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Abstract

As the world moves to decarbonize, the built environment
commands attention for its intensity of energy consumption.
Potential pathways for decarbonizing the built environment
can be discovered through the aid of building energy mod-
eling, which helps identify potential retrofit strategies and
simulate integration with renewable energy sources. Energy
modeling is complicated however, due to compound inter-
actions between building materials, structural design, and
urban form. Significant domain knowledge, modeling exper-
tise, and extensive time investment are required for accurate
modeling to accommodate this complexity. In this work, we
explore the potential of accurately modeling building energy
consumption at scale through the application of modern com-
puter vision algorithms. We demonstrate that our computer
vision system can accurately predict energy consumption
through the extraction of meaningful features contained in
satellite imagery. To accomplish this, we introduce a data-
collection pipeline and a computer vision architecture to
process satellite photos and contextual information from the
urban texture. We also demonstrate a method of comparing
the relative significance of the automatically extracted fea-
tures in informing building decarbonization decision making
and policy. Our results indicate that this approach reveals
valuable insights into the dynamics of building energy con-
sumption on the city scale and enables the rapid analysis of
urban energy dynamics with readily available data.
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1 Introduction

Buildings are a centerpiece of climate change policy as they
account for over 40% of the total primary energy use in
the US and the EU [4]. As the world moves to curb global
emissions, legislators looking to make informed policy can
benefit from a more nuanced understanding of how broad
retrofitting strategies might impact their cities.

Research into urban energy dynamics is typically pursued
through one of two approaches. The first approach is purely
data-driven. While this allows researchers to study macro-
scopic effects with more easily obtainable datasets, data-
driven models have historically neglected the specific mor-
phology of a builiding. Instead, they have generally opted to
statistically model a building using features like age, material,
or HVAC (Heating, Ventilation, and Air Conditioning) equip-
ment. Data-driven models can provide a good framework
for the prediction of energy consumption but fall short of
capturing energy dynamics from unique structural features.
The second approach relies instead on simulation, which
models a building’s unique structural features with a high
level of granularity through the aid of design software. This
advantage makes simulation a more appropriate choice for
retrofit analysis [5]. However, traditional simulation based
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approaches require a high level of modeling expertise to craft
an accurate model as well as curated data sets describing the
structure. An example curated data set will contain exten-
sive information about the structure. These may include fea-
tures such as floor plans, window heights, wall thicknesses,
material properties, and HVAC design. The high degree of
technical expertise and extensive data requirements make
simulation based energy modeling resource prohibitive for
large scale analysis.

This project looks to bridge the gap between these two
paradigms by proposing a system with both statistical sig-
nificance and consideration of unique building features. The
application of deep learning and computer vision allows for
the automatic extraction of useful features from images. We
take advantage of these properties to predict the energy con-
sumption of the building from satellite photos and explore
the significance of urban context as a predictor for energy
consumption.

Modern research in the urban energy domain suggests
that the accuracy of a building’s energy model will plateau
without consideration of the unique features from adjacent
structures [24][9]. The plateau in accuracy is likely due to
added uncertainties from light reflected off adjacent struc-
tures, HVAC exhaust from a neighbor, or nearby heat island
effects from excess asphalt. Attempts have been made to
bridge the gap of urban context in simulation based models
through the use of machine learning [18], but this prelimi-
nary work is highly labor intensive and challenging to scale.
We show that an entirely data driven approach based on
satellite imagery captures the subtle details of modern urban
energy dynamics while improving the statistical significance
by folding a much larger sample size into the analysis. In
this way, our study also explores the effects of urban context
on energy consumption.

There have been a few attempts to map the energy con-
sumption of a city region to its constituent buildings. This
research has leaned on nighttime satellite photos, which can
roughly approximate economic activity in emerging markets
[16][27]. The use of nightlights was extended to approxi-
mate the economic activity of US markets[10], but has not
received extensive utility as dense urban regions often satu-
rate in nighttime satellite photos. In general, satellite based
analysis for the task of energy prediction has primarily relied
on linear regression to identify correlations. As such, most of
the work has yet to consider nonlinear relationships which
may exist in the urban domain.

