Session 7A: Special Session - 3: Machine Learning-Aided Computer-Aided Design

GLSVLSI °22, June 6-8, 2022, Irvine, CA, USA

RAPTA: A Hierarchical Representation Learning Solution For
Real-Time Prediction of Path-Based Static Timing Analysis

Tanmoy Chowdhury
Ashkan Vakil
tchowdh6@gmu.edu
Goerge Mason University
Fairfax, Virginia, USA

Houman Homayoun
University of California, Davis
Davis, California, USA

Banafsheh Saber Latibari
University of California, Davis
Davis, California, USA

Ioannis Savidis
Drexel University
Philadelphia, Pennsylvania, USA

Sayed Aresh Beheshti Shirazi
Ali Mirzaeian
Xiaojie Guo
Sai Manoj P D

Goerge Mason University
Fairfax, Virginia, USA

Liang Zhao
Emory University
Atlanta, Georgia, USA

Avesta Sasan
University of California, Davis
Davis, California, USA

ABSTRACT

This paper presents RAPTA, a customized Representation-learning
Architecture for automation of feature engineering and predict-
ing the result of Path-based Timing-Analysis early in the phys-
ical design cycle. RAPTA offers multiple advantages compared
to prior work: 1) It has superior accuracy with errors std ranges
3.9ps~16.05ps in 32nm technology. 2) RAPTA’s architecture does
not change with feature-set size, 3) RAPTA does not require manual
input feature engineering. To the best of our knowledge, this is
the first work, in which Bidirectional Long Short-Term Memory
(Bi-LSTM) representation learning is used to digest raw information
for feature engineering, where generation of latent features and
Multilayer Perceptron (MLP) based regression for timing prediction
can be trained end-to-end.

CCS CONCEPTS

« Hardware — Static timing analysis; « Computing method-
ologies — Neural networks.

KEYWORDS
STA; Timing Slack; LSTM; Machine Learning

ACM Reference Format:

Tanmoy Chowdhury, Ashkan Vakil, Banafsheh Saber Latibari, Sayed Aresh
Beheshti Shirazi, Ali Mirzaeian, Xiaojie Guo, Sai Manoj P D, Houman
Homayoun, Ioannis Savidis, Liang Zhao, and Avesta Sasan. 2022. RAPTA: A
Hierarchical Representation Learning Solution For Real-Time Prediction
of Path-Based Static Timing Analysis. In Proceedings of the Great Lakes
Symposium on VLSI 2022 (GLSVLSI ’22), June 6-8, 2022, Irvine, CA, USA.
ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3526241.3530831

(0. ®

GLSVLSI'22, June 06-08, 2022, Orange County, CA, USA
© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9322-5/22/06.
https://doi.org/10.1145/3526241.3530831

This work is licensed under a Creative Commons
Attribution International 4.0 License.

493

1 INTRODUCTION

Physical design and timing closure of Integrated Circuits (IC) be-
comes increasingly difficult as fabrication technology advances to
smaller geometries, packing more transistors to support additional
functionality. Support for Dynamic Voltage and Frequency Scaling
(DVFS) for a wide range of operating modes further exacerbates
the problem by forcing a design team to check and close timing in
many processes, voltage, and temperature (PVT) corners.

Typically during the Place and Route (PnR), to make the physical
design manageable, the physical designer uses one (or a few) design
corner(s) for PnR. Timing checks are performed using the Graph-
Based timing Analysis (GBA). Later, the placed and routed design
are subject to Static Timing Analysis (STA), checking the timing
in different Process-Voltage-Temperature (PVT) corners accuracy
of which significantly improved by enabling Path-Based timing
Analysis (PBA). The STA for a large SOC with numerous PVT
corners would take hours to days. Unsatisfactory STA results force
the physical design team to go back to one of the previous design
steps to make Engineering Change Orders (ECO) or even roll back
to the floorplanning or synthesis stage. Typically, a physical design
goes through this iterative flow several rounds until the design
passes the STA checks in desired corners. The problem with this
flow is twofold: 1) designer sees the accurate STA results very late in
the game, when (for using the less accurate yet faster GBA for PPA
optimization) the damage is already done. 2) STA runs (especially
in PBA mode) significantly increase the design cycle time, and
unfortunately, the iterative design process asks for too many STA
runs until the timing is evaluated and closed in all desired PVT
corners.

At the same time, the early launch of PBA analysis at PnR flow
across many corners and many modes significantly increases the
EDA licensing cost, slows the design progress, and makes it costly
and exhaustively time-consuming to perform design space explo-
ration. For this reason, many researchers have expressed the need
for the adoption and use of machine learning solutions for timing
analysis as a near-term challenge for IC design [7, 8, 13].

https://orcid.org/0000-0002-3421-2410
https://doi.org/10.1145/3526241.3530831
https://doi.org/10.1145/3526241.3530831

Session 7A: Special Session - 3: Machine Learning-Aided Computer-Aided Design

Physical Design Flow

Floorplan

0
7
)

=
=
c
>

]

Placement

3

| This Work || Prior Works |
[Thiswork | [PriorWork[8] | [Prior Work[4] |
| Attribute Query | | Delay Extraction | | Delay Extraction |
Feature Engineering| |CNN-based Feature
and Extraction Down Sampling
v
[RAPTA | | CART | Stacking |
¥ ¥ ¥
| Prediction | | Prediction | | Prediction |

Figure 1: Our proposed solution compared to prior work. (top): The physical
design flow and the stage where each learning model can predict the timing
impact. (bottom): The flow of learning solutions for proposed and prior art.
Note that RAPTA does not require feature engineering,.

This paper proposes a novel learning solution that allows obtain-
ing fast yet accurate timing checks simultaneously in all PVTs at
early PnR stages. It enables a designer to perform "what if” analysis
in real-time and see the timing impact of physical design changes
in seconds without waiting for the STA on the routed design. Our
learning model is developed explicitly to model timing paths by
jointly handling representation learning and slack prediction. The
proposed solution is different from prior art solutions to predict the
STA results as it removes the need for manual engineering of input
features. RAPTA is a hierarchal solution that uses three bidirec-
tional long short-term memory (BiLSTM) arrays in the first layer to
digest input features from the launch, capture, and data subpath of
a full timing path. RAPTA uses fully connected layers in the second
layer to predict subpath delays and path-level slack targets. The
model ingests all gate and net properties reported by the EDA tool
without the need for feature engineering. Using BiLSTM arrays
for subpath feature processing (representation learning) allows the
designer to change the number of input features (properties) for
each gate and net without changing the architecture. This natural
mapping makes the application and adoption of this learning model
intuitive and effortless. Our proposed solution is a valuable tool to
cut down the rounds of physical design, shorten the time to market,
and eliminate the need for STA analysis of doomed designs that
would fail the STA.

