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ABSTRACT 
 
A new inversion approach for estimating the shear wave motions in an interior domain surrounded 
by the domain reduction method (DRM) layer from sparsely-measured seismic motion data is 
presented in this paper. We consider a 2D domain truncated by wave-absorbing boundary 
conditions (WABC), and the DRM is utilized to inject incident waves into the domain. We attempt 
to identify an effective seismic force at the DRM layer and reconstruct the ground motions in an 
interior domain. A gradient-based minimization method minimizes a misfit between measured 
motions induced by targeted effective forces and their estimated counterparts. The numerical 
results show that targeted ground motions in an interior domain can be reconstructed. To accurately 
reconstruct the wave responses, a minimum sensor spacing is required, and it clearly depends on 
the dominant frequency of incident waves. 
 
INTRODUCTION 
 
In the area of earthquake engineering, there is a need to relate measured seismic data to ground 
motions in a near-surface domain of interest. By doing so, engineers could identify the locations 
where responses of large amplitudes took place during a seismic event and investigate the impact 
of earthquakes on critical structures, including subsurface systems (foundations and underground 
structures) and their surrounding soils. Therefore, such a method can contribute to examining the 
weak points (e.g., possible locations of structural failures) of critical infrastructure shortly after a 
seismic event, and, thus, making it possible to judge whether the infrastructure is structurally sound 
to reuse after the earthquake.  

To date, there have been two dominant, conventional methods for the identification of 
incident seismic waves that hit a near-surface domain: one is deconvolution in a one-dimensional 
(1D) setting (Mejia and Dawson, 2006; Poul and Zerva, 2018a,b) and the other is the inversion of 
a seismic source profile at a fault in a very large (e.g., hundreds of kilometers long) regional-scale 
domain (Akcelik et al., 2002). As an alternative to such conventional methods, this paper presents 
a new numerical method to identify arbitrary, incoherent incoming seismic waves and reconstruct 
corresponding wave responses in a truncated multi-dimensional domain by using sparsely 
measured ground motion. 

The PDE-constrained optimization has advanced the inverse problems associated with 
elastodynamic wave motions, and the associated applications span from material characterization 
to dynamic-input identification or optimization. For instance, geotechnical site material 
characterization has been investigated by using the PDE-constrained optimization (Fathi el al., 
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2015; Fathi et al., 2016; Jeong et al., 2009; Kang and Kallivokas, 2010; Tran and McVay, 2012). 
The approach has been used for studying wave-source optimization in consideration of complex 
geological formations (Jeong et al 2015; Jeong and Kallivokas 2016). To investigate the feasibility 
to identify arbitrary, incoherent incoming seismic waves in a truncated domain by using sparse 
seismic measurement by using the PDE-constrained optimization framework, Jeong and Seylabi 
(2018) and Guidio and Jeong (2021) studied a full-waveform source-inversion method to identify 
an incoming seismic wave in a 1D semi-infinite solid and a 2D bounded domain, respectively. 
Guidio et al. (2021) also discussed a numerical method that can reconstruct the comprehensive 
profiles (i.e., both spatial and temporal distributions) of complex, incoherent seismic incident 
wavefields, modeled as traction on WABC, propagating into a 2D truncated domain of anti-plane 
shear wave motion without using any regularization. Lloyd and Jeong (2018) presented an 
approach to identifying the spatial and temporal distributions of moving wave sources in a solid.  

Continuing the aforementioned works, the presented paper extends the aforementioned 
works in consideration of DRM physics for the primary purpose of reconstructing the ground 
motions in a domain surrounded by a DRM layer and WABC.   
 
PROBLEM DEFINITION 
The presented method is aimed at (i) identifying an effective seismic force on the DRM layer as 
an incident seismic motion that allows its corresponding wave responses to match the measured 
motions at sensor locations on the ground surface and (ii) consequently reconstructing wave 
responses in an interior domain surrounded by the DRM layer. This work considers a two-
dimensional heterogeneous domain of anti-plane shear wave motions as shown in Figure 1. 
 

