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Optimization algorithms are ubiquitous across all branches of engineering, computer science, and
applied mathematics. Typically, such algorithms are iterative in nature and seek to approximate
the solution to a difficult optimization problem. The general form of an optimization problem is to

minimize  f(z)

subject to x e C,

where x € R? is the set of d real decision variables, C is the feasible set, and f : R? — R is the ob-
jective function. The goal is to find x € C such that f(z) is as small as possible. For example, in
structural mechanics, x could be lengths and widths of the members in a truss design, C could en-
code stress limitations of the materials and load bearing constraints, and f could be the total cost
of the design. Solving this optimization problem would provide the cheapest truss design that sat-
isfies all design specifications. In statistics,  could be parameters in a statistical model, C' could
correspond to constraints such as certain parameters being positive, and f could be the negative
log-likelihood of the model given the observed data. Solving this optimization problem finds the
maximum likelihood model. While some optimization problems can be solved analytically (such
as least squares problems), analytical solutions do not exist for most optimization models, and nu-
merical methods must be used to approximate the solution. Even when an analytical solution ex-
ists, it may be preferable to use numerical methods because they can be more computationally ef-
ficient. Iterative optimization algorithms typically begin with an estimate z° of the solution, and
each step refines the estimate, producing a sequence z°, 2!, . ... If properly designed, then z* — z*
in the limit, and as many iterations as needed can be used to achieve the desired level of accuracy.
Depending on the nature and structure of f and C' in the optimization problem, different optimiza-
tion algorithms may be appropriate. The design, selection, and tuning of optimization algorithms
is more of an art than a science. Many different algorithms have been proposed, some with theoret-
ical guarantees and others with a strong record of empirical performance. In practice, some algo-
rithms converge slowly yet are predictable and reliable. Meanwhile, other algorithms converge more
rapidly on average, but can fail spectacularly in some cases. Algorithm selection and tuning is typ-
ically performed by experts with deep area knowledge. In many ways, iterative algorithms behave
like control systems, and the choice of algorithm is akin to the choice of controller. In the sections
that follow, we formalize this connection and describe how optimization algorithms can be viewed
as controllers performing robust control. This work will also show how dissipativity theory can be
used to analyze the performance of many classes of optimization algorithms. This allows selection
and tuning of optimization algorithms to be performed in an automated and systematic way.



1 Black-box paradigm and performance evaluation

To reason about different optimization algorithms and their performance, it is common to employ a
black-box paradigm [23, §1.1.2]. This model assumes the availability of oracles that can be queried
to provide pertinent information about the objective function or the constraints. The oracles are
how the algorithm interfaces with the optimization problem. For example, if f is differentiable and
C'is a convex set, a popular algorithm is projected gradient descent, which begins with a some guess
value 20 and follows the iterations:

S 11 (xk - an(x’“)) . fork=0,1,... (1)

Here, n > 0 is a tuning parameter called the stepsize, V f is the gradient of f, and Il is the
projection onto the set C'. For sufficiently small 7 and under appropriate regularity conditions on f,
projected gradient descent will converge to a solution z* of the constrained optimization problem.
This example includes two oracles:

1. Gradient oracle: Given z, return V f(z).
2. Projection oracle: Given x, return Il (x).

In the black-box model, each oracle query incurs a fixed cost (usually time) and all other costs as-
sociated with computer storage or memory are ignored. The performance of an iterative method
is based on the total time required for an error measure to reach a specified value. Common error
measures include distance to optimality ||z* — 2*|| and function error f(z*) — f(z*). Iterative algo-
rithms typically call each oracle once per iteration, so performance can be evaluated by measuring
the convergence rate, which is how quickly the error measure decreases per iteration. For example,
an algorithm exhibits geometric convergence if there is some p € [0,1) and K > 0 such that

|zF — 2| < Kp*||2® — 2*|| for k=0,1,.... (2)

Smaller p corresponds to a faster algorithm. The smallest value of p that satisfies (2) can depend
on the oracles used (the choice of f and C) and the initial condition z°. Care must be taken
when interpreting convergence rates, because as p becomes smaller, K may get larger, and as p

approaches its minimum value, then we may have K — oo.

Algorithm analysis Algorithm analysis is the practice of determining bounds on the rate of
convergence of algorithms subject to various assumptions. Conventionally, algorithm analysis pro-
vides an assurance that a given algorithm will work well for many instances of an optimization
problem. For example, it may be desirable for algorithm A to converge rapidly for many different
pairs of oracles (f,C'). We call this set of admissible oracle pairs F. A typical analysis query might
be: What is the worst-case geometric convergence rate p achieved by A over the set F7? Mathe-
matically, this is given by the expression

p(A, F) := inf {p >0
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Equation (3) states that for any p > p(A, F), the geometric convergence criterion (2) holds for all
choices of oracles (f,C') € F and all initial conditions 2°. So, p(A, F) is the fastest convergence



rate that is guaranteed to hold over all admissible problem instances and initial conditions. Two
algorithms A; and Az can then be compared based on their convergence rates. If p(Aj, F) <
p(Ag, F), then A; is faster than A in the worst case. The notion of worst-case convergence rate
in algorithm analysis is akin to the notion of robust stability in nonlinear control. The following
sections explore this connection in greater detail and show how tools from robust control can be
brought to bear on the problem of algorithm analysis.

2 Algorithm analysis as robust control

The performance evaluation of iterative algorithms under the black-box paradigm may be reframed
as certifying robust stability for a feedback system. Specifically, the algorithm can be written as a
discrete-time dynamical system in feedback with its oracles. It will be illustrated through examples
how a variety of algorithms can be converted to feedback form.

2.1 Projected gradient descent

Returning to the projected gradient descent example (1), the algorithm has access to two oracles:
a projection operator IIo and the gradient V f. If the problem is unconstrained, the simplification
Il = I occurs and (1) becomes ordinary gradient descent. It is converted to feedback form by
defining the input-output pairs of Il and V f as (y1,u1) and (y2,u2), respectively. The ensuing
block diagram is illustrated in Figure 1.
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Figure 1. Feedback interconnection for projected gradient descent, an iterative algorithm with
update equations given by (1). The feedback form separates the algorithm dynamics (which are a
linear time-invariant (LTT) system) from the oracle calls (which are treated as unknown nonlinearities).