2 BACKGROUND

The applicability of machine learning for improving various as-
pects of physical design and its security especially stages rely-
ing on heuristic algorithms, has been showcased by researchers
[2, 12,17, 19-22, 25]. Examples include the use of learning to guide
the global routing [12], routability prediction [24], shape deforma-
tion layout correction [18], and lithography hotspot detection [25].
Several prior publications have also investigated the use of learning
for timing analysis. The work in [17] proposes using Multi-Layer
Perceptrons (MLP) to approximate statistical SUM and MAX op-
erations in the context of timing analysis to estimate the signal
arrival times’ distribution. The author in [17] proposes using Deep
Learning Neural Network (DNN) as a Static Timing Analysis (SSTA)
method to approximate signal arrival times. They consider gates

494

GLSVLSI °22, June 6-8, 2022, Irvine, CA, USA

input delay and gates input to output delay but do not consider nets
delay. Authors in [9] present a backward elimination strategy to
find out a small set of PVT corners for training a linear regression
model. This model is then used to predict the timing information of
other PVT corners not included in the train set. In [4], the authors
investigated a learning solution that could predict the correlation
among path delays across different voltages to predict the timing
information for missing voltage corners. In [9], authors use a back-
ward elimination strategy to find out the order of the corners, using
which they select a subset of corners to predict the STA result in the
rest of the PVT corners. Similarly, in [4], the authors investigated a
learning solution that could indicate the correlation among path
delays across different voltages.

The most relevant prior work to our proposed solution is the
learning-based static timing prediction solutions proposed in [8].
This paper [8] presents a machine learning model using bigrams
of path stages to predict PBA by selecting model features from
GBA analysis. However, this solution faces a few shortcomings
that we have addressed in our proposed solution. 1) It [8] relies
on the availability of GBA results (either from the PnR tool or the
STA) for making the PBA prediction. In contrast, we only rely on
the gate and net characteristics reported by the EDA tool in our
solution. This difference removes the need to wait for the EDA tool
to perform a timing update after a physical change to compute
the PBA result. Therefore our solution provides the designer with
real-time feedback. 2) the model in [8] relies on manual feature
engineering and uses a limited number of (13) engineered features
as input. In contrast, our feature engineering is fully automated.
Our model takes all the gate and gate properties (reported by EDA)
into a representation learning model and automates the generation
of useful latent features. Hence, our solution discovers the essential
features on its own that can minimize the training error.

3 PROPOSED SOLUTIONS

Problem Statement: Given the raw properties of a timing path
reported by the EDA tool, we seek to formulate a learning solution
that accurately predicts its PBA timing slacks (for setup or hold
analysis) across all desired PVT corners without manual feature
engineering.

Solution: Figure 2 illustrates the hierarchical formulation of our
proposed and customized learning solution, RAPTA, for accurate
prediction of the path-based timing results in early physical design
stages. The model is designed to receive features from one timing
path, P (including data (Pp), launch (Pr), and capture (P¢) and
predict the slack T reported from STA analysis in PBA mode.

We first briefly describe the RAPTA’s overall architecture and
the existential philosophy for each sub-model for building an ac-
curate regression model. Then in the following sub-sections, each
sub-model and the theory and formulation used for modeling and
training the sub-models are explained in detail.

The hierarchical RAPTA is a customized learning solution that
works as follows: 1) Each data path, P information is collected sepa-
rately for each of its sub-paths (data (Pp), launch (Pr), and capture
(Pc)), where the raw gate and net properties (as reported by the EDA
tool without any feature engineering) are combined into Bigrams,
g. Each bigram is composed of one gate and its proceeding net that

Session 7A: Special Session - 3: Machine Learning-Aided Computer-Aided Design

PBA Slack Prediction

Fully Connected Layer | __ ______ _______________________.
i c) Sub-Branch Regression Models
1 Used for training Phase; Removed in test phase
i
‘o Launch Capture Data
'x Delay Delay

b) Main Regression Model

i
|
Delay |
i

(©09600600ed &

iLaunch Representation, E Capture Representation i Data Representation i
1]

a) Representation Learning

t_____Leaming .+ i _____L Learning _____. i____Leaming ____ R
Launch Path i E Capture Path ! Data Path
Features] i Features] i Features

Input Sample

Figure 2: Proposed Model Architecture: The RAPTA model comprises three
learning modules; a) Representation Learning, b) Main Regression Model,
and c) Branched Sub-label Regression Models. Processing a timing path as
bigram features as part of data processing has been discussed in 3.1. Then
the bigram information of launch, capture, and data path is first fed to the
Representation learning module (composed of a BILSTM network) as input
samples. The architecture of the Representation Learning is described in 3.2.
The extracted features are fed to a regression model (composed of a sequence of
a fully connected network, a dropout layer, and a final fully connected network
with one output) for predicting the regression result (3.3). The representation
learning models’ outputs are also separately fed to three parallel branches
(composed of a fully connected network) for sub-label predictions. The sub-
label prediction branches, the architecture of which is discussed in section 3.4,
are only used at training time and are removed during the test.

belongs to the timing path under test. The features of the bigrams
are the concatenated gate and net features with no modification.
2) The Bigrams for each subpath is fed to custom representation
learning models that exploit the relationship between Bigram prop-
erties to generate complex latent features, ¥ that could be used in
the next stage (as input) for regression. These representation learn-
ing models are means of automated feature engineering. 3) latent
features generated by representation learning modules are fed to
a Multi-Layer Perceptron (MLP) for regression. The MLP is used
for regression and is trained using a labeled dataset to predict the
PBA timing results. 4) to assist with label prediction, the output of
each representation learning model is also fed to a shallow MLP for
sub-path label regression to predict the delay of the Data, Launch
and Capture portions of a timing path using a labeled training set.
The sub-path prediction path only exists during the training stage
to improve the model’s accuracy and speed up the training and is
removed at the inference stage. The whole RAPTA model is trained
end-to-end using a labeled training set. The training set is generated
by running the PnR flow once (without caring for timing violations)
and generating PBA timing analysis results in Process, Voltage, and
Temperature (PVT) corners of interest. The STA engine reported
PBA slacks are used as the label, combined with raw EDA proper-
ties as input (bigram feature) streams for building a training set.
Note that to generate training data, alternatively, the designer can
collect the training data from a previously timing-closed design

