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I. INTRODUCTION

In order to simulate the dynamics of a plasma, there is a variety of models which are used
according to the type of question and the level of detail in the description of the plasma. Most
of these models can be categorized as kinetic or fluid, whether the dynamical field variables
are functions of the phase space coordinates (x, v) of the particles or just configuration space
coordinates . Compared to kinetic models, fluid models have the significant advantage to
be defined in a dimensionally reduced space, which makes them particularly desirable from
a computational viewpoint. The central question is how to define these fluid models from
a parent kinetic model. There are plethora of methods to do this, some better suited than
others depending on the specific problem at hand. For instance, some reductions rely on

® or introduce suitably designed

an assumption on the shape of the distribution function,'”
dissipative terms.5® Here we follow a different route by requiring that the reduced fluid model
preserves an important dynamical property of the parent model, namely its Hamiltonian
structure.” ' Rather than being an additional constraint on the reduction, we will see that
this requirement provides a way to perform the reduction, and precisely define the relevant
closures leading to the definition of Hamiltonian fluid model(s). In order to illustrate this
point we consider the one-dimensional Vlasov—Poisson equation. This equation describes the
evolution of the distribution function f(z,v,t) of charged particles (of charge e and mass

m) in an electric field E(z,t):
of  Of eEdf

- — — —

ot dx  m o’

where F is the fluctuating part of the electric field £ whose dynamics is given by

= _4ni
ot "

and j = e [vfdv is the current density. We assume periodic boundary conditions in = with

period 2L, so that the fluctuating part is defined as

~ 1 Le
E=F— E dz.
2Lm/—Lx !

We consider a fluid description obtained by using the first four fluid moments of the distri-

bution function, more precisely, the density p(z,t), the fluid velocity u(x,t), the pressure
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P(z,t) and the heat flux ¢(x,t) defined by

pz/fdv,
u:p_l/vfdv,

P = /(v —u)*fdo,

q:%/(v—u):"fdv.

From the Vlasov equation, we obtain the equations of motion for these moments:

dp = —0:(pu), (1a)
1 E
Dpu = —udyu — ~9,P + = (1b)
p m
P = —ud, P — 3P0, u — 20,q, (1c)
3P 1
0q = —ud,q — 4q0,u + — 0, P — =0, R, (1d)
2p 2
OE = —4mepu, (le)

where
R= /(v —u)* fdv,

which is related to the kurtosis (in velocity) of the distribution function f. Here and in what
follows, 0, and 0, denote the partial derivatives of a function of x and v with respect to x
and v, respectively. In order to close the set of equations of motion, we need an equation of
state of the form

R = R(p,u, P,q).
An example of closure is obtained by assuming a Gaussian distribution for f (see Ref. 3),

Fz,0,t) = L e~mw?/Co?)

V2ro? ’

which leads to R = 3P?%/p, independent of u and ¢. One of the main problems of the
Gaussian closure is that the resulting model breaks the original Hamiltonian structure of
the parent model, the Vlasov—Poisson equation.!? As a consequence, this closure introduces
unphysical dissipation.

Based on the preservation of the Hamiltonian structure, another closure based on dimen-
sional analysis was proposed in Ref. 10, namely
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We notice that this closure depends explicitly on the asymmetries of the distribution func-
tion, measured by ¢, and is still independent of the fluid velocity u. However this closure
has a fundamental drawback which is that homogeneous equilibria are all unstable. In order
to see this, we linearize the equations of motion around one of such equilibria with ¢y = 0,
up = 0 and Ey = 0, ie., p = pg+dp, u = du, P = Py+ 0P, ¢g = dqg and E = 0FE. The

linearized equations of motion for §X = (dp, du,d P, dq,JF) in Fourier space, i.e., for

6X = f: 06X, e

k=—o00
reduce to
0X), = A6Xy, (3)
where
0 —ikpo 0 0 0
0 0 —ikpy 0 e/m
A= 0 —3ikP, 0 —2ik 0
ikpg?P2/2 0 ikpy'Py/2 0 0
0 —4mepg 0 0 0

The matrix A does not have purely imaginary eigenvalues for

k,2 < k,2 _ 47T€2p3

[ )

mPO

from which we conclude that all equilibria with go = 0 are unstable.