2.2 Nesterov’s accelerated method

Nesterov’s accelerated method [23, §2.2] is a popular iterative approach used to solve the uncon-
strained optimization problem min, f(x), where f is continuously differentiable, and access to a
gradient oracle V f is provided. The algorithm has two states (z*,4*) and uses the update

yF =P + Bla® — 2 (4a)
= yF — V(). (4b)
The state y* extrapolates based on the current iterate ¥ and previous iterate 2*~!. Then, gradi-

ent descent is performed based on y*. The momentum parameter 3 controls the amount of extrap-
olation. When 3 = 0, y* = 2* and the familiar gradient descent algorithm is recovered. The idea



is to tune [ to obtain faster convergence than ordinary gradient descent. To convert (4) to feed-
back form, substitute (4a) into (4b) and define the new state variables 2} = ¥ and 2§ = 2*~1. We
then obtain the feedback form illustrated in Figure 2.
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Figure 2. Feedback interconnection for Nesterov’s accelerated method, whose update equations are
given in (4).

2.3 ADMM algorithm

The Alternating Direction Method of Multipliers (ADMM) [5] is a popular algorithm used to solve
composite optimization problems. That is, the objective function can be split into two parts with
different properties. The canonical problem takes the form:

minimize f(z)+g(2)
subject to: Ar+ Bz =c.

For example, f may be convex and differentiable, while ¢ may be a nondifferentiable regularization
term or the indicator set for a convex constraint. The ADMM algorithm has three state variables

(zF, 2% w"*) and a tuning parameter 7. The algorithm uses the update

2 = argmin f(z) + %HAQC + Bz — 4+ wh)?,
x

ZFH = argmin g(z) + ﬁHA:ckJrl + Bz — c+w"|?,
z

Wit = wk 4 AT 4 BT ¢

To simplify exposition, consider the composite unconstrained case: min, f(z) + g(x). This is the
special case with A = I, B = —I, and ¢ = 0. The ADMM algorithm can be written in feedback
form in several equivalent ways, depending on which oracles are used. For example, the prozimal
operator [25] is defined as prox;(z) := argmin, f(z) + ||z — z||?. Use it to rewrite the ADMM
update equations as

ot = proxnf(zk —wh), (ba)
ZFl = proxng(ackJrl + wh), (5b)
whtt = Wb 4 ghT - L (5¢)



Alternatively, if f is differentiable and ¢ is convex but not differentiable, replace the prox updates
by their corresponding first-order optimality conditions. This yields

0= Vi + %(xk“ — 2P 4 wh), (6a)
= ag(zk—l-l) + %(Zk-l-l _ xk—l—l _ ’U)k), (6b)
wk-i—l — wkz + xk—f—l _ Zk:-i—l, (60)

where 9g(z) := {v € R? | g(z) — g(z) > v"(z — z) for all z € R?} denotes the set of subgradients
of g. If g is differentiable, then dg(z) = {Vg(z)}. Both (5) and (6) can be put in feedback form
to obtain the block diagrams illustrated in Figure 3. In both cases, the state variable z* can be
eliminated, so only two states are needed. The ADMM representation that uses gradients and
subgradients in Figure 3 is émplicit because it contains a circular dependency: yf depends on u’f ,
which in turn depends on y]f Therefore, this feedback representation cannot be used as a substitute
for an implementation such as (5). Nevertheless, the implicit representation can still be used in

dissipativity theory for algorithm analysis.
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Figure 3. Equivalent feedback interconnections for the Alternating Direction Method of Multipliers
(ADMM) applied to composite unconstrained optimization. Left: An explicit loop that uses proximal
operators as oracles (5). Right: An implicit loop that uses gradient and subgradient oracles (6).
Other representations are possible, for example using V f and prox, . Any of these representations
of ADMM can be used for analysis in the dissipativity framework and yield the same results.

2.4 More general algorithms

In all the cases above, the algorithms can be expressed in the form of a linear time-invariant
(LTI) system G in feedback with the oracles. Letting &*, u*, and y* be the concatenated states,
oracle outputs, and oracle inputs, the algorithms are represented in the following general form.

el = Ack 4 BuF (7a) eH 1 — Ack 4 Byk
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The fact that G is LTT will be important for our dissipativity analysis, as it will allow us to search
for Lyapunov functions in a tractable manner. Not all algorithms have a feedback form with an
LTI G. For example,

e Algorithms with parameters that change on a fixed schedule, such as gradient descent with
a diminishing stepsize, will yield a feedback representation where G is a linear time-varying
(LTV) system.

e Algorithms with parameters that change adaptively, such as the nonlinear conjugate gradient
method, will yield a feedback representation where G is a linear parameter-varying (LPV)
system.

e Algorithms where the state updates are not linear functions of the previous state or oracle
outputs will yield a feedback representation where G is nonlinear.

Despite these limitations, algorithms can still generally be written as a feedback interconnection
of some system G and the set of oracles (nonlinearities). Since dissipativity theory can be applied
to any system [36] (including LTV, LPV, and systems with nonlinear dynamics), the dissipativity
approach can in principle be used to analyze any iterative algorithm.

3 Dissipativity theory

Dissipativity theory may be viewed as a counterpart to Lyapunov theory but for systems with
inputs. Consider a discrete-time dynamical system satisfying the state-space equation

£k+1 _ Agk +Buk

In classical dissipativity theory [36,37], u* is an external supply that drives the dynamics governed
by the state €. For example, in a mechanical system, u* would be a vector of external forces and
torques, while ¢* would be a vector of generalized coordinates such as positions and velocities. The
two key concepts in dissipativity are storage and supply.

1. The storage function V (£) can be interpreted as a notion of stored energy. In our mechanical
example, this would be the total energy (kinetic and potential) in the system. The storage
function always satisfies V (¢¥) > 0.

2. The supply rate S(¢F,uF) can be interpreted as a notion of work done by the external forces
and torques. The supply rate may also depend on the current values of the generalized
coordinates. When S > 0, the external force is adding energy to the system. When S < 0,
the external force is extracting energy from the system.

A dissipation inequality states that the change in stored energy can be no greater than the energy
provided by the external supply:

V(EF) — V() < S(€FuF). (8)

If a dissipation-like inequality holds and the supply rate is of a particular form, useful stability
properties of the system can be deduced. We now consider different types of supply rates that are
relevant for optimization algorithms.



4 Supply rates for families of oracles

In the context of robust control, the most well-studied classes of nonlinearities include sector-
bounded and slope-restricted nonlinearities, because they can be used to model common nonlinear
phenomena such as saturation and stiction. In the context of optimization algorithms, oracles can
often have similar properties, thus creating parallels between the two application areas. For each
type of nonlinearity or oracle, we describe how to formulate an appropriate supply rate that can
be used to analyze optimization algorithms.