Outside of energy prediction, other objectives in the ur-
ban domain have received more attention from the computer
vision and data science community. This includes work to
distill large scale spatial features of cities [17], classify re-
gional characteristics [1], and to identify the connectedness
of the grid [29], among others. In the design domain, re-
searchers use computer vision techniques to distill stylistic
elements of architecture [7][31], which identifies patterns
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of doorways and colors which uniquely identify a theme.
Some other works use satellite imagery to map the energy
infrastructure, such as solar photovoltaic panels[30] or oil
refineries/petroleum terminals[26]. There is also work in
the economic domain attempting to predict the income of a
region based on satellite photographs using convolutional
networks [23] or the density of housing in developing coun-
tries [25]. The utilization of satellite photography, which has
global coverage, makes these works particularly promising.
Some works also utilize multiple modalities of information
and incorporate both images and textual data to analyze
neighborhood patterns, such as combining human move-
ment data as well as points of interest (POls) data with satel-
lite imagery[12].

While previous work has explored satellite imagery driven
analysis in other urban domains, there has not been exten-
sive work exploring the use of emerging computer vision
methods (e.g., convolutional neural networks) for urban scale
building-level energy modeling and prediction. Therefore,
the objective of this study is to explore the potential utility
of computer vision in urban energy modeling and introduce
an approach for rapidly constructing a system capable of
producing urban scale building energy models.

2 Methods

This work relies on satellite imagery to capture meaning-
ful features from buildings, leaning on the assumption that
aerial photos contain semantically significant information
for urban analytics. If this assumption is correct, energy mod-
ellers may use the features extracted from satellite photos to
predict the energy consumption of the building.

We break down the proposed approach into into four
segments which are detailed below: (1) data collection and
definitions, (2) train / validation / test split, (3) model archi-
tecture, and (4) saliency maps.

2.1 Data collection and definitions

There were two distinct classes of data used in the analysis,
satellite photos and contextual information. We chose to main-
tain the system’s scalability by selecting three data sources
which have global coverage.

¢ Building Energy. A real, positive number quantify-
ing the amount of electricity purchased by the building
from the grid for the year of 2016.

o Satellite Imagery. The satellite photos capture cloud-
less representations of buildings from 2021 under the
assumption that none of the buildings have changed
since 2016. The photos then express the visible light
emitted from the structures as a unique RGB array
used in the analysis.

e Urban Context. The context is crafted by capturing
the social function of adjacent buildings.
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Building Energy

The City of New York provides our labels through the use
of publicly available benchmarking data. This data set was
made available by the New York City Benchmarking man-
date [20], which in 2016 mandated that buildings over 50,000
square feet measure and report their annual consumption
of resources. At the time of writing in 2021, this mandate
now extends to buildings over 25,000 square feet. The Ener-
gyStar++ project [2] provides a cleaned version of the data
set combined with the PLUTO data [19]. The final dataset of
14,971 buildings also contains building heights, floor num-
bers, and gross floor area for each building in addition to
consumption statistics.

There are yearly reports on different metrics such as direct
and indirect carbon emissions, energy consumption, water
consumption, district steam use, and natural gas use within
the consumption statistics. The data set also provides an
address for each building used to gather the satellite photo
and context vector. Among these metrics, we selected elec-
tricity purchased from the grid as the dependent variable,
measured in kBtu per year. We converted this term to MWh
for all subsequent analysis (mean = 1,639, median = 514).

Among these 14,971 buildings, several buildings had no
electricity consumption from the grid, and a long, thin tail of
mega consumers. We identified potential outlieres as build-
ings with an energy consumption greater than 4,000 MWh
and less than 200 MWh and excluded them from the analy-
sis. After cleaning, there were 8,305 distinct points to use in
training (mean = 832, median = 519). To accommodate the
remaining skew of the data (skew = 1.89), the log of the data
was used as the final predictor (skew = 0.59).

Satellite Imagery

The centroid coordinates for each building in the cleaned
data set was obtained from the publicly available Building
Footprints data set for New York [21]. We matched each
building in the energy data set to their coordinates by using
the building identification number (BIN). As part of clean-
ing the energy data set, we discarded buildings with no BIN
number and only selected the first BIN number for buildings
with multiple BIN numbers. We then used the centroid for
the building as a the origin point to query two top-down
satellite photos from Mapbox’s satellite API for each latitude
and longitude with a resolution of 500x500 pixels. We cap-
tured the first photograph for each building at zoom level
16.5, which is roughly 0.646 meters per pixel at the latitude of
New York City. Each one of these macroscopic photos cover
an area of around 104,000 m? and reveal nearby bodies of
water, parks, and highways. We captured the second photo
at a zoom level of 18.5 which measures around 0.422 meters
per pixel. Covering around 45,000 m?, the zoom 18.5 photos
provide insights into the unique features of each building.
These include elements of the building’s HVAC system, adja-
cent trees, parking lots, and shadows cast by the structures.
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Of note, we also use zoom level 15 photos for some analysis,
where each photo covers an effective area of 837,225 m? at
1.83 meters per pixel. The level of detail for each photo can
be seen in Fig 1.