495

GLSVLSI °22, June 6-8, 2022, Irvine, CA, USA

Timing Engine (STA) Timing Engine (STA)

e

Representation
Learning

Features
Training
\

Training

Figure 3: (left): Solution explored in previous work [8][4], (right): proposed
representation Learning Solution. The proposed solution eliminates the need
for the human in the loop for feature engineering and allows us to build and
extract complex features unknown to the expert user. Additionally, using the
representation learning solution removes the limitation on the input size.
Unlike previous work, the representation learning solutions can take EDA
features reported for timing path components as an input stream with no
limitation. The novel feature of this solution is that the model size does not
increase if the size of the input feature stream increases, addressing one of
the big challenges in previous work.

that is signed off in the same technology with the same EDA and
the same libraries.

The unique feature of RAPTA is its independence from input
size. The model size is fixed, and if the number of Bigram (net
and get) properties increases, the model size does not change. The
bigram information (reported properties) is processed sequentially
(similar to natural language processing). This eliminates one of the
significant shortcomings of the previous work. The model does
not need to change when the EDA version, number of gate or net
properties, the library, or the process changes allowing us to have
a feature-independent model size. The second unique feature of
the RAPTA, as shown in Fig. 3, is the elimination of the need for
feature engineering. RAPTA takes all raw bigram properties, and
there is no need for a human expert to down-select the features or
build/combine features as input to the model. The representation
learning module automatically generates complex and meaningful
latent features at its output and is fed to the subsequent regression
layer. With this introduction, next we describe each of these steps.
We illustrate the Bi-LSTM representation in detail in Section 3.2.
Label prediction and Sub-Label Prediction are explained in Sections
3.3 and 3.4.

3.1 Modeling and Training set Preparation

Each data point in our training or test sets represents a timing path.
We break each timing path into launch, data, and capture subpaths.
The launch and capture subpaths include all gates and nets in the
clock network from the clock source to the launch and capture
registers, respectively. The data subpath consists of the launch
and capture register and all gates and nets in between. Each gate
and net are characterized by I and J features, respectively. These
features are the raw properties reported by the EDA tool. We also
collect timing-path level features, including the capture register’s
setup/hold time, launch register’s clk2Q, Voltage, Temperature, and
Process corner.

Let’s assume Pp, Py, and Pc represent the data, lunch, and cap-
ture subpaths in a timing path, respectively. We combine a gate
and its proceeding net into a bigram cell. Hence, each subpath is

Session 7A: Special Session - 3: Machine Learning-Aided Computer-Aided Design

@]
I Data Path

e
fimg
Property I:-Value

[J | Property I+1: Value
Property 1+2: Value
Property 1+3: Value

Bigram, g:
XYZ-YUZ

Property 1: Value
Property 2: Value
Property 3: Value

Net YUZ

Property 1: Value
Property 2: Value
Property 3: Value

Gate XYZ

Property 1: Value
Property 2: Value
Property 3: Value

Launch Path _

Capture Path :

Property 1+J: Value

Figure 4: Bigram Extraction. In this figure, the red AND gate and subsequent
net from Data Path are converted to Bigram, G. EDA tools extract I properties
from that AND gate and] features from its succeeding net. All properties
(I +J) together are used as properties for Bigram (G) for that specific AND
gate of Data Path. The same procedure has been followed for the rest of the
gates, registers for Data, Launch and Capture path.

Property I: Value | | Property J: Value

modeled as a sequence of bigrams g containing I + J features. The
capture register has no proceeding net, and value zero is assigned
for its net features. Different timing paths have different numbers
of bigrams in their Pp, P; and Pc subpaths. We denote the maxi-
mum size of bigrams sequence in each of Pp, Py, and Pc using the
notation Xp, X1, Xc, respectively. That is the size of the design’s
largest data, launch, and capture path.

Algorithm 1 Data Preparation (see Figure. 4)

1: X}, « size of largest Launch sub-path in the design
2: X « size of largest Capture sub-path in the design
3: Xp < size of largest Data sub-path in the design

4: for each timing path y in the set of timing paths selected for training do

5: Pp (y) < Get_Bigram_Features (y, Data, Xp) > Algorithm 2
6: Pr (y) < Get_Bigram_Features (y, Launch, X)) > Algorithm 2
7: Pc(y) < Get_Bigram Features (y, Capture, Xc) > Algorithm 2
8: Preg(y) = concat[c2q(y), Tsetup (y)] > path level timing info
9: Ppyr(y) = Concat[v(y)gPprDCyPtemp(y)] > PVT info

10: F(y) = concat[Pp(y),PL(y),Pc(y), Preg(y), PpvT(Y)]
11: T(y) « PBA Slack of path y reported from STA > label
12: Tsub (y) < concat [Delay(L), Delay(C), Delay(D)] > sub-labels

13: end for

Algorithm 1 describes how the bigram information is collected for
each timing path. The bigram stream of each of the data, launch, and
capture paths has the size of Xp, X1, and X, respectively. During
training, for batch_size > 1; if a subpath in a timing path has fewer
gates (bigrams) than the maximum capacity of the model (e.g.,
size(data path) < Xp, or size(capture path) < X¢, or size(Launch
path) < X7), the unused bigrams features set to 0. For the launch
and capture subpath, the bigrams are filled from the last cell/bigram
to the first cell/bigram, and the zero padding (if needed) is applied
to the first bigrams. In the data path, the first and last bigrams
are assigned to the launch and capture register, then bigrams are
assigned from the last combinational cell to the first combinational
cell in the data path, and zero-padding is applied if the number
of cells is smaller than the bigram size. Note that in this case, the
zero-padding happens after the first bigram (which is assigned to
the launch register). The reason for this type of padding is to expect
the same bigrams to hold the data for launch and capture register
across all timing paths, while zero padding is used to have the same
data structure (of the same size) for all timing paths. The slack and
delay information (main and sub-labels) are collected from STA
simulation of the timing path for the selected timing paths in the
training set. The design does not need to be optimized, and the
first PnR attempt (out of the box without having to fix any timing

496

GLSVLSI °22, June 6-8, 2022, Irvine, CA, USA

violations) could be subjected to STA analysis in PBA mode to
generate the training data. Alternatively, as described previously,
the training set could be collected from a previously timing-closed
design. The process of preparing the data set and generation of
bigram data structure (to be used in our representation learning
sub-module) is illustrated in Algorithm 1.