4.1 Sector-bounded oracle

An oracle u = ¢(y) is sector-bounded with lower bound m and upper bound L with m < L if the
input-output pair (y,u) satisfies

s [ [ ][] o0

In the general dissipativity framework, the supply rate S(§,u) may depend on the state £ and the
input u. The form of the supply rate S¢ in (9) still fits into this framework because the oracle is a
function of y, which will depend on ¢ and u through the algorithm update equations (7). In this
case, S¢ < 0. Thus, in the energy interpretation of dissipativity, the external force is extracting
energy from the system. The inequalities (9) hold pointwise in time for any pair (y,u), so the graph
of a sector-bounded oracle is contained in the interior conic region illustrated in Figure 4. Denote
the set of all sector-bounded nonlinearities with parameters (m, L) with the symbol Cy, 1. A useful
pair of inequalities that follow from (9) are given by

mly| < [lull < Llyll (10)
mllyl® < uly < Lily|*. (11)

See B for insight on how inequalities such as (10)—(11) can be proved. Sector-bounded nonlinearities
are widely studied in controls, dating back to the introduction of absolute stability by Lur’e and
Postnikov [19]. In this setting, ¢ is a static nonlinearity. Special cases include the small-gain
theorem and passivity theory [38], where ||¢(y)| < Y|yl (m = —y and L = v) and y'é(y) > 0
(m =0 and L — o0), respectively. Sector-bounded oracles can occur in optimization when oracles
are subject to multiplicative noise. For example, round-off error may occur due to finite-precision
arithmetic. Alternatively, a call to an oracle may involve a complicated simulation that inherently
produces approximate results due to time budget limitations. If y is the true signal, multiplicative
noise transforms the signal into u = y+4d,, where ||6,|| < ¢|ly||. Here, ¢ is the noise strength (¢ = 0.1
would correspond to 10% multiplicative noise). Rearranging this inequality yields ||y — ul| < el|y]|.
Comparing to (9), this corresponds to a sector-bounded nonlinearity with m =1—¢c and L = 1 +e¢.

4.2 Slope-restricted oracles

An oracle u = ¢(y) is slope-restricted with lower bound m and upper bound L with m < L if every
pair of input-output pairs (y1,u1) and (y2, uz) satisfies

T L+m
_|v2—n mL == s =y | 19
Sm(yr, y2, w1, ug) = [u2 _ ul] [_ Lim 1 ] [uz B UJ <0. (12)
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Figure 4. One-dimensional examples of a sector-bounded nonlinearity ¢; € C,, 1 and a slope-
restricted nonlinearity ¢o € M., 1, both with m = % and L = 2. In the sector-bounded case, all
input-output pairs (u,y) satisfy the quadratic inequality (9) (which is %yz — %qur u? < 0), shown as
the shaded region. In the slope-restricted case, a stronger condition is satisfied: %(yl —y2)? — %(yl —
yo)(u1 —ug) + (ug —ug)? <0, for all y1,ys, u1,uz € R. In other words, the slope of the line connecting
any pair of points on the graph must be between i and 2.

In a manner analogous to how (10) and (11) were derived for sector-bounded nonlinearities, it can
be shown that slope-restricted nonlinearities enjoy the properties

mlly2 — y1l| < |luz —ui|l < Lijy2 — 1| (13)
mllyz — 1l < (uz —u1) (g2 — y1) < Llly2 — w1 (14)

Slope-restricted nonlinearities (also called incremental) were studied by Zames and Falb [39] (for
example, incremental passivity or incremental small-gain ). Examples of slope-restricted nonlin-
earities include saturation or elements exhibiting hysteresis. See Figure 4 for a visual example. De-
note the set of all slope-restricted nonlinearities with parameters (m, L) with the symbol M, 1. In
optimization, different types of slope-restrictedness bear different names. The proximal operator
prox, for any convex function g, used for example in ADMM (5), is firmly nonexpansive. That is,
(z— y)T(proxg(x) —prox,(y)) > || prox,(z) — proxg(y)HQ for all x,y € R? [1, Prop. 4.16 and 12.28].
In other words, prox satisfies (12) with m = 0 and L = 1. A special case is when g is the indicator
function of a convex set C [that is g(x) = 0 if # € C and g(v) = +oc otherwise], then prox,(z) =
II¢(x) is the Euclidean projection of x onto the set C. Another example is the subgradient of a con-
vex function g, which were used in (6). Subgradients are monotone, that is, (x1 —x2)" (vy —v2) > 0
for all z; € R? and v; € dg(z;). In other words, Og satisfies (12) with m = 0 and L — co. A spe-
cial case is when g is quadratic and positive semidefinite: g(x) = 27 Az, where A + AT > 0.

4.3 Gradient of a convex function

The case where the nonlinearity is the gradient of a convex and continuously differentiable function
is of particular interest in the field of optimization, even if it is a less common occurrence in controls.
If f is a continuously differentiable function, define the following notions.

1. f is strongly convez with parameter m > 0 if g(z) := f(x) — 2||z||? is a convex function. In
other words, Og(x) + (1 — 0)g(y) > g(6x + (1 — 0)y) for all z,y € R? and 6 € [0,1].



2. f has Lipschitz gradients with parameter L > 0 if |V f(z) — Vf(y)|| < L|lz — y|| for all
z,y € R,

Strong convexity means that f is not too flat, while Lipschitz gradients ensure that f does not
grow too quickly. We now state a useful property of functions that are both strongly convex and
have Lipschitz gradients. Denote the set of all nonlinearities satisfying the two properties above
with the symbol F,, 1.

Theorem 1. Suppose f : R — R is continuously differentiable, strongly convex with parameter
m, and has Lipschitz gradients with parameter L. For all y; € R with f; = f(y;) and u; = V f(y;)
fori=1,2,

T
o 1 Y2 — Y1 mL  —E5 Typ — g
S]:(ylva)ul?UQ) T 2(L—m) |:U2—U1 —HTm 1 U2 — U1

+ (s +u2) (g2 —y1) < fo— f1. (15)

N

This result is proven for example in [32, Thm. 4]. In large-scale optimization problems, it is
typical to assume the availability of a gradient oracle. Algorithms that use such an oracle are called
first-order methods. Popular examples of optimization problems that are often solved on a large
scale include logistic regression and regularized least-squares problems such as the lasso [15].