Here we are looking for a closure which combines two important properties of the Vlasov—
Poisson equation, namely, the stability of symmetric homogeneous equilibria, and its Hamil-
tonian structure.

We do not assume any particular form for the distribution function. Instead we solve
the Jacobi identity in order to determine all possible R(p,u, P, q) for which this identity is
satisfied. As a result, we unveil a one-parameter family of Hamiltonian fluid closures. We
show that for these closures, the associated Poisson bracket has two Casimir invariants of
the entropy type, i.e., two observables C' of the form C' = [dz p I'(p, P,q). These Casimir
invariants provide normal variables in which the closure in parametric form is found to be
polynomial. We then examine numerically some properties of the resulting Hamiltonian

model in two cases: plasma oscillations and the two-stream instability.
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II. DERIVATION OF THE FOUR-FIELD HAMILTONIAN CLOSURE

The one-dimensional Vlasov—Poisson equation has a Hamiltonian structure!? (see also

Refs. 14 and 15 for a review), i.e., the equations of motion can be recast using a Hamiltonian

and a Poisson bracket:

atf = {fa H}a (4&)
OE ={E, H}, (4D)

where
2

H[f, F] :/dxdvfmTUQ—i-/dxg—w.

The Poisson bracket between two scalar functionals of f and F is given by

Op

oF , 8G _ OF 5G_4m<5F 5G 8(5F6G> dxdv, (5)

o ar ~ s g %51

(r6y=o |1

SE 'Sf  TUSf OE

where ‘;—? and g—g denote the functional derivatives of F' with respect to f and E respectively.

In particular, this bracket satisfies the Jacobi identity, i.e.,
{FAG K} +{KAF G +{GA{K, F}} =0,

for all observables F', G and K. For simplicity of the notations and without loss of generality,
we assume that m = 1.

Remark: Gauss’s law is derived from a Casimir invariant of the bracket (5):

Clf,E] = 8IE—47re/dvf.

Here we consider a neutral plasma, i.e., such that the value of this Casimir invariant is —4me
which expresses the presence of a neutralizing background.

Regardless of the truncation, Eq. (1) can be recast in the following form (see Ref. 10 for
more details):

8tX = {Xa H}:

where X = (p,u, Sy = P/p3, S3 = 2q/p*, E), and

1 E2
H[p7u7327s37E] = §/d$ |:pu2 —|—p382 + E:| ,
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and

{F,G}:/dx

Ea’f Oa Su 0E  ou 0F

Gp duop

6G , 6F _OF ) oG (5G5§5 5F55)

§G 6F  6F 6G 1 6F 6G 16F 160G
(aﬁ‘w@a“%—— -*3(;)55)@];)55](6)

The 2 x 2 matrices a = 0,y and [ are given by

25, 25, — 352
35S, — 652 355 — 125,5;

and
455 55, — 952
55, — 952 655 — 245,53
where Sy = R/p° and S is an arbitrary function of p, u, S, and S3. As a consequence, since
the bracket is antisymmetric, the models are all conserving energy regardless of the closure
Sy = Sa(p,u, S, S3) and S5 = S5(p, u, Sy, S3). We notice that 3 =~ +~T. This allows us to

rewrite the Poisson bracket in a more antisymmetric way

L (9GOF OFSGN 106G, (1PN 10F . (100G
p 7\ ou 08, du 0S;) T pas N\ 5s) T pes M \p a8 )]

The Jacobi identity for the above bracket leads to the following constraints on the matrix

6F _OF ) 0G e(aaﬁf 5F§c7>
7[8

v

8 87114

yin Mjk _ 8% ik
aS,, 0S, 0S,, 0S,,’

for all 4, 7, k, m (and repeated summation over n).

