amount of tokens assigned to nodes
in F is strictly less than |E| — (¢ — 1), which implies that |F| <
|E| — (¢ — 1), a contradiction.

Consider a root node R in F. Every edge e € § (R) does not
assign the token corresponding to step 2 to any set in . The total
amount of unassigned tokens is

Z (1—=2%) =[8(R)| — 2f(R).
ecs(R)

This quantity is integral and strictly greater than O because 1 —
2xe > 0 and 8§ (R) #¢. Since f(R)>1 and 0 < x, < 1/¢ for all e,
the number of edges in § (R) is at least £+ 1 and 1 —2x, > 1 — %
So,

Z (l—2xe)>(£+1)-<l—%>

ees(R)
=(+1-2-=
2
={—-1--.
12

S0, D ecs(ry (1 — 2%e) is an integer strictly greater than £—1— %
For £ > 2,

Y A-2x)=e-1.
ecs(R)

Thus F contains at most |E| — (¢ — 1) tokens. Now if § (R) con-
tains an edge e whose other endpoint is not present in F, then
F does not contain the token corresponding to the other end of e,
and hence the amount of tokens in F is at most

[E| —((—=1)—Xxe <|E|—(£—1).

Otherwise, there must be at least one edge e, that does not cross
R but crosses another root node in F, else

X @ (R) = > X @V,

V#R,V is aroot node
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which violates the linear independence of characteristic vectors of

the nodes of F. So the amount of tokens in F is at most

[El—(t—1)—(1—=2%) < |E|-(¢(—1). O
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