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Abstract

In the distributed optimization problem for a multi-agent system, each agent knows a lo-
cal function and must find a minimizer of the sum of all agents’ local functions by performing
a combination of local gradient evaluations and communicating information with neighboring
agents. We prove that every distributed optimization algorithm can be factored into a cen-
tralized optimization method and a second-order consensus estimator, effectively separating the
“optimization” and “consensus” tasks. We illustrate this fact by providing the decomposition
for many recently proposed distributed optimization algorithms. Conversely, we prove that any
optimization method that converges in the centralized setting can be combined with any second-
order consensus estimator to form a distributed optimization algorithm that converges in the
multi-agent setting. Finally, we describe how our decomposition may lead to a more systematic
algorithm design methodology.

1 Introduction

We consider the distributed optimization problem

minimize
n∑

i=1

fi(xi)

subject to x1 = x2 = . . . = xn,

where fi is the local objective function and xi the local decision variable on agent i ∈ {1, . . . , n}.
The problem is to minimize the sum of the local objective functions subject to agreement among
the agents on the solution, where each agent i ∈ {1, . . . , n} can evaluate its local gradient ∇fi and
can communicate with (and only with) neighboring agents1.

Many distributed algorithms have been proposed in the literature, and several recent works have
attempted to uncover an underlying algorithmic structure. The work [1] developed a framework
that unified the EXTRA [2] and DIGing [3] algorithms. The work [4] found a canonical form
for distributed algorithms that encompasses cases where each agent has two state variables. This
canonical form, however, was limited to non-accelerated algorithms. To handle acceleration, Han [5]
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showed that an optimization method could be combined with two first-order consensus estimators
to form a valid distributed optimization algorithm. This structure captures many algorithms, but
not all algorithms decompose into this form. This is particularly important when the structure
is used for design, as a limited structure may lead to suboptimal performance. For example, the
structure in [5] is unable to represent the SVL algorithm [6], which is an optimized implementation
of inexact ADMM (see Section 3.2.2).

Our main result overcomes the aforementioned limitations and shows that a broad class of dis-
tributed optimization algorithm can be decomposed into a centralized optimization method and
a second-order consensus estimator as shown in Figure 1. Specifically, our decomposition applies
to algorithms that are linear time-invariant (LTI) systems in feedback with the gradient of the
objective function and the graph Laplacian. Conversely, we show that any centralized optimiza-
tion method can be combined with any second-order consensus estimator to form a distributed
optimization algorithm (under mild technical conditions).

GoptGcon

L

∇f

w

vz

y

u

Fig. 1: Universal decomposition of a distributed optimization algorithm into an optimization method
Gopt and second-order consensus estimator Gcon, where ∇f is the gradient of the local objective
functions and L is the graph Laplacian.

Our decomposition has several benefits. First, it provides a non-conservative parameterization of
distributed optimization algorithms in terms of their components, which can then be systemat-
ically analyzed using tools from robust control; see [6–8] for the details of such analyses. Our
decomposition also assists algorithm designers by simplifying the taxonomy of distributed opti-
mization algorithms. Simply put, one need not look any further than the already vast literature on
gradient-based optimization methods [9–11] and consensus estimators [12–14].

Notation. Subscripts denote an agent’s index, and bold symbols to refer to quantities aggregated
over all agents, such as x = (x1, . . . , xn). Superscripts denote time indices, as {y0, y1, . . . }. Symbols
1 and 0 denote the n-dimensional vector of all ones and all zeros, respectively. The symbol ⊗ denotes
the Kronecker product. For an LTI operator G, the corresponding transfer function is Ĝ(z). A
transfer function is stable if all of its poles are in the open unit disk.

Assumption. To simplify notation, we assume the local objective functions are one-dimensional,
fi : R → R. Our results generalize to the multidimensional case fi : Rd → R under appropriate
restrictions on the algorithm form.
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2 Preliminaries

Before describing algorithms for distributed optimization, we first describe optimization and con-
sensus separately. We make extensive use of the Final Value Theorem (FVT), which we state here
for completeness (e.g., [15, pp. 2-12, 2-15]).

Proposition 1 (Final Value Theorem). Suppose yt has the unilateral z-transform ŷ(z). The fol-
lowing are equivalent.