A. Explicit expression for the Hamiltonian closure

In Ref. 10, it was shown that in order for the bracket (6) to be Hamiltonian, the closure

Sy needs to be of the form S; = S4(Ss,S53), i.e., it does not depend on p and u. The
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conditions (7) boil down to three constraints

o5 o5
655 = 125,95 + 4538—5‘; + (58 — 9522)5?2’
0 05y (95,

=2 9 it it

95, ~ "5 s, <052 352) ’

085 _ 08 (08 2

055 05,  \9S;)

Equivalently, a necessary and sufficient condition is that the closure function S satisfies the

following two coupled nonlinear partial differential equations

525, 028y 08,08,

4853———+ — (952 — - — 1285 =

TR I N T T T T Bl (82)
928, 928y, [(0S)\> .0S;

483 50— — (955 = 5S)=o5 — | 5a- | — 255 + 125 =0.

Ss550, ~ (955 —55) 55 (853> 95, +125: =0 (8b)

From these equations, we readily check that the Gaussian closure S; = 353 is not a solution
of these equations, which means that the Gaussian closure is not Hamiltonian. In addition,
we check that the solution given by Eq. (2), corresponding to the dimensional analysis of
Ref. 10, i.e., Sy = S5 + S3/S,, is the simplest solution. However, this is not an adequate
solution since all homogeneous equilibria are always found to be unstable, as pointed out
above. To solve Egs. (8), we start by looking for solutions close to symmetric distributions,

ie.,

S4(S2, S3) = fo(S2) + S5 f1(S2) + O(S53).

We insert this expansion in Eqs. (8) and consider their leading behavior near S3 = 0. This

lead to a set of two coupled ordinary differential equations

210 — (955 = 5f0)f1 — fifo—6=0,
—(952 —5f0)f1 — f)+ 65, = 0.

By combining these two equations, we obtain one single ordinary differential equation
0(955 — 5fo) + 2 — 1855 f +20fo = 0.
Near S, = 0, we look for solutions of the type

f0(52) - /{;S?.
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A possible solution is obviously the one obtained using the dimensional analysis'’, i.e.,
fo(S2) = S2. In addition there is a less trivial family of solutions for a = 5/3. More

generally, we look at solutions which can be expanded in Puiseux series
o

fo(Sz) = Z anS;/g.

n=>5

We show that the only possible solutions are fy(S;) = S5 and
fo(S2) = 83",

for any value of k. For practical purposes, we define k = 5k/9. We notice that contrary
to the solution provided by dimensional analysis, the second solution comes as a family
parameterized by k. The interesting feature is that this family extends to a Hamiltonian
closure for arbitrary large values of S3. Indeed we are looking for a solution which can be

expanded as

Su(S, S3) = an (52)S5". 9)

Inserting this ansatz in Eq. (8) leads to a recurrence relation for the coefficients f,,(S2):

fo(S2) = gsz ; (10a)
—25/°
f1<S2> = ma (10b)

1

9+ 1)(2n + 1Sk — 513 [(4” -

+ Z m(12m -7 - 2”)fmfn+1m] ) (10C)
and an addition constraint where f,, has to satisfy

S5 = S ) — (04 D383 s +

+3 2 6m == 1) frsron =0, (1)



for all n > 1. The first few terms are given by

1
f2(S2) = )
25 = S 5

5k — 383/°
f3(52) = 2 ,
3( 2) 385219/3(/'{) . 821/3)3
(S = 48k2 — 61k5,"% + 1855"°

31189 (k — S;/S)E’

The expression of other terms of the series expansion of S; can be obtained using a MAT-
LAB'% code available at Ref. 17. We are not able to prove directly that for all n, the f,s
obtained by the recursion relation (10) satisfy Eq. (11). However, we have checked that for
n below 25, these conditions are satisfied using symbolic computations available from the
MATLAB!' code. Beyond this value of 25, the symbolic computations are too complex to
allow simplifications in a reasonable amount of time. By truncating the series (9), i.e., by

considering

Mmax

Su(S5,55) = D fu(S2)S5",
n=0

we have found that the Jacobi identity is satisfied up to orders S3"™* for the values of
Nmax We have tested. This led us to conjecture that the limit n,.. — oo corresponds to a

Hamiltonian closure. We notice that the closure is singular at
S8 =

so this explicit closure Sy = S4(S, S3) is valid only in the range Sy € [0, Séc)[.
Remark: Scaling. We notice that the functions f,, satisfy

Fu(A285: A23K) = X6 £ (8o k),
for all n > 0. Therefore, we have a scaling relationship for Sy:
S4(N2Sy, N3S5: A3 k) = A1S4(S,, Ss: k).