Algorithm 2 Collecting Bigram Features

1: function GET_BIGRAM_FEATUREs(timingPath y, subpath s, MaxSize X)

2 g < empty bigram array of size X initialized to zero >geg
3 if (subpath == Data) then > Data sub-path
4 g1 < concat features of first register and proceeding net

5: gx < concat features of the last register

6: for (i = 1;i < size(s) —2;i=i—1)do

7 g; < concat feature of gate (i) and proceeding net

8 end for

9: else > Lauch or Capture sub-path
10: for (i = 0;i < size(s);i=i—1)do
11: gi < concat feature of gate (i) and proceeding net
12: end for
13: end if
14: return g;

15: end function

3.2 Representation Learning

The sequential information evaluation over bigrams along subpaths
(Pp, Pr, Pc) conveys useful information when being processed in
both directions. This is because the drive strength of a cell affects
several gates’ slew rate down the path. Besides, a change in the
capacitive load of a wire affects the delay of its preceding gate (to
drive a larger CAP) and several stages before. Hence, in RAPTA,
we deploy a BiLSTM network to learn from 1) feature information
of each bigram and 2) feedback and feedforward information prop-
agated from proceeding and preceding bigrams. Besides, the use
of BiLSTM allows us to change the feature count in the bigram
input stream of each LSTM cell, without affecting the network
architecture as features are sequentially processed by LSTM cells.

Bigram, g,
Figure 5: LSTM Cell

The basic building block of BiLSTM layer is LSTM cell and this cell
has an input gate, a output gate and a forget gate. We considered
a LSTM cell (Figure 5) for processing a bigram, g, at n time steps.
This cell also considers the previous cell’s hidden state h;_;, and
cell state c¢,—1. Each gate uses its own weight and bias shown in
the figure. The input gate (in,), forget gate (fy,), output gate (o)
values are calculated by using a sigmoid layer (o), previous cell’s
hidden state (h,—1) and bigram features (g,,) in Equations (1) to (3).
Hyperbolic tangent (tanh) is used instead of sigmoid layer (o) to
calculate the new candidate (c) for replacing the memory cell in

Session 7A: Special Session - 3: Machine Learning-Aided Computer-Aided Design

Equation (4),

inp = c(Win - [An-1, gnl + bin) (1)
fn = O'(Wf . [hn—l,gn] + bf) (2)
on =0(Wo - [hn-1,9n] + bo) (3

¢n = tanh(We - [hn-1,9n] + be) 4

With updated gates and candidate values, the LSTM cell uses pre-
vious cell state c,—1 to update the current cell state ¢, and hidden
state h, in Equations (5) and (6). For each time step in an LSTM
layer hj, becomes the output of that step.

)
(6)
If n becomes the last cell of the sequence (n = X in our case), then hj,

(or hx) can be presented as a context vector for the whole sequence.
In the case of the BIiLSTM layer, there are two outputs for each time

Cn = fo*cp—1+ing *cp

hn = op * tanh(cp)

step; one is forward output, hj,; and another is backward output, hf’l.
So, for each time step, the output would be the concatenation of
these two outputs. The sequence processing of BILSTM has been
depicted in Figure 6.

(n te)) (nip he) (i hey) (i, oy hiy, h
Goee Coee Coee Coee @
(LSTM J&———(LSTM J&———(LSTM J&———(LSTM Ja-----=-=--~-~ --(Lsm] = 5
[[ST™) (LsT™} (Ls™} {LSTM }-f----------- »(LsT™] g §
000 009 009 ©09 --- (@09
94 92 9x

93 94
Figure 6: BILSTM Layer

If there is more than one BiLSTM layer, these concatenated outputs
would be used as input for the next layer cells at the respective time
step. If there are w layers, then the outputs from the last cell of

) and the first cell of the last backward

layer (h}"b) would be the context vector for the whole sequence in
forward and reverse directions. By concatenating these two context
vectors, we get the representation of the entire sub-path. These
concatenated context vectors are then sent to a fully connected layer
to get the final representation of the whole sequence in Equation
(7). Here y is for the timing path index when we use multiple timing
paths as samples for training the model.

the last forward layer (h;f

¥ (y) = §(concat [y, hIP]))

The whole process is shown in Figure 7. The sub-path is a se-
quence of bigrams. So, in each layer, two LSTM cells are used
recurrently until all the bigrams are processed in the forward and
reverse directions. From the bottom, the first BILSTM layer serves
the purpose of a single BILSTM layer. Each cell output is concate-
nated and fed into the next BILSTM Layer, and the procedure is
followed up to the last layer w. In our experimental setting, we
used w = 3 layers to construct our representation learning model.
Using larger than w = 3 has a diminishing return, and the added
complexity did not improve our representation learning accuracy.

We put the values of h;f and h;“’b in Equation (7) and found the

final representation of sub-path. This procedure can be followed for
data path Pp, launch path P; and capture path Pc and it will yield

497

GLSVLSI °22, June 6-8, 2022, Irvine, CA, USA

:[Fully Connected Layer with Activation Function }:

! @9G0) :
hwe, Wy o
! co £
I C?) : g
I BILSTM Layer - w |
: 7'y y 7'y 7y 7y -
1 | ! ’§
1 1 H 1 g
I@@@(@)"'@ e
1 ! <
1 BILSTM Layer - 2]: g
A S S E

'_@_@)_4@@ |

BILSTM Layer - 1 }:

|

'3“3‘“.‘5"3 """ 3

9
Figure 7: Representatlon learmng for data sub -path, Pp. Here we assume there
are six bigrams in the data path and the number of layers, w = 3 for stacked
BiLSTM.
yD s WL and ¥€ as the representation of data, launch, and capture
sub-path respectively.