• The limit of yt as t → ∞ exists and is finite.

• (z − 1) ŷ(z) is stable.

If the above hold, then limt→∞ yt = limz→1(z − 1) ŷ(z).

2.1 Optimization

A gradient-based optimization method is an iterative procedure used to find an extremum of some
function f by sequentially querying ∇f . We can view such a method as a discrete-time dynamical
system Gopt in feedback with ∇f [7].

Gopt

∇f

y u
y = Gopt u

u = ∇f(y)

For example, standard gradient descent uses the update xt+1 = xt − α∇f(xt), for which Gopt can

be represented using the discrete-time transfer function Ĝopt(z) =
−α
z−1 . Methods such as gradient

descent are strictly causal and have strictly proper transfer functions.

If a method is causal but not strictly causal, then the feedback loop has a circular dependency.
An example of such an algorithm is the proximal point method, which uses the update xt+1 ∈
argminx

(
f(x) + 1

2α∥x− xt∥2
)
. The circular dependency is apparent when we write the associated

first-order optimality condition: xt+1 = xt − α∇f(xt+1). This method has a proper transfer
function: Ĝopt(z) =

−αz
z−1 .

In this letter, we define an optimization method as a system Gopt that has the correct fixed point
when placed in feedback with ∇f and also exhibits convergent behavior when using a baseline set
of easy test functions f .

Definition 1. Consider the feedback interconnection of a system Gopt with the gradient ∇f , where
f(y) := ε

2∥y − y⋆∥2. The system Gopt is an optimization method if for all ε > 0 sufficiently small
and for all y⋆, we have yt → y⋆ as t → ∞, and yt converges to a constant when ε = 0.

If Gopt is causal, SISO, and LTI as with gradient descent and many other methods, we can charac-

terize optimization methods via properties of the transfer function Ĝopt(z).

Lemma 1. A causal SISO LTI system Gopt is an optimization method if and only if the following
hold:
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(i) The zeros of 1− ε Ĝopt(z) are inside the unit circle for all ε > 0 sufficiently small.

(ii) Ĝopt(z) has a pole at z = 1 and (z − 1) Ĝopt(z) is stable.

(iii) Ĝopt(z) is proper.

Proof. Substituting the given f and eliminating u, the closed-loop dynamics are y =
−εGopt

1−εGopt
y⋆.

Applying the FVT, yt converging is equivalent to stability of the map and the zeros of 1−ε Ĝopt(z)

being inside the unit circle. The limit yt → y⋆ is equivalent to Ĝopt(z) having a pole at z = 1.

For ε = 0, convergence to a constant is equivalent to stability of (z − 1) Ĝopt(z). Causality of the

system Gopt is equivalent to properness of the transfer function Ĝopt(z).

2.2 Consensus

Consider a network of n agents. Agent i ∈ {1, . . . , n} observes a time-varying signal wi. A consensus
estimator [12, 16] is an iterative procedure where each agent communicates with its neighbors in
order to form an estimate yi of the average 1

n

∑n
i=1wi. Such estimators take the following form.

Gcon

L

z v

y w
[
yi
zi

]
= Gcon

[
wi

vi

]

vi =

n∑
j=1

aij (zi − zj)

The n × n matrix A := [aij ] is the adjacency matrix that describes the interaction among agents.
The scalar aij is the weight that agent i places on information from agent j, with a weight of zero if
no information flows from agent j to i. Agent j is a neighbor of agent i if the weight aij is nonzero,
and computing vi requires agent i to receive the local variables zj from each of its neighbors j.
The Laplacian is the matrix L := diag(A1)−A. This matrix always satisfies L1 = 0, so it has an
eigenvalue of zero with corresponding eigenvector 1. When the communication network is connected,
meaning that there is a path between any two agents, there is exactly one zero eigenvalue [12]. When
the weights are constructed such that LT1 = 0, the Laplacian is balanced [16]. The block diagram
illustrates the global behavior of the system aggregated over all agents, where the aggregated system
and Laplacian are