4.4 Other oracle types

Many optimization problems involve objective functions (oracles) that are convex, but not strongly
convex. This has motivated the study of conditions that are weaker than strong convexity but can
still provide useful convergence guarantees. One such example is the Polyak—Lojasiewicz condi-
tion: ﬁHqu > f — f*. Others include the error bound condition, the quadratic growth condition,
and the restricted secant inequality. For a survey of such conditions, refer to [3,16] and references
therein. Although we restrict attention to strong convexity in the present article, the aforemen-
tioned alternatives to strong convexity can be used just as easily. All of these conditions are charac-
terized by inequalities similar to (15) that can be used directly as supply rates; they are quadratic
in (2% — 2*) and v*, and they are linear in f* — f*.

4.5 Nestedness and supply rates

The three classes of nonlinearities characterized by (9), (12), and (15) are nested. That is, Fp, 1, C
M., € Cpy, 1. This follows because if (15) is added to itself with indices interchanged, then (12) is
recovered. So, (12) is a special case of (15). Moreover, if y; = 0 (and u; = 0) in (12), then (9)
is recovered. So, (9) is a special case of (12). In the one-dimensional case (d = 1), all gradients of
convex functions are slope-restricted, and vice versa. In other words, F,, = M,, 1. This is not the
case when d > 2, which is related to the notion of cyclic monotonicity [27]. The nestedness property
implies that a supply rate that is valid for one class of oracles is also valid for any oracle belonging to
a subclass. For each class of oracles, the fundamental inequalities (9), (12), and (15) can be directly
used as supply rates. Typically, there will be many valid choices of supply rates, and different choices
could yield different convergence rate guarantees. The case studies that follow show how to optimize
the choice of supply rate to produce the least conservative estimate of convergence rate attainable.



5 Certifying convergence rates using dissipativity

5.1 Certifying geometric convergence

Geometric convergence, also known as exponential stability in the controls literature and linear
convergence in the optimization literature, can be verified using a modified dissipation inequality
of the form

V() — qV(€¥) < S(€8,ub), (16)

where 0 < g < 1. We distinguish between two important cases for use in algorithm analysis.

1. If the supply rate is nonpositive, S(¢¥,u¥) < 0, then the dissipation inequality implies that
V(EF) < qV(€F). So, V decreases by a factor of ¢ at every timestep, which means that
V is a Lyapunov function that certifies geometric convergence. This case will be used when
Vfe Cm,L or Vf € Mm,L‘

2. If the supply rate satisfies the more general condition S(£F, uF) < qu(€F) = (€F+1), where ¢ is
a nonnegative function, then (16) can be rewritten as V(") +¢(€51) < ¢ (V(€F) + ¢ (€Y)).
In other words, V' (z)+1(z) is a Lyapunov function that certifies geometric convergence. This
case will be used when Vf € F,, 1.

5.2 Certifying other convergence rates

Dissipativity can also be used to certify other rates of convergence. For example, consider gradient
descent (the algorithm state is £¥ := 2¥), where the function value f(z*) decreases at each itera-
tion. If the standard dissipation inequality (8) holds with a supply rate that satisfies S(z*, u*) <
—(f(z*)—f(2*)), then the dissipation inequality implies that V (z**1) =V (zF) < —(f(2*)— f(z*)).
Summing over k,

k
k * 1 i * 1 0 k+1 1 0
St~ ) € g U~ £67) < g (V") = V@) < g Vi),
In other words, the algorithm converges in function value, and the function value decreases at the
sublinear rate 1/k, which is slower than geometric convergence. Dissipativity can also be used
to certify other sublinear rates, such as 1/k? [11]. Ultimately, dissipation inequalities lead to
Lyapunov functions. However, dissipation inequalities also provide a framework by which to treat
uncertain disturbance inputs. Roughly, this is done by using supply rates that are satisfied by the
disturbances and then searching for storage functions such that a dissipation inequality is satisfied
(thereby certifying robust stability). Even if the system in question is not mechanical in nature
or there is no clear notion of energy, the system may still satisfy a dissipation inequality. This is
akin to the idea of that Lyapunov functions can be used to certify the stability of an autonomous
differential or difference equation, even when the equation does not describe a physical system. In
the context of algorithm analysis, we view the outputs of the oracles as disturbance inputs for the
iterative algorithm in question and use dissipativity theory to certify robust convergence properties.

6 Case study: Gradient Descent

Gradient descent is perhaps the most recognizable iterative algorithm. We will now illustrate
different approaches for analyzing gradient descent for a simple class of functions. Consider the

10



(unconstrained) problem of minimizing f(z), where f is m-strongly convex and has L-Lipschitz
gradients. That is, f € F,, . Gradient descent is defined by the iteration

gt = 2k vV f () for k=0,1,.... (17)
Our task is to find the worst-case linear convergence rate p(A, F) and ultimately the choice of

stepsize 7 that leads to the fastest convergence rate.

Nesterov’s analysis A classical approach to analyzing gradient descent is due to Nesterov [23,
Thm. 2.1.15] and begins by bounding the error at the (k + 1) iterate in terms of the error at the
kth iterate:

* 17 *
|2kt — 2|2 Y2k — o — v f ()2

= fla* — 2P + P VA~ 2n (2 - 2*) | V()

9)

< It — 242+ VS @) P - 2 (mElak — 2| + |V £ "))

= (1= ) et =21 4 (0= 23) 9SG (1s)

If it is further assumed that 0 < n < Him, the second term in (18) is nonpositive, and it can be
concluded that the error shrinks at every iteration according to

||CCk+1 _ x*H < 1 — 2nmL

*
L+m ||

||$k -z

The contraction factor /1 — 257:15 is an upper bound on the worst-case convergence rate. If the
stepsize n € [0, Him] is selected to minimize this upper bound, the optimal stepsize is n = Him

and yields the bound p > % on the worst-case convergence rate.

Polyak’s analysis Another approach to analyzing gradient descent is due to Polyak [26, §1.4,
Thm. 3]. Assume that f is twice differentiable. By the fundamental theorem of calculus,

1
VIR = VI + [ VR et - et - e d = At - ),
0
where Ay := fol V2f(z* + 7(2F — 2*)) dr. Then, we can bound the error at the (k + 1) iterate in
terms of the error at the k' iterate using the triangle inequality:
12" — 2| = ||la* —a* =V (@) = | = ndi) (" — )| < T = nAg] - [la* - 2*]].

It follows from (14) that mI < V2f(z) < LI for all . Therefore, mI < Aj, < LI. Since I —nAy is
symmetric, its norm can be bounded in terms of the smallest and largest eigenvalues of Ay, which
gives a bound on the worst-case convergence rate:

p = [T = nAg| = max{[1 —nml, |1 —nLl}.

