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Abstract: Modeling the dynamics of non-bound states in molecules requires an accurate description
of how electronic motion affects nuclear motion and vice-versa. The exact factorization (XF) approach
offers a unique perspective, in that it provides potentials that act on the nuclear subsystem or
electronic subsystem, which contain the effects of the coupling to the other subsystem in an exact way.
We briefly review the various applications of the XF idea in different realms, and how features of these
potentials aid in the interpretation of two different laser-driven dissociation mechanisms. We present
a detailed study of the different ways the coupling terms in recently-developed XF-based mixed
quantum-classical approximations are evaluated, where either truly coupled trajectories, or auxiliary
trajectories that mimic the coupling are used, and discuss their effect in both a surface-hopping
framework as well as the rigorously-derived coupled-trajectory mixed quantum-classical approach.

Keywords: non-adiabatic dynamics; light-matter interactions; molecular dynamics algorithms

1. Introduction

A challenge in the theoretical simulation of molecules driven out of their ground-state
by a strong field is how to account for, and interpret, the coupling between the electrons and
ions. If a molecule was only gently perturbed at frequencies below electronic excitations,
the Born-Oppenheimer (BO) picture can still be useful: the disparity in the time-scales
of nuclear and electronic motion allows for the nuclei to evolve on a single BO surface
for much of the time, and regions where this breaks down tend to be somewhat localized
in space and involving the interaction of only a small number of BO states. In those
regions, a fully quantum treatment of the molecule based on the BO picture would involve
propagating nuclear wavefunctions projected on the different surfaces, including coupling
terms between them. If the nuclear degrees of freedom were to be treated classically,
the effective force driving their motion would deviate from that of a single surface, or even
a mean surface: different parts of the underlying nuclear wavepacket would be associated
with different electronic surfaces, even within the same spatial region. The problems with
capturing this electron-nuclear correlation in such mixed quantum-classical methods are
well-known [1,2]. But with strong fields, or with high-frequency fields, the problem is even
more challenging: the nuclear wavepacket straddles many BO states, a continuum beyond
the ionization threshold. Field-dressed surfaces such as quasi-static [3–5] or Floquet [6–8]
can be instructive in this regard; although both serve equally well as a basis for the nuclear
dynamics, as does the BO basis, approximations inherent in mixed quantum-classical
approaches may perform better in one or the other, for physical reasons or computational
reasons, but for general field parameters, the jury is out. Further, the observables of interest
depend on the application: for example, we may want to correlate electron ionization
and nuclear dissociation channels to get a full understanding of the dynamics [9], or, we
may be primarily interested in the behavior of the ionizing electron itself, with a time-
dependent potential driving the electron helping to guide our understanding. As intuitive
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and instrumental the BO picture has been, it does not provide such a potential, nor is it
convenient in strong fields when many surfaces get involved.

An alternative, but equally fundamental, picture is provided by the exact factoriza-
tion (XF) approach [10–18]. XF re-casts the dynamics of interacting quantum subsystems
in a way that provides unique potentials that drive the motion of each subsystem and
account for complete coupling to others. Applied to the electron-nuclear case, the exact
molecular wavefunction Ψ(r, R, t) is factored into a single correlated product of a marginal
factor and a conditional factor. Choosing the marginal to be a function of R, one obtains a
time-dependent Schrödinger equation (TDSE) for the nuclear wavefunction, in which the
potentials contain the complete effect of coupling to the electrons [16]. Instead, choosing
the marginal to be a function of r only, a TDSE is obtained for the electronic wavefunction,
in which the potentials contain the complete effect of coupling to the nuclei [19]. These
potentials drive the nuclear and electronic subsystem respectively, and have been instruc-
tive in interpreting correlated electron-ion dynamics, including for dissociation [16] and
ionization processes [20] in strong fields. To be a practical approach, approximations must
be made, and recently two mixed quantum-classical (MQC) approaches have been derived,
in which a key ingredient in the electron-nuclear coupling terms is the so-called nuclear
quantum momentum. The quantum momentum measures the spatial variation of the
nuclear density during non-adiabatic dynamics, and couples strongly to the electronic
evolution giving large corrections to mean-field approximations. Different schemes have
proposed different ways to calculate this term, using either the support of coupled trajecto-
ries or of auxiliary trajectories to track the delocalization of the nuclear density, but until
now a detailed comparison has not been made. Here we compare the use of auxiliary tra-
jectories within an XF-based surface-hopping framework (SHXF) [21,22] to using coupled
trajectories within the surface-hopping procedure (CTSH) [23] as well as within the original
coupled-trajectory mixed quantum-classical approach (CTMQC) [24–26] that was derived
directly from the XF. We further study the impact of a modified definition of the quantum
momentum in the coupled-trajectories calculations CTSH and CTMQC, that ensures the
physical condition of zero population transfer in regions of no non-adiabatic coupling.