Gcon :=

[
In ⊗G11

con In ⊗G12
con

In ⊗G21
con In ⊗G22

con

]
and L := L⊗ Im,

where m is the dimension of the local vectors vi and zi. For example, one particular (first-order)
consensus estimator is given by the iterations xt+1 = xt +L (wt − xt) and yt = wt − xt, for which
Gcon can be represented using the discrete-time transfer function

Ĝcon(z) =

[
1 −1

z−1

1 −1
z−1

]
. (1)

We are interested in tracking signals with constant mean but potentially higher-order deviations
from the mean. We define a first-order estimator to have zero steady-state error for constant
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deviations from the mean, a second-order estimator for ramp deviations, and so on. Similar to the
motivation for our definition of optimization methods, we define a consensus estimator as a system
Gcon that can successfully track the average when using a baseline set of easy Laplacians L.

Definition 2. A system Gcon is a consensus estimator of order ℓ if, for any connected com-
munication network and associated balanced and diagonalizable Laplacian L with spectral radius
sufficiently small and for any signals wt

i that are polynomials in t of degree ℓ − 1 with constant
mean w⋆ := 1

n

∑n
j=1w

t
j, the estimate yti on each agent i converges to the average w⋆ as t → ∞.

If Gcon is causal and LTI, we can characterize consensus estimators via properties of the transfer
function Ĝcon(z). It is also typical to assume G22

con is strictly causal to avoid circular dependencies
in the network transmissions.

Lemma 2. Suppose Gcon is a causal LTI system and G22
con is strictly causal. For all complex λ ∈ C,

define the map Gλ := G11
con + λG12

con

(
I − λG22

con

)−1
G21

con. Then, Gcon is a consensus estimator of
order ℓ if and only if the following hold:

(i) Ĝλ(z) is stable for all λ ∈ C satisfying |λ| < δ for some δ > 0 sufficiently small.

(ii) Ĝ0(1) = 1.

(iii) Ĝλ(z) has ℓ zeros at z = 1 for all λ ̸= 0.

(iv) Ĝcon(z) is proper and Ĝ22
con(z) is strictly proper.

Proof. We can write the error eti := yti − w⋆ succinctly as e = (GL − 1
n11

T)w, where GL is the
closed-loop map from w to y. Let (λ, vT) be a left eigen-pair of L. Using that L1 = 0, we have
that 0 = vTL1 = λ (vT1). Thus, 1Tv = 0 for all v corresponding to nonzero λ. Furthermore,
LT1 = 0 since the Laplacian is balanced (by assumption). The inner product of an eigenvector
with the error is then

vTe =

{
(G0 − 1)(1Tw) if v = 1 and λ = 0

Gλ(v
Tw) otherwise.

Since the Laplacian is diagonalizable (by assumption), convergence of the error e is equivalent to
convergence of vTe for each eigenvector v. Applying the FVT in the case where wt

i are polynomials

in t of degree ℓ − 1 with constant average w⋆, the limit eti → 0 is equivalent to stability of Ĝλ for
all eigenvalues λ of the Laplacian L and

lim
z→1

Ĝ0(z)− 1 = 0 and lim
z→1

Ĝλ(z)

(z − 1)ℓ−1
= 0,

which correspond to the first three conditions. Causality of Gcon and strict causality of G22
con are

equivalent to properness and strict properness of Ĝcon(z) and Ĝ22
con(z), respectively.

Remark 1. The transfer function of a consensus estimator is not unique. Let F̂ be any m × m
transfer matrix with full normal rank, where m is the dimension of vi and zi. Then the closed-loop
map GL : w 7→ y is invariant under

Ĝcon 7→
[
1 0

0 F̂

]
Ĝcon

[
1 0

0 F̂−1

]
,

although not all choices of F̂ preserve causality of Gcon.
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2.3 Distributed optimization

The distributed optimization setting is conceptually a combination of the optimization and consen-
sus settings. There are n agents that can communicate over a network, agent i has access to the
gradient of its local function ∇fi, and the goal is for all agents to achieve consensus on an extremum
of the sum of all functions f1 + · · · + fn. Distributed optimization algorithms take the following
general form [6,8]; see Section 3.2 for specific examples from the literature.