This bound can be minimized if n = Him, which yields p > %;—Z Both the Nesterov and Polyak

analyses of gradient descent yield the same optimal stepsize of n = and the same worst-case

_2
L+m
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convergence rate bound p > é;—% However, the bounds on p disagree when n # Him; Nesterov’s

bound is more conservative than Polyak’s. Conversely, Nesterov’s approach only assumed V f was
sector-bounded, while Polyak made the stronger assumptions that f is twice differentiable and V f
is slope-restricted. It is possible to prove Polyak’s bound without assuming twice-differentiability,
but it requires a different approach.

Dissipativity approach The gradient method can also be analyzed using dissipativity theory.
First write the gradient method as a linear time-invariant dynamical system in feedback with V f:

=2k ok (19a)
uf = V") (19¢)

We then use the supply rate S¢ associated with sector-bounded nonlinearities, given by (9). The
sector bound will not hold as written in (9) because the oracle u = V f(y) is zero when y = 2* = y*
(the solution of the optimization problem), not when y = 0. To account for this, use the inequality
Sc(y — y*,u) < 0. Although y* may not be known in advance, the dissipativity approach only
requires assuming existence of y* and does not depend on its actual value. The idea is to use a
quadratic Lyapunov function candidate V() = ||z — 2*||? and to certify a dissipation inequality of
the form

V(@) — p?V(a*) < ASe(yF — v, uh), (20)

Where A > 0. If (20) holds, then S¢(y* —y*, u¥) < 0 implies that V (2**1) < p?V(2¥), and therefore
|2*+1 —2*|| < p||z¥ —2*| and p is an upper bound on the worst-case convergence rate. Substituting
the definitions for V' and S¢ and the dynamics (19) into (20),

ot — ¥ — b? = Rl — 2% < A(m(a* — 2%) — u!)T(L(z* — 2%) — u¥).
This quadratic expression in z*
implies the inequalities

— 2* and u* must hold for all choices of 2* — 2* and ¥, which

1—p? = AmL —n+ AE5m

< >
Ceakm e TS0 A0 (21)

where “<X” denotes inequality in the semidefinite sense. The inequalities (21) do not depend ex-
plicitly on y*, even though the existence of y* is assumed as part of the derivation. The task of
minimizing p subject to (21) is a semidefinite program (SDP). While typically solved numerically,
SDPs can often be solved analytically in cases such as this one, where the matrices involved are
small. In this case, a Schur complement of (21) is used to obtain the equivalent inequalities:

(n — AEEm)?
o
Extremizing (22) with respect to A yields p > max {|1 — nm/, |1 — nL|}, which is the same bound as
in Polyak’s analysis. For the simple case of gradient descent, the dissipativity approach produces
the tightest possible bound (same as Polyak’s bound), yet it only assumes V f is sector-bounded.
A nice feature of the dissipativity approach is that it is systematic. When analyzing increasingly
complicated algorithms, it becomes increasingly difficult to obtain useful convergence rate bounds

via the traditional approach of ad hoc equation manipulation. The dissipativity approach provides
a principled and scalable way to analyze algorithms.

p?>1—mL + A >t (22)
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7 Case study: Nesterov’s Accelerated Method

Consider Nesterov’s accelerated method applied to a continuously differentiable function f, with
access to the oracle V f. As in the gradient descent example, we will consider f that is m-strongly
convex with L-Lipschitz gradients. That is, f € F,, . It will be shown that the dissipativity
approach can find the tightest known convergence rate for this algorithm. Recall that Nesterov’s
accelerated method is characterized by the iteration

it = (1 + B)af — Bab — nu, (23a)
w5t = af, (23b)
y* = (1 + B)af — Bab. (23c)

The classical approach to analyzing Nesterov’s accelerated method is estimate sequences [23, §2.2.1],
which are a recursively generated sequence of quadratic bounds on the worst-case convergence rate
p. The approach is rather involved, so the exposition is omitted. The net result is that the worst-
case convergence rate satisfies the bound

p> 1—\/%. (24)

We showcase the versatility of the dissipativity approach by analyzing the cases where V f belongs
to Crn,1, M, L, or Fo, 1. In all of these cases, as in the analysis of gradient descent, we use a change
of variables to shift the optimal point to zero. That is, the dynamics are re-expressed in terms of
x¥ —2* and y* — y*. Since the convergence rate bound found via dissipativity is independent of the
optimal point, the notation is simplified by assuming without loss of generality that the optimal

point is at zero, so z* = y* = u* = 0.

Nesterov for sector-bounded gradients For the sector-bounded case, the same approach is
used as in the analysis of gradient descent. There are two states, z1 and x9, so the storage function
will be a positive-definite quadratic function of both:

V(z) = 2" Pz, wherez = [il} and P > 0.
2

The supply rate S¢ defined in (9) is used, and we seek the smallest p such that the following
dissipation inequality is satisfied for some A\ > 0:

V(") = p?V(aF) < ASe(yF u). (25)

Since the presence of both P and A renders this dissipation inequality homogeneous, it can be
normalized by setting A = 1. Upon substituting the dynamics (23), the dissipation inequality (25)
becomes a quadratic inequality in (z¥,u*), which leads to a semidefinite program (as in the case

study for gradient descent).
Nesterov for slope-restricted gradients For the slope-restricted case, the aim is to use the

supply rate Spq defined in (12). However, using consecutive iterates as the two points in the storage
function [for example (y*,u*) and (y**+!, u**1)] will cause the dissipation inequality to depend on

13



both u* and uF*!. Therefore, the storage function must be augmented to depend on both z* and
xF*+1. For the supply rate, there are many choices. In particular, apply (12) at any pair of points
chosen among {y*,y**1 y*}. Since the expression for Sy is symmetric in its arguments, this leads
to three supply rate inequalities:

Sha = Smy Tk MY <0, SR = SmyF, vt uf ut) <0,
S = Spm(yFTh yr uF T u) <o,

Ultimately, the dissipation inequality is
3 .
V() — V(R ) < 30 Sy, (26)
i=1

where A, A2, A3 > 0 and V/(+,-) is a positive-definite quadratic. Upon substituting the dynam-
ics (23), the dissipation inequality (26) becomes a quadratic inequality in (z*,u*, u**1), which
again leads to a semidefinite program. Further augmenting the storage function to include more
consecutive iterates {x*, 21 ... 2¥*"} will further increase the number of supply rate inequali-
ties available for use, potentially yielding less conservative upper bounds on the worst-case conver-

gence rate p.