Zoom 18.5' Zoom 16.5

e >
E

Figure 1. Level of Detail - Satellite Photos

Urban Context

In this section, we introduce a method to aggregate contex-
tual information from the urban context and compress it
into a fixed size vector. The influence of occupancy patterns
on building energy consumption drives the motivation for
the context vector [6]. The fixed length context vector is
intended to describe the potential type of occupancy based
on the social function of nearby establishments. The estab-
lishments are typically businesses like offices, barbershops,
schools, etc. From this, the system may recognize that if
offices surround the building, it is unlikely to be heavily pop-
ulated on weekends as it might have a higher possibility of
being an office itself.

To construct the context vector, we first query Google’s
search engine for a list of prominent establishments within
radius R of the structure of interest. According to the Google’s
documentation, the radius input simply biases the search
results to elements within this area and typically returns
about 20 results for a query. Each establishment descriptor
is a unique string e; which comes from a set of establish-
ment names E = {e, ey, ..., en }. The full set of establishment
names is maintained internally by Google, and the full size
of this set is not known. Google’s search query may regis-
ter multiple establishments within a single building, so the
number of nearby buildings may not equal the number of
nearby establishments.

The next step is to then encode this list of establishments
for use in subsequent analysis. A naive option would be to
take the sum of their one hot embeddings, where the maxi-
mum length of this summed vector would be the same as the
size of the set of unique establishment names. As the length
of the establishment names is not known, we instead opt to
hash the terms into a fixed size vector. The hash function
takes an arbitrary input, in our case the establishment de-
scription string, and uniquely maps this input onto a number
which is guaranteed to fall within the length of our vector.
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We then compute the context vector as the sum of hashed vec-
tors for each establishment within the radius R. An example
of the context barcode can be seen in Fig.2. For visualization,
this example uses a vector length of 20 instead of the typical
1,000.

{ health (3), political (2) }

{ establishment (18) }
{ lodging (1), school (1) }
¥

8 12 16 20

Figure 2. Context Barcode

The downside of hashing is that there’s a nonzero chance
two different terms might hash into the same bucket, man-
gling their representation. The probability of collision in-
creases with the number of unique descriptor terms or with
a smaller hash vector. The expected number of collisions can
be roughly approximated as ~ n — k + k (1 — £)" [8]. There
are k = 1,000 buckets in the hash vector and n =~ 110 unique
descriptors to be hashed for our system, indicating that our
expected number of collisions is close to 6. As we sum embed-
dings, each element will still have representation regardless
of collision.

2.2 Training Setup

We trained the model using PyTorch [22]. The data was split
into three classes, as outlined in the table 1. We used a batch
size of 64 as a default for most of the computation. We tracked
the models using Weights and Biases [3].

Table 1. Train/Validate/Test Split

Class Percent Count
Training 70% 5,813
Validation 15% 1,246
Testing 15% 1,246

2.3 Model Architecture

The primary architecture used in this analysis, a convolu-
tional neural network, is evaluated against our null model.
The two models are defined as follows.

Null Model. The null model simply predicts the mean en-
ergy of the training set, which is defined as % Yimey €i

Null+ Model. The null plus builds a linear regression of
the form Y = & + X using features collected in the PLUTO
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dataset. The features used in the regression were the con-
struction year, roof height (ft), and ground level (ft).

Convolutional Neural Network. The convolution is math-
ematical operation which enables us to artificially simulate
the structure of neuron firings in the visual cortex [11] when
utilized in the image domain. Convolutions, typically ref-
erenced as filters for their behavior of filtering for certain
characteristics, can do this by capturing low level details
from the images. The first filters which interact with the
images are quite simple, looking for patterns of colors or
edges. The output of the images interacting with our first
four convolutional filters can be see in Fig.3.