A contour plot of Sy in the plane (S5, S3) is represented in Fig. 1 for kK = 1. The equations
of motion are given by Egs. (1) with

o0 P 2n
R(p,P.q)=p" > fn (5) (%) -
n=0
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FIG. 1. Contourplot of Sy given by Eq. (9) as a function of Sy and S3 for £ = 1. The summation
is computed up to Sgo. The vertical red line corresponds to the location of the singularity at
Sy = Séc). The MATLAB!6 code to compute symbolically the terms of the closure and obtain

numerically this figure is available at Ref. 17.

In particular one interesting feature is that the first order of the closure does not depend on

p, i.e.,

R(p,P,q=0) = =P%3,

Remark: Relation between the kurtosis and the skewness. A scaling of kurtosis (related
to S4) with squared skewness (related to S3) for plasma density fluctuations and sea-surface
temperature fluctuations was found in Refs. 18-22. Using the Hamiltonian closure, this
relation is found as the first two terms of the closure, i.e., Sy = b+ aS3 + O(S3) where a

and b are functions of p and P.
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B. Casimir invariants

A very interesting property of the noncanonical Poisson bracket (6) is that it possesses
a number of Casimir invariants, i.e., observables C' such that {C,F} = 0 for any other

observable F'. First we are looking for Casimir invariants of the entropy type, i.e.,

C = /dpr(Sg,Sg).

The function I' satisfies the following conditions:

708,08, = 05,05

0, (12)

for all j, k and n in (2,3) (and where we assumed implicit summation over the repeated

index 7). We assume that we have K solutions, denoted I'y for £ = 2,... K. Using the
property 3 =~ + 7', we prove that the above-conditions are equivalent to

0 <8Fk

a5, \ 0S;

ar\
Bir sj) =0, (13)

for all n, k£ and (.

Using series expansions, we found two solutions to Eq. (13):

C: =Y [ dupgn(s252"
n=0

C=Y / A phn (S2) 521,
n=0

where the first elements in the series are:

90(52) = 521/37

i) = _3355/%: )
~ 1/3
n = 365251?;—355/3)3’
ho(S2) = m7
(5 = g, gy
ha(S5) 2(5k — 495%)

TSI (s — §)
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The functions h,, and g, for n > 1 are determined from the recurrence relations:

1 n
Gni1 = — dn+1)g, + > m6n+4m+1)for1i—mgm|
9+ D)@+ 1S (ks — 5 _( ) mzo RES
hpir = — ! _(4n+3)h’ +i(2m+3n+3)(2m—|—1)f t1-mh
9(n+1)(2n +3)85° (v — S,'%) | et ’

which are both obtained from Eq. (12) with j = 3 and n = 3.
These Casimir invariants allow us to define particularly relevant variables, referred to as
normal variables, in which the Hamiltonian system is greatly simplified. We perform a local

change of variables: (53, S3) — (I'g,I's), where

Ty = gu(52)S5",
n=0

T3 = hn(S2)S5™H.

n=0

The bracket (6) becomes

Oy Oy

O (G OF GF 0G\ 1, (10FY 5 G
p p " \pdly) Yer; ]’

where here F; is the functional derivative of F with respect to I'; and 8 is a symmetric

E
ou

SF  6F _ 6G e(ae?ﬁ 5F5§)
—_— = T

matrix whose elements are

B = g—g’:@jg—gj,
with an implicit summation over repeated indices. From Eq. (13), we deduce that the
matrix § is constant. As a consequence, the bracket (14) always satisfies the Jacobi identity.
Therefore the existence of two Casimir invariants of the entropy type for the bracket (6) is
sufficient to ensure that it is a Poisson bracket. Note that we use the terminology Casimir

invariant also for a bracket which is a priori not of the Poisson type. Using the expressions

for S5 = 0, the matrix § takes the very simple form
. 01
10

In addition, the existence of two Casimir invariants of the entropy type ensures a third

Casimir invariant:

C, = /dx <u — ng(E”l)MFO ;
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which is equal to
C) = /dx (u— pI'aI's) .