Nesterov for gradients of strongly convex functions For the case Vf € F,, 1, the aim is
to use the supply rate Sr defined in (15). For brevity, we write f* := f(y*) and f* := f(y*). This
time, the supply rate is not symmetric in its arguments, so there are six inequalities to choose from:

S}: = Sf(yk+l7yk7uk+l7uk) S fk - fk+17 S?F = S]:(yk7yk+lauk7uk+l) S fk+1 - fk7
SF = Sr(y", v b u) < fF - fF St = Srly* ¥, ur ub) < fF -
S;)__ = Sf(yk+1vy*a uk+17U*) < f* - fk+17 S_g-' = S.F(y*v yk+1>U*>uk+1) < fk+1 - f*'

In this context, the storage function V will not itself be a Lyapunov function. Rather, the Lyapunov
function will be of the form V(-) 4+ f*. Therefore, the storage function V' need not be positive
definite. We therefore use two inequalities:

6
V(xkﬂ,xkﬂ) _ pZV(xk,xk+1) < Z)\ZS;__’ (273)
i=1
6 .
—V(a*, ") <Y Sk, (27b)
1=1

where the )\; and u; are nonnegative. Ultimately, the aim is for the supply rates to satisfy

i NS < p? (=) = (=), (28a)
=1
i S < (fF= 1) (28b)
i=1
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which is ensured via the additional linear constraints

A= Ao — A3+ M\ = pF “A Ao — A5+ dg = —1,
P — pi2 — p3 + pa =1, —p1 + p2 — ps + pe = 0.

Combining (27) with (28), it follows that V (x*, 1)+ ( f¥— f*) is a Lyapunov function that certifies
geometric convergence with rate p. As with the case M,, 1, it is possible to further augment the
storage function and use more supply rates, which can potentially yield less conservative upper
bounds on the worst-case convergence rate p.

Numerical simulation When examining the semidefinite programs (25), (26), and (27), they
differ from the gradient descent case (21) in that they are not linear in p? due to the presence of
the product p?P. However, they are linear in P and the )\;’s and p;’s for each fixed p, so they can

be solved by bisection on p. Implementing these solutions with the default tuning of Nesterov’s
VL—y/m
VL+ym’
mirror those reported in [18], although that article used the theory of integral quadratic constraints

(IQCs) [21] and Zames—Falb multipliers [10, 40] instead of dissipativity. IQC theory is closely
related to dissipativity theory [30], and the dissipativity approach presented above is algebraically
equivalent to the approach used in [18]. As shown in Figure 5, the worst-case rate certified by
the dissipativity approach improves upon the rate found using the classical approach of estimate
sequences. Figure 5 also plots the iteration complexity, which is the number of iterations required
to reach a certain error €. The iteration complexity is proportional to —1/logp. The results in
Figure 5 were obtained numerically using CVX [9], a Matlab package for specifying and solving
convex programs. In this case, the semidefinite program is more complicated than the one for
gradient descent, yet still simple enough to be solved analytically [28]. When using the Lyapunov
function V (zF*+1, %) 4 (f* — £*), it is not required that V itself be positive, nor is it required that
V or f* be monotonically decreasing. Figure 6 shows two examples of Nesterov’s method applied
to functions in R2. Both cases use functions with Vf € F,, 1, with the same values of (m, L) and
the same initialization. The functions used are

method, which is n = % and 8 = we obtain the results displayed in Figure 5. These results

fi(zy,x9) = %(:p% +22) + (L — m)log (e_'“ + em1/3FT2 4 ewl/g_”) (29a)
f2(1‘1,$2) = %x% + %m% (29b)

In the first case (left panel of Figure 6), the distance to optimality ||z* — 2*|| and the function value
f(z*¥) — f* both converge nonmonotonically. The Lyapunov function found using the dissipativity
approach is, however, monotone. The dissipativity interpretation is that some of the energy is stored
in the function value, while some is stored in the states. Energy sloshes back and forth between
both. However, the total energy is dissipated at a rate bounded by p?*. In this case, the bound
is loose; the algorithm converges significantly faster than its worst-case bound. In the second case
(right panel of Figure 6), the energy is dissipated more slowly and matches the worst-case bound.

8 Case study: Alternating Direction Method of Multipliers

Consider the ADMM algorithm applied to a composite optimization problem min, f(z) + g(x), as
described by the interconnections shown in Figure 3. We investigate how to tune the stepsize 7 to
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Figure 5. Worst-case convergence analysis of Nesterov’s accelerated method with standard tuning.
Left: Worst-case convergence rate p as a function of the condition number L/m. In the case where f
is m-strongly convex with L-Lipschitz gradient (F,,, 1), the dissipativity approach yields an improve-
ment on the bound found using estimate sequences [23, §2.2.1]. Also shown is the case where Vf is
only assumed to be sector-bounded (C,, 1) or slope-restricted (M,, 1), obtained using the dissipa-
tivity approach. Both cases have the same worst-case bound and are only guaranteed to converge
(p < 1) when L/m is relatively small. Right: The same data as the left plot, but instead we plot
—1/1log p, which is proportional to the iteration complexity (the number of iterations required to en-
sure convergence to within a prespecified tolerance). As p — 1 on the left plot (slower convergence),
the iteration complexity tends to +o0o on the right plot. When p > 1, the algorithm may not con-
verge, so iteration complexity is infinite. The dissipativity approach improves upon the estimate se-
quence bound by a constant factor of approximately 1.38.

ensure the fastest possible worst-case convergence. Assume f is strongly convex and ¢ is convex.
In other words, Vf € F, 1 and dg € Mpo. We can obtain an upper bound for the worst-
case convergence rate using the supply rates for C,, ;, and Cg o, respectively. Using the standard
Lyapunov candidate

V(z) = 2" Pz, where x:= [Z)] and P > 0,

and a similar dissipation inequality to (20), which is used to analyze the gradient method:

V(ah ) — pPV (k) < ASEE(yF — ut, ub) F A SO (vh — 5, ub).

(30)

In (30), we used superscripts with S¢ to denote the bounds of the sector. For the case Sg’oo, which
corresponds to the set Cp o, we divide (9) by L and take the limit L — oo, which yields

S0 = |

J[:)
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Figure 6. Simulation of Nesterov’s accelerated method applied to two test functions that are m-
1

strongly convex with L-Lipschitz gradients. In both cases, L = 1 and m = {5; were used and the
squared distance to optimality ||#* —2*||?, the function value f*— f*, and the Lyapunov function found
using the dissipativity approach were plotted. Left: The function given in (29a). In this case, neither
the distance to optimality nor the function value decrease monotonically. However, the Lyapunov
function does. Convergence is faster than that predicted by the dissipativity approach. Right: The
function given in (29b). In this case, the convergence is slower and the numerical bound from the
dissipativity approach appears to be tight. For both functions, Nesterov’s method was initialized with

1 =1 and 29 = 0.5.

