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Abstract

Smooth minimax games often proceed by si-
multaneous or alternating gradient updates.
Although algorithms with alternating up-
dates are commonly used in practice, the ma-
jority of existing theoretical analyses focus on
simultaneous algorithms for convenience of
analysis. In this paper, we study alternating
gradient descent-ascent (Alt-GDA) in mini-
max games and show that Alt-GDA is su-
perior to its simultaneous counterpart (Sim-
GDA) in many settings. We prove that Alt-
GDA achieves a near-optimal local conver-
gence rate for strongly convex-strongly con-
cave (SCSC) problems while Sim-GDA con-
verges at a much slower rate. To our knowl-
edge, this is the first result of any setting
showing that Alt-GDA converges faster than
Sim-GDA by more than a constant. We fur-
ther adapt the theory of integral quadratic
constraints (IQC) and show that Alt-GDA
attains the same rate globally for a subclass
of SCSC minimax problems. Empirically, we
demonstrate that alternating updates speed
up GAN training significantly and the use of
optimism only helps for simultaneous algo-
rithms.

1 INTRODUCTION

Since the seminal work of von Neumann (von Neu-
mann, 1928), minimax optimization in the form of
min, maxy f(x,y) has been a major focus of research
in mathematics, economics and computer science (von
Neumann and Morgenstern, 1944; Bagar and Olsder,
1998; Roughgarden, 2010). Recently, minimax opti-
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Figure 1: Left: a simple bilinear game with function
f(z,y) = 10zy; Middle: a SCSC minimax game with
f(z,y) = 0.52% + 10zy — 0.5y>. Right: a minimax game
that is not strongly-convex in = with f(z,y) = 10zy —
y?; Color from dark to light indicates the direction of the
trajectory. Key Observation: Alt-GDA converges much
faster than Sim-GDA when they both converge.

mization has gained tremendous attention in machine
learning as it offers a flexible paradigm that goes be-
yond ordinary loss function minimization. In particu-
lar, there is an increasing set of models that can be for-
mulated as minimax problems, including (but not lim-
ited to) generative adversarial networks (Goodfellow
et al., 2014; Arjovsky et al., 2017), adversarial train-
ing (Madry et al., 2018), robust optimization (Ben-
Tal et al., 2009) and primal-dual reinforcement learn-
ing (Du et al., 2017; Yang et al., 2020c).

The most natural and frequently used method for solv-
ing minimax problems is a generalization of gradient
descent known as gradient descent-ascent (GDA), with
either simultaneous or alternating updates of the two
players, referred to as Sim-GDA and Alt-GDA, respec-
tively, throughout the sequel. Unlike gradient descent,
which converges to a local minimum for minimiza-
tion problems under a broad range of conditions (Lee
et al., 2016, 2017), it is known that GDA with constant
step-sizes can fail to converge for general smooth func-
tions (Mescheder et al., 2017), even for unconstrained
bilinear games (Gidel et al., 2019b; Bailey and Pil-
iouras, 2018). Even when it does converge, GDA may
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exhibit rotational behaviors (Mescheder et al., 2017;
Letcher et al., 2019; Schaefer and Anandkumar, 2019)
and hence converge slowly (see Figure 1). To com-
bat these issues, several algorithms have been intro-
duced specifically for smooth minimax games, includ-
ing consensus optimization (Mescheder et al., 2017),
symplectic gradient adjustment (Letcher et al., 2019),
negative momentum (NM) (Gidel et al., 2019b; Zhang
and Wang, 2021), optimistic gradient descent-ascent
(OGDA) (Popov, 1980; Rakhlin and Sridharan, 2013;
Daskalakis et al., 2018; Mertikopoulos et al., 2019) and
extra-gradient (EG) (Korpelevich, 1976).

In theory, many of these algorithms enjoy improved
convergence rates compared to GDA. In particular,
both OGDA and EG are near-optimal for SCSC min-
imax problems (Mokhtari et al., 2020b). However, in
practice, GDA and its adaptive variants are still the
go-to algorithms for many applications (e.g., GAN op-
timization and offline policy evaluation (Yang et al.,
2020c)). Here, the catch is that the overwhelming ma-
jority of existing theoretical analyses focus on simul-
taneous algorithms where players update their strate-
gies at the same time, as simultaneous updates are
easier to analyze and can often be formulated as solv-
ing a variational inequality problem (Harker and Pang,
1990; Gidel et al., 2019a; Zhang et al., 2021). This is
in stark contrast to our common practice where al-
ternating algorithms are actually used. Nonetheless,
our understanding of alternating algorithms in mini-
max optimization is severely limited to simple bilinear
games. Despite it being a very natural question to ask,
the convergence properties of Alt-GDA for SCSC min-
imax games and many other settings remain largely
unknown. The key difficulty is that every iteration of
an alternating algorithm is a composition of two half
updates, which greatly complicates analysis.

Our contributions. In this paper, we take a step to-
wards understanding Alt-GDA and closing the gap be-
tween theory and practice. We first revisit the conver-
gence properties of Alt-GDA in bilinear games for com-
pleteness. We then discuss our main contributions on
proving near-optimal convergence rates of Alt-GDA.
In more detail:

1. We prove that, for SCSC minimax games!, Alt-
GDA achieves an iteration complexity of O(k)
locally (x is the condition number), which is
quadratically better than the O(x?) bound for
Sim-GDA and even matches EG/OGDA. Impor-
tantly, the complexity bound for Alt-GDA in this

!The SCSC setting is fundamental. Via reduction (Lin
et al., 2020; Yang et al., 2020b), an efficient algorithm
for this setting implies efficient algorithms for other set-
tings, including strongly convex-concave, convex-concave,
and non-convex-concave settings.

setting is near-optimal as it matches the coarse
lower bound in (Azizian et al., 2020b, Corollary
1).

2. We further prove that both Sim-GDA and Alt-
GDA attain linear convergence when the minimax
problem has only strong concavity in y but no
strong convexity in x by assuming non-singularity
of the coupling matrix.

3. We show that Alt-GDA can converge with the
same rate O(x) globally for a class of SCSC min-
imax games with a bilinear coupling term. This
is done by using theory of IQC to automatically
search for a Lyapunov function.

4. Lastly, we validate our theory on quadratic min-
imax games. Empirically, we demonstrate that
alternating updates could speed up GAN training
dramatically (which matches the existing results
in Goodfellow et al. (2014); Radford et al. (2015))
and perform on par with optimistic updates
though GAN objective is generally nonconvex-
nonconcave.

2 PRELIMINARIES

Notation. In this paper, scalars are denoted by lower-
case letters (e.g., A), vectors by lower-case bold let-
ters (e.g., X), matrices by upper-case bold letters (e.g.,
J). The spectrum of a square matrix A is denoted by
Sp(A), and a generic eigenvalue by A\. We respectively
note opmin(A) and oymax(A) the smallest and the largest
positive singular values of A. For matrix inequality
A > B, we mean A — B is positive semi-definite. We
use R and & to denote the real part and imaginary
part of a complex scalar respectively. We use R and C
to denote the set of real numbers and complex num-
bers, respectively. We use p(A) = lim; ., [|A*]|'/? to
denote the spectral radius of matrix A. O, ) and ©
are standard asymptotic notations.

2.1 Two-player Minimax Games

We begin by presenting the fundamental two-player
zero-sum game that we will consider in the sequel. To
be specific, our problem of interest is the following
unconstrained minimax optimization problem:

Jnin max f(x,y). (1)
We are usually interested in finding a Nash equilib-
rium (von Neumann and Morgenstern, 1944): a set
of parameters from which no player can (unilaterally)
improve its objective function. In this work, we focus
on the case of f being a convex-concave and smooth
function. Here we state the assumption formally.
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Assumption 1. The function f is continuously dif-
ferentiable and L-smooth in x andy. Furthermore, we
assume f is conver in X and concave in'y.