 
Figure 1. Problem configuration. (Upper) a DRM-ABC-truncated domain used for an 

inversion solver; (Lower) an enlarged domain used for generating targeted wave responses.   
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Governing wave physics. The strong form of the governing differential equation for the shear 
wave propagation in the domain Ω is: 

∇. (𝐺∇𝑢) − 	𝜌 !!"
!#!

= 0,            (1) 
where 𝑢 = 𝑢(𝑥, 𝑦, 𝑡) denotes the displacement field of wave motions in the z-plane, which is 
perpendicular to the direction that the wave is moving; 𝑥 and 𝑦 denote horizontal and vertical 
coordinates; 𝐺(𝑥, 𝑦) and 𝜌(𝑥, 𝑦) denote the shear modulus and the mass density of the solid. 

The traction-free condition is presented on the top surface, while the absorbing boundary 
conditions (Lysmer and Kuhlemeyer, 1969) are presented on the left, bottom, and right boundaries. 
The zero initial-value conditions are presented as the system is initially at rest. 
 Please note that the information on a targeted incident wave motion is not included in this 
strong form. The information on a target incident wave will be included in the global force vector 
per the DRM theory of a discrete form. Then, using the finite element method the strong form 
turns to the following semi-discrete equation: 

𝐌𝐮̈(𝑡) + 𝐂𝐮̇(𝑡) + 𝐊𝐮(𝑡) = 𝐅(𝑡)           (2) 
where 𝐮(𝑡), 𝐮̇(𝑡), and 𝐮̈(𝑡) denote the displacement, velocity, and acceleration vectors of the state 
problem at time 𝑡, respectively. K, C, and M denote the global stiffness, damping, and mass 
matrices, respectively, while 𝐅(𝑡) is the global force vector. 
 
Domain reduction method (DRM). In Bielak's DRM formulation (Bielak et al., 2003; Yoshimura 
et al., 2003), the semi-infinite solid is subdivided into three different parts: the interior domain Ω$, 
an interface Γ%, and the exterior domain Ω&, as shown in the upper figure in Figure 1. Besides, the 
subscripts i, b, and e are used to denote the nodes on the interior domain of interest, interface, and 
exterior domain, respectively. The nodes on Γ%, and their neighboring exterior nodes, localized at 
the fictitious boundary Γ&, form the DRM layer. Per the DRM theory, a targeted effective seismic 
force vector Feff, obtained from free-field ground motions, is applied on all the nodes on the DRM 
layer in order to consistently model incident seismic waves impinging the domain. Bielak’s DRM 
formulation shows how only the free-field displacements and acceleration, u) and ü), respectively, 
at nodes of the DRM layer are utilized to determine the effective seismic force vector 𝐅eff. Then, 
in the presented approach, 𝐅(𝑡)is replaced by 𝐅eff. 
 
Discrete state problem. The time-dependent semi-discrete equation is solved by considering the 
initial-value conditions and applying the implicit Newmark time integration. Then, the state 
problem is formed in the compact form, 𝐐u= = F>, where matrix Q, solution vector u=, and global 
force vector	F? ,  are all defined as shown in the authors’ previous work (Guidio et al., 2021). 
 
INVERSE MODELING 
 
Under this inversion method, we determine the control parameters as 𝑃%"#  and 𝑃&"# . They are 
components of estimated force vector, F>estm, corresponding to 𝛾%" and 𝛾&" , respectively, and  𝑡-: 
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𝛾%" is the k-th discrete node on the DRM boundary, and 𝛾&" is the k-th discrete node on; and 𝑡- 	is 
the j-th time step. 
 
Discrete objective and Lagrangian functional. We attempt to determine the values of control 
parameters that minimize the discrete objective functional, which is defined as: 

ℒC = 	0.5	(u= −	u=m). 	BF	(u= −	u=m),           (3) 
where u=  and u=m are obtained by a set of targeted and estimated control parameters, respectively, 
and BF is defined as ∆𝑡B, where B a square matrix, of which components are all 0 except for those 
of the diagonal, having values of all 1, if they correspond to the degrees of freedom at sensor 
locations. 
 By imposing state equation onto an objective functional by using the Lagrangian multiplier 
vector 𝝀> , we cast the following Lagrangian functional: 

𝒜C 	= 	𝟎. 𝟓(u= −	u=m). 	BF	(u= −	u=m) −	𝝀>.L𝐐u= − F>estmM,         (4) 
where F>estm is the estimated force vector. 
 