The paper is organized as follows. In Section 2, we review the formalism of the XF
approach, and briefly meander down various avenues in which the XF idea has been
extended and explored. Section 3 demonstrates its usefulness for the dynamics of non-
bound systems, briefly reviewing the results of refs. [16,17] for dissociation and refs. [20,27]
for ionization, in a one-dimensional model of H+

2 . The most practical impact of the XF
approach is the development of rigorous MQC methods, and in Section 4 we outline the
CTMQC, CTSH, and SHXF schemes, before delving into the different ways the quantum
momentum is computed in different implementations of these schemes in Section 5. We
offer some conclusions in Section 6.

2. The XF Approach in a Nutshell

Consider the time evolution of a system of coupled quantum subsystems, possibly
subject to some external fields:

ĤΨ(q, Q, . . . , t) = i∂tΨ(q, Q, . . . , t) (1)

(Atomic units, e2 = h̄ = me = 1, are used throughout this article unless otherwise
stated). These could be different types of particles, for example with q representing elec-
tronic coordinates and Q nuclear coordinates, and perhaps another set of coordinates for
photons. Or, for example, we could have a system of the same type of particle, say electrons,
but with q being occupation numbers of some set of orbitals, e.g., weakly-correlated and Q
being occupation numbers of strongly correlated orbitals. The problem is quite general,
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and in the XF the full wavefunction is factored into a marginal term and a conditional
term [10,15–17]:

Ψ(q, Q, t) = χ(Q, t)ΦQ(q, t), where 〈ΦQ(t)|ΦQ(t)〉q = 1 for all t, Q (2)

Here 〈...|...〉q represents an inner product over all q variables only. The factorization

Equation (2) is exact and unique up to a Q- and t-dependent phase, where eiθ(Q,t) multiplies

χ while e−iθ(Q,t) multiplies ΦQ, yielding the same product. For Hamiltonians that have
the form

Ĥ = −1
2 ∑

I

1
MI
∇2

QI
− 1

2 ∑
i

1
mi
∇2

qi
+ V(q, Q, t) (3)

where V(q, Q, t) is a purely multiplicative operator in q, Q, applying the Dirac-Frenkel

variational principle shows that the marginal factor χ(Q, t) satisfies a TDSE with a scalar
and vector potential that depend on ΦQ(q, t) while the conditional factor satisfies a more

complicated equation, with coupling terms dependent on χ(Q, t) [16,17,28]. In Equation (3)
we used the symbols MI and mi to indicate the masses—in atomic units—of the two sets of
particles with positions Q and q, respectively. Specifically, for the electron-nuclear problem,
with Q = R the nuclear coordinates, and q = r the electronic coordinates, and the partial

normalization condition
∫

dr|ΦR(r, t)|2 = 1, the wavefunctions ΦR(r, t) and χ(R, t) satisfy:(
Ĥel(r, R, t)− ε(R, t)

)
ΦR(r, t) = i∂tΦR(r, t) (4)( Nn

∑
ν=1

1
2Mν

(−i∇ν + Aν(R, t))2 + V̂ext
n (R, t) + ε(R, t)

)
χ(R, t) = i∂tχ(R, t) (5)

with the electronic Hamiltonian Ĥel defined as

Ĥel(r, R, t) = ĤBO(r, R) + Ûen[ΦR, χ] + V̂ext
e (r, t) (6)

and with electron-nuclear coupling term

Ûen[ΦR, χ] =
Nn

∑
ν=1

1
Mν

[
(−i∇ν −Aν(R, t))2

2
+

(
−i∇νχ

χ
+ Aν(R, t)