Figure 3. Images interacting with first four convolutional
filters

The composition of filters with other filters permits the
composition of abstract representations. This repeated stack-
ing of convolutional filters creates a "deep" network that
enables the representation of more complex concepts, also
called latent structure. A network of stacked convolutional
filters, made famous for their implementation in convolu-
tional networks, have been used with success in pattern
recognition applications as varied as autonomous driving,
analysis of particle accelerator data, and audio spectrogram
analysis [15].

Architectural Overview.

Our proposed system manages two streams of image data.
Each image stream is of dimension N x 3 x H x W, where
N is the cardinality of the data set, H is the height of each
image and W is the width of each image. We normalize each
image along color dimensions by subtracting the mean of
each channel and dividing by the standard deviation before
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passing into the ResNet systems. We resized each image to a
size of 256 x 256 pixels before analysis. This resolution was
selected as the images still capture semantically significant
features yet are small enough to maintain tractability in
computation.

The system is also required to accommodate the sparsely
filled context vector, which has a dimensionality of N x 1,000.
We use two identical models of the ResNet34 architecture,
and utilize them for our two streams of images. These ar-
chitectures are complemented by a fully connected (FC) net
which is used to preprocess the context vector. The fully
connected network is a vanilla neural network, which can be
thought of as a series of linear operators and nonlinearities
[14]. The outputs of each of these systems then gets con-
catenated as a 2,050 length vector then fed into a final fully
connected network. The final fully connected network has
five layers (2,050; 500; 100; 50; 5), each of which sequentially
reduces the vector’s dimensionality until it is represented
as a single floating point number. We use this floating point
number to compute the loss of the system by comparing it
to the actual value recorded by the building.

FC
(1000,50)

ResNet34
(3x256x256, 1000)

FC
(2050,1)

ResNet34
(3x256x256, 1000}

Figure 4. System Architecture

We also conducted feature significance tests to determine
the relative importance of different data sources in prediction.
There were four potential data sources for each location,
with three satellite images and one context vector (radius
300 meters). The satellite imagery options were zoom 15,
zoom 16.5, and zoom 18.5.

Loss Function The Euclidean Norm (L2) was selected for
use as the loss metric, defined in equation 1.

Optimizing against the euclidean norm seeks to globally
reduce the estimated error of the system. As such, the error
is more likely to be evenly distributed across the data set.
Due to this behavior, massive buildings are likely to have
smaller relative error.

Optimizer Adam was selected as our optimizer for its sta-
bility, variable learning rate, and momentum behavior with
consideration of historical gradient [13].
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2.4 Saliency Maps.

In addition to the scalability provided by satellite imagery,
computer vision systems can provide intuitive feedback on
their decision-making through modern visualization tech-
niques. To highlight the potential applications for informing
urban and decarbonization policy, this section explores the
use of saliency maps to visualize the focus of the system as
well as gain an intuition as to the relative value of neigh-
borhood level information. The section then explores the
applications of computer vision in grouping similar struc-
tures based on external and regional features which may be
driving energy consumption.

Saliency maps were introduced in 2014 by Karen Simonyan
[28] as a way to visualize the key points within an image
that are driving decision making for the machine. As a sum-
mary, we would like to have an intuition into how much
the prediction of our system might change in relation to a
single pixel of the source image. If we first stretch out the
pixels of an image into a single vector of length HxW, we
have a set of pixels P = {py, p1, ..., paw }- If we were to build
a linear regression S(P) = w! P + b where our prediction for
energy is defined by the linear function S, then the estimated
influence of a single pixel on prediction is found by com-
puting the partial derivative dS = w! 9P. Our architecture is
highly nonlinear, so we instead attempt to find an approxi-
mation dS ~ w’ 9P. The primary shift in logic is that instead
of looking to discover dS through perturbations P + dp, we
select to bother S with small perturbations S + §s. We can
then backpropogate the perturbed scores into the original
image and examine what features would need to change to
significantly influence the prediction.

Figure 5. Saliency Map

From this example saliency map in Fig 5, we see that the
system’s focus on asphalt surfaces matches our intuition that
paved roads might be locally influencing the temperature of
the region. In this way, saliency maps provide intuition into
to the role of discrete features in energy prediction.