Upon substituting the dynamics (6) into the dissipation inequality (30), a quadratic inequality is
obtained in the variables {z* — 2*, w* — w*, u’f , ué}, which yields the semidefinite inequality

[*]Tp[l 0 —n —n}pQ[*]TP[l 00 0}

00 0 7 0100
[ mL L™ -1 -5 0 T[o =41 o0 - —
=] [—Lgm ’ Ho 0 1 0}”2 [+ [—é ojloo o 1] BY

where x denotes the term required to make the quadratic forms symmetric. For example, in
[*]TPX, x = X. For each fixed p,n,m, L, (31) is an SDP in the variables P = 0 and A1, Ay > 0.
For different choices of stepsize 1 and condition number L/m, (31) is solved using a bisection search
to find the smallest p that ensures feasibility. Numerically obtained SDP upper bounds are plotted
in Figure 7, alongside the analytical bound from [7, Cor. 3.1], which is given by

2L 1
pup < \/ o (32)

n?’Lm+2nm + 1"

The convergence rate upper bounds shown in Figure 7 may be conservative because supply rates
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Figure 7. Worst-case convergence analysis of Alternating Direction Method of Multipliers (ADMM)
applied to the problem of minimizing f(z) 4+ g(z), where f is m-strongly convex with L-Lipschitz
gradient and ¢ is convex but not necessarily differentiable. This includes the case of constrained
optimization (where g is the indicator function of a convex set). Solid lines show the upper bound
found by solving the dissipation inequality (31). Dashed lines show the upper bound (32) from [7,
Cor. 3.1], which is looser than the SDP bound. Left: Worst-case convergence rate p as a function
of the normalized stepsize nL for different choices of L/m. Right: The same data as the left plot,
but instead plot —1/log p, which is proportional to the iteration complexity (the number of iterations
required to ensure convergence to within a prespecified tolerance).

Cm, 1 and Cp o were used rather than the more precise F,, 1, and My o, respectively. Nevertheless,
a matching lower bound can be found by considering a specific quadratic problem instance, as
in [8,24]. Consider the composite objective with f(x) = %xTQx, where the largest and smallest
eigenvalues of @) are given by L and m, respectively, and g(z) = %5 |z||* with § > 0. In this case,
(5) reduces to the linear update 2**1 = (1 + nd)~Y(I +nQ)~ (I + n?5Q)z*. If A € [m, L] is an
eigenvalue of @, the eigenvalues of the update matrix for z* are (1 4+ nd)~1(1 + nA\)~1(1 + n25)).
Therefore, the greatest lower bound is found by extremizing:

>SS S L+ 1725)\ > ma ( ! 0l >
Ib = SUp Ssup < max ) ,
p 5>0 m<a<r, (1 +n6)(1+nA) 1+nm 1+nL

where the second inequality is found by picking 6 = 0 and 6 — oco. This lower bound coincides
precisely with the numerical SDP upper bound plotted in Figure 7, which suggests that the upper
bound was tight. A rigorous proof that the upper and lower bounds match requires finding an
analytic solution to (31). This SDP is larger and has more variables than the gradient descent
SDP (21), which is why analytic solutions are more difficult to obtain in this case. By inspection,
an analytic solution for the peaks of interest in Figure 7 can be found, which are the stepsizes 7 at
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which the worst-case convergence rate p is fastest:

1 WL B _ (L—m)?
n—mv p—iﬁJﬂ/ﬁ, AL =1, Az—iL ;
p x/ﬁ(ﬁJr\/ﬁ)(L—m)[ 1 T

2

= m )

The SDP analysis above was carried out using the gradient oracles (6). The same worst-case rates
are obtained if we instead used the proximal oracle formulation (5), provided suitable adjustments
are made to the supply rates. For example, monotonicity of the subgradient (0g € M) cor-
responds to firm nonexpansiveness of the proximal operator (proxng € Moy,1). Although the op-

VL . . L—
) Vrvm faster than that of gradient descent, 77, the

cost of a single iteration may be dramatically different in terms of wall-clock time, since comput-
ing one gradient is likely far cheaper than computing one proximal operation. Indeed, as n — oo,
prox, ((z) — argmin, f(r). So, when 7 is large, a single proximal operation solves the uncon-
strained optimization problem.

timized convergence rate for ADMM

9 General scalable algorithm analysis

The approaches developed in the three previous case studies extend to algorithms in the general
form (7). In other words, assume an algorithm with updates of the form

gkzl A By --- B, 51;
I )
vh | [ Dun o D) Lu

and oracles u¥ = ¢;(y¥) for i = 1,...,m. Suppose we want to use a window of r consecutive

timesteps in our analysis. Then, all relevant supply rates for each of the oracles are written as in the
case study on Nesterov’s method. These will depend on the pairs (y*, u*), (y*,u*), ..., (y*F7, u*+7).
These supply rates are called {S',...,SM™}. As before, choose a quadratic storage function
V(&k, e ,5"7”). To simplify the exposition, consider the case where the oracles are sector-bounded
or slope-restricted. This leads to the following inequality, similar to (25) and (26):

M
V(ET ) = V(R g < SN (39
i=1

where the \; are nonnegative. If some of the oracles are gradients of strongly convex functions
instead, we also include the positivity inequality as in (27b) and the associated linear constraints
on the A\; and p;. The supply rates are quadratic functions of pairs of inputs and outputs, and

upon substituting the dynamics (33) to eliminate ¢¥*1, ... ¥+ The inequality (34) reduces to a
quadratic expression in the variables {€F uF ... uF*7} where uft? := (uf*? .. uFH). How large

is the semidefinite program associated with (34)? If it is assumed that the algorithm has n states
and the oracles each map ¢; : R? — R? then A € R">"d B, ¢ R™*d ¢y ¢ R¥*"d and D;; € R4,
The storage function depends on &, ..., &*1 so the quadratic form can be represented using a
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symmetric matrix P € RUr+Ddxn(r+1)d  Note also the scalar variables Aq, ..., Ay, Meanwhile,
the entire inequality (34) depends on {¢¥ ¥, ... uF™"} so it is a semidefinite constraint of size
(n+r+1)dx(n+r+1)d.