Optimally conditions. To identify unknown target control parameters, the first-order optimality 
conditions should be fulfilled. The first condition, (𝜕𝒜C/𝜕𝝀>) 	= 	0, will be automatically satisfied 
when we solve the discrete forward problem.  
 The second condition, (𝜕𝒜C/𝜕u=) 	= 	0, will be automatically satisfied when the adjoint 
problem is solved. We have shown how to solve an adjoint problem of the same form by marching 
backward in time in our previous work (Guidio et al, 2021). 
 The third condition will be satisfied when we solve the control problem, (𝜕𝒜C/𝜕F>estm) =
	𝝀> = 	0, which implies that a gradient vector, 𝜕𝒜C/𝜕F>estm 	= 	𝜕	ℒC/𝜕F>estm	, is comprised of the 
component of the vector 𝝀>  corresponding to the global node numbering and time step of control 
parameters. 
 
Control parameters updates. By using the semi-analytical evaluated, gradient vector, this work 
iteratively updates the estimated control parameters as follows. First, the conjugate-gradient 
method determines the best search direction, and an optimal step length is calculated by Newton’s 
method (Guidio and Jeong, 2021). Then, the gradient-based minimization scheme updates the 
control parameters by summing the previous control parameters and the product between the 
search direction and optimal step length. We perform the numerical experiments of the presented 
inversion method by using our in-house forward and inverse wave solver written in MATLAB 
(Some or all data, models, or code generated or used during the study are available from the authors 
by request).  
 
NUMERICAL EXPERIMENTS 
 
In this section, two numerical experiments are considered where the ground motions are induced 
by a 2D free-field wave generator in an enlarged domain, shown at the bottom of Figure 1. Its 
dimension is 400 m x 120 m, and the shear wave speeds are 𝑉/$= 300 m/s, 𝑉/!= 250 m/s, 𝑉/%= 200 
m/s, 𝑉/&= 150 m/s, 𝑉/'= 800 m/s, 𝑉/(= 1000 m/s, 𝑉/)= 1800 m/s, and	𝑉/*= 1500 m/s. The mass 
density is 1500 kg/m³, and it is uniform in the entire domain. We note that the DRM-ABC-
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truncated domain that is used during the inversion process is incorporated into the enlarged domain, 
as shown in the upper figure in Figure 1. 
 The first example studies the performance of the presented inversion solver for 
reconstructing F> eff  and the surface wave-dominant ground motions induced by surface wave-
dominant incident waves, which are generated by a 2D free-field wave generator using the 
enlarged domain. The second example is focused on examining the inversion performance to 
reconstruct body wave-dominant ground motions produced by incoherently-propagating body 
wave-dominant incident waves. 

The accuracy to reconstruct the ground motions in Ω$ is appraised by using the following 
error norm between the ground motions at the j-th time step induced by targeted effective force 
vector, um#

interior, and their reconstructed counterparts, u-interior: 

𝜀" =	∑
4um#
interior6u#

interior	4
!

4um#
interior4

!
8
-9: 		[%].           (5) 

 
Example 1: Examining the inversion performance to reconstruct surface wave-dominant 
ground motions 
This example studies the performance of estimating the effective seismic force at the DRM layer 
and the ground motions generated by incoherently-propagating surface wave-dominant incident 
waves. To create the incident waves, the FEM free-field generator uses a point wave source, 
located in the top-left area in the enlarged domain shown in the lower figure of Fig. 1, and its 
source time signal is characterized by a Ricker wavelet signal.  

Figure 2 shows the relation among 𝜀", the sensor spacing, and the dominant frequency of 
the seismic incident waves. As shown in Figure 12, the inversion solver can effectively reconstruct 
the targeted wave responses within the interior domain Ω$  for surface wave-dominant incident 
waves of the central frequency of 2 Hz by using a sensor spacing of up to 30 m, to achieve 𝜀" less 
than 5%. However, for a surface wave-dominant incident wave of the central frequency of 5 Hz 
and 10 Hz, the maximum required sensor spacings are 10 m and 5 m, respectively, to achieve 𝜀" 
less than 5%. 