From our knowledge, there exists no reference utility
which indicates the importance of context in unique regions
while modeling building energy consumption. In addition to
improving the perceptibility of the system’s decision-making,
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we can use saliency maps to better understand the role of
urban context in energy prediction. To approach this topic,
we look capitalize on the utility of saliency maps to measure
the relative importance of pixels as we move away from the
centroid of the building by exploring the change in saliency
density. For a set P = {py, pa, ..., pN } of pixels contained by a
circle of radius R measured in meters, there is a correspond-
ing set of saliency values S, = {so, s1, ..., SN} Which has a one
to one mapping to the indices of the pixels. That is, for each
pixel p; there is a saliency value s;. We define « to be the area
of a single pixel, which is assumed to be uniform for every
pixel. The saliency density p is then defined by equation 2.

1 N
p=m 2

i=1

(2)

We computed the saliency density using a system trained
against the zoom 18.5 and zoom 15 images. The intuition
behind this design decision is that microscopic (zoom 18.5)
photos will provide the system with information on specific
features of the structure of interest, which allows macro-
scopic (zoom 15) photos to focus more on contextual features
of the region. Although use of the zoom 15 images did not
have the most value in prediction, we selected the zoom 15
photos for their extensive coverage which enables analysis
to a greater region. The saliency was then extracted for every
macroscopic photo and used in the density analysis.

Figure 6. Saliency Density

By examining how the density of saliency changes with
increasing contextual radius, as seen in Fig.8, we can gain
intuition as to how much context is sufficient to accurately
predict energy purchased from the grid. Saliency density
computed for a uniformly increasing radius should produce
a line with no slope if saliency was distributed uniformly
throughout the image. Thus, any deviation from a line with
no slope provides intuition into the relative role of urban
context.

2.5 Prototype Identification.

Through the process of predicting a single term to describe
the energy consumption of the building, we compress the
large 2,050 dimensioned vector through a series of smaller
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layers. The hierarchical compression allows for more nonlin-
ear relationships to be learned, thus increasing the expressiv-
ity of the model. We can take advantage of this architecture
by artificially imposing a low dimensional vector prior to pre-
diction, forcing each batch of data to flow through this low
dimensional vector. This last batch is then passed through a
single linear operator W which then determines how much
each prototype affects the final prediction.

FC
(2050, 5)

w
(5.1)

Figure 7. Artificial Bottleneck

The artificial bottleneck provides incentive for the system
to compress the incoming data as much as possible such that
it can still make accurate predictions. The system might, for
example, learn to count the number of trees in a picture and
store them in one of its precious five slots to use in prediction
time. Although it cannot recreate the image of the tree from
this count, it can still achieve high accuracy in prediction by
storing the quantity of trees in a slot of the compressed vector.
In this way, the system learns valuable prototypes for the
task of prediction, where a prototype might map to a discrete
concept like the density of vegetation. The final prediction
step then develops scores against each prototype where a
high score indicates that it shares a high level of similarity to
the prototype. We can use these scores to cluster for similar
buildings, grouping things nicely for policy making. If we are
interested in finding buildings that can most improve their
energy efficiency through the use of double paned windows,
we can craft policy to target buildings that score highly
against the window prototype.

Before we can cluster similar locations based on their pro-
totype signatures, we want to build an intuition as to the
content of each prototype. This is a particularly challenging
task with convolutional neural networks as the bottleneck
vector can expand a single latent concept into multiple nodes
or conversely compress multiple latent concepts into a single
node. To shed light into the system’s inner workings, we
manipulate the saliency maps a bit to express themselves
only for a unique node in the bottleneck layer. Formally, we
can do this by modifying the gradient as it flows through the
bottleneck layer and into the rest of the system. Our system
can technically by defined as a directed, acyclic computa-
tional graph. To train the system, we optimize against this
computational graph to find a mapping between our source
data and the projected output . The optimization process
utilizes back propagation, which nicely interacts with each
element in our network. Starting with our loss function de-
fined in eq.1 as the "mouth of the river", back propagation
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conveniently takes the upstream gradient and multiples it
with the local gradient for each layer in the system to pass
downstream. In this work, we use back propagation to dis-
cover the saliency map with respect to each source image I
by using the back propagation chain rule defined in equation
3.

3
. 0W 9Z, 9Z, ©)

Traditional notation for back propagation does not use
W to reference the intermediate layers, but we choose to
explicitly show how the bottleneck layer W interacts with
the chain rule. This explicit notation helps in visualizing
our modification to the gradient ST‘%. We can isolate for the
gradient with respect to a single node W;, and thus find a
saliency map with respect to a single prototype, by wiping
away the rest of the local gradients in dW through the use
of a vector (¢) populated with one value.