For completeness, we state the definition of smooth
function. We note that the smoothness assumption is
standard for convergence analysis in the literature.

Definition 1. A differentiable function ¢ : R — R
is L-smooth if it has L-Lipschitz gradient on RY, i.e.,
for any x1,Xo € R, we have |[Vo(x1) — Vo(x2)|| <
L||X1 — X2||.

One of the nice properties of working with convex-
concave problems is that there often exists at least
one global Nash equilibrium (x*, y*) such that for any
x € R™,y € R™ we have

fxy) < fx5Y7) < fxy7).
2.2 Gradient Descent-Ascent Family

We now present two algorithms we will discuss in this
paper, Sim-GDA and Alt-GDA. The de-facto standard
algorithm for finding Nash equilibria of general smooth
two-player minimax games is simultaneous gradient
descent-ascent (Sim-GDA) which is a direct general-
ization of gradient descent to minimax games. In par-
ticular, it updates both players x and y simultane-
ously:

X1 = Xt — NVx f (X6, ¥1),

Yir1 =Yt +Vy f(Xe,¥e),

where 7 is the step size?. Succinctly, Sim-GDA up-
dates (2) can be defined as the repeated applica-
tion of a nonlinear operator in the form of z;,; =
F3™(zy) £ 2y — 9V (z) with z = [x",y']" and
V(z) = [Vxf(x,¥)",-Vyf(x,y)"]7, the gradient
vector field. By contrast, Alt-GDA takes advantage
of the fact that the iterates x;; and y;y; are com-
puted sequentially:

Xt41 = Xt — vaf(xm yt)a
Yirr =Yt +Vy f(Xii1, Y1)

(2)

(3)
Similarly, we can write the updates as z;1 = F;f“(zt).

2.3 Local Convergence Rates

We stress that local convergence analysis has been
widely adopted in smooth game optimization (see
e.g., Gidel et al. (2019b); Wang et al. (2019); Azizian
et al. (2020b); Zhang and Wang (2021); Liang and
Stokes (2019); Fiez and Ratliff (2021)). Under certain
conditions on a fixed point operator F', linear conver-
gence is guaranteed in a neighborhood around a fixed
point z* (i.e. local convergence).

2Using separate step sizes for two players does not im-
prove the worst-case convergence rate.

Theorem 1 ((Bertsekas, 1997, Proposition 4.4.1)).
For a continuously differentiable nonlinear operator F
with the fized point z*, if the spectral radius pp =
p(VF(z*)) < 1, then for any zo in a neighborhood of
z*, the iterates of z; converge to z* with a linear rate
of O((pr + €)t) for any € > 0.

With this theorem, one can obtain local convergence
rate of an algorithm by just computing the spectral
radius of VF, (z*), which is a constant matrix depend-
ing on 7 in our setting. In the paper, we focus on the
worst-case convergence rate which is defined (up to a
e difference) as follows:

min max p(VF, (2°)) (4)

where the inner maximization is over all possible in-
stances within the whole problem class M.

2.4 Revisiting Alt-GDA for Bilinear Games

In this section, we revisit the unconstrained bilinear
games (Gidel et al., 2019b; Daskalakis and Panageas,
2018; Liang and Stokes, 2019; Mokhtari et al., 2020a)
for which Sim-GDA diverges with any finite step size.
Formally, the bilinear game is given by
: T

Jin maxx By, (5)
where we ignore the linear terms without loss of gener-
ality. Here, the Nash equilibrium is (x*,y*) satisfying
B'x* = 0 and By* = 0. To measure convergence,
one could monitor the distance to the equilibrium:

Ar = [l = x[I3 + llye =y [13. (6)

We aim to understand the difference between the
dynamics of simultaneous and alternating methods.
Practitioners have been widely using the latter instead
of the former when optimizing GANs despite the rich
optimization literature on simultaneous methods.

For Sim-GDA, the eigenvalues of IfVFsim are all pure
imaginary. As a result, we have the spectral radius as
p(VFF™) = 1+ 0?02, (B). Therefore, we have

Theorem 2 (Gidel et al. (2019b)).
the iterates of Sim-GDA diverges as

At €N (A[)(l + ,’720—371111(B))t)

This theorem states that the iterates of Sim-GDA di-
verge linearly for any positive constant step-size n. By
contrast, the iterates of Alt-GDA stay bounded due to
the sequential update rule which significantly shifts the
eigenvalues of the Jacobian. Specifically, the eigenval-
ues of VFM are roots of the polynomial (z—1)2+n? Az

For any n > 0,

with A € Sp(BTB). As a consequence, the spectral ra-
dius of VF,;sdt is upper bounded by 1 for some 7 and
hence the iterates of Alt-GDA stays bounded.
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Theorem 3. For any 0 <n < #@’ the iterates of
Alt-GDA stay bounded

Ay € O (Ay)

Similar results can be found in the literature (see e.g.,
Gidel et al. (2019b); Zhang and Yu (2020)). In addi-
tion, one can show that for bilinear games, Alt-GDA
is a symplectic integrator applied on the continuous
dynamics (Bailey et al., 2020), which preserves energy
and volume.

3 NEAR-OPTIMAL LOCAL
CONVERGENCE IN SCSC
SETTING

Bilinear games, as discussed previously, are somewhat
simplistic in that they obey a conservation law and
can be easily solved by performing gradient descent on
the Hamiltonian (Letcher et al., 2019; Azizian et al.,
2020b). In this section, we consider a different class
of games whose Jacobian has both symmetric and an-
tisymmetric components, and are therefore arguably
harder to solve. In particular, we assume f(x,y) is
SCSC and smooth, which implies

ﬂxI = vif = LxIa /~LyI = _vzrf = LyIa
IViy fll2 < Lay-

We let L £ max{Lx, Ly, Lxy} and p = min{px, iy }
and define the condition number x £ L/u. Accord-
ingly, one can define rx = L/uyx and ky = L/py.
We now briefly summarize some known results about
convergence of Sim-GDA in this setting. The worst-
case convergence rate (4) of Sim-GDA reduces to
p(I —nVV(z*)), which is equivalent to

min max [1—nAl, (7)
where K is the support of the eigenvalues of the Jaco-
bian of the gradient vector field V. It can be shown
that K = {A € C: [\ < V2L, RA > > 0} (see Ap-
pendix A.2). This set is the intersection between a
circle and a halfplane (Azizian et al., 2020b). Eqn. (7)
leaves open the choice of 7, and it is known that the
presence of large imaginary eigenvalues of the Jacobian
forces a small value of 7, thereby limiting the rate of
convergence (Mescheder et al., 2017). We summarize
the result below:

Theorem 4. With the step size 1 = 3%z, we have
p(VFJ™(z*)) <1— ;. Hence, Sim-GDA converges

4K2 *

locally at a linear rate O ((1 — ﬁ)t).

This theorem suggests that Sim-GDA converges to the
equilibrium linearly with an iteration complexity of
O(r?), which is known to be tight (Azizian et al.,

A
Im
%

Figure 2: Eigenvalues of VFnSim and VF,;*lt for a minimax

problem with the function f(z,y) = 0.3z% 4+ 1.2zy — 0.3y
For a fixed step-size 71, eigenvalues of Sim-GDA are rep-
resented with red dots and eigenvalues of Alt-GDA are
green dots. Their trajectories as 1 sweeps in [0, 1] are
shown from light colors to dark colors. Convergence circles
for Sim-GDA are in red, Alt-GDA in green, and unit cir-
cle in black. The convergence circles are optimized over
all step-sizes. Alternating updates help as its convergence
circle (green) is smaller, due to the fact that it allows us to
use much larger step-sizes. Figure inspired by Gidel et al.
(2019Db).