3.3 Main Regression Model

A subpath BiLSTM representation, ¥*(y), is derived from Equation
(7) where the first and the last output of the each BiLSTM network
are concatenated and pass through an activation function to gen-
erate the latent features. The subpath BiLSTM representations of
YL (y), ¥€(y), and ¥P (y) are concatenated together in Equation
(8) along with timing path’s PVT information (Ppy 1 (y)) and timing
path’s register timing information (Preq4(y)) that are previously col-
lected in Alg. 1. M(y) was used as input for the main MLP module
for the timing path (y) slack prediction.

M(y) = concat[¥* (y), ¥P (), ¥€ (1), Preg(y), Prvr ()] (8)

The operation of the main MLP network is captured by Equations
(9) and (10) where I1 AND [2 are the FC layer order, y(y) is the

output of the first FC and the label (slack) prediction is the output
of the second FC layer.

©)
(10)

y(y) = ¢(M(y) - Wiy +byq)
T(y) = ¢(dropout(y (y), p) - Wiz + byy)

3.4 Sub-Branch Regression Models

RAPTA also embeds three sub-branches for subpath delay predic-
tion, loss of which is computed using subpaths’ sub-labels T, (v),
collected in Alg. 1. Note that each MLP receives only the sub-label
for that sub-branch (e.g., launch path get Ty, (y, 1), capture path
get T, (y, 2), and data path get Ty, (v, 3)). These sub-branches are
only used during the training to facilitate the back-propagation and
are removed at test time. ¥* (y) is combined with PVT information
in equation 11 of the subpath, forming the input to each of three
MLPs in RAPTA’s sub-branches for the subpath delay prediction.
M*(y) = concat[¥*(y), Ppyv1(y)] (11)

The operation of MLP in sub-branches is described in Equations
(12). In this equation, W* and b® are the weight and bias of FC layer
used for prediction of subpath s, where s represent launch, capture
or data subpath (s € {L,C, D}).

Session 7A: Special Session - 3: Machine Learning-Aided Computer-Aided Design

T5(y) = $(M3(y) - W* +b°) (12)

3.5 Other Functions

We used a multi-level mean square error (MSE) loss calculation (in
equation 13) to create a loss matrix and used adam optimizer[10]
with £, regularization for the training of this model.

q

1
MSE=— "¢}
q t=1

(13)

A common problem with backpropagation is vanishing gradients
in the result of which the model training fails. To remedy this
problem, we adopted standardization instead of normalizing our
data. To address this problem for batch normalization and internal
normalization of neural networks, used Scaled Exponential Linear
Units (SELUs) [11] as activation function to avoid the vanishing
gradients problem with training as in Equation 14.

(e"=1) forr<o

forr >0

flar) =2 {“ (14)
r

3.6 End-to-End Training of RAPTA

RAPTA’s learning process is described in Algorithm 3, summarizing

the model architecture and the data flow described in this section.

In this algorithm, line 1 to line 8 is related to the data processing
as explained in section 3.1. The Bi-LSTM representation has been
formalized in lines 11 to line 13. The label prediction procedure is
contained in lines 9 to line 18. And line 19 to line 25 describe the
sub-label prediction.

4 EXPERIMENT

For this study, we compared the performance of RAPTA against
prior-art solutions for predicting the PBA slack of the three largest
IWLS benchmarks[1] during physical design.

Algorithm 3 RAPTA Framework

1: Collecting data

> Algorithm 1

Phase 1 - Representation Learning Phase

: for each timing path y do
for each subpath s in (L, D, C) do
for each bigram n from 1 to N = X do
iy (y) < gn (y)
end for
Y3 (y) « ¢(concat [thb’s (y), h;f’s (y)]
M? (y) « concat[¥*(y),PVT(y)]
end for
M(y) « concat[¥P (1), ¥L (1), ¥C (y). Preg (y), PpyT(y)] > inputto
main FC network for slack prediction
11: end for

Phase 2 — Label and Sub-label Prediction Phase

> assign each bigram to an LSTM cell

> subpath representation
> Input to subpath FC

SY® WU RPN

12: for each timing path y do

13: for each subpath s in {L, D, C} do

14: TS(y) — (M5 (y) - WS +b%) > subpath prediction
15: end for

16: y(y) <« @(M(y) - Wy +byy) > first FC layer

T (y) < ¢(dropout(y(y), p) - Wiz + bi)
18: end for

> dropout and 2nd FC layer

Xs €{X1, Xp, Xc} represent the maximum number of LSTM cells used to represent
launch, data, or capture subpaths in our model.

498

GLSVLSI °22, June 6-8, 2022, Irvine, CA, USA

4.1 Experimental Setup:

We used Synopsys IC Compiler (ICC) for the physical design of
benchmarks in 32nm technology available under Synopsys educa-
tional license. We used the ICC timing report to extract a set of
timing paths and queried ICC to extract the gate and net properties.
We used one-hot encoding to represent the value of non-numerical
gate properties, such as "gate type” or "threshold voltage”. Synopsys
Primetime was then launched for path-based timing analysis, and
the delay of each subpath (Pp, Pc, and Pr) was collected as labels
and sub-labels for each timing path, respectively. The data was
standardized for all experiments and was split by 60, 20, and 20%
into training, cross-validation, and test sets.

We used Pytorch [15] as a learning framework for developing our
proposed model. We used Adam optimizer [10], with a learning rate
of 1x 1073 and batch size of 128. The value of p for Equation (9) was
1x107%, £z-norm regularization was conducted for § = 1x10™%. For
activation function we used ‘Selu’ [11]. For the rest of the models,
we employed Sklearn [16] as the model framework. Each model
was trained by the tuned hyperparameter stated in Table 1. All the
experiments of our proposed model were conducted on a 64-bit
machine with Intel(R) Xeon(R) W-2123 CPU 3.60GHz processor and
32GB memory and NVIDIA TITAN RTX GPU.

4.2 Models used for comparison

To evaluate the performance of our proposed solution, we compared
it against several learning algorithms. This section describes each
of the learning solutions selected and used for comparison.