17 2 oL

gt w0 @)
W]
0] |2£ 0

ws

This allows us to build saliency maps with respect to a
single element in the bottleneck. This untangles the influ-
ence of other nodes on the saliency map and permits us to
interpret the regional focus of each element. We once again
pass every image through the system and back propagate to
build saliency maps. The new dimensionality of our output
is 5xNxHxW, which reflects that we have 5 unique images
for each macro and micro photo of the structure. To identify
the significance of the node, we fixate on a single element
and identify which images maximally fire the node.

3 Results

Satellite photos and contextual features are found to be valu-
able predictors in improving the quality of prediction for en-
ergy consumption, reducing the estimation errors by nearly
one third compared to the null model. To build this result,
the model’s hyper-parameters like learning rate and batch
size were tuned against the training data.

3.1 Hyperparameter Selection

A series of trials were conducted to assess the influence of
the learning rate and batch size on system performance. The
results of the trials can be seen in table 2. These results led
us to select an epoch size of 20 and learning rate of 0.1 as
our default parameters for the rest of the analysis.

3.2 Model Summary

Null Model. The null model, which was predicting the mean
of the training set, achieved a validation loss of 0.57.
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Table 2. Summary of Hyperparameter Tuning

Epochs Learning Rate Validation Loss
40 0.08 0.33
40 0.10 0.31
20 0.08 0.33
20 0.10 0.31

Null+ Model. The null plus model achieved a validation
loss of 0.36. If we also include the gross floor area (ft?) of
the structure, as defined by the NYC Department of Finance,
this validation loss drops to 0.29.

Convolutional Neural Networks. We tested different per-
mutations of features to examine their influence on valida-
tion loss. Each row of table 3 indicates a permutation of data
sources, where a check mark indicates that the data element
was used in training. For each permutation of data, a learn-
ing rate of 0.1 was used to train the model over 20 epochs
with a batch size of 64. The model with the best validation
score was recorded for each permutation.

Table 3. Feature Selection

15 16.5 18.5 Context Validation Loss
0.57
Vv 0.41
v 0.38
v 0.32
v 0.45
Vv v 0.35
v 4 0.35
Vv Vv 0.31
v v 4 0.33
Vv vV 0.33
v v 4 0.34

From these results, the final version of the trained ResNet
architecture used two photos, zoom 16.5 and zoom 18.5. Us-
ing this amalgamation of features, the system achieved a val-
idation loss of 0.31 after running for 14 epochs. It achieved
a similar result against the test set, with a loss of 0.32. If
we translate this loss into a prediction of MWh, we can be
reasonably confident that the model with a validation loss
of 0.31 will produce a prediction between 3,030 MWh and
1,598 MWh for a building which consumes 2,200 MWh. This
prediction limit is contrasted to the null model which will
always predict the training set mean of 609 MWh.

3.3 Saliency and Urban Context Results

As a case study into the functionality of saliency maps in
measuring the role of urban context, we isolate two regions
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of New York City and explore the role of context in energy
prediction. In this small sample, we see that context in the
dense urban core of Manhattan plays a more significant role
in prediction than in the more sparsely developed boroughs
of Queens and Brooklyn. We find that context is typically
around 26% more valuable as a predictor in Manhattan than
in Queens.
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Figure 8. Comparison of Urban Context Importance

3.4 Prototype Results

After computing the saliency with respect to each node in the
bottleneck layer, we focus on one location to demonstrate the
value. We pull two of the saliency maps for a single location
which targeted unique regions in the macroscopic image 9.
These demonstrate that the nodes capture multiple concepts
within the urban texture and saliency maps can be used to
help tease out the representations captured.

As an example of how we might look to collect intuition
from this system using the saliency maps, we recall that
the prediction for the energy of the system first scores the
photo against one of five prototypes. In this example, we will
reference these scores as the vector V. The final prediction
can thus be found through the dot product of V and W.
Thus we can examine both the score of each image against
the prototype v;, as well as the estimated influence of the
prototype on the overall prediction of energy w;.