2020b) but much slower than the O(k) iteration com-
plexity of extra-gradient (EG) or optimistic gradient-
descent-ascent (OGDA) (Gidel et al., 2019a; Mokhtari
et al., 2020a; Azizian et al., 2020a; Zhang et al., 2021).

To understand why, we note the maximization over A
in (7) is attained by A = p + /2L? — p2i, which has
a large imaginary component. It is easy to show (see
e.g., Mescheder et al. (2017)) that the largest feasible
step size in (7) is inversely proportional to (|A|/R()))?2.
Hence, the step size has to be extremely small in the
presence of eigenvalues with large imaginary parts,
which in turn, leads to slow convergence. In a nutshell,
the culprits of slow convergence in Sim-GDA are eigen-
values of the Jacobian of the associated vector field
V with large imaginary parts. We stress that eigen-
values with large imaginary components contribute to
a strong “rotational force”. To improve convergence,
many algorithms have been introduced to suppress the
rotational force, including EG, OGDA, and NM. In-
deed, all three of these algorithms improve the con-
vergence rate by some margin in theory. Nevertheless,
GDA (or its adaptive variant) is still the go-to algo-
rithm in practice.

We believe the reason these alternative algorithms
haven’t been adopted widely is that practical algo-
rithms for cases such as GANs are typically based on
Alt-GDA rather than Sim-GDA. Surprisingly, despite
the popularity of Alt-GDA, its convergence properties
haven’t been analyzed in this setting. While it is per-
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haps intuitive that Alt-GDA should perform better
than Sim-GDA due to its use of fresher gradient in-
formation, we show that, in fact, Alt-GDA achieves a
quadratic speedup over Sim-GDA locally and matches
the convergence rate of EG and OGDA.

Local convergence analyses of Sim-GDA, EG and
OGDA are based on matrix spectral calculation, and
in principle one can apply this to Alt-GDA as well.
However, bounding the spectral radius is much harder
for Alt-GDA, since the algorithm involves two half
steps, and the spectral radius of the matrix product
can’t be bounded straightforwardly in terms of the
spectral radii of the two factors. This is likely why
the convergence rate of Alt-GDA remained unknown.
By treating complex eigenvalues differently and adopt-
ing a fined-grained analysis, we arrive at the following
bounds for the eigenvalues of VF;]Mt(Z*):

Theorem 5. With the step size n < i, the eigenval-
ues of VEM(2*) satisfy

if real: |A| < max{l — nux,1 —npy},
if complex: A < \/(1 = i) (1~ npay)-

Remark 1. In stark contrast to Sim-GDA, for which
the complex eigenvalues of VFnSim can have magnitude

as large as \/1—2nu+ 2n2L2, the complex eigenval-
ues of VF,;Alt are much smaller in magnitude and are
even smaller than the real eigenvalues as shown in
Theorem 5. As a result, we are allowed to use a larger
step size, which gives an improved convergence rate
(see Figure 2 for details).

Following immediately from Theorem 5, we have the
following Corollary.

Corollary 1. With n = 5+, we have p(VF,f“(z*)) <

— i Hence by Theorem 1, Alt-GDA converges lo-

cally at a linear rate O ((1 - i + e)t> with € > 0 an

arbitrarily small constant.

In particular, this corollary suggests that the iteration
complexity of Alt-GDA matches the coarse lower iter-
ation complexity bound® Q(k) (Azizian et al., 2020b,
Corollary 1) up to a constant, implying Alt-GDA is
near-optimal (at least locally). This is the first time
that one can rigorously show the Alt-GDA converges
faster than Sim-GDA by more than a constant, let
alone quadratically faster.

Furthermore, it implies that the convergence rate of
Alt-GDA is no worse than its rate for pure cooperative

3The fine-grained bound (Zhang et al., 2019b) is
Q(y/Fxky). One could achieve this bound by using a accel-
erated proximal point framework (Yang et al., 2020b) with
Alt-GDA in the inner-loop.

games with B £ Viy f = 0. Put differently, the ad-
versarial component (the existence of coupling matrix
B) does not make the optimization any harder for Alt-
GDA. We remark that this is not true for Sim-GDA
because in that case, the coupling matrix B introduces
complex eigenvalues with large imaginary parts, which
slow down convergence.

4 ACCELERATION WITHOUT
STRONG CONVEXITY

We have shown that Alt-GDA achieves a near-optimal
local convergence rate for SCSC minimax games. In
this section, we further consider the case that has only
strong concavity in the player y but no strong convex-
ity in x. In particular, it is equivalent to assuming

0 =X Vif 2 Ll py 1 X =V f < Ly 1,
IV fll2 < Lay-

This setting was investigated in empirical policy eval-
uation where no strong convex regularization is ap-
plied on the primal variables (Du et al., 2017). They
showed that the non-singularity of the coupling matrix
B=£ Viy f(x*,¥*) can help achieve linear convergence
for Sim-GDA. Technically, the coupling matrix B has
to be full-row rank (i.e., Amin(BBT) > 0) and we sim-
ply assume fixy = omin(B) > 0. Then for Sim-GDA,
we have the eigenvalues of its Jacobian as follows:

Theorem 6. Letn < 1, the eigenvalues ofVFsim(z*)
satisfy the following bound

if real: |A| < max {1 — %,uiw 1—npy},
if complex: |A| < \/1 — Nty + 202L2.

To be noted, our eigenvalue bounds in Theorem 6 are
slightly different from that in Du et al. (2017) as they
allow step size separation for player x and y. As a
result, we get the following local convergence rate by
optimizing over the step-size 7.

Corollary 2. Withn = 4%, we have p(VFsim(z*)) <
1— 1

16 max{ryrZ k2 }"

t
cally at a linear rate O ((1 — m) )
Yivxy Ny

Hence, Sim-GDA converges lo-

This corollary suggests that the convergence rate of
Sim-GDA could match the rate in Theorem 4 if the
coupling matrix is well-conditioned (i.e., kxy =~ 1), al-
beit the absence of strong convexity in x. Naturally,
this begs the question: whether we can derive simi-
lar results for Alt-GDA that improves upon the rate
bound of Sim-GDA. We answer this question in the af-
firmative. In particular, we have the following bounds
for the cigenvalues of VFA .
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Theorem 7. Let n < ﬁ, the eigenvalues of
VF;*“(Z*) satisfy the following bound

if real: |A| < max{l — r]Q,uiy, 1 —npyt,
if complex: |A| < /1 —npy.

Compare the eigenvalue bound of Alt-GDA to Sim-
GDA, one may notice that the main difference is the
complex eigenvalues. Similar to the SCSC setting, the
complex eigenvalues of Alt-GDA are much smaller in
magnitude, thus allowing us to use larger step sizes.
Consequently, we have a better convergence rate for
Alt-GDA (see Figure 1 for detailed comparisons).

we have we have

Hence, Alt-GDA

1
4dmax{riy, Ky}

Corollary 3. Choosing 1 = 5=,

p(VEM!(z")) < 1 — g

4dmax{riy Ky}’

converges locally at a linear rate O((1

€)!) with € > 0 a small constant.