H

L

∇f

vz uy

[
yi
zi

]
= H

[
ui
vi

]
,

ui = ∇fi(yi),

vi =

n∑
j=1

aij (zi − zj)

Similar to the consensus and optimization settings, we have

H :=

[
In ⊗H11 In ⊗H12

In ⊗H21 In ⊗H22

]
,

L := L⊗ Im,

∇f := diag(∇f1, . . . ,∇fn).

We define a distributed optimization algorithm as follows.

Definition 3. A system H is a distributed optimization algorithm if for any connected communi-
cation network and associated balanced Laplacian L with spectral radius sufficiently small, and for
all ε > 0 sufficiently small and for all y⋆i , the feedback interconnection of H with L and ∇f satisfies
yti → y⋆ := 1

n

∑n
j=1 y

⋆
j as t → ∞ for all i, where fi(y) :=

ε
2∥y − y⋆i ∥2. We also require that all yti

converge to a common constant limit when fi ≡ 0 for all i.

If H is causal and LTI, we can characterize consensus estimators via properties of the transfer
function Ĥ(z). We will also assume causality of certain maps to ensure that the algorithm is
implementable. In particular, H should be causal, and there should be no circular dependencies
in the network transmissions or gradient evaluations. This means that the partial closed-loop map
H22+εH21(I−εH11)−1H12 should be strictly causal, which is equivalent to both H22 and H21H12

being strictly causal.

Lemma 3. Suppose H is a causal LTI system, and H22 and H21H12 are strictly causal. For all
λ ∈ C, define the map

Hλ := H11 + λH12
(
I − λH22

)−1
H21.

The system H is a distributed optimization algorithm if and only if the following hold:

(i) The zeros of 1 − εĤλ(z) are inside the unit circle for all ε > 0 sufficiently small and for all
λ ∈ C satisfying |λ| < δ for some δ > 0 sufficiently small.

(ii) Ĥ0(z) has a pole at z = 1 and (z − 1) Ĥ0(z) is stable.

(iii) Ĥλ(z) is stable and has a zero at z = 1 for all λ ̸= 0.

(iv) Ĥ(z) is proper and both Ĥ22(z) and Ĥ21(z) Ĥ12(z) are strictly proper.
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Proof. Let HL be the partial closed-loop map from u to y after we eliminate z and v. Substituting
the given fi and eliminating u, we obtain the closed-loop dynamics y = −εHL(I− εHL)

−1y⋆. The
condition yti → 1

n

∑n
j=1 y

⋆
j can be written succinctly as yt → 1

n11
Ty⋆. Diagonalizing the closed-

loop dynamics as in the proof of Lemma 2 and applying the FVT, we find that yti converging is

equivalent to the map −εĤλ(z)(I − εĤλ(z))
−1 being stable, which is equivalent to (i). Again from

the FVT, 1Tyt → 1Ty⋆ means H0(z) has a pole at z = 1, and convergence to a constant in the
case fi ≡ 0 means (z − 1) Ĥ0(z) is stable, so we have (ii). As in the proof of Lemma 2, we have
vT1 = 0 and vTyt → 0 for all v corresponding to λ ̸= 0, so Ĥλ(z) has a zero at z = 1, and for the
case fi ≡ 0, we have that Ĥλ(z) is stable, which is equivalent to (iii). Item (iv) is equivalent to the
causality assumptions.

3 Universal decomposition

We now state our main result, which states that every distributed optimization algorithm can be
decomposed into consensus and optimization components as in Figure 1.

Theorem 1. Let H be a distributed optimization algorithm satisfying the conditions of Lemma 3.
There exists an optimization method Gopt and a second-order consensus estimator Gcon such that

H = Gcon

[
Gopt 0
0 Im

]
. (2)

If H11 is strictly causal, then Gopt can be chosen to be strictly causal as well.

Proof. From conditions (i), (ii), and (iv) of Lemma 3, Ĥ0(z) has a pole at z = 1 and is proper,
(z−1) Ĥ0(z) is stable, and the zeros of 1−ε Ĥ0(z) are inside the unit circle for all ε > 0 sufficiently
small. Then from Lemma 1, H0 = H11 is an optimization method. If Ĥ11(z) is non-minimum phase

(has zeros on or outside the unit circle), then Ĝopt(z) := zp
∏(

1−z̄0z
z−z0

)
Ĥ11(z), where the product

is over all such zeros z0, will also satisfy the conditions of Lemma 1, provided p is at most the
relative degree of Ĥ11(z). This follows because Ĝopt(z) is still proper, still has a pole at z = 1, and

because each factor multiplying Ĥ11(z) is an all-pass filter with nonnegative phase (phase lead),
which therefore can only increase stability margins and preserves the stability requirement.