In our example saliency map, we might intuit that node
one attempts to target residential neighborhoods to the south
and west of the image. For this example, node one collected
a prototype score (vy) of -1.60 and the trained model has
an activation weight (wy) of -0.95. Armed with this infor-
mation, we conclude that the concept captured the node is
estimated to increase model’s prediction by roughly 1.53. If
we instead take the dot product of the activation weights
W with the prototype scores and average across each node,
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Figure 9. Nodal Saliency. Top: Saliency from Node 1, Bottom:
Saliency from Node 4.

we can infer the typical effect of the node on prediction. In
our example, the average nodal influences are given as: [1.33,
0.30, 1.47, 0.11, 1.11], indicating that three of the nodes are
responsible for a majority of the influence in prediction. The
magnitude of the terms and the semantics captured by the
nodes gives relative significance to the features which should
be prioritized for the city’s retrofit strategy.

3.5 Regional Bias

The system demonstrates a tendency to underestimate pre-
dictions for tall buildings, namely Lower Manhattan and
Midtown Manhattan. We also see that it is overestimating
in Queens, likely in an attempt to reduce bias on the mean
prediction for the training set. As the distribution of energy
purchased by buildings in New York City is heavily right
skewed, attempts to reduce bias result in the overestimation
of energy in smaller buildings.

In addition to overlaying the error on a map, we can ex-
plore trends in the error to better understand why the system
is failing. The addition of PLUTO data to the EnergyStar++
data set provides building height, building age, and floor
area. We omitted these terms during training in favor of de-
veloping a more scalable system, but we can now use them
to explore correlations with the error as seen in table.4. We
normalized the data terms by subtracting the mean and di-
viding by the standard deviation prior to determining the
correlation.

4 Discussion, Conclusions, Future Work

In this work, we demonstrate a method of extracting mean-
ingful features from readily available satellite data to esti-
mate the electricity a facility will purchase from the grid.
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Figure 10. Regional Bias

Table 4. Correlation of Error with Features

Correlation
Height -0.322
Area -0.583
Ground Level 0.071
Year -0.146

We achieve this by using a framework for the rapid gather-
ing and processing of pertinent data in the urban domain.
We demonstrated that each of these features is valuable in
improving our vision system’s prediction accuracy through
the use of our feature significance tests. We found that the
context vector was useful to improve prediction, but images
were the driving feature in reducing error.

In terms of prediction quality, we show that our proposed
model easily outperforms a null model for New York City
and can even achieve comparable results to the Null+ model
produced via linear regression against PLUTO features. The
inclusion of gross floor area in the Null+ model greatly im-
proved the quality of prediction beyond the accuracy we can
achieve with the vision system alone. In general, it seems
like the system had limited success in accurately estimating
building area and height from satellite images. This defect
in the model seems to be driving prediction error. As our
error is negatively correlated with building area and height,
the idea that our system cannot capture structural scope is
reinforced.
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This also passively indicates that the system was instead
able to reduce its error by learning the semantics of neigh-
borhoods throughout New York City. We see evidence of
this behavior through interpretation of the saliency maps
with respect to individual nodes. We show in Fig.9 that our
system seemed to passively segment between the suburbs
and midrise buildings before making a prediction. The lack
of significant value from the context vector in improving
prediction accuracy might be another indication of seman-
tic extraction from images. It seems like the vision system
might have already used satellite images to build an internal
representation of the information encoded in the context
vector, which reduced their value as a feature.

In addition to the extraction of pertinent semantic fea-
tures, we applied a novel method of visualizing the captured
semantics by modifying the construction of saliency maps.
We exploited the bottle necking feature of the final fully
connected network layer to build an intuition into building
prototypes, which characterize buildings based on primary
drivers of energy consumption. To shed light into the infor-
mation captured by prototypes, we adapted saliency maps
to expose the latent concepts captured by each prototype. In
our case study of regions in New York City, we demonstrate
that saliency maps can be used as a proxy to identify the role
of urban context and provide insight into how density and
distance impact energy consumption.

While the system performs reasonably well on New York
City for the year of 2016, climate was ignored in this study.
As weather plays a significant role in driving the energy
performance of buildings, subsequent research will need to
incorporate weather for a more robust analysis.

Finally, we note that this architecture is not limited to
the prediction of energy purchased from the grid. Although
energy prediction was used as a preliminary example to
expose the potential of modern computer vision systems in
urban analytics, the structure of our system could rapidly be
transferred to predicting other target metrics in the urban
domain. This may include things like walkability, occupancy
trends, or materials classification of buildings. New York City
provided a rich source of data, but further study need not be
limited to any particular city. The high availability of satellite
data makes this approach promising to better understand
energy consumption in data sparse metropolitan regions of
the Global South and rest of the world.
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