 
Figure 2. Relation between the sensor spacing and the dominant frequency of a surface 

wave-dominant incident wave. 
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Figure 3 shows the ground motions induced by targeted and reconstructed effective forces 

in the case, in which a Ricker signal of a central frequency of 10 Hz is used as the wave source 
signal in the 2D free-field wave generator. We note that the top row of Figure 3 shows the targeted 
wave responses computed in the entire domain but shown only in Ω$ surrounded by the DRM layer. 
Figure 3 reveals the gradual decrement of agreement between the targeted and reconstructed wave 
responses in Ω$ as the spacing of the sensors is increased. 

  

 
Figure 3. Targeted wave responses in an interior domain Ω$ induced by surface wave-

dominant incident waves, which are initialized by a source with a dominant frequency of 10 
Hz; and their reconstructed counterparts using 1 m, 5 m, and 10 m sensor spacing. 

 
Example 2: Investigating the inversion performance to reconstruct body wave-dominant 
ground motions 
This example is focused on examining the performance of the presented inversion solver for 
reconstructing the body wave-dominant ground motions in Ω$  induced by incoherently-
propagating body wave-dominant free-field waves. A point wave source characterized by a Ricker 
wavelet and located at the bottom-left of the enlarged domain is utilized in this example to generate 
targeted wave responses. 
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Figure 4. Relation between the sensor spacing and the dominant frequency of a body wave-

dominant incident wave. 
 

 
Figure 5. Targeted wave responses in Ω$ induced by body wave-dominant incident waves, 

which are initialized by a source with a dominant frequency of 10 Hz; and their 
reconstructed counterparts using 1 m, 5 m, and 10 m sensor spacing. 

 
 Figure 4 shows the sensor spacing required to adequately reconstruct the ground motions 
in Ω$. Namely, a less dense array of sensors is needed to properly estimate body wave-dominant 
ground motions with a lower dominant frequency. 
 In Figure 5, we present the case in which a Ricker wavelet with a 10 Hz dominant frequency 
is used for a wave source signal in the free-field modeling. Figure 6 shows the gradually increasing 

0 5 10 15 20 25 30 35 40 45
0

5

10

15

20

25



Proceedings Paper Formatting Instructions – 8 –  Rev. 8/2019 

mismatch between the targeted ground motions and their reconstructed counterparts as the spacing 
of sensors on the surface increase. 
 Therefore, this example shows that the presented inverse solver can effectively reconstruct 
body wave-dominant ground motions, provide that the sensor spacing is adequately set in 
consideration of the dominant frequency of the incident wave. 
 
CONCLUSION 
 
In this study, we discussed a new method to (i) identify an effective seismic force on a DRM layer 
as an incident seismic motion and (ii) reconstruct wave responses in the interior domain from 
sparsely-measured seismic data in a 2D domain truncated by WABC. Specifically, the DRM is 
used to model incident waves into the domain, gradient-based minimization is utilized to tackle 
the inverse problem, and the DTO approach is employed to solve the adjoint problem. It was shown 
that the wave responses in an interior domain surrounded by a DRM layer can be reconstructed by 
using the presented method. Lastly, a minimum spacing of sensors is needed to reconstruct the 
ground motions, and it depends on the dominant frequency of the incident waves.  
            If the presented method is extended to 3D settings, it may be used by geotechnical 
earthquake engineers to replay the ground motions in a near-surface domain caused by an 
earthquake in a fine resolution over space and time. Namely, sensors (e.g., accelerometers, vision 
sensors, or optical cables) can measure the vibrational motions around an infrastructure under 
consideration. Then, the presented method will turn the sparsely measured motion data into the 
wave responses in the infrastructure and surrounding soils. Based on such estimated responses, 
engineers can accurately pinpoint superstructures or underground structures that were damaged or 
impacted during an earthquake. Thus, the presented method can help engineers or policymakers 
make decisions and plan budgets on structural repairs.  
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