)(
−i∇ν −Aν(R, t)

)]
(7)

Nuclear masses in atomic units are indicated with the symbol Mν, with ν labelling
the nuclei. Here ĤBO is the usual BO Hamiltonian (the sum of the electron kinetic
energy, electron-electron, nuclear-nuclear, and electron-nuclear interaction operators).
The V̂ext

n (R, t) or V̂ext
e (r, t) potential is any externally applied potential, such as a laser field,

acting on the nuclei or the electrons, respectively. We denote the time-dependent scalar
potential appearing in Equations (4) and (5)

ε(R, t) =
〈

ΦR(t)
∣∣Ĥel(R, t)− i∂t

∣∣ΦR(t)
〉

r
(8)

as the time-dependent potential energy surface (TDPES). Together with the time-dependent
vector potential appearing in Equations (5) and (7)

Aν(R, t) =
〈

ΦR(t)
∣∣∣−i∇νΦR(t)

〉
r

, (9)

and the electron-nuclear coupling term Ûen, these three terms embody the exact electron-
nuclear coupling. Notice that the potentials appearing in the nuclear equation, ε(R, t) and
Aν(R, t), involve the electronic wavefunction ΦR(r, t), while the electron-nuclear coupling
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term appearing in the electronic equation, Ûen, involves the nuclear wavefunction χ: thus
the evolution of each factor is intimately correlated with the other. Refs. [16,17] showed
Equations (4)–(9) are form-invariant under a gauge-like transformation that multiplies ΦR by

an R, t-dependent phase eiθ(R,t), and χ by its inverse; the potentials transform correspondingly
as A → A +∇θ(R, t) and ε(R, t) → ε(R, t) + ∂tθ(R, t). Further, it was shown that we can
identify χ(R, t) as the nuclear wavefunction, in the sense that its modulus-square gives the
Nn-body nuclear density, and the exact Nn-body nuclear current-density can be extracted in
the usual way from its phase together with the vector potential [16].

These equations emphasize the distinction from the far simpler BO approximation, that also
involves a single correlated product, but with a time-independent electronic wavefunction and
much simpler potential terms. The TDSE-form of the nuclear equation means that the potentials
appearing in it can be directly interpreted as driving the nuclear motion, fully incorporating the
effect of non-adiabatic and time-dependent coupling to the electronic system.

2.1. XF Adventures in Different Realms

Although originally presented for coupled electron-nuclear dynamics, the XF approach
applies quite generally to interacting quantum subsystems. It has been explored and extended
along myriad different paths over the past decade. We summarize some of these here.

Exact potentials driving the nuclear motion The first applications [16,17] showed the
usefulness of the XF approach in providing potentials that directly correlate with nuclear
motion in laser-driven dynamics, aiding in the interpretation of the physical processes.
We defer further discussion of this to Section 3. The exact surfaces have been instruc-
tive for analysis of basis-dependence of MQC surface-hopping schemes for laser-driven
bond-softening and bond-hardening processes [29], and control of laser-induced electron
localization [30]. For field-free dynamics following a photo-excitation, the exact potential
was found to track the BO surface initially occupied, develop a diabatic-like character as the
wavepacket passed through a non-adiabatic coupling region and then form steps that bridge
the different BO surfaces associated to the local nuclear wavepacket [31–34]. More precisely,
the steps in the gauge-independent term bridge the BO surfaces, while there is a partially
compensating step in the gauge-dependent term. The latter, when gauge-transformed to
a vector potential, could be interpreted as a momentum-rescaling. Interestingly, in situa-
tions where nuclear wavepackets associated with different electronic states meet, the exact
TDPES develops features such that independent classical nuclear trajectories evolving on
it mimic the true nuclear distribution of interfering nuclear wavepackets [35]. In all these
studies, the exact potentials were obtained from an inversion of the numerical solution of
the full molecular TDSE.

Mixed quantum-classical and quantum trajectory methods The most practical impact that the
XF has had so far has been in the development of rigorous MQC methods [24–26,36,37]. We
defer a discussion of this to Section 4. While a purely quantum-classical scheme is not able
to capture correctly nuclear quantum effects, such as tunnelling through a potential barrier
of light particles [38–45] or scattering processes at low temperatures [46], the use of quantum
trajectories within an XF framework [47–49] holds the promise to overcome this limitation while
maintaining a general non-adiabatic viewpoint. Proof-of-principle studies in this direction
have been proposed employing a Bohmian perspective [50–53] on nuclear dynamics with time-
dependent XF potentials, and developments are currently ongoing especially aiming to address
well-known numerical instabilities [54–59] inherent a quantum-trajectory method. Similarly,
using a hydrodynamic description of the XF equations, a trajectory-based representation for the
electrons had been introduced in ref. [60] coupled to quantum nuclei.

Inclusion of spin-orbit coupling Non-adiabatic processes mediated by spin-orbit coupling
(SOC), i.e., intersystem crossings, play a key role in unraveling many excited-state processes
such as photo-induced dynamics in organometallic complexes [61–66] and even collision
reactions involving systems of light elements [67–69]. Refs. [70,71] extended the XF ap-
proach to derive a MQC approach that addresses both spin-allowed electronic transitions
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mediated by non-adiabatic coupling (NAC) as well as spin-forbidden transitions mediated
by the SOC in the same theoretical construction.

Geometric phase The concept of a geometric phase arises naturally in XF and can be
defined as the circulation integral of the vector potential along a closed path, both in the
stationary formulation of XF [72–74] and in its time-dependent version [34,75–77]. It is
worth underlining, though, that a non-vanishing geometric phase (not topological, as it is
not quantized) in the framework of XF does not require invoking the adiabatic separation of
electronic and nuclear motion in a molecule, thus it is a more general concept that does not
rely on the particular representation (adiabatic vs. diabatic, for instance) used to describe
the electronic subsystem.

Density functionalization The XF has been used to extend density functional the-
ory (DFT) to non-adiabatic situations, where the conditional electron density nR(r) =

Ne
∫
|ΦR(r, r2...rN)|

2d3r2...d3rN replaces the Ne-body wavefunction as basic variable [78]
of the theory. The full nuclear wavefunction χ(R) is retained, and the exchange-correlation
functional of the usual adiabatic DFT is generalized to include nonadiabatic contributions
arising from the Ûen coupling term; it has functional dependence on the conditional elec-
tronic density and paramagnetic current-density, nuclear wavefunction, vector potential,
and the quantum geometric tensor. Ref. [79] proposed a local conditional density approxi-
mation, and applied the XF-based DFT to study dissociation in a Hubbard-model of the
LiF molecule, showing that non-adiabatic electron-nuclear coupling results in a 0.5 Bohr
elongation of the bond-length at which electron-transfer is onset.

Exact electron factorization The XF formalism can be applied within a purely electronic sys-
tem, where the marginal factor is a function of one electronic coordinate r1, with the conditional
factor a function of the rest, conditionally dependent on r1 [80]. From the partial normalization
condition and the antisymmetry of the full electronic wavefunction, it follows that the marginal
density gives the exact one-body electronic density and current-density. The exact XF potentials
for an electron ionized by a field have been studied [80,81], and approximated, and they provide
a new perspective for one-electron approaches commonly used in strong-field physics, such as
the single active electron approximation.

Electronic embedding: strong correlation The XF idea can also be applied to an electronic
wavefunction in Fock space [82–84], where some orbitals (e.g., the more strongly correlated
ones) are selected to be those of the marginal (the “fragment") while all others are condi-
tionally dependent on the occupation numbers of the marginal orbitals. XF then yields
an embedding Hamiltonian on the fragment, which is approximated by solving the full
system at a low-level; the embedded fragment is then solved with a high-level method.
This has been demonstrated to be accurate for ground-state energies over a full range of
weak to strong correlation in Hubbard model systems [83]. A generalized Kohn-Sham
approach has also been used to find the conditional factor [84], using an orbital-dependent
functional approximation, which accurately captured the topological phase diagram of a
multiband Hubbard model.

Reverse factorization There is nothing in the factorization presented above that requires
us to choose the marginal as the nuclear coordinate, and the conditional as the electronic. It
would be formally equally possible to choose the marginal factor to be the wavefunction
for the electronic coordinate, and then the nuclear wavefunction is conditionally dependent
on the electronic one. Although less intuitive, this is particularly useful for problems where
we are primarily interested in electronic dynamics, since it yields a TDSE for the electrons,
in which the potentials contain the effect of coupling to the nuclei. This was first studied in
ref. [19] with the example of laser-control of electron localization: the time-delay between
the excitation of a nuclear wavepacket from the ground to the first excited state of H+

2
and an applied infrared pulse controls the localization asymmetry, i.e., the probability
the electron ends up on the “left” or “right” nucleus. We will return to this briefly in
Section 3 [19,20,27]. For static problems, the idea of a marginal-conditional decomposition
was applied to relative coordinates in two-electron atoms, to define an exact central field



Molecules 2022, 27, 4002 6 of 30

model and analyze the Coulomb hole [85]. Recently, the idea was extended to three-particle
Coulomb systems to characterize the atom-molecule transition [86].

Mathematical analysis Formally, the XF expression of the time-dependent molecular
wavefunction closely resembles the BO approximation. However, in the latter case, the elec-
tronic conditional term is constrained to be an eigenstate of the BO Hamiltonian ĤBO(r, R)
all along the dynamics and, thus, it does not depend on time. Ref. [87] showed that the BO
approximation can be recovered from XF as a limiting case for the electron-nuclear mass
ratio µ tending to zero. Not only is this procedure an elegant scheme to connect XF to the
well-known BO approximation, but it has been employed as well to develop algorithms
that solve the coupled electronic (4) and nuclear (5) equations of XF. More specifically,
the expansion of those equations in powers of µ helped in identifying leading non-adiabatic
contributions in the electronic Equation (4) to be retained in the approximate CTMQC
algorithm (see Section 4), as well as in suggesting strategies for a perturbative treatment of
non-adiabatic effects [88–91] (discussed below).

It is of fundamental interest whether the set of equations, Equations (4)–(9), are numer-
ically stable to propagate, but it is also of practical interest, since in making approximations,
we would like to know which terms might need care in developing methods that converge
stably. In fact the mathematical form of the equations is unprecedented, and the usual
numerical methods for TDSE’s fail when applied in a straightforward way to the exact
equations [92]; a deeper mathematical analysis can be found in ref. [93].

Polaritonic chemistry The application of XF to systems of coupled electrons, nuclei,
and photons [94], has provided new perspectives in the burgeoning field of polaritonic
chemistry [95]. Confining a molecule to an optical or plasmonic cavity enhances the light-
matter coupling strength that scales as the square-root of the volume, and distorts potential
energy surfaces according to how close the energy gaps at a given nuclear configuration
are to the resonant frequencies of the cavity, thus altering reaction pathways. Choosing
the marginal factor as the nuclear coordinate provides the exact TDPES that drives the
nuclear motion, directly correlating with the nuclear dynamics in contrast to the polaritonic
surfaces [96] which are generalizations of the BO surfaces; ref. [97] showed how its features
result in the suppression of proton-coupled electron-transfer in a model system, unlike
the polaritonic surfaces. To properly model the complex systems used in the experiments,
approximations such as MQC would be required, and running classical dynamics on the
exact TDPES [98] gives a big improvement than when using simply the weighted polaritonic
surface. Work is in progress to extend the self-consistent XF-based MQC methods to the
polaritonic case for practical applications. To account for many cavity modes, a classical
Ehrenfest treatment for the dynamics of the photonic system has been explored [99],
and using the XF with the marginal as the photonic displacement coordinate could explain
the general underestimation of photon numbers in this approach [100] through comparing
the exact potential driving the photons with that underlying the Ehrenfest approach. A
further useful factorization could be Ψ(r, R, q, t) = χ(R, q, t)ΦR,q(r, t) since this would
yield a TDSE for both the nuclear and photonic systems in which the potential “exactifies"
the concept of cavity-BO surfaces introduced in ref. [101]. Also, in general, when several
identical, or non-identical particles compose the subsystems, nested commutators along