Linear Regression: Linear regression models are formulated
based on Equation (15). In this equation, F(y), W}, and b; represent
the input feature set (Algorithm 1), model weights, and the bias,
respectively. We evaluated three linear regression models, namely
Lasso, Ridge, and Elastic net (Enet). Lasso uses #; regularization,
Ridge uses ¢, regularization and Enet uses both #; and #; regular-
ization [14] to minimize the MSE error.

T(y) =F(y) - Wi+b (15)

Table 1: Model Parameters used for RAPTA and other Comparison models.

Models Hyper-Parameters
optimizer=Adam, learning rate = 0.001, batch size = 128,
RAPTA| dropout = 0.0001, ¢, regularization = 0.00001. input dimension
= 65, activation function = "Selu’
Ridge | max_iter=1000, tol=0.00001, alpha=10, solver=sag
Lasso | max_iter=1000, tol=0.00001, alpha=0.0001
Enet max_iter=1000, tol=0.00001, alpha=0.0001, li_ratio=1.5
RF min_samples_split=2, min_samples_leaf=1, bootstrap=TRUE,
n_estimators=2048
max_iter=2000, tol=0.0001, alpha=0.0005, solver=Ibfgs,
MLP learning_rate=adaptive, hidden_layer_sizes=50, 100, activa-
tion=logistic
. | regressors=Ridge, Lasso, Enet, MLP, RF, meta_regressor=RF,
Stacking . :
verbose=1, n_jobs=2, use_features_in_secondary=True

Multilayer Perceptron (MLP): MLP is a non-linear model that
could be described by Equation (16) to (17). It uses an activation
function, o, to map the input features into a latent space [5]. The
latent space features are then linearly separated. MLP has one input
layer, one or more hidden layer y, (), and one neuron in the output

Session 7A: Special Session - 3: Machine Learning-Aided Computer-Aided Design

Table 2: Model complexity comparison

Models | Ridge | Lasso | Enet RF MLP | Stacking | RAPTA
MFLOPS 1.38 1.38 1.38 | 22,546.68 | 142.15 | 45,239.64 | 2,332.62
Params 1,659 | 1,659 | 1,659 3,318 171,001 182,614 353,973

layer for a regression problem. In each layer, there are weight W

and bias b with different layer orders I1, [2.
Yh(y) =0o(F(y) - Wi +bp1)
T(y) = oy, () - Wiz + biz)

(16)
7)

Random Forest (RF): RF is an implementation of bagging tech-
niques where several models are used to come to the final decision.
The basic component of Random Forest is a decision tree [6]. RF
uses MSE to measure the distance of each node from the predicted
actual values, allowing RF to decide which branch yields a better
decision.

Stacking Model: The stacking learning model is a 2-level ensem-
ble of regressors; each model in the ensemble can be used separately
as a prediction model; however, by stacking, a more generalized
model is obtained [23]. For comparison, we deployed and trained a
regression stacking model described in [3]. The architectural detail
of the model is described in Table 1.

L1 Models L2 Training | 2 Models Final
i Data Prediction
Original Training [ar,
Data,
{F(y), 2(y), PVT(y)} aM5]

Figure 8: A general view of the used two-layer stacked model.

4.3 Results:

Table 2 reports the complexity of RAPTA and prior-art solutions
in terms of required FLOPS and parameter count. As reflected in
this table, RAPTA has the highest parameter count. But, in terms of
computational complexity (expressed in MFLOPS), RAPTA is less
complex than RF and the Stacking model.

We have evaluated our proposed model’s accuracy and com-
pared it against prior art solutions in two settings: 1) when training
and testing the model on a single PVT corner, 2) when training
the model on multiple PVT corners and using it for interpolative
PBA prediction. These settings and our experimental results are
described next:

4.3.1 Training and Testing on Single PVT Corner. We evalu-
ated the accuracy of the model in predicting the PBA slack when
the model is trained and tested in the same PVT corner. The result
of these experiments for RAPTA and prior-art models is illustrated
in Fig. 9. In this experiment, the temperature is 125C, the process is
nominal, and the experiment is repeated for different voltages, from
0.78v to 1.05v. As illustrated, RAPTA outperforms all prior models
in terms of accuracy; the regression result has an error with a stan-
dard deviation in the range of 3.90 to 16.05ps. Note that in lower
voltages, the delay of the timing paths is longer. Hence, although the
standard deviation of regression error is slightly larger in lower volt-
ages, it remains roughly the same percentage of the total path delay.

4.3.2 Interpolative PBA prediction. The most exciting use-case
of the RAPTA is for interpolative PBA timing-slack prediction. In
this mode, the model is trained on a limited number of PVT corners

499

GLSVLSI °22, June 6-8, 2022, Irvine, CA, USA

Table 3: Average standard deviation of error of RAPTA and prior-art learning
models, reported in picoseconds (ps) for training and testing on the largest
IWLS benchmarks.

Avg standard deviation of error (ps)
Models | Number of PVT corners used for training the model
Single | Two | Three | Five Eight | All
Ridge 17.48 63.98 | 62.16 61.77 60.58 | 62.67
Lasso 17.29 73.05 | 61.47 55.82 54.79 | 5451
Enet 16.79 68.81 | 56.51 55.57 54.86 | 54.98
S38417 | RF 18.15 3834 | 36.93 | 2530 20.65 | 17.19
MLP 13.02 56.61 | 21.85 1872 1578 | 16.96
Stacking | 10.07 46.96 | 22.80 16.54 17.73 | 15.74
RAPTA 8.47 36.14 | 13.97 | 9.37 8.33 8.36
Ridge 19.76 53.61 | 51.28 51.34 50.96 | 52.83
Lasso 19.21 59.25 | 52.48 51.07 50.20 | 50.42
Enet 19.36 56.85 | 51.39 50.75 50.25 | 50.45
AES128 | RF 12.78 59.90 | 31.05 2154 | 1635 | 12.68
MLP 16.38 46.06 | 20.51 20.81 20.86 | 18.08
Stacking | 11.80 | 53.59 | 21.52 19.59 ' 18.38 | 14.46
RAPTA 11.98 37.05 | 19.81 | 12.41 12.69 | 12.31
Ridge 28.21 79.85 | 77.56 77.14 7548 | 74.16
Lasso 26.99 63.60 | 64.52 66.29 65.58 | 67.02
Enet 26.86 73.76 | 76.88 7250 67.33 | 66.13
Ethernet | RF 8.15 70.04 | 35.53 21.78 14.17 | 7.78
MLP 12.39 68.87 | 30.31 18.92 19.79 | 21.57
Stacking | 6.94 66.98 | 34.69 2092 | 9.33 7.06
RAPTA 5.12 35.88 | 14.62 | 10.69 6.34 6.03

and is used to predict the PBA timing results in both seen and
unseen timing corners.