Set Ĝopt(z) = zp Φ̂(z) Ĥ11(z), where Φ̂(z) :=
∏ 1−z̄0z

z−z0
is the product of all-pass factors that cancel

the non-minimum phase zeros of Ĥ11(z). Then, invert the transformation (2) and apply Remark 1
using F̂ (z) = z−qI to obtain

Ĝcon(z) =

[
z−p Φ̂(z)−1 zq Ĥ12(z)

z−p−q Ĥ21(z) Ĥ11(z)−1 Φ̂(z)−1 Ĥ22(z)

]
.

Since Ĥ11(z) is proper and Ĥ21(z) Ĥ12(z) is strictly proper, we can always ensure Ĝcon(z) will be
proper by letting p and q be the relative degrees of Ĥ11(z) and Ĥ12(z), respectively. This choice
leads to a Ĝopt(z) that has relative degree zero. However, when Ĥ11(z) is strictly proper, we can

reduce p by 1, which ensures that Ĝopt(z) is strictly proper as well.

To verify that Gcon is a consensus estimator of order two, we can compute Gλ as defined in Lemma 2
and see that Ĝλ(z) =

(
zpĤ11(z) Φ̂(z)

)−1
Ĥλ(z), where Hλ is defined in Lemma 3. We can now verify
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the properties in Lemma 2. When λ = 0, the transfer function is Ĝ0(z) = z−p Φ̂(z)−1, which is
stable and satisfies Ĝ0(1) = 1 since Φ̂ is all-pass. When λ ̸= 0, the fact that Ĥλ(z) has a zero at
z = 1 and Ĥ0(z) = Ĥ11(z) has a pole at z = 1 implies that Ĝλ(z) has two zeros at z = 1. To verify
stability when λ ̸= 0, stability of Ĝλ(z) follows from stability of Ĥλ(z) and Φ̂(z)−1.

We can also prove a partial converse; under certain mild technical conditions, combining consensus
and optimization components as in Figure 1 yields a distributed optimization algorithm.

Theorem 2. Suppose Gopt is a causal SISO LTI optimization method, Gcon is a causal LTI second-
order consensus estimator, and further assume

• Ĝopt(z) and Ĝλ(z) are minimum-phase, meaning all zeros are strictly inside the unit circle,
and

• either Ĝopt(z) or Ĝ21
con(z) Ĝ

12
con(z) is strictly proper.

Then, the combined system H given in (2) is a distributed optimization algorithm.

Proof. We will verify the properties of Lemma 3. Since Hλ = GλGopt and Gλ is stable, Ĝopt(z)
has a single pole at z = 1 and there are no zeros outside the unit circle, the root locus will be
stable for small gains, so (i) holds. When λ = 0, Ĥ0(z) = Ĝ0(z) Ĝopt(z). Since Ĝ0(1) = 1 and

Ĝopt(z) has a pole at z = 1 and (z − 1)Ĝopt(z) is stable, we have (ii). When λ ̸= 0, Ĝλ(z) has

two zeros at z = 1 and Ĝ0(z) has a single pole at z = 1, therefore Ĥλ(z) has a zero at z = 1 and
(iii) holds. Now we examine properness. Note that Ĥ21(z) Ĥ12(z) = Ĝ21

con(z) Ĝ
12
con(z) Ĝopt(z), so

strict properness of either term on the right-hand side implies strict properness of the left-hand
side. Finally, properness of Ĝcon(z) and Ĝopt(z) imply properness of Ĥ(z), and strict properness

of Ĝ22
con(z) implies strict properness of Ĥ22(z), so (iv) holds.