9.1 Scalability

For typical iterative algorithms, n is small; n = 1 for gradient descent and n = 2 for Nesterov’s
method. Tight convergence guarantees can also be obtained with relatively small ; our case studies
required » = 1 or r = 2. However, in machine learning applications, it is not uncommon for d to
be very large (millions or billions), which would make the semidefinite program described above
prohibitively large. Although d may be large, algorithms typically have highly structured system
matrices (A, B,C, D). For example, it is shown from (17) that gradient descent has diagonal system
matrices:

A= Iy, B = —nly, C = I, D =0,

where I; € R?*? is the identity matrix. Similarly, it is apparent from (23) that Nesterov’s method
has block-diagonal system matrices:

A:[Hﬁ —p

1 0:|®Id7 B:|:n:|®ld7 C:[l—i_ﬁ _ﬁ]@)ld? DZO?

0

where ® denotes the Kronecker product. A similar structure is present in the supply rates.
Therefore, the P matrix from the storage function may also be written as P = P 1;, where
P e Rr(r+)xa(r+1) hus, the semidefinite program decouples into d identical (and much smaller)
semidefinite programs, meaning that the dissipativity-based worst-case algorithm analysis only re-
quires solving small semidefinite programs whose size depends on n and 7, but not d.

10 Concluding remarks

The case studies above show how dissipativity can be applied to the analysis of iterative optimiza-
tion algorithms. Further examples can be analyzed in an analogous manner, including distributed
optimization algorithms [29, 31], stochastic and variance-reduction algorithms [12-14], and alter-
nating algorithms for smooth games [41]. The benefit of using dissipativity for algorithm analysis
is that it provides a principled and modular framework where algorithms and oracles can be in-
terchanged and analyzed depending on the case at hand. Additionally, the dissipativity approach
is computationally tractable. The semidefinite programs solved in the case studies are small, with
fewer than 20 variables. Importantly, the size of the semidefinite programs is independent of the
dimension of the domain of the objective function.
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A 50 years of dissipativity in algorithm analysis

Lyapunov theory [20] is the main tool for the stability analysis of dynamical systems and has become
a cornerstone of control theory as well. Optimization algorithms have a natural interpretation as
dynamical systems and therefore can also be analyzed using Lyapunov theory. The idea of viewing
iterative algorithms as dynamical systems started perhaps in the early 1970s with the work of Tsyp-
kin [33]. Tsypkin draws many parallels between optimization algorithms and control systems, with
an emphasis on gradient-based algorithms. The main connections are outlined in the table below.

Optimization Controls
algorithm converges to a minimizer equilibrium point is asymptotically stable
algorithm converges to a minimizer for all robust stability

functions in a given class

designing an algorithm with bounds on its robust controller synthesis
worst-case performance

At around the same time, Willems published his seminal work on dissipativity [36,37], which
generalized Lyapunov theory to systems with inputs, and he also generalized previous robust sta-
bility criteria such as passivity theory and the small-gain theorem [38]. These ideas are at the core
of nonlinear systems theory and endure to this day [17]. Another key body of work is Polyak’s In-
troduction to Optimization [26], which covers the fundamentals of iterative methods for continuous
and convex optimization. Polyak’s book adopts a dynamical systems perspective, and even features
a chapter on Lyapunov’s method. The problem of worst-case algorithm analysis is fundamentally
a Lur’e problem [19]. An important distinction is that in the robust control literature, the goal is
typically to prove stability, whereas in algorithm analysis, the goal is to quantify the rate of conver-
gence (which is akin to controlling the rate of exponential convergence). The modern tool for tack-
ling this problem is integral quadratic constraints (IQCs), either in the frequency domain [21,35] or
in the time domain via dissipativity [30]. More recent works study algorithm analysis through the
dynamical systems viewpoint have used IQC and dissipativity tools to achieve the tightest known
bounds on many popular algorithms [11,18,24]. These ideas have also been extended to synthe-
sis, in an effort to design new optimization algorithms in a principled way [6, 22,31, 34] Although
this survey focused mostly on gradient-based iterative methods for continuous optimization, con-
trol perspectives have also been applied to (1) iterative methods for solving linear systems, (2) al-
gorithms for solving ordinary differential equations, and (3) algorithms for solving linear programs.
For a comprehensive survey of these topics, see [2].
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B Proving inequalities via the S-procedure

In the optimization literature, inequalities such as (10) are typically proved on a case-by-case
basis using clever combinations of the triangle inequality, Cauchy—Schwarz, and other inequalities.
Instead, the more fundamental property of positivity can often be used, namely if S < 0 is known
to be true and S = Q+ P is split, where P > 0, then it follows that () < 0. Start with the definition

Se(y,u) == mT [_nzén _lem] m

and consider the algebraic identity

Sely,u) = S (m?[lyl|? — ull?) + S5 {lmy — ull?, (35a)
which can be directly verified to hold for all y and u by expanding both sides and comparing like
terms. Since 0 < m < L by assumption, the second term in (35a) is nonnegative, as norms are
always nonnegative. Therefore, by the positivity property, if Sc(y,u) < 0, then m?||y||? — ||u|* < 0.
In other words, m||y|| < ||u||, which is the first half of (10). The remaining inequalities in (10)—(11)
can be proven using a similar approach, with the further algebraic identities:

Se(y,u) = L2 (|lu)l® = L*(|ly)|?) + &2 |lu — Lyl (35b)
Sel(y,u) = (L —m)(m|lyl*> — u"y) + [|my — ul%, (35¢)
Se(y,u) = (L —m)(u"y — L|jy|*) + |ju — Ly (35d)

This approach of proving that certain quadratic inequalities hold when others do is closely related
to the S-procedure from control theory [4, pp. 23, 33]. The lossless S-procedure states that the two
following statements are equivalent:

1. For all x, if 'Sz < 0, then xTQx <0.
2. There exists A > 0 such that S = \Q.

The S-procedure allows inequalities such as (35) to be generated systematically. For example, to
generate (35a), seek a A > 0 such that

Sely,u) = X (m?|lyll = [[u|®)  for all y, u (36)

The inequality (36) is equivalent to the semidefinite program:

_ L4+m 2
Find A > 0 such that: [_ﬂffm K ] = A [Tg _01] . (37)

It can be shown that the unique solution to (37) is A\ = L{—mm, which leads to (35a). Since the
S-procedure is lossless (necessary and sufficient), it will always find an algebraic identity if one
exists. In other words, if there is no A that satisfies (37), then S¢(y,u) < 0 does not imply that

mlly|| < [|u] for all y, u.
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