Compared with the bound of Sim-GDA in Theorem 2,
one can see that Alt-GDA converges much faster than
Sim-GDA, especially when ry is large.

5 GLOBAL CONVERGENCE FOR
BILINEARLY-COUPLED
MINIMAX GAMES

So far, we derived local convergence rates of Alt-GDA
in different settings. Nonetheless, the global conver-
gence results remain largely unknown. Unlike local
convergence analysis, we have to switch to Lyapunov
theory for global convergence analysis. Finding a right
Lyapunov function for Alt-GDA turns out to be ex-
tremely hard and we resort to integral quadratic con-
straints (IQC) theory (Lessard et al., 2016; Zhang
et al., 2021) for a computer-aided proof*. Basically,
we view the algorithm as an interconnected dynami-
cal system with nonlinear feedback (i.e., the gradient)
and model the nonlinear feedback with quadratic con-
straints®. Then it allows us to automatically search
for a quadratic Lyapunov function for certifying the
worst-case convergence rate by solving a semi-definite
program (SDP). Due to space constraints, we refer the
reader to Appendix B for all the details.

In particular, we analyze Alt-GDA for bilinearly-
coupled minimax games with the following form:
. T
By — 8
Jnin max f(x) +x By —g(y), (8)

where we assume both f and ¢ are p-strongly-convex
and L-smooth, ||B|l2 < L. This problem is a spe-

4See the blog by Adrien Taylor for more details
about computer-aided analyses (https://francisbach.
com/computer-aided-analyses/).

5Both convexity and smoothness can be characterized
tightly with quadratic constraints.
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Figure 3: Certified iteration complexities of Sim-GDA
and Alt-GDA for blinearly-coupled minimax games. Ob-
servations: (1) Sim-GDA converges with an iteration
complexity of O(x?); (1) Alt-GDA achieves an improved
rate of O(k), which matches the local rate.

cial case of the minimax games that is amenable to
IQC analysis. This problem has been studied exten-
sively Chambolle and Pock (2011); Du and Hu (2019);
Xie et al. (2021). However, the convergence properties
of Alt-GDA again remain unknown.

Using the 1QC framework, we are able to search for
the best possible convergence rate of Alt-GDA for ev-
ery given condition number x by solving a SDP. How-
ever, the size of the SDP is proportional to m and
n. This can be problematic in cases where m (or n)
is large because it can be computationally costly to
solve large SDPs. Fortunately, we prove that the high
dimensional problem isn’t any harder than than the
case of m =n =1, so we can reduce the problem to a
SDP with m = n = 1, which is easy to solve.

Theorem 8. Using the IQC framework to analyze the
convergence rate of Alt-GDA on problem (8), we can
simply assume m =n = 1 if B is diagonal. Let pp,
be the IQC-certified rate for problem (8) with x € R™
and 'y € R"™, then we have pmn < p11-

In Figure 3, we plot the IQC-certified iteration com-
plexity as a function of condition number. We observe
that the bound for Alt-GDA does improve upon that
of Sim-GDA, especially when the condition number is
large. In particular, the complexity of Alt-GDA scales
linearly with the condition number, suggesting its iter-
ation complexity is O(k). This implies that Alt-GDA
does accelerate the convergence globally for this class
of problem.

6 RELATED WORK

The discussion of simultaneous and alternating up-
dates in iterative algorithms dates back to the Jacobi
and Gauss—Seidel methods in numerical linear alge-
bra (Saad, 2003). The Jacobi method makes simul-
taneous updates and is therefore naturally amenable
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Figure 4: Left: Distance to the optimum as a function of training iterations. Alt-GDA accelerates Sim-GDA significantly
on this particular quadratic minimax problem. In particular, its convergence rate is better than the worst-case rate of
1— s~ with k = max{|\;|}/min{R(\:)} (x = 50). Moreover, Alt-GDA outperforms OGDA and EG by a visible margin
albeit the fact that they all have the O(k) complexity bound. Middle: A hard problem with entries of B sampled from
N(0,1) (rk = 300). Right: Iterations to convergence for the all 5 algorithms with tuned hyperparameters. The iteration
complexity of Alt-GDA scales linearly with the condition number while that of Sim-GDA scales quadratically.

to parallelization. On the other hand, the Gauss-
Seidel method updates sequentially, so that each up-
date leverages fresh information, and therefore is typi-
cally more stable and converges in fewer iterations. In
minimax optimization, there is an analogous trade-off
between simultaneous and alternating updates.

The discussion of alternating algorithms is lacking and
is largely limited to simple bilinear games. Gidel et al.
(2019b) showed that Alt-GDA stays bounded and neg-
ative momentum with alternating updates converges
linearly in bilinear games. Later, Bailey et al. (2020)
extended the analysis of Alt-GDA to no-regret online
learning, albeit just for simple bilinear games. Zhang
and Yu (2020) provided some evidence that alternat-
ing versions of many popular algorithms outperform
their simultaneous counterpart in bilinear games. Very
recently, Yang et al. (2020a) established the global
convergence of Alt-GDA in a subclass of nonconvex-
nonconcave objectives satisfying a so-called two-sided
Polyak-Lojasiewicz inequality. Xu et al. (2020); Bot
and Bohm (2020) proved convergence rates for alter-
nating (proximal) GDA for nonconvex-concave mini-
max problems. However, it remains unclear whether
these alternating methods improve the convergence
compared to their simultaneous counterparts in the
above two settings.

By contrast, there is a large body of work on simul-
taneous methods in minimax optimization. For the
strongly convex-strongly concave case, Tseng (1995)
and Nesterov and Scrimali (2011) proved that their
algorithms find an e-saddle point with a gradient com-
plexity of O(kIn(1/€)) using a variational inequality
approach. Using a different approach, Gidel et al.
(2019a) and Mokhtari et al. (2020a) derived the same
convergence results for OGDA. Particularly, Mokhtari
et al. (2020a) gave a unified analysis of OGDA and
EG from the perspective of proximal point methods.
Later, Zhang et al. (2021) provided a unified and au-
tomated framework for analyzing various first-order

methods using the theory of integral quadratic con-
straints from control theory. Very recently, Ibrahim
et al. (2020); Zhang et al. (2019b) established fine-
grained lower complexity bounds among all the first-
order algorithms in this setting, and these bounds were
later achieved by Lin et al. (2020); Wang and Li (2020).
For the convex-concave setting, it is known that the
optimal rate of convergence for first-order methods is
O(1/T), and this rate is achieved by both the EG and
OGDA algorithms (Nemirovski, 2004; Tseng, 2008;
Hsieh et al., 2019; Mokhtari et al., 2020b) for the
averaged (ergodic) iterates. Later, (Golowich et al.,
2020b,a) derived a O(1/+/T) bound for the last iter-
ate of EG and OGDA.

7 EXPERIMENTS

7.1 Quadratic Minimax Games

In this section, we compare the performance of Alt-
GDA with Sim-GDA along with other three popular
algorithms (EG, OGDA and NM) so as to verify our
theoretical results on the convergence rate of Alt-GDA.
In particular, we focus on the following quadratic min-
imax problem:
] L+ T L+

glﬂ{ggle%f(xy) =5x Ax+x By -5y Cy (9)
where we set the dimension d = 100. We note both
linear regression (Du and Hu, 2019) and robust least
squares (Yang et al., 2020a) problems admit this min-
imax formulation. The matrices A and C are set to
have eigenvalues {1}7_,. For matrix B, we set it to be
a random matrix with entries sampling from a Gaus-
sian distribution (either N (0,0.01) or A'(0,1)). In the
case of B sampled from N (0, 1), the resulting gradient
vector field has a strong rotational force since the off-
diagonal blocks of its Jacobian dominates (see (10) in
the Appendix). For all algorithms, the iterates start
with xg = 1 and yo = 1. Figure 4 shows that the dis-
tance to the optimum of Sim-GDA, Alt-GDA, OGDA,
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Figure 5: Comparisons between simultaneous and alternating algorithms on GAN training. (a) We train the DCGAN
model on CIFAR-10 with simultaneous SGD . The samples are saved at iteration 30000. (b) We train the DCGAN
model on CIFARI10 with alternating SGD. Again, the samples are saved at iteration 30000. (c) The curves of FID scores
on CIFAR-10 with SGD. The dash lines are computed at exponential moving averaged models. (d) The curves of FID
scores on CIFAR-10 with AMSGrad. In all settings, alternating version of the algorithms converges much faster than
their simultaneous counterparts and achieve better FID scores in the end.

EG and NMS versus the number of iterations for this
problem. For all methods, we tune their hyperparam-
eters by grid-search. We notice that all methods con-
verge linearly to the optimum. As expected, Alt-GDA
performs significantly better than Sim-GDA and yields
a convergence rate that is better than its worst-case
rate (black dashed line). Moreover, we find that Alt-
GDA outperforms OGDA and EG by a visible margin.
This is surprising, in that OGDA and EG take another
memory buffer for accelerating the convergence.

Furthermore, we study how the convergence rates (or
iteration complexities) scale with the condition num-
bers. To this end, we randomly sample’ matrices
A B, C and compute the condition number by x =

% where )\; are eigenvalues of the Jacobian

J of the gradient vector field in (10). Once we have
all these three matrices, we can compute the spectral
radius p of all algorithms with tuned step-sizes and
momentum value. We plot —1/log(p) versus the con-
dition number & in Figure 4 (right) to get a sense of
how the relative iteration complexity scales as a func-
tion of condition number. We find that the iteration
complexity of Alt-GDA scales linearly with the condi-
tion number, matching our prediction in Corollary 1.
On the other hand, Sim-GDA takes roughly 2 itera-
tions to convergence, as predicted in Theorem 4. In
addition, Alt-GDA is slightly better than OGDA and
EG as its curve is below that of OGDA and EG, albeit
with the same slope.

5We implemented the simultaneous version of negative
momentum (NM). For alternating NM, the optimal damp-
ing value of NM is roughly zero, making it the same algo-
rithm as Alt-GDA.

"We let the eigenvalues of matrices A and C be {n%_}?:l
where n; are evenly spaced from 1 to N, where N is in
[v/10,10%). We sample all entries of B from standard nor-
mal distribution A(0,1) and then normalize it.

7.2 Generative Adversarial Networks

In this section, we investigate the effect of alternating
updates on training generative adversarial networks.
The purpose of this section is to show that the insights
gained from our analyses carry over to GAN train-
ing despite the fact that the GAN objective is gener-
ally nonconvex-nonconcave. In addition, we note that
while GAN training is a stochastic problem, stochas-
tic problems are sometimes in a curvature-dominated
regime where the convergence behavior resembles that
of the deterministic problems (Zhang et al., 2019a).

We first compare alternating algorithms with their
simultaneous counterparts on CIFARI10 (Krizhevsky
et al., 2009) image generation task with the WGAN-
GP (Gulrajani et al., 2017) objective and a DC-
GAN (Radford et al., 2015) architecture. In particular,
we choose SGD and AMSGrad (Reddi et al., 2018) as
our base optimizers. For more implementation details,
please see Appendix D. We evaluate all algorithms
with Fréchet Inception Distance® (FID) (Heusel et al.,
2017). Figure 5c and 5d summarize our results. With
SGD as our optimizer?, we observe that alternating
SGD not only converges faster, but also converges to
a better point with lower FID score. Although both
alternating version and simultaneous version of AMS-
Grad converges to models with similar FID scores, the
alternating version again converges with many fewer
iterations, matching our prediction. In addition, we
generate samples from trained Generators at iteration
30000 with SGD optimizer (see Figure ba and 5b). It
is easy to see that the model trained with alternat-
ing updates generates better samples given the same

8Inception score (Salimans et al., 2016) is also a popular
metric, however it was shown by Chavdarova et al. (2021)
that it is less consistent with the sample quality, so we
instead use FID score here.

9We also include the results with exponential moving
average (EMA).
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Figure 6: (a) ResNet model trained with SGD on CIFAR-
10. (b) ResNet model trained with AMSGrad on CIFAR-
10. Alternating algorithms dominate simultaneous ones.
More interestingly, the use of optimism does not help for
alternating algorithms.

compute budget.

Furthermore, we compare simultaneous methods and
alternating methods on a deep ResNet (Miyato et al.,
2018). We also include optimistic updates (Daskalakis
et al., 2018) in the training, which is the key compo-
nent of OGDA. We report all results in Figure 6. The
first observation is that alternating algorithms take
fewer iterations to converge regardless of whether opti-
mism is used, and sometimes converge to models with
better FID scores (similar to DCGAN results). Sec-
ond, we observe that the use of optimism only helps
for simultaneous algorithms, suggesting that alternat-
ing updates and optimistic updates play similar roles
in improving GAN training. This could be explained
by our theoretical results that Alt-GDA enjoys a sim-
ilar convergence rate to OGDA.

8 CONCLUSION

In this paper, we take an important step towards un-
derstanding alternating algorithms in minimax opti-
mization by analyzing Alt-GDA in three distinct set-
tings. In particular, we show theoretically that Alt-
GDA outperforms its simultaneous counterpart by a
big margin in all three settings. Unexpectedly, Alt-
GDA achieves a near-optimal convergence rate lo-
cally for strongly convex-strongly concave smooth min-
imax games, matching the known coarse lower bound.
Moreover, the acceleration effect of Alt-GDA remains
when the minimax problem has only strong concavity
in the dual variables.

Our numerical simulations on toy quadratic games
verified our claims. Further, we demonstrate empiri-
cally that alternating updates could significantly speed
up GAN training though GAN objective is generally
nonconvex-nonconcave. More interestingly, we show
that the use of optimism only helps for simultaneous
algorithms. We believe that the default use of alter-
nating update rule in GAN training was an important
reason for its success.

108ee Appendix D for detailed update rule.
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A Technical Proofs

For notational convenience, we define the gradient vector field of minimax games V(z) =
[Vxf(x,¥)",—Vyf(x,y)"]" and its associated Jacobian matrix at Nash equilibrium z*:

= [ v%f(X*7y*) Vibéf(x*ay*)} S [ AT B] (10)
_Vyxf(X*v y*) _vyf(X*7 y*) -B C
A.1 Proof of Theorem 3
For the bilinear games, the spectral radius of VF,;Xlt is easy to bound. In particular, we have
I —nB
Alt _ n

Here, we define the SVD decomposition of B as B = UBVT where B is diagonal, hence we have p(VFé“t)
equivalent to the spectral radius of the following matrix

I 777]:3)
A RN 12
[nBT I- 772BTB} ’ (12)

whose eigenvalues satisfying (z — 1)2 + n? z = 0, A € Sp(B"B). As long as |2 — 7%)| < 2, we have the roots of
this polynomial satisfying |z| = 1. Therefore, we have p(VFflt) =1laslong asn < #(m. In the meantime, it
can shown that p(VF,?“) is diagonalizable, so by (Gidel et al., 2019b, Lemma 3), the iterates of Alt-GDA stay

bounded. This finishes the proof.

A.2 Proof of Theorem 4

To prove Theorem 4, we first claim that all eigenvalues of J in (10) fall within the following set:

K:{Ae@:|A|§ﬁL,§R>\2u>o}. (13)
We first prove RA > u. Let A\ £ a + bi be a complex eigenvalue of J such that Jv = Av. In general, the
eigenvector v is a complex vector and we let v = u + wi. Then, one can show

R(\) = u'Ju+w'Jw _ u] Au; +uj Cuy + w{ Aw; + wj Cwy (14)

uu+w'w uu+wlw

where u; € R™ is the first half of the vector u and us € R™ is the second half (the same for wy,wa). As we
know that A = puyI > pI and C = pyI = pl, we have

> uu]—ul + ,uu;uz + uwfwl + uw;wz

R(N) =p (15)

ulu+wlw

We next prove |A| < v/2L. To this end, it suffices to show Apmax(J ' J) < 2L2. Recall the definition of J in (10),
we have

1Ty - A -B A B] [ A?+BB’ AB-BC (16)
~|BT C||-BT c| |[BTA-CB' B'B+C?
Hence,
Amax (JTJ) = Hm”aix1 viJTIv= Hm‘fixl VI(AQ + BBT)vl + v;—(C2 +B'B)v, (17)
Because we assume A < LyI < LI, C < LyI < LI and ||B||2 < Lyxy < L, we have
Amax (JTJ) < max 2L2(VIV1 + V;—VQ) =2I2 (18)

lIvil=1

Therefore, we get |A\| < v/2L. Now the convergence rate bound of Sim-GDA reduces to the following problem:

: o)\ = mi — 21 2% \)2
mﬁnrglea%\l NA| n%nlilé%\/(l nR(N))2 + n2S(N) (19)
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where the maximum modulus is achieved at the point A = o + /2L? — pu2i. Hence, we have

2
(VFS‘m( ")) < mlnmax |1 — 9| = min /1 — 2nu + 202102 = o

1——. 2
n A€ n 212 (0)

By invoking Theorem 1, we finish our proof.

A.3 Proof of Theorem 5
Recall the updates of Alt-GDA:

Xi+1 = X¢ — T]fo(xt, yt)a Yt+1 =Yt + nvyf(xt+1 > Yt)-

By definition, we have the Jacobian matrix of Alt-GDA updates in the following form:

I 0 1[I-nA —B I—nA 1B
Alt %\ n n _ n n
VIE, (Z)_[nBT I—nC][ 0 I }_[nBT(I—nA) I-yC—1?B B|" (21)

Without loss of generality, we assume matrices A and C to be diagonal with eigenvalues [a]; and [];. We have
the characteristic polynomial:

Det(AI — VFM(z*)) = Det(AI — (I - nA))
Det(A\I— (I—-7C —7°B'B —*BT(I1—-nA)(MI—1+7A)"'B)), (22)

where we used properties of the Schur complement. For Det(AI — VF;*lt (z*)) to be zero, A has to one of the
eigenvalues of the following matrix:

A
M£1I-,C—7*B'Diag( —— | B. 23
nC—n 88\ X T 1 e (23)
In the case of )\ being real, it is easy to show that for any n < 2L, we have
[A] < max{1l — namin, 1 — 7Pmin }- (24)

We prove that by contradiction. Suppose A > max{1l — 7@min, 1 — 7Bmin} > 0, then we have
)\max(M) <1- n)‘min(c) =1- nﬁmin- (25)

That is because the term nQBTDiag (ﬁ) B is positive semi-definite when A > max{1—namin, 1 —7Bmin} >

0. Since we know A is one of the eigenvalue of M and hence it has to be smaller than 1 — i, contradiction.

Suppose A < —max{1l — Nmin, 1 — 7Bmin} < 0, we have
M>=1I-7C—-7n’B'B. (26)

For bilinear games where C = 0, we have M > 0 and hence A is impossible to be smaller than —1. On
the other hand, since we have n < i, we know M > 0, contradiction again. Therefore, we proved that
|)\| < max{l — NQmin, 1—- nﬁmin}

In the case of A being complex, we let A\ = a+ bi with b # 0 and v be the eigenvector associated with A such
that Mv = Av. Then we have the following identities:

v (M+M v =2R(\) = 2a,

H H , ) (27)
v (M —M v =2%(\)i = 2bi.
Plugging the value of M, we have
_ L My — 2 2 za —a(l —na;) +b?
= gV LM )y = 300w = IO T (28)

J
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and
. 1 w H (1 — no )bl
bi=-v M-M )v=n Bv);[? : : 2
Z 2V( )V n ;K V)J| (a—1+770éj)2+b2 (9)
From (29), one can get
1—najy)
2 Bv).|? ( J =1 30
772]:‘( V)]‘ (a_1+77a])2+b2 ( )
Next, combining (28) and (30), we have
a? + b2
D (=)l = P |(Bv),]? A =0 (31)
- J
J
where A; = (a — 1 + na;)? + b2 1t follows from (31) and (30) that
_ 2 2 ( 77%) 2 2 (1 — nomin)
1= UZ|BV| <UZ|BV|T
— NQmin 26l —|—b
a2 7 ZI L5, . (32)
31) 1 — namin 2 (]— - namin)(l - nﬂmin)
= WZ“*U@)W]‘\ < 2102
As a result,
IAI> = a® + b < (1 — namin) (1 — 7Bmin)- (33)
A.4 Proof of Theorem 6
Recall that the Jacobian matrix VFS““( *) of Sim-GDA:
- I-nA —B
Sim /_*\ __ n n
VF"™(z") = [ BT I—UC} . (34)

To bound its spectral radius, we first compute its characteristic polynomial and simplify it with the Schur
complement.

Det (AI - VF™(z*)) = Det(AI — (I — nC))Det(AI — (I —nA — n’B(AI - (I—nC))'BT)) (35)

In the case of \ being real, for n < %, one can prove that A is within the range (0,1) by contradiction

argument. Without loss of generality, we assume matrices A and C to be diagonal with eigenvalues [«]; and
[8];. Let assume A > 1 — nfBmin, then we claim that A <1 — ZApi(BBT). The key is (by A < 1)

(L= (1= 70) ™! = (nO) ! = T (36)

Therefore, we have a upper bound for M = I — nA — n?B(AI - (I-nC))"!BT)
M<I- %BBT < (1 - %/\min(BBT)) I (37)
Hence, A, as one of the eigenvalues of M, has to be smaller than 1 — Z Ay (BBT). In summary, we proved that

0 <\ < max {1 1 Bmimy 1 — %)\min(BBT)} (38)

In the case of A\ being complex, we claim that ®(\) < 1 — Juy,. Let A = a + bi with b # 0 and v be the
eigenvector associated with A such that Mv = Av. Then we have the following identities:

v (M +M)v = 2R(\) = 2a

v (M~ M )v = 23(\)i = 2bi (39)
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Plugging the value of M, we have

1 a—(1—-np;)

o= ¥ MMy = 350 )il o DB I 0
and 1w ) T2 bi
bi= v (M~-M)v=1 %:IB L s e B v (41)
From (41), we get
n2;|(BTV)j|2(a—1+;ﬁj)2+b2 =1 (42)

Next, combining (41) and (40), we have

nB;
2a=1= 30—l = BTV G s
J

< SO0 = o)V 2 — 2 3 (BT 2 i (43)
z]: N0min)| V| — Z| )il a—1+nﬁj)2+52

(41)
="1- nﬁmin

Therefore, we proved our claim that #(\) = a <1 — 2 Buyin.

Then, we could prove J = %(I VFS‘m( *)) has the operator norm ||J|| < v/2L by the same argument in (18).
Consequently, we have |S(\)| < ny/2L? — 143. Follows immediately, we have

n 1
M= VRO +S0)? < (1= Gpy)* +0° (L% = Jpg) = 1 = npry + 20° L (44)
A.5 Proof of Theorem 7

As in the proof of Theorem 5, we analyze the eigenvalues of VF,?lt (z*). Recall VF#“(Z*) has the following form:

Alt, s _ | I—nA —nB I 0 _ [ I-nA-— 772BBT —nB(I—nC)
VEM (2*) = [

0 I nBT I-1C nBT I-nC (45)

Notice that this matrix in (45) is slightly different from the one defined in (21), but they have the same eigen-
spectrum. Without loss of generality, we assume matrices A and C to be diagonal with eigenvalues [a]; and [];.
We then have the characteristic polynomial:

Det(Al — VF(2*)) = Det(AI — (I — nC))
Det(\I — (I —nA — BB —?B(I—nC)(A\I -1+ 7C)"'BT)) (46)

where we used Schur complement. For Det(AI — VF%Alt (z*)) to be zero, A has to one of the eigenvalues of the
following matrix:
M21-7A —n?BBT 7’ BI—-nC)(MI-1+7C)"'BT (47)

In the case of A\ being real, for any i < 2L’ it is easy to show that A, as one of the eigenvalues of M, is within
(0,1). Let us first assume A > 1 — 1Bmin, we have B(I — nC)(A\I - I+ 7nC) !B = 0. Hence, we have

M=I-nA-7’BB" <I—¢’BB" =< (1—n°u}, )1 (48)
As a consequence, we know [A| <1 —n?uZ .

In the case of )\ being complex, we could reuse the result of (33)

|)“ < \/(1 - namin)<1 - nﬂmin) < \/1 — Ny (49)
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Figure 7: Feedback interconnection between a system G (optimization algorithm) with state matrices (A, B,C, D) and
a nonlinearity ¢. An IQC is a constraint on (y, u) satisfied by ¢.

B Details about IQC framework

Borrowing the notations from Lessard et al. (2016), we frame various first-order algorithms as a unified linear
dynamical system'! in feedback with a nonlinearity ¢ : R? — R¢,

§t41 = A& + Buy
yr = C& + Duy (50)
ur = ¢(yt)-
At each iteration t = 0,1,..., uy € R? is the control input, y; € R? is the output, and & € R"™? is the state

for algorithms with n step of memory. The state matrices A, B,C, D differ for various algorithms. For most
algorithms we consider in the paper, they have the general form:

Al B 1+8)Ls —BLi | —nlg
cTD| = I 04 04 |,
1+a)l; —aly ‘ 04
where I; and 04 are the identity and zero matrix of size d x d, respectively. Often, the nonlinear function ¢
is the troublesome function we wish to analyze. Although we do not know ¢ exactly, we assume to have some

knowledge of the constraints it imposes on the input-output pair (y,u). For example, we may assume ¢ to be
L-Lipschitz, which implies ||u; — u*||2 < L|jy: — y*||2 for all ¢ with v* = ¢(y*) as a fixed point. In matrix form,

this is
«7 T 2 *

uy — u* 0; —I| |uy —u*

We can also characterize strong convexity of f and g by similar quadratic constraints. Notably, the above con-
straint is very special in that it only manifests itself as separate quadratic constraints on each (y;, us). It is possible
to specify quadratic constraints that couple different ¢ values. To achieve that, we follow Lessard et al. (2016)
and adopt auxiliary sequences ¢, s together with a map ¥ characterized by matrices (Ay, BY,, BY, Cy, DY, DY):

Gi41 = AwG + BYys + Byuy, (52)

st = CyC + DYy + D uy.
The equations (52) define an affine map s = ¥U(y,u), where s; could be a function of all past y; and w; with
i < t. We consider the quadratic form (s; — s*) T M(s; — s*) for a given matrix M with s* and ¢* fixed points of
(52). We note that the quadratic form is a function of (yo, ..., ys, uo, ..., us) that is determined by our choice of
(¥, M). In particular, we can recover constraint (51) with

By

u

I

W

oy
PRSI

. M= {LQId Od].

0, -I, (53)

"' This linear dynamical system can represent any first-order methods.
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Combining the dynamics (50) with the map ¥ (by eliminating y;), we obtain

Siv1| _ | A 0| |& n B "
Ce1| B?I,C Av| |G B&‘,+B\%D b

(54)
5= [DLC Cu Ez] 1 [DY + DY D] ur.
More succinctly, (54) can be written as
T = Az, + Bu
e t, where z; £ Ft} . (55)
St = Cl’t + D’Z,Lt Ct

With these definitions in hand, we now state the main result of verifying exponential convergence. Basically, we
build a Linear Matrix Inequality (LMI) to guide the search for the parameters of a quadratic Lyapunov function
in order to establish a rate bound.

Theorem 9 (Zhang et al. (2021)). Consider the dynamical system (50). Suppose the vector field F' satisfies
the IQC (¥, M) and define (A, B,C, D) according to (53)—(55), we have the following linear matriz inequality
(LMI):

ATPA—p*P ATPB A AT A oa
BTPA Brpp| T [C D] M[C D]=o. (56)
If this LMI is feasible for some P = 0, A > 0 and p > 0, we have
(w01 — 2) (P& L) (@es1 — 7)< p2(ay — 2%) T (P @ Ly)(wy — ), (57)

Consequently, for any & and (o = (*, we obtain
€ — €113 < cond(P)p*[|&0 — &7 |I3- (58)

Remark 2. The LMI (56) can be extended to the case of multiple constraints with (V;, M;) (see (Lessard et al.,
2016, Page 12) for details).

To apply Theorem 9, we seek to solve the semidefinite program (SDP) of finding the minimal p such that the
LMI (56) is feasible. For simple algorithms, one can typically solve the SDP analytically. Nevertheless, one may
only get a numerical proof when the algorithm of interest is complicated and the resulting SDP is hard to solve.

B.1 Analyzing Alt-GDA with IQC framework
Recall that we are concerned with the bilinear saddle point problem:
; T
By — . 59
nin max f (x) +x By —g(y) (59)

For Alt-GDA, it has the following update rule:

Xey1 = X — NBy: — vaf(xt)

Y (60)
Yi+1 =yt + 1B %1 = nVyg(ye)
We can frame it as a linear dynamical system in feedback with the state matrices:
Im —UB _nIm Omxn
A ‘ Bl | BT L —-%*B'B|-n*B"T -1I, (61)
C D N Im Omxn Om 0m><n ’
OTLXH’L In 0n><m On

In our case, we have & =y, = [x/,y/]" and u; = [Vxf(x), —Vyg(y)]. Further, we use the weighted off-by-one
IQC defined in Lessard et al. (2016) with the following representation (let d = m + n):

04 | —LI; I,
Ay | BY BY
U = |: C\p ‘ D%’ D\g :| = pQId LId —Id 5 (62)
v| Dy Dy 04 | —pla I
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and
_ Opnxm 0, Onxm 0, _ Onxm 0, Onxm In
Mi= 11 Onxn Om Omn|” 27100 Omxn Om  Onxn (63)

With all these matrices defined, we can solve the SDP problem (56) with bisection search on p. However, we can
only solve SDPs with relatively small m and n in practice. Towards this end, we prove that we can reduce any
problem of (8) to the case with m = n = 1, which is numerically easy to solve. First, we assume without loss of
generality that m < n and B € R™*" is diagonal. In the case that B is not diagonal, we can do singular value
decomposition to get B = UBV T where B € R™*" is diagonal and then absorb U € R™*™ and V € R"*" into
x and y to get the following equivalent problem:
min max f(UX) + % By — g(Vy), (64)
XER™ yERN
where x = UTx and ¥y = Vy. Further, one can show f’(x) = f(Ux) (or ¢'(y) = g(Vy)) is also L-smooth
and p-strongly convex as f (or g) is. This is because U and V are both orthogonal matrices. Therefore, we can
assume B to be diagonal without loss of generality. Next, we prove that the IQC-certified rate of Alt-GDA for
(8) is no worse than the rate of the same problem with m = n = 1. Formally, we have the following theorem.

Theorem 8. Using the IQC framework to analyze the convergence rate of Alt-GDA on problem (8), we can
simply assume m =n =1 if B is diagonal. Let py, ,, be the IQC-certified rate for problem (8) with x € R™ and
y € R, then we have pp.pn < p1,1-

Proof. For 1QC, we basically search for a quadratic Lyapunov function by solving a SDP problem (56). By
(61)-(63), we have the linear matrix inequality (LMI) as follows:

P[4,B]+[¢,D)" M[C,D] = p*[10]" P[L0], (65)
with
—nLn Omxn
1;

Om Omxn AlIm Omxn

A LId p2Id N _Id _ 0n><m On On><m )\QIn

¢ [—,uId Od ’ D= ' M= /\11m Omxn Om 0m><n
0n><m )\QIn Onxm On

Given that B is diagonal, one can show that both [/i, B] and [C’, D] have very special structure. In particular,
we can permute them column-wise and row-wise to get block-diagonal matrices:

1 7?7B11 00 -n 0
[nBll 1-7°B2%, 00 —n°B13 n] - 0
o —L 0 00 1 0
[AB} —U 0 -L -0 0 0 1 AV2 (66)
: . 10—
0 SR e
2Q,

where both U and V are permutation matrices. In more detail, the (1,1) block is repeated r = min(m, n) times,
where By is replaced by B;;, ¢ = 1,...,r in each successive block, and the smaller block is repeated d — r times.
Also we can do the same for [C’, D} =UQ,V and [I, 0] = UQ3V. Each diagonal block of Qg3 is either [14, 04X2]

or [Ig, Ole]. Hence, we can write (65) in the following form:
ViQ/ U PUQ,V+V'Q U MUQ,V < p*V Q] UTPUQ;V, (67)
whose feasible set is equivalent to

JUTPUQ, +Q,UTMUQ, < p*Q,; U PUQs. (68)
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It is easy to see that UT MU has the same block-diagonal structure as Q; and Qs. If we further restrict UT PU
to have the same block-diagonal structure as Q; and Qs, then it suffices to pick a p so that each diagonal block
of the LMI (68) holds. Moreover, the LMI of each diagonal block is the LMI of the case m = n = 1, except for
the last n — m blocks, for which we have

0PI [ 5] 0[5 ] 2 et (no)T P L), (69)

This is the LMI for minimizing a p-strongly convex L-smooth function (see Lessard et al. (2016)), which has
a better convergence rate compared to our minimax problem (i.e., any feasible p of the LMI for 1-dimension
minimax problem is also feasible for (69)) because it is a special case of (8) with B = 0 in the 1-dimensional
case. So far, we show that as long as the LMI for the case of m = n = 1 holds, then the general case also holds
since the general case can be decomposed into many 1-dimensional problems. This completes the proof. O

C Additional Results on SVHN

60 V
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—— Sim Optim Updates —— Sim Optim Updates
040 Alt Optim Updates o 40 —— Alt Optim Updates
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Figure 8: (a) ResNet model trained with SGD on SVHN. (b) ResNet model trained with AMSGrad on SVHN. Al-
ternating algorithms dominate simultaneous ones. Again, the use of optimism makes little difference for alternating
algorithms.

D Implementation Details for Generative Adversarial Networks

For our experiments, we used the PyTorch'? deep learning framework. For experiments, we compute the FID
score using the provided implementation in Tensorflow!? for consistency with related works.

Optimistic update rule: the simultaneous version of optimistic gradient descent-ascent takes the following

form:
X1 = Xt — 20V f (X, ¥e) + NV f (Xe—1,¥e-1)

(70)
Yir1 = Yi +20Vy f(Xe, ¥¢) = nVy f(Xe—1,¥1-1)
By comparison, the alternating version iterates as follows:
Xip1 = X — 20V f (Xt ¥e) + 0V f (X1, ¥1-1) (71)

Vit1 =¥t +20Vy f(Xeq1,¥e) —nVy f(Xe, ¥i-1)

Loss functions: For DCGAN experiments, we used WGAN-GP objective (Gulrajani et al., 2017). For ResNet
experiments, we used the hinge version of the adversarial non-saturating loss, see Miyato et al. (2018). As a
reference, our ResNet architectures for CIFAR-10 and SVHN (Netzer et al., 2011) have approximately 85 layers
in total for the generator and discriminator, including the nonlinearity and the normalization layers. This ResNet
architecture was also used in Chavdarova et al. (2021), see Appendix E 2.2 of Chavdarova et al. (2021).

2https://pytorch.org/
Bhttps://github.com/bioinf-jku/TTUR
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Hyperparameters: We conduct grid search over the step size (and B2 for AMSGrad) for each setting. For
SGD, the search range of step-size is {5e—4, le—3,2e—3, 5e—3, le—2,2e—2}. For AMSGrad, the search range of
step-size is {be—>5, le—4, 2e—4, 5e—4, 1le—3, 2e—3} while the search range of 82 is {0.9,0.99,0.999}. We report the
optimal hyperparameters used in the following tables. All these hyperparameters are tuned with random seed
1. We have also tried other seeds (including seed 2 and 3) and the optimal hyperparameters could be different
with different random seeds. However, the optimal curves across different random seeds look similar.

Table 1: Hyperparameters for DCGAN experiments.

Parameter Sim-SGD  Alt-SGD  Sim-AMSGrad Alt-AMSGrad
batch-size 128 128 128 128
step-size (G) 0.002 0.005 0.0005 0.0005
step-size (D) 0.002 0.005 0.0005 0.0005
momentum 0.0 0.0 - -
51 - - 0.0 0.0
5o - - 0.999 0.999

Table 2: Hyperparameters for ResNet experiments on CIFAR-10.

Parameter Simultaneous Alternating
SGD OSGD AMSGrad OAMSGrad | SGD OSGD AMSGrad OAMSGrad
batch-size 128 128 128 128 128 128 128 128
step-size (G) | 0.005  0.005 0.0002 0.0002 0.01 0.01 0.0005 0.001
step-size (D) | 0.005  0.005 0.0002 0.0002 0.01 0.01 0.0005 0.001
momentum 0.0 0.0 - - 0.0 0.0 - -
51 - - 0.0 0.0 - - 0.0 0.0
B - - 0.999 0.99 - - 0.999 0.999
Table 3: Hyperparameters for ResNet experiments on SVHN.
Parameter Simultaneous Alternating
SGD OSGD AMSGrad OAMSGrad | SGD OSGD AMSGrad OAMSGrad
batch-size 128 128 128 128 128 128 128 128
step-size (G) | 0.002  0.005 0.0001 0.0002 0.005 0.01 0.0005 0.0002
step-size (D) | 0.002  0.005 0.0001 0.0002 0.005 0.01 0.0005 0.0002
momentum 0.0 0.0 - - 0.0 0.0 - -
51 - - 0.0 0.0 - - 0.0 0.0
5o - - 0.999 0.999 - - 0.999 0.99