Remark 2. The continuous-time analog of gradient-based optimization methods are called gradient
flows, and there has been recent interest in studying iterative algorithms in the continuous limit [17].
Likewise, consensus methods are often analyzed in continuous time [12]. The decomposition de-
scribed in Theorems 1–2 was developed for discrete-time distributed optimization algorithms, but an
analogous decomposition exists for continuous-time systems. In this case, a distributed optimization
algorithm would separate into a gradient flow and a continuous-time consensus estimator.

GoptGcon1 Gcon2

L L

∇f

z1 v1 z2 v2

y u

Fig. 2: Factored form of an algorithm, where the second-order consensus estimator factors into two
first-order SISO estimators; this is the form proposed in [5].
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3.1 Factoring the consensus estimator

The decomposition in Figure 1 is not internally stable. While the average gradient is zero at the
optimizer, the gradient of each agent is not necessarily zero. This nonzero constant is integrated
by the optimization method to produce an unbounded output. This can be fixed, however, if the
consensus estimator factors into two first-order estimators.

Suppose Gcon factors as Gcon1Gcon2, where Gcon1 and Gcon2 are both first-order estimators. The
optimization method and both consensus estimators are SISO LTI systems and therefore commute,
so we can swap the order of Gopt and Gcon2 to obtain the diagram in Figure 2. While this does
not change the map from u to y, it does change the realization; the steady-state input to the
optimization method is now the average gradient, which is zero at optimality.

To check whether or not a consensus estimator factors, we equate a second-order estimator Gcon

with its factorization Gcon1Gcon2 to find that

Gcon =

 G11
con1G

11
con2 G12

con1 G11
con1G

12
con2

G21
con1G

11
con2 G22

con1 G21
con1G

12
con2

G21
con2 0 G22

con2

 ,

where (z1, v1) are the transmitted and received variables for Gcon1, and similarly for Gcon2. The
inputs to the combined system are then (u, v1, v2), and the outputs are (y, z1, z2). Note that the
transmitted variables v1 and v2 need not have the same dimension. The consensus estimator has
this form if and only if G32

con is zero and its components factor as[
G11

con G13
con

G21
con G23

con

]
=

[
G11

con1

G21
con1

] [
G11

con2 G12
con2

]
,

which is the case if and only if G11
conG

23
con −G13

conG
21
con = 0. Whether an estimator factors or not

depends on the transfer function Gcon which is not unique, so we may need to first apply the
transformation in Remark 1 with a suitable transfer function F̂ for an estimator to factor.

3.2 Decomposition of known algorithms

To illustrate our results, we first describe our decomposition technique on a well-known distributed
optimization algorithm. We then state the decomposition for many other algorithms from the
literature.

3.2.1 DIGing

We first illustrate our results on the DIGing algorithm [3,18], which is described by the iterations

xt+1 = Wxt − αyt,

yt+1 = Wyt +∇f(xt+1)−∇f(xt),

where α > 0 is the stepsize and the gossip matrix W is related to the graph Laplacian as W = I−L.
This algorithm requires each agent to communicate m = 2 variables at each iteration, and the
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associated transfer function is

Ĥ(z) =


−α
z−1

−z
z−1

−αz
(z−1)2

−α
z (z−1)

−1
z−1

α
(z−1)2

1
z 0 −1

z−1

 .

Choose the optimization method as Ĝopt(z) = Ĥ11(z) = −α
z−1 . Then applying the transformation in

Remark 1 with the transfer matrix F̂ (z) = diag
(
z, −αz

z−1

)
, the consensus estimator transforms as

Ĝcon(z) =

 1 −z
z−1

αz
(z−1)2

1
z

−1
z−1

α
(z−1)2

z−1
−αz 0 −1

z−1

 7→

1
−1
z−1

−1
z−1

1 −1
z−1

−1
z−1

1 0 −1
z−1

 .

The estimator on the right satisfies the conditions to factor in Sec. 3.1; we chose the transformation
matrix such that this is the case. Since G11

con = 1, we can choose G11
con1 = 1 = G11

con2, which results
in the factorization Gcon = Gcon1Gcon2, where both factors are the first-order estimator in (1).

The analysis for all other algorithms in this section is similar. In each case, we choose the opti-
mization algorithm as Gopt = H11 so that G11

con = 1. In addition, we apply the transformation in
Remark 1 to put the estimators in a similar form with G21

con = 1 for comparison.