Table 3 summarizes the accuracy of RAPTA and prior-art learn-
ing solutions for interpolative PBA prediction. The number of se-
lected corners for training the models is varied in the range of 2,
3,5, 8, and 16 corners. In this figure, the temperature and process
are fixed at 125C Temperature and nominal Process, respectively.
The selected corners for each multi-corner training scenario are
those with the largest Euclidean distance between voltages among
the range of corners. For example, the high, mid, and low voltage
corners are used in the three-corner training. Across all experi-
ments, RAPTA yields the lowest regression error. The exception is
for the single-corner experiment for benchmark AES128, where the
stacking model generates slightly better prediction, but when used
in multi-corner interpolative PBA prediction mode, RAPTA outper-
forms the stacking model. As illustrated, the range of change in the
standard deviation of the error reduces as the number of corner
cases included in the training process increases. In our experiment,
depending on the benchmark, by having 5 to 8 corners in training,
we get similar performance as single corner training.

The time needed for training and testing RAPTA is reported in
table 4. As reported, the time required for training the model is
relatively short compared to the design cycle time. The training is
done only once in the early design cycle. The reported number for
testing is the time needed to generate PBA prediction for 10K timing
paths. As illustrated, RAPTA can be used to get instant feedback
on the timing impact of physical design changes (without having
to re-run STA) and is a very effective tool for what if” analysis.
The difference between the PBA-predicted slack and GBA slack
suggested by the PnR tool could be back annotated in the PnR
tool, helping it in making better PPA optimization decisions and
avoiding overdesign to reduce design cycle time.

Session 7A: Special Session - 3: Machine Learning-Aided Computer-Aided Design

GLSVLSI °22, June 6-8, 2022, Irvine, CA, USA

$38417 AES 128

Standard Deviation (ps)
/[
biettts

A Ethernet Legend

Ridge

Lasso

Enet

MLP

Random Forest
Stacking Model

———
5 e o - == — RAPTA
0 LB NN DN SONN NI RE BN SENN NINN ENNE BN HNNN R N | L L L L O L O P e e | LI L L L U U D R R R B

O DT MULNDTTMONDT MW OO - MOUONDTTOOUND T MW OO T MULUNDDTOULND - MLWN

ER23L8858858583 ERe3202858858588 EREIBx353853538

S 00000000000 «~ + «— OO0 0000000000 —~ — «— OO0 0000000000 v v~

Voltages (V)

Voltages (V)

Voltages (V)

Figure 9: Models performance comparison in a single corner: RAPTA outperformed all the models in single corner experiments for $38417 and Ethernet benchmark.
The range of standard deviation of error from RAPTA for $38417 and Ethernet are 6.08-10.88ps, 3.90ps—6.80ps, which are on average 15.89%, 26.29% improvement
from its closest competitor stacking model. In AES128, the stacking model and RAPTA performed in a similar range. The average standard deviation of errors was

11.80ps and 11.98ps for the stacking model and RAPTA.

Table 4: RAPTA average train and test time on GPU. The reported number for
the test is the time needed to generate PBA prediction for 10K timing paths.
The training is only done once during the design cycle. The short test time
enables the physical designer to get real-time feedback and perform what-if
analysis at a low cost.

Metric Benchmark Number of PVT corners used for training the model
Single ‘ Two ‘ Three ‘ Five ‘ Eight ‘ All
Train ti S38417 0.132 0.243 | 0.155 | 0.958 2.354 257217
r?:r) M€ | AES128 1146 | 1132 | 2711 | 14299 | 11.872 | 16.911
Ethernet 1.815 2.454 | 4973 | 20.814 | 58.013 | 59.724
Test time S$38417 0.27 0.26 0.26 0.28 0.27 0.27
(Sec) AES128 0.20 0.17 0.17 0.17 0.17 0.17
Ethernet 0.20 0.18 0.18 0.18 0.18 0.18

5 CONCLUSION

This paper presented RAPTA, a novel representation-learning Ar-
chitecture for Path-based timing slack prediction. RAPTA does not
need explicit feature engineering and takes as input the raw gate
and net properties reported by the PnR tool. Our experimental re-
sult verifies that RAPTA can generate PBA slack prediction with
an average standard deviation of the error in the range of 5 to 12 ps
in 32nm technology, which outperforms prior-art by a considerable
margin. RAPTA architecture is adaptive to variable path size and
feature-set size resulting from the novel representation-learning
solution is utilized to process timing path features. The high accu-
racy of RAPTA makes it a perfect companion for PnR tools, giving
the physical designer a glance of PBA-accurate timing prediction
on any desired group of timing paths without having to run a full
Static Timing Analysis.

REFERENCES

[1] 2005. IWLS Benchmarks. http://iwls.org/iwls2005/benchmarks.html.

[2] Sayed Aresh Beheshti-Shirazi, Ashkan Vakil, Sai Manoj, Ioannis Savidis, Houman
Homayoun, and Avesta Sasan. 2021. A Reinforced Learning Solution for Clock Skew
Engineering to Reduce Peak Current and IR Drop. Association for Computing Ma-
chinery, New York, NY, USA, 181-187. https://doi.org/10.1145/3453688.3461754

] Leo Breiman. 1996. Stacked regressions. Machine learning 24, 1 (1996), 49-64.

[4] Peng Cao, Wei Bao, and Jingjing Guo. 2020. An Accurate and Efficient Tim-

ing Prediction Framework for Wide Supply Voltage Design Based on Learning

Method. Electronics 9, 4 (2020), 580.

[5] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. 2009. The elements of
statistical learning: data mining, inference, and prediction. Springer Science &
Business Media.

[6] Tin Kam Ho. 1995. Random decision forests. In Proceedings of 3rd Int. Conf. on
document analysis and recognition, Vol. 1. IEEE, 278-282.

[7] Andrew B. Kahng. 2018. Machine Learning Applications in Physical Design:
Recent Results and Directions. In ISPD. Association for Computing Machinery,
68-73. https://doi.org/10.1145/3177540.3177554

[8] Andrew B Kahng, Uday Mallappa, and Lawrence Saul. 2018. Using machine
learning to predict path-based slack from graph-based timing analysis. In ICCD.
IEEE, 603-612.

500

[9] Andrew B Kahng, Uday Mallappa, Lawrence Saul, and Shangyuan Tong. 2019.
" Unobserved Corner" Prediction: Reducing Timing Analysis Effort for Faster
Design Convergence in Advanced-Node Design. In DATE. IEEE, 168-173.
Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).
[11] Guinter Klambauer, Thomas Unterthiner, Andreas Mayr, and Sepp Hochreiter.
2017. Self-normalizing neural networks. In Advances in neural information pro-
cessing systems. 971-980.
Haiguang Liao, Wentai Zhang, Xuliang Dong, Barnabas Poczos, Kenji Shimada,
and Levent Burak Kara. 2020. A deep reinforcement learning approach for global
routing. Journal of Mechanical Design 142, 6 (2020).
[13] R Molina. 2013. EDA Vendors Should Improve the Runtime Performance of
PathBased Timing Analysis. https://www.electronicdesign.com/technologies/
eda/article/21796368/eda-vendors-should-improve- the- runtime-performance-
of-pathbased-analysis
Joseph O Ogutu, Torben Schulz-Streeck, and Hans-Peter Piepho. 2012. Genomic
selection using regularized linear regression models: ridge regression, lasso,
elastic net and their extensions. In BMC proceedings, Vol. 6. Springer, S10.
Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019.
Pytorch: An imperative style, high-performance deep learning library. In NeurIPS
Proceedings. 8026-8037.
Fabian Pedregosa, Gaél Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss,
Vincent Dubourg, et al. 2011. Scikit-learn: Machine learning in Python. Journal
of machine learning research 12, Oct (2011), 2825-2830.
[17] M Amin Savari and Hadi Jahanirad. 2020. NN-SSTA: A deep neural network
approach for statistical static timing analysis. Expert Systems with Applications
149 (2020), 113309.
[18] Hao-Chiang Shao, Chao-Yi Peng, Jun-Rei Wu, Chia-Wen Lin, Shao-Yun Fang,
Pin-Yen Tsai, and Yan-Hsiu Liu. 2020. From IC Layout to Die Photo: A CNN-Based
Data-Driven Approach. arXiv preprint arXiv:2002.04967 (2020).
Ashkan Vakil, Farnaz Behnia, Ali Mirzaeian, Houman Homayoun, Naghmeh
Karimi, and Avesta Sasan. 2020. LASCA: Learning Assisted Side Channel Delay
Analysis for Hardware Trojan Detection. In 2020 21st International Symposium on
Quality Electronic Design (ISQED). 40—-45. https://doi.org/10.1109/ISQED48828.
2020.9137007
Ashkan Vakil, Ali Mirzaeian, Houman Homayoun, Naghmeh Karimi, and Avesta
Sasan. 2021. AVATAR: NN-Assisted Variation Aware Timing Analysis and Re-
porting for Hardware Trojan Detection. IEEE Access 9 (2021), 92881-92900.
https://doi.org/10.1109/ACCESS.2021.3093160
Ashkan Vakil, Farzad Niknia, Ali Mirzaeian, Avesta Sasan, and Naghmeh Karimi.
2021. Learning Assisted Side Channel Delay Test for Detection of Recycled ICs.
In Proceedings of the 26th Asia and South Pacific Design Automation Conference
(Tokyo, Japan) (ASPDAC °21). Association for Computing Machinery, New York,
NY, USA, 455-462. https://doi.org/10.1145/3394885.3431640
[22] Han Wang, Hossein Sayadi, Sai Manoj Pudukotai Dinakarrao, Avesta Sasan,
Setareh Rafatirad, and Houman Homayoun. 2021. Enabling Micro Al for Securing
Edge Devices at Hardware Level. IEEE Journal on Emerging and Selected Topics in
Circuits and Systems 11, 4 (2021), 803-815. https://doi.org/10.1109/JETCAS.2021.
3126816
David H Wolpert. 1992. Stacked generalization. Neural networks 5, 2 (1992),
241-259.
Zhiyao Xie, Yu-Hung Huang, Guan-Qi Fang, Haoxing Ren, Shao-Yun Fang, Yiran
Chen, and Jiang Hu. 2018. RouteNet: Routability prediction for mixed-size designs
using convolutional neural network. In ICCAD. IEEE, 1-8.
[25] Bei Yu, David Z Pan, Tetsuaki Matsunawa, and Xuan Zeng. 2015. Machine
learning and pattern matching in physical design. In ASPDAC. IEEE, 286-293.

[10

[12

[14

[15

[16

=
L

[20

[21

[23

[24

http://iwls.org/iwls2005/benchmarks.html
https://doi.org/10.1145/3453688.3461754
https://doi.org/10.1145/3177540.3177554
https://www.electronicdesign.com/technologies/eda/article/21796368/eda-vendors-should-improve-the-runtime-performance-of-pathbased-analysis
https://www.electronicdesign.com/technologies/eda/article/21796368/eda-vendors-should-improve-the-runtime-performance-of-pathbased-analysis
https://www.electronicdesign.com/technologies/eda/article/21796368/eda-vendors-should-improve-the-runtime-performance-of-pathbased-analysis
https://doi.org/10.1109/ISQED48828.2020.9137007
https://doi.org/10.1109/ISQED48828.2020.9137007
https://doi.org/10.1109/ACCESS.2021.3093160
https://doi.org/10.1145/3394885.3431640
https://doi.org/10.1109/JETCAS.2021.3126816
https://doi.org/10.1109/JETCAS.2021.3126816

	Abstract
	1 Introduction
	2 Background
	3 Proposed Solutions
	3.1 Modeling and Training set Preparation
	3.2 Representation Learning
	3.3 Main Regression Model
	3.4 Sub-Branch Regression Models
	3.5 Other Functions
	3.6 End-to-End Training of RAPTA

	4 Experiment
	4.1 Experimental Setup:
	4.2 Models used for comparison
	4.3 Results:

	5 Conclusion
	References