Its expansion is given by

Cy = /da: <u — kan(sz)sg”“) :
n=0
where

kn = En: gn—mhma
m=0

for n > 0, and the first elements of the series are given by

1
ko (Ss) = :
s
1
k1(S2) = 335’210/3(5 - 521/3)27
4k — 35373
k2 (S) 2

(e — Sy

We notice that three Casimir invariants similar to Cy, Cy and C5 (but of course, different)
have been found for the Hamiltonian closure obtained using the dimensional analysis (see
Ref. 10).

The advantage of working in the variables I'; instead of the variables S; is that the
closure functions S; and S5 are no longer present in the Poisson bracket. They are now
in the Hamiltonian through the change of variables (S, S3) — (I'y,I'3). If we truncate the
closure functions S, and S5 —a natural step since these functions are given as series in S;— the
system remains Hamiltonian in the variables I'; whereas if these truncations are performed

in the bracket in the variables 5;, the system would likely loose the Hamiltonian property.

C. Parametric expression for the Hamiltonian closure

There is another significant advantage to working with normal variables I';: What is not
fully satisfactory with the variables S; is that the closure is given as a relatively complex
expansion, and consequently we were not been able to check the Jacobi identity at all orders
in the expansion. We will see below that the origin of this complication is due to the search
for an explicit closure function S4(Ss,.S3), not to the search of a Hamiltonian closure per

se. Here instead we are looking at a parametric expression of the closure, and we consider
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the normal variables as parameters of the closure. More precisely, we consider an arbitrary

change of coordinates from some variables I'; to variables S;:

Sy = Sy(T, T3),
S3 - S_3<F27 F3)7

and the closure functions are given by

Sy = S4(Ty,T3),
S5 = S_5(F27 FS)

We start with the bracket (14) which is a Poisson bracket since the matrix 3 is constant. The
question of finding Hamiltonian closures is reformulated as follows: What are the functions
S; for which the bracket (14) expressed in the variables S; is the original bracket (6)? The

answer is given by two sets of equations

6Fk 81“1 = B (15)
O*S; ~ 9S; i
or,0r, ar,or, M ar, oT, oL, (16)

for all 4, j and n. The first set of equations (15) defines parametrically the functions Sz, Sy
and Ss:

5 _ 105,05,
2200, 0Ty’
9—o 105,053 10S,0S;

Sy = 52 5ar2 Oy ' 500300’
= ==, 10508;
55 = 452 53 + 58—1_‘28—13

Once the function S, is specified, all of the other functions S; are uniquely determined by
the above equations. By inverting the equations I'; = I';(S2,.S3) or by solving one of the
constraints (16), we obtain the following expression for S5(I'y, I'3):

Sy(Tg,T3) = Iy + To(k — T'y)T5. (17)
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Inserting this expression in the parametric equations for S3, Sy and S5 leads to the following

expressions:

S3(F9,I'3) = Dol3(k — I'y) (315 + (k — 2I5)I3) | (18a)

— 9k
Sy(Ty,T'y) = Erg + 615 (k — Ty)?I'2

+ Ta(k —Iy) (k% = 3Ta(k — I'y)) I3, (18b)
S5(T2,T3) = 9xI5(k — [o)T'5 + 10T (k — T'y)°Ts
+ To(k — Tg)(k — 2Ty) (k* — 2k + 2I'3)T3. (18¢)

We notice that the closure is no longer given as an infinite series. In particular, the functions
S, for n = 2,3,4,5 are polynomials in the two variables I'y and I's, and the degree in I'; is n
and the degree in Iy is n+1. Using Mathematica®, we have checked that the constraints (16)
are all satisfied. The code is available at Ref. 17. The series expansion of the explicit closure
Sy = S4(S2,53) given in Egs. (9) is obtained by inverting Eqgs. (17) and (18a), and inserting
them in Eq. (18b).