3.2.2 Non-accelerated algorithms

We first consider algorithms that use standard gradient descent for the optimization method:
Ĝopt(z) =

−α
z−1 where α > 0 is the stepsize. Several such algorithms have been proposed whose con-

sensus estimator factors (see Section 3.1). In particular, each factor is typically one of the following
first-order estimators:

Ĝcon1(z), Ĝcon2(z) =

[
1 −1

z−1

1 −1
z−1

]
or

[
1 −z

z−1

1 −1
z−1

]
.

Every combination of these factors has been proposed in the literature: DIGing [3, 18] uses the
estimator on the left for both factors, AB [19] uses one of each2, and AugDGM [20] uses the one
on the right for both factors.

Not every algorithm uses a consensus estimator that factors into two first-order estimators. To
check whether or not an algorithm factors, we search for a transfer matrix F̂ with full normal rank
such that the transformed consensus estimator in Remark 1 satisfies the necessary conditions for
factorization in Section 3.1. Here are the second-order consensus estimators for some algorithms

2The AB method is described in terms of two gossip matrices A and B, where the Laplacian is L = I−A = I−B.
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that do not factor:

Ĝcon(z) =

1 − 1
2
z2

(z−1)2

1
1
2
−z

(z−1)2

 Exact Diffusion [21]

Ĝcon(z) =

1 − 1
2
z2

(z−1)2

1
− 1

2
+z−z2

(z−1)2

 NIDS [22]

Ĝcon(z) =

1 1
2
−z

(z−1)2

1
1
2
−z

(z−1)2

 EXTRA [2]

Ĝcon(z) =

[
1 −z(z+β−1)

(z−1)2

1 1−(1+β)z
(z−1)2

]
SVL [6]

3.2.3 Accelerated algorithms

Our decomposition also applies to accelerated algorithms. The optimization method then has the
form [7,9]

Ĝopt(z) = −α
(1 + γ) z − γ

(z − 1)(z − β)
,

where β and γ are additional parameters. Examples include ABm [23] based on the heavy-ball
optimization method [11] with γ = 0, and ABN [24] based on Nesterov’s accelerated method [10]
with γ = β. For each of these algorithms, the consensus estimator factors into the two first-order
estimators

Ĝcon1(z) =

[
1 1

αĜopt(z)

1 1
αĜopt(z)

]
and Ĝcon2(z) =

[
1 −1

z−1

1 −1
z−1

]
.

4 Perspectives

Our decomposition of an algorithm into its optimization and consensus components leads to some
perspectives that may prove useful for algorithm design.

Robust optimization Using our decomposition, we can interpret an algorithm for distributed
optimization as an optimization method that, along with the gradient, includes an additional
consensus estimator in the loop. If this consensus estimator were to converge arbitrarily fast, then
the iterates would never be in disagreement and the system would reduce to that of the centralized
optimization method. Because the consensus estimator is not ideal, however, the optimization
method must be robust to the dynamics of the estimator; see [25–28] for robust optimization
methods.

Consensus with feedback Alternatively, we can view an algorithm as a second-order consensus
estimator whose input is obtained by feeding back the output through the gradient and the opti-
mization method. In this interpretation, the consensus estimator must be stable when connected in
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feedback. This feedback loop is linear when the local objective functions are quadratic (gradients
are linear), but is otherwise nonlinear.

Each of these interpretations provides a certain perspective on the combined algorithm. Ideally,
the design of the optimization and consensus components would decouple, enabling researchers to
make use of the abundant literature on optimization and consensus. Our decomposition provides
a first step towards this decoupling, with these perspectives indicating that proper measures of
robustness must be taken into account in the algorithm design.

References
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[24] R. Xin, D. Jakovetić, and U. A. Khan, “Distributed Nesterov gradient methods over arbitrary graphs,”
IEEE Sig. Process. Lett., vol. 26, no. 8, pp. 1247–1251, 2019. (Cited on p. 11)

[25] S. Cyrus, B. Hu, B. Van Scoy, and L. Lessard, “A robust accelerated optimization algorithm for strongly
convex functions,” in Amer. Contr. Conf., Jun. 2018, pp. 1376–1381. (Cited on p. 11)
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