A Universal Decomposition for
Distributed Optimization Algorithms

Bryan Van Scoy* Laurent Lessard’

Abstract

In the distributed optimization problem for a multi-agent system, each agent knows a lo-
cal function and must find a minimizer of the sum of all agents’ local functions by performing
a combination of local gradient evaluations and communicating information with neighboring
agents. We prove that every distributed optimization algorithm can be factored into a cen-
tralized optimization method and a second-order consensus estimator, effectively separating the
“optimization” and “consensus” tasks. We illustrate this fact by providing the decomposition
for many recently proposed distributed optimization algorithms. Conversely, we prove that any
optimization method that converges in the centralized setting can be combined with any second-
order consensus estimator to form a distributed optimization algorithm that converges in the
multi-agent setting. Finally, we describe how our decomposition may lead to a more systematic
algorithm design methodology.

1 Introduction

We consider the distributed optimization problem

n
minimize g fi(z)
i=1
subject to x1 =x2 = ... = x,,

where f; is the local objective function and z; the local decision variable on agent i € {1,...,n}.
The problem is to minimize the sum of the local objective functions subject to agreement among
the agents on the solution, where each agent ¢ € {1,...,n} can evaluate its local gradient Vf; and
can communicate with (and only with) neighboring agents!.

Many distributed algorithms have been proposed in the literature, and several recent works have
attempted to uncover an underlying algorithmic structure. The work [1] developed a framework
that unified the EXTRA [2] and DIGing [3] algorithms. The work [4] found a canonical form
for distributed algorithms that encompasses cases where each agent has two state variables. This
canonical form, however, was limited to non-accelerated algorithms. To handle acceleration, Han [5]

*B. Van Scoy is with the Department of Electrical and Computer Engineering, Miami University, OH 45056, USA.
Email bvanscoy@miamioh.edu
L. Lessard is with the Department of Mechanical and Industrial Engineering, Northeastern University, MA 02115,
USA. Email 1.lessard@northeastern.edu
1Some authors refer to this as the consensus optimization problem and to such algorithms as decentralized.

showed that an optimization method could be combined with two first-order consensus estimators
to form a valid distributed optimization algorithm. This structure captures many algorithms, but
not all algorithms decompose into this form. This is particularly important when the structure
is used for design, as a limited structure may lead to suboptimal performance. For example, the
structure in [5] is unable to represent the SVL algorithm [6], which is an optimized implementation
of inexact ADMM (see Section 3.2.2).

Our main result overcomes the aforementioned limitations and shows that a broad class of dis-
tributed optimization algorithm can be decomposed into a centralized optimization method and
a second-order consensus estimator as shown in Figure 1. Specifically, our decomposition applies
to algorithms that are linear time-invariant (LTT) systems in feedback with the gradient of the
objective function and the graph Laplacian. Conversely, we show that any centralized optimiza-
tion method can be combined with any second-order consensus estimator to form a distributed
optimization algorithm (under mild technical conditions).

w
G"con < GOPt h

- Vf

Yy

Fig. 1: Universal decomposition of a distributed optimization algorithm into an optimization method
Gopt and second-order consensus estimator Geon, Where Vf is the gradient of the local objective
functions and L is the graph Laplacian.

Our decomposition has several benefits. First, it provides a non-conservative parameterization of
distributed optimization algorithms in terms of their components, which can then be systemat-
ically analyzed using tools from robust control; see [6-8] for the details of such analyses. Our
decomposition also assists algorithm designers by simplifying the taxonomy of distributed opti-
mization algorithms. Simply put, one need not look any further than the already vast literature on
gradient-based optimization methods [9-11] and consensus estimators [12-14].

Notation. Subscripts denote an agent’s index, and bold symbols to refer to quantities aggregated
over all agents, such as x = (x1,...,2,). Superscripts denote time indices, as {¢°,y*,...}. Symbols
1 and 0 denote the n-dimensional vector of all ones and all zeros, respectively. The symbol ® denotes
the Kronecker product. For an LTI operator GG, the corresponding transfer function is @(z) A
transfer function is stable if all of its poles are in the open unit disk.

Assumption. To simplify notation, we assume the local objective functions are one-dimensional,
fi : R = R. Our results generalize to the multidimensional case f; : R* — R under appropriate
restrictions on the algorithm form.

2 Preliminaries

Before describing algorithms for distributed optimization, we first describe optimization and con-
sensus separately. We make extensive use of the Final Value Theorem (FVT), which we state here
for completeness (e.g., [15, pp. 2-12, 2-15]).

Proposition 1 (Final Value Theorem). Suppose y' has the unilateral z-transform §(z). The fol-
lowing are equivalent.

o The limit of y* ast — oo exists and is finite.
o (z—1)y(2) is stable.
If the above hold, then lim;_,o y' = lim, 1 (z — 1) §(2).

2.1 Optimization

A gradient-based optimization method is an iterative procedure used to find an extremum of some
function f by sequentially querying Vf. We can view such a method as a discrete-time dynamical
system Gopt in feedback with Vf [7].

Gopt <

y= Cyopt U

- Vf u = Vf(y)

For example, standard gradient descent uses the update 2'*! = 2! — a Vf(a?), for which Gopt can
be represented using the discrete-time transfer function Gopt(2) = =%. Methods such as gradient
descent are strictly causal and have strictly proper transfer functions.

If a method is causal but not strictly causal, then the feedback loop has a circular dependency.
An example of such an algorithm is the prozimal point method, which uses the update z!*! €
argmin, (f(z) + 5= ||z — 2¢]|?). The circular dependency is apparent when we write the associated
first-order optimality condition: o't = 2t — o Vf(2'*!). This method has a proper transfer

function: Gopt(2) = 295

In this letter, we define an optimization method as a system Gopy that has the correct fixed point
when placed in feedback with Vf and also exhibits convergent behavior when using a baseline set
of easy test functions f.

Definition 1. Consider the feedback interconnection of a system Gopt with the gradient Vf, where
f) = 5lly— y*||2. The system Gopt is an optimization method if for all e > 0 sufficiently small
and for all y*, we have y' — y* as t — oo, and y' converges to a constant when ¢ = 0.

If Gopy is causal, SISO, and LTT as with gradient descent and many other methods, we can charac-
terize optimization methods via properties of the transfer function Gop(2).

Lemma 1. A causal SISO LTI system Gopt is an optimization method if and only if the following
hold:

(i) The zeros of 1 —¢ @Opt(z) are inside the unit circle for all € > 0 sufficiently small.
(1) éopt(z) has a pole at z =1 and (z — 1) éopt(z) is stable.
(i13) éopt(z) is proper.

Proof. Substituting the given f and eliminating u, the closed-loop dynamics are y = 1:1%’:; y*.

Applying the FVT, y! converging is equivalent to stability of the map and the zeros of 1 —¢ aopt(z)
being inside the unit circle. The limit y* — 3* is equivalent to aopt(z) having a pole at z = 1.
For € = 0, convergence to a constant is equivalent to stability of (z — 1) éopt (z). Causality of the
system Gopt is equivalent to properness of the transfer function @Opt(z). |

2.2 Consensus

Consider a network of n agents. Agent i € {1,...,n} observes a time-varying signal w;. A consensus
estimator [12,16] is an iterative procedure where each agent communicates with its neighbors in
order to form an estimate y; of the average %Z?:l w;. Such estimators take the following form.

y Geon TV H = Geon [w]

Zq (%

n
L vi=) ai (2~ %)
j=1

The n x n matrix A := [a;;] is the adjacency matriz that describes the interaction among agents.
The scalar a;; is the weight that agent 7 places on information from agent j, with a weight of zero if
no information flows from agent j to . Agent j is a neighbor of agent i if the weight a;; is nonzero,
and computing v; requires agent ¢ to receive the local variables z; from each of its neighbors j.
The Laplacian is the matrix L := diag(A1) — A. This matrix always satisfies L1 = 0, so it has an
eigenvalue of zero with corresponding eigenvector 1. When the communication network is connected,
meaning that there is a path between any two agents, there is exactly one zero eigenvalue [12]. When
the weights are constructed such that LT1 = 0, the Laplacian is balanced [16]. The block diagram
illustrates the global behavior of the system aggregated over all agents, where the aggregated system
and Laplacian are

I, @Gl I, ®Gl2

con con

I, ®G* I, 2 G%

con con

Geon '= and L:=L® I,

where m is the dimension of the local vectors v; and z;. For example, one particular (first-order)
consensus estimator is given by the iterations x!*! = x! + L (w! — x!) and y* = w! — x!, for which
Gcon can be represented using the discrete-time transfer function

. —
Gcon(z): 1 :11 (1)

We are interested in tracking signals with constant mean but potentially higher-order deviations
from the mean. We define a first-order estimator to have zero steady-state error for constant

deviations from the mean, a second-order estimator for ramp deviations, and so on. Similar to the
motivation for our definition of optimization methods, we define a consensus estimator as a system
Geon that can successfully track the average when using a baseline set of easy Laplacians L.

Definition 2. A system Geon S a consensus estimator of order ¢ if, for any connected com-
munication network and associated balanced and diagonalizable Laplacian L with spectral radius
sufficiently small and for any signals w! that are polynomials in t of degree £ — 1 with constant
mean w* := %Zyzl wg», the estimate y! on each agent i converges to the average w* as t — oo.

If Geon is causal and LTI, we can characterize consensus estimators via properties of the transfer
function Geon(2). It is also typical to assume G2, is strictly causal to avoid circular dependencies
in the network transmissions.

Lemma 2. Suppose Geon is a causal LTI system and G?2, is strictly causal. For all compler X € C,

define the map Gy := G&, + ANGLZ, (I -)\Gggn)fngén. Then, Geon 1S @ consensus estimator of
order £ if and only if the following hold:

(i) aA(z) is stable for all A\ € C satisfying |\| < 0 for some § > 0 sufficiently small.
(ii) Go(1) = 1.
(i13) G\)\(Z) has ¢ zeros at z =1 for all A # 0.
(iv) Geon(2) is proper and G2

con

(z) is strictly proper.

Proof. We can write the error e} := y! — w* succinctly as e = (G, — 2117) w, where Gy, is the
closed-loop map from w to y. Let (\,v7) be a left eigen-pair of L. Using that L1 = 0, we have
that 0 = v"L1 = A(v"1). Thus, 1Tv = 0 for all v corresponding to nonzero A. Furthermore,
L1 = 0 since the Laplacian is balanced (by assumption). The inner product of an eigenvector
with the error is then

v e=

T (Go—1)1Tw) ifv=1and A=0
G(vTw) otherwise.

Since the Laplacian is diagonalizable (by assumption), convergence of the error e is equivalent to

convergence of v e for each eigenvector v. Applying the FVT in the case where w! are polynomials

i
in ¢ of degree ¢ — 1 with constant average w*, the limit e/ — 0 is equivalent to stability of G for

all eigenvalues A of the Laplacian L and

lim Go(z) —1=0 and lim Ga(2)

z—1 Z—1 (Z — 1)571 =0,

which correspond to the first three conditions. Causality of G.on and strict causality of G2, are

equivalent to properness and strict properness of é’con(z) and G22

c2.(2), respectively. [

Remark 1. The transfer function of a consensus estimator is not unique. Let F be any m X m
transfer matriz with full normal rank, where m is the dimension of v; and z;. Then the closed-loop
map G, : W +— y is invariant under

~ 1 0] 4 1 0
Gcon = {0 }’7,‘:| Gcon [0 ﬁ_l] ’

although not all choices ofﬁ preserve causality of Geon.

2.3 Distributed optimization

The distributed optimization setting is conceptually a combination of the optimization and consen-
sus settings. There are n agents that can communicate over a network, agent 7 has access to the
gradient of its local function Vf;, and the goal is for all agents to achieve consensus on an extremum
of the sum of all functions f; + --- + f,,. Distributed optimization algorithms take the following
general form [6,8]; see Section 3.2 for specific examples from the literature.

] -of)
Yy Z A% u zz UZ
u; = Vfi(yi),
L n
- VFf vi= Y ay(z — 2)
j=1

Similar to the consensus and optimization settings, we have

C[LeHY I, H?2] Li=L& Iy,

H =]
I, H* I, ® H2|" Vf := diag(Vf1,..., V).

We define a distributed optimization algorithm as follows.

Definition 3. A system H is a distributed optimization algorithm if for any connected communi-
cation network and associated balanced Laplacian L with spectral radius sufficiently small, and for
all e > 0 sufficiently small and for all y*, the feedback interconnection of H with L and Vf satisfies
Yl — y* = %Z?Zl y; ast — oo for all i, where f;(y) := Slly — yr||%. We also require that all y!
converge to a common constant limit when f; =0 for all i.

If H is causal and LTI, we can characterize consensus estimators via properties of the transfer
function H (z). We will also assume causality of certain maps to ensure that the algorithm is
implementable. In particular, H should be causal, and there should be no circular dependencies
in the network transmissions or gradient evaluations. This means that the partial closed-loop map
H?2 4+ eH* (I —eH'Y)~tH'2 should be strictly causal, which is equivalent to both H?? and H*' H'2
being strictly causal.

Lemma 3. Suppose H is a causal LTI system, and H*? and H*' H' are strictly causal. For all
A € C, define the map
Hy = H' 4 \H'?(I - \H?) " 'H?.

The system H 1is a distributed optimization algorithm if and only if the following hold:

(i) The zeros of 1 — Eﬁb\(z) are inside the unit circle for all € > 0 sufficiently small and for all
A € C satisfying || < § for some 6 > 0 sufficiently small.

(ii) Ho(z) has a pole at = =1 and (z — 1) Ho(2) is stable.
(iii) Hy(z) is stable and has a zero at z =1 for all A # 0.
(iv) H(z) is proper and both H?2(z) and H2'(z) H'(z) are strictly proper.

Proof. Let Hy, be the partial closed-loop map from u to y after we eliminate z and v. Substituting
the given f; and eliminating u, we obtain the closed-loop dynamics y = —eHy,(I —Hy,) " 'y*. The
condition y! — %22}21 yj* can be written succinctly as y* — %llTy*. Diagonalizing the closed-
loop dynamics as in the proof of Lemma 2 and applying the FVT, we find that y! converging is
equivalent to the map —eHy(2)(I —eHy(2)) ™! being stable, which is equivalent to (i). Again from
the FVT, 1Ty? — 1Ty* means Hy(z) has a pole at z = 1, and convergence to a constant in the
case f; = 0 means (z — 1) ﬁo(z) is stable, so we have (ii). As in the proof of Lemma 2, we have
vT1 =0 and vTy’ — 0 for all v corresponding to A # 0, so f[,\(z) has a zero at z = 1, and for the
case f; = 0, we have that H (z) is stable, which is equivalent to (iii). Item (iv) is equivalent to the
causality assumptions. n

3 Universal decomposition

We now state our main result, which states that every distributed optimization algorithm can be
decomposed into consensus and optimization components as in Figure 1.

Theorem 1. Let H be a distributed optimization algorithm satisfying the conditions of Lemma 3.
There exists an optimization method Gopy and a second-order consensus estimator Geon such that

_ Gopt 0
=G | % P @

If HY is strictly causal, then Gopy can be chosen to be strictly causal as well.

Proof. From conditions (i), (ii), and (iv) of Lemma 3, Hy(z) has a pole at z = 1 and is proper,
(2 —1) Ho(z) is stable, and the zeros of 1 —& Hy(z) are inside the unit circle for all ¢ > 0 sufficiently
small. Then from Lemma 1, Hy = H'! is an optimization method. If H'(2) is non-minimum phase

(has zeros on or outside the unit circle), then @Opt(z) = 2P] (2‘_%;) H'(z), where the product
is over all such zeros zg, will also satisfy the conditions of Lemma 1, provided p is at most the
relative degree of H H(%). This follows because éopt (z) is still proper, still has a pole at z = 1, and
because each factor multiplying H (%) is an all-pass filter with nonnegative phase (phase lead),

which therefore can only increase stability margins and preserves the stability requirement.

Set @Opt(z) = 22 B(z) H'(2), where ®(z) := [] =22 is the product of all-pass factors that cancel

Z—20
the non-minimum phase zeros of H'!(z). Then, invert the transformation (2) and apply Remark 1
using F'(z) = 2791 to obtain

Coon(2) = 2P O(z)! 21 H'2(z)
COMT TN () HY (2) "1 ®(2)" H2(2)

Since fIH(z) is proper and ﬁlzl(z) flu(z) is strictly proper, we can always ensure écon(z) will be
proper by letting p and ¢ be the relative degrees of H (%) and H 12(2), respectively. This choice
leads to a éopt(z) that has relative degree zero. However, when H (%) is strictly proper, we can
reduce p by 1, which ensures that éopt(z) is strictly proper as well.

To verify that Geon is a consensus estimator of order two, we can compute G as defined in Lemma 2
and see that G5(z) = (P H'(2) ®(2)) 71HA(2), where H) is defined in Lemma 3. We can now verify

7

the properties in Lemma 2. When A = 0, the transfer function is ao(z) =2z7P @(z)_l, which is
stable and satisfies Go(1) = 1 since ® is all-pass. When A # 0, the fact that Hy(z) has a zero at
z =1 and ﬁ[g(z) = ﬁn(z) has a pole at z = 1 implies that CA}A(z) has two zeros at z = 1. To verify
stability when X # 0, stability of Gy (z) follows from stability of Hy(z) and ®(z)~".]

We can also prove a partial converse; under certain mild technical conditions, combining consensus
and optimization components as in Figure 1 yields a distributed optimization algorithm.

Theorem 2. Suppose Gopt is a causal SISO LTI optimization method, Geon s a causal LTI second-
order consensus estimator, and further assume

o @Opt(z) and Gy(z) are minimum-phase, meaning all zeros are strictly inside the unit circle,
and

e cither @Opt(z) or agén(z) @égn(z) is strictly proper.
Then, the combined system H given in (2) is a distributed optimization algorithm.

Proof. We will verify the properties of Lemma 3. Since Hy = G Gopt and G is stable, éopt(z)
has a single pole at z = 1 and there are no zeros outside the unit circle, the root locus will be
stable for small gains, so (i) holds. When A = 0, Hy(z) = Go(2) aopt(z). Since Go(1) = 1 and
@opt(z) has a pole at z = 1 and (z — 1)éopt(z) is stable, we have (ii). When A # 0, Gx(z) has
two zeros at z = 1 and Go(z) has a single pole at z = 1, therefore Hy(z) has a zero at z = 1 and
(iii) holds. Now we examine properness. Note that H2!(z) H'2(z) = G2 (2) G2, (2) @Opt(z), S0
strict properness of either term on the right-hand side implies strict properness of the left-hand
side. Finally, properness of @Con(z) and éopt(z) imply properness of H (z), and strict properness

of azgn(z) implies strict properness of H22(z), so (iv) holds. [

Remark 2. The continuous-time analog of gradient-based optimization methods are called gradient
flows, and there has been recent interest in studying iterative algorithms in the continuous limit [17].
Likewise, consensus methods are often analyzed in continuous time [12]. The decomposition de-
scribed in Theorems 1-2 was developed for discrete-time distributed optimization algorithms, but an
analogous decomposition exists for continuous-time systems. In this case, a distributed optimization
algorithm would separate into a gradient flow and a continuous-time consensus estimator.

Gconl * Gopt) Gcon2 B
2l L vl 22 L v?2
y Vi u

Fig. 2: Factored form of an algorithm, where the second-order consensus estimator factors into two
first-order SISO estimators; this is the form proposed in [5].

3.1 Factoring the consensus estimator

The decomposition in Figure 1 is not internally stable. While the average gradient is zero at the
optimizer, the gradient of each agent is not necessarily zero. This nonzero constant is integrated
by the optimization method to produce an unbounded output. This can be fixed, however, if the
consensus estimator factors into two first-order estimators.

Suppose Geon factors as Geon1Geon2, Where Geon1 and Geono are both first-order estimators. The
optimization method and both consensus estimators are SISO LTI systems and therefore commute,
so we can swap the order of Gopr and Geon2 to obtain the diagram in Figure 2. While this does
not change the map from u to y, it does change the realization; the steady-state input to the
optimization method is now the average gradient, which is zero at optimality.

To check whether or not a consensus estimator factors, we equate a second-order estimator G,
with its factorization Geon1Geon2 to find that

Gconl Gcon2 ‘ G2

,,,,,,,,, conl *conl ,Cenz ,
Gcon = Gconl Gcon2 Gconl Gconl Gcon2)
Gcon2 1 0 Gcon?

where (zl,vl) are the transmitted and received variables for Gcon1, and similarly for Geone. The

inputs to the combined system are then (u,v',v?), and the outputs are (y, z!,22). Note that the
transmitted variables v! and v2 need not have the same dimension. The consensus estimator has

this form if and only if G22, is zero and its components factor as

Gl GlS Gl
G;in G;gn GC0H1 [Gcon2 Gcon2]
con con conl
which is the case if and only if GL G2, — GI3 G2, = 0. Whether an estimator factors or not

depends on the transfer function Geon which is not unique, so we may need to first apply the
transformation in Remark 1 with a suitable transfer function F' for an estimator to factor.
3.2 Decomposition of known algorithms

To illustrate our results, we first describe our decomposition technique on a well-known distributed
optimization algorithm. We then state the decomposition for many other algorithms from the
literature.

3.2.1 DIGing
We first illustrate our results on the DIGing algorithm [3, 18], which is described by the iterations

1 — WXt _ Oéyt,
yt+1 — Wyt 4 vf(xt+1) o Vf(xt),

where o > 0 is the stepsize and the gossip matrix W is related to the graph Laplacian as W = I — L.
This algorithm requires each agent to communicate m = 2 variables at each iteration, and the

associated transfer function is

—a —z —az
z—1 z—1 (2—1)2

7 _ —a -1 a

H(z) = |3 —1) z—1 (z2—1)2
1 —1
z 0 z—1

Choose the optimization method as éopt (z) = H(z) = —%. Then applying the transformation in

Remark 1 with the transfer matrix F(z) = diag (2,722, the consensus estimator transforms as

) z—1
1 == _az_ -1 -1
1 (-1 L = =
~ _ 1 —1 « —1 —1
Gon(2)=| 2 =1 wpz|~ |1 =1 =1
z—1 -1 -1
—az 0 z—1 1 0 z—1

The estimator on the right satisfies the conditions to factor in Sec. 3.1; we chose the transformation

: (o : 1 _ 11 _ 1 _ :
matrix such that this is the case. Since G¢,, = 1, we can choose G;,; = 1 = G_;,9, Which results

in the factorization Geon = Geon1 Geon2, Where both factors are the first-order estimator in (1).

The analysis for all other algorithms in this section is similar. In each case, we choose the opti-
mization algorithm as Gopy = H 5o that G1l = 1. In addition, we apply the transformation in

con
Remark 1 to put the estimators in a similar form with G2l =1 for comparison.

con

3.2.2 Non-accelerated algorithms

We first consider algorithms that use standard gradient descent for the optimization method:
aopt(z) = —9 where a > 0 is the stepsize. Several such algorithms have been proposed whose con-
sensus estimator factors (see Section 3.1). In particular, each factor is typically one of the following
first-order estimators:

1 =L 1 ==
~ ~ z—1 z—1
Gconl(z)7 GconQ(z) = [1 1] or [1

Every combination of these factors has been proposed in the literature: DIGing [3, 18] uses the
estimator on the left for both factors, AB [19] uses one of each?, and AugDGM [20] uses the one
on the right for both factors.

Not every algorithm uses a consensus estimator that factors into two first-order estimators. To
check whether or not an algorithm factors, we search for a transfer matrix F with full normal rank
such that the transformed consensus estimator in Remark 1 satisfies the necessary conditions for
factorization in Section 3.1. Here are the second-order consensus estimators for some algorithms

2The AB method is described in terms of two gossip matrices A and B, where the Laplacianis L = —A=I—B.

10

that do not factor:

_ 1

~ 1 2

Geon(2) = (Zf_lz)2 Exact Diffusion [21]
RE=)E
_1 12

éCon(Z) = —(f—&:i)sz NIDS [22]
R ey
B 1

- 1 2=

Gcon(z) = (Zl__lz EXTRA {2]
e

Gcon(z) = 1 1SZ(I+?3)Z SVL [6]
I Go1)?

3.2.3 Accelerated algorithms

Our decomposition also applies to accelerated algorithms. The optimization method then has the
form [7,9]
~ (I+7)z—7
G =—a—F—
S e}
where § and 7 are additional parameters. Examples include ABm [23] based on the heavy-ball
optimization method [11] with v =0, and ABN [24] based on Nesterov’s accelerated method [10]

with v = 8. For each of these algorithms, the consensus estimator factors into the two first-order
estimators

1

~ 1 1q, A 1
Geon1(2) = [ié pt(Z;] and Geon2(z) = [_11] .
«

4 Perspectives

Our decomposition of an algorithm into its optimization and consensus components leads to some
perspectives that may prove useful for algorithm design.

Robust optimization Using our decomposition, we can interpret an algorithm for distributed
optimization as an optimization method that, along with the gradient, includes an additional
consensus estimator in the loop. If this consensus estimator were to converge arbitrarily fast, then
the iterates would never be in disagreement and the system would reduce to that of the centralized
optimization method. Because the consensus estimator is not ideal, however, the optimization
method must be robust to the dynamics of the estimator; see [25-28] for robust optimization
methods.

Consensus with feedback Alternatively, we can view an algorithm as a second-order consensus
estimator whose input is obtained by feeding back the output through the gradient and the opti-
mization method. In this interpretation, the consensus estimator must be stable when connected in

11

feedback. This feedback loop is linear when the local objective functions are quadratic (gradients
are linear), but is otherwise nonlinear.

Each of these interpretations provides a certain perspective on the combined algorithm. Ideally,
the design of the optimization and consensus components would decouple, enabling researchers to
make use of the abundant literature on optimization and consensus. Our decomposition provides
a first step towards this decoupling, with these perspectives indicating that proper measures of
robustness must be taken into account in the algorithm design.

References

[1]
2]

3]

[13]
[14]

[15]

D. Jakoveti¢, “A unification and generalization of exact distributed first-order methods,” IEEE Trans.
Sig. Inf. Process. Netw., vol. 5, no. 1, pp. 31-46, 2018. (Cited on p. 1)

W. Shi, Q. Ling, G. Wu, and W. Yin, “EXTRA: An exact first-order algorithm for decentralized
consensus optimization,” SIAM J. Optim., vol. 25, no. 2, pp. 944-966, 2015. (Cited on pp. 1 and 11)

A. Nedié, A. Olshevsky, and W. Shi, “Achieving geometric convergence for distributed optimization
over time-varying graphs,” SIAM J. Optim., vol. 27, no. 4, pp. 2597-2633, 2017. (Cited on pp. 1, 9,
and 10)

A. Sundararajan, B. Van Scoy, and L. Lessard, “A canonical form for first-order distributed optimization
algorithms,” in Amer. Contr. Conf., 2019, pp. 4075-4080. (Cited on p. 1)

S. Han, “Systematic design of decentralized algorithms for consensus optimization,” IEEE Contr. Syst.
Lett., vol. 3, no. 4, pp. 966-971, 2019. (Cited on pp. 1, 2, and 8)

A. Sundararajan, B. Van Scoy, and L. Lessard, “Analysis and design of first-order distributed optimiza-
tion algorithms over time-varying graphs,” IEEE Trans. Contr. Netw. Syst., vol. 7, no. 4, pp. 1597-1608,
2020. (Cited on pp. 2, 6, and 11)

L. Lessard, B. Recht, and A. Packard, “Analysis and design of optimization algorithms via integral
quadratic constraints,” SIAM J. Optim., vol. 26, no. 1, pp. 57-95, 2016. (Cited on pp. 2, 3, and 11)

A. Sundararajan, B. Hu, and L. Lessard, “Robust convergence analysis of distributed optimization
algorithms,” in Allerton Conf. Commun. Contr. Comput., 2017, pp. 1206-1212. (Cited on pp. 2 and 6)

B. Van Scoy, R. A. Freeman, and K. M. Lynch, “The fastest known globally convergent first-order
method for minimizing strongly convex functions,” IEEE Contr. Syst. Lett., vol. 2, no. 1, pp. 49-54,
2018. (Cited on pp. 2 and 11)

Y. Nesterov, Lectures on Convexr Optimization. Springer Optimization and Its Applications, 2018, vol.
137. (Cited on pp. 2 and 11)

B. Polyak, “Some methods of speeding up the convergence of iteration methods,” USSR Comput. Math.
Math. Phys., vol. 4, no. 5, pp. 1-17, 1964. (Cited on pp. 2 and 11)

S. S. Kia, B. Van Scoy, J. Cortés, R. A. Freeman, K. M. Lynch, and S. Martinez, “Tutorial on dynamic
average consensus: The problem, its applications, and the algorithms,” IEEE Contr. Syst. Mag., vol. 39,
no. 3, pp. 40-72, 2019. (Cited on pp. 2, 4, and 8)

M. Zhu and S. Martinez, “Discrete-time dynamic average consensus,” Automatica, vol. 46, pp. 322-329,
2010. (Cited on p. 2)

L. Xiao and S. Boyd, “Fast linear iterations for distributed averaging,” Syst. Control. Lett., vol. 53,
no. 1, pp. 65-78, 2004. (Cited on p. 2)

W. S. Levine, The Control Handbook (three volume set). CRC press, 2018, vol. 1. (Cited on p. 3)

12

[16]
[17]
18]
[19]

[20]

[21]

[22]

23]

R. A. Freeman, T. R. Nelson, and K. M. Lynch, “A complete characterization of a class of robust linear
average consensus protocols,” in Amer. Contr. Conf., 2010, pp. 3198-3203. (Cited on p. 4)

W. Su, S. Boyd, and E. Candes, “A differential equation for modeling Nesterov’s accelerated gradient
method: Theory and insights,” Adv. Neur. Inf. Process. Syst., vol. 27, 2014. (Cited on p. 8)

G. Qu and N. Li, “Harnessing smoothness to accelerate distributed optimization,” IEEE Trans. Contr.
Netw. Syst., vol. 5, no. 3, pp. 1245-1260, 2017. (Cited on pp. 9 and 10)

R. Xin and U. A. Khan, “A linear algorithm for optimization over directed graphs with geometric
convergence,” IEEE Contr. Syst. Lett., vol. 2, no. 3, pp. 315-320, 2018. (Cited on p. 10)

J. Xu, S. Zhu, Y. C. Soh, and L. Xie, “Augmented distributed gradient methods for multi-agent opti-
mization under uncoordinated constant stepsizes,” in IEEE Conf. Decis. Contr., 2015, pp. 2055-2060.
(Cited on p. 10)

K. Yuan, B. Ying, X. Zhao, and A. H. Sayed, “Exact diffusion for distributed optimization and
learning—Part I: Algorithm development,” IEEE Trans. Sig. Process., vol. 67, no. 3, pp. 708-723,
2018. (Cited on p. 11)

Z. Li, W. Shi, and M. Yan, “A decentralized proximal-gradient method with network independent step-
sizes and separated convergence rates,” IEEFE Trans. Sig. Process., vol. 67, no. 17, pp. 4494-4506, 2019.
(Cited on p. 11)

R. Xin and U. A. Khan, “Distributed heavy-ball: A generalization and acceleration of first-order meth-
ods with gradient tracking,” IEEE Trans. Automat. Contr., vol. 65, no. 6, pp. 2627-2633, 2020. (Cited
on p. 11)

R. Xin, D. Jakoveti¢, and U. A. Khan, “Distributed Nesterov gradient methods over arbitrary graphs,”
IEEE Sig. Process. Lett., vol. 26, no. 8, pp. 1247-1251, 2019. (Cited on p. 11)

S. Cyrus, B. Hu, B. Van Scoy, and L. Lessard, “A robust accelerated optimization algorithm for strongly
convex functions,” in Amer. Contr. Conf., Jun. 2018, pp. 1376-1381. (Cited on p. 11)

N. S. Aybat, A. Fallah, M. Giirblizbalaban, and A. Ozdaglar, “Robust accelerated gradient methods for
smooth strongly convex functions,” SIAM J. Optim., vol. 30, no. 1, pp. 717-751, 2020. (Cited on p. 11)

S. Michalowsky, C. Scherer, and C. Ebenbauer, “Robust and structure exploiting optimisation algo-
rithms: an integral quadratic constraint approach,” Int. J. Contr., vol. 94, no. 11, pp. 2956—2979, 2020.
(Cited on p. 11)

H. Mohammadi, M. Razaviyayn, and M. R. Jovanovi¢, “Robustness of accelerated first-order algorithms
for strongly convex optimization problems,” IEEE Trans. Automat. Contr., vol. 66, no. 6, pp. 24802495,
2021. (Cited on p. 11)

13

	Introduction
	Preliminaries
	Optimization
	Consensus
	Distributed optimization

	Universal decomposition
	Factoring the consensus estimator
	Decomposition of known algorithms
	DIGing
	Non-accelerated algorithms
	Accelerated algorithms

	Perspectives