For S5 to be positive, a necessary and sufficient condition is that k > 'y > 0 or if I'y > &,
2 < T%/(T'y — k). This means that Sy can take arbitrarily large values, provided that S3 is
not too large. We notice that the point (Sy = k,S3 = 0) in Fig. 1 is obtained for 'y = &
regardless of the value of I's.

In Fig. 2, we have represented the closure function S, given parametrically by Eqgs. (18)
for a selected range of parameters (I'y,I'3). The surface gets more complicated, with more
branches, as the range of (I'y,I'3) is extended (see the Mathematica code available at
Ref. 17). We notice that there is a central brighter patch where there is a single value
of Sy for a given (S5, 53). It corresponds to the explicit closure Sy = 54(S2, S3) as depicted
in Fig. 1.

D. Equations of motion
The Poisson bracket (14) becomes
il Oy — —dme | — = -2
op  du " dp ou 0F  du OF
Ay ((5G SF  OF 5G> 1 6G (1 5F>_1 OF (1 (5G)}

> \Guor, suor,) oo, %\ Lo, ) s, %\,

5G
(F.G) :/dx =0,

OF §F  §G m(éGS\f 5FZSZ?>

15



FIG. 2. Parametric representation of Sy given by Egs. (18) as a function of Sy and S3 for k = 1.

The Mathematica code is available at Ref. 17

and the Hamiltonian is

1 E?
H[p,U,PQ,Pg,,E] 2/d5€ |:pu +p3S2(F27F3)+E

where S, is given by Eq. (17). The equations of motion are given by F' = {F, H}:

Ohp = —0,(pu), (19a)

O = —ud,u — lax (,035) +eFE (19b)
305y

8tF2 = —u@xfz 6 ( 8Fz> (19C)
,0S

Ty = —ud, Iy — a ( an) (19d)

OE = —4mepu. (19e)

Remark 1: In the case of an external time-dependent electric field Ey(x,t), the closure
is identical. First we need to autonomize the bracket. For the Vlasov—Poisson equation,

the variables are the fields f(z,v,t) and Ej(z,t), together with ¢ and K (K being the
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canonically conjugate variable to time t), such that the total electric field is £ = Ey + Fj.

The Hamiltonian is

> E? +2F,E
H[f’Ehth]:/dxdvf%+/dx%+1(,
Y[

5G SF _ 6G SF _ 6G 5F 6G
dzdv

and the Poisson bracket
oF
— —_— _— —_— —_— —4 —_— _— _—
{rG} /f axéf a”ch avéf axéf e 5E18v5f véf 0F,

+ FiGx — FxG,.

For the reduced fluid equations, the Hamiltonian becomes

1 _  E?2492E,E
Hlp,u,Ts, s, B, 1, K] = 5/‘“ {Pu2+p352+%} + K,

and the Poisson bracket

§G _ 6F O6F _ G 5G F 6F 6G

Ay (6G 0F  OF 6G> 1 4G (1 6F> 1 0F (1 5G)1

o YVt (2 2 g (2L
o \Suor, suor;) T e, "\ ,ors) T pem, 7\, ors

+ F,Gg — FG,.
The equations of motion consists in changing E by Ey + E; in the Vlasov equation and in
the momentum equation, and replacing F by E; in the Ampere equation.
Remark 2: By rescaling the parameters I's and I's, and by rescaling the density p in the

following way

Ty=rlY,
I's = \/Eri(’,r)a
p=r"p%,

the equations of motion (19a)-(19d) are not longer explicitly depending on k. The parameter
k appears only in Ampere’s equation or equivalently in Gauss’ law. This means that the
parameter of the closure x can be viewed as the coupling parameter between the fluid part
and the electrostatic part. The parameter x can also be removed completely from the
equations of motion by rescaling the charge and the electric field as

e = K316,

E = g3/4p0),

As a consequence, the one-parameter family of Hamiltonian closures can be seen as a unique

Hamiltonian model, and the parameter x is now in the initial condition.
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E. Stability of the symmetric and homogeneous equilibria

We have found a one-parameter family of closures which fulfill the first requirement,
namely, the resulting models are Hamiltonian. The second requirement is the stability of

the equilibria gy = 0. The linearized equations of motion reduce to Eq. (3) with

0 —ikpo 0 0 0
0 0 —ikpy 0 e/m
A=10 —3ikP, 0 -2k 0
0 0 —3ik(kP¥*—p;'P)/2 0 0
0 —4mepg 0 0 0

From the dispersion relation, we define
wh = W) + 3PPk,

where w, = \/4me?py/m is the plasma frequency. The eigenvalues of A are all purely
imaginary if
wg > MQBGa
where wpg(k) is the Bohm-Gross dispersion relation given by
P
Who = wf) + 3242,

Po

The non-zero eigenvalues of A are

- 1/2
iw = :I:é (wg + \/wé‘ — 4w?(wg — w%d) .

Therefore the homogeneous equilibria are stable for w? > w%,, which is equivalent to requir-
ing that Sy < Séc) or I'y < k. In terms of the parameters of the equilibrium, this means that
the pressure Py is such that P, /3 /po < k. A crucial factor is that the closure R(p, P,q = 0)

does not depend on p, and in this case, the necessary and sufficient condition for stability is

OR
w; —I— k?2a—P > w%G.

We recall that
P
R(p7 P’ O) = p5S4 (Ea O) .
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The fractional exponent 5/3 in the closure comes from the requirement that R does not
depend on p, ensuring the stability of the equilibria. More general cases for stability would

be that at ¢ =0

on _sr
oP p’
OR

— <0
op —

for all p > 0 and P > 0. However, these conditions do not ensure that the resulting model is
Hamiltonian. As expected, the requirement that the model is Hamiltonian is more stringent

than requiring that homogeneous equilibria are stable.

IIT. NUMERICAL APPLICATIONS

The objective of this section is not to offer a detailed comparison between the numerical
implementation of the Hamiltonian fluid model and the one of the parent kinetic model.
The objective is more modest since we limit ourselves to a couple of illustrations of the
Hamiltonian fluid model, demonstrating the feasibility and practicality of the fluid model,
which could trigger further questions of a more practical nature than the ones we consider
in what follows. We consider two applications, one where the fluid model leads to stable
plasma oscillations and the other one where it is unstable. In all the simulations, we consider

a domain x € [—L,, L,] and v € [—L,, L,] with L, = 10.

A. Plasma oscillations

We consider the following initial distribution function, built from a skew-normal distri-

bution,
1

f(z,v,0) = N (1—Acoskux) [1 + erf (%)] e V2,
with A =107%, k = Ap/2 and a = 0.1 (where \p is the Debye length). Here the velocities
are in units of the thermal velocity vy, = v/kgT. Given that the equilibrium has some initial
fluid velocity, the Bohm-Gross dispersion relation is becomes
wpe = Tw, |1+ uwﬁ + ;pQSQZj—Z + QpSS;gi—z + O (kﬂt)} )

oA
P p P Wp
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FIG. 3. Contour plot of E(x,t): Panel (a): Hamiltonian fluid model with x = 1 and L,/A\p = 27.
Panel (b): one-dimensional Vlasov-Poisson equation with L,/Ap = 27. Panel (¢): Hamiltonian

fluid model with x = 1 and L;/Ap = 3w. Panel (d): one-dimensional Vlasov-Poisson equation
with L,/Ap = 3.

This is the same dispersion relation given by the fluid and the kinetic models. For the

skew-normal equilibrium,

p=1,
2
U=y ——r
(14 a2)’
202
So=1— ——
2 (14 a?)’

o? \/5 4
= ()

We consider the fluid model with £ = 1. Given the initial values of Sy and S5, we compute
the initial values for I'y and I'3. We represent the values of E(z,t) in Fig. 3 obtained with

the fluid and the kinetic model. We notice some qualitative similarities between the kinetic
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and the fluid model, such as plasma oscillations. However, as expected, the fluid model does
not capture the damping of the field (clearly visible for L,/Ap = 2x), which is a purely
kinetic effect. For larger values of L, i.e., L,/A\p = 37 the damping is reduced as expected,

and the agreement between the kinetic and the fluid simulations gets better.

B. Two-stream instability

Next, we consider the two-stream instability with the initial distribution

UQG—’U2/2U(2)

V2rud

For this distribution, vy, = v3ve. To simplify comparison with the existing literature, we

f(z,v,0) = (1 — Acoskx)

take A = Ap/v/3 and v, to be our length and velocity scales, respectively. We set A = 106
and kA = 1/2. From the previous section, we know that the Hamiltonian fluid model leads
to an instability if x < 3!/ ~ 1.44 (since py = 1 and Py = 3). Here we consider the fluid
model with x = 1.30834.

In Fig. 4, we compare the growth of the first four Fourier modes of the electric field, i.e.,
with £ A = 1/2 (fundamental), kA = 1, kA = 3/2 and kX = 2 for L,/\p = 27. As expected,
both models, fluid and kinetic, display the instability, i.e., the growth of the electric field
with time. The numerical algorithm for the fluid model fails at w,t ~ 47, at which time
particle trapping becomes predominant in the kinetic model.

The parameter x has been chosen such that the slope of the linear part of the first
mode kA = 0.5 obtained with the fluid model matches the one obtained with the linear
kinetic model, i.e., a growth rate of 0.25924553 w,, (which has been corrected for the effects
of the spatial grid). We notice that both models display some similar features, such as the
oscillations at the beginning. Also, the slope of the higher-order modes corresponds rather
well, despite the fact that these modes are higher in amplitude for the fluid model.

The main discrepancy between both models occur when the amplitude of the field satu-
rates, which is when the kinetic effects are predominant, and these cannot be described by
the fluid model. In addition, all wavenumbers are unstable in the Hamiltonian fluid model
while only the fundamental mode is unstable in the kinetic model (the higher harmonics are
driven by the fundamental mode through nonlinear couplings). For both models, the initial

electric field has the same initial amplitude. Nonetheless, the amplitude of the fundamental
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FIG. 4. The left panel shows magnitude of the Fourier modes Ej () of the electric field E(z,t) as
functions of time for kXA = 1/2 (blue curves), kA = 1 (orange curves), kA = 3/2 (green curves)
and kXA = 2 (read curves). The continuous curves are for the kinetic model, and the dashed curves
are for the Hamiltonian fluid model with x = 1.30834. The right panel shows the amplitudes for
kX = 1/2 for Hamiltonian fluid model (dashed violet), kinetic (blue) and unstable mode from

linear kinetic theory (red).

mode is slightly larger in the fluid model compared to the kinetic model (cf. the blue curves
on the left panel of Fig. 4). This is due to differences in how the initial condition projects
onto the system modes in the two models. In both cases, a linear anylsis produces mode

amplitudes that are in excellent agreement with the numerical results.

CONCLUSIONS

We have exhibited a one-parameter family of Hamiltonian fluid models with the first
four fluid moments — fluid density, fluid velocity, pressure and heat flux — as a result of the
reduction of the one-dimensional Vlasov—Poisson equation. The closure involves an equation
for the kurtosis in velocity of the distribution function. In the course of the reduction to
a Hamiltonian fluid model, we have identified some normal variables in which the closure
expressed parametrically is found to be polynomial in the normal variables. Each reduced
Hamiltonian fluid model possesses three Casimir invariants, two of the entropy type and
one generalized velocity. We have shown that some of these models ensures the stability

of symmetric homogeneous equilibria, depending on the parameter of the closure and the
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initial conditions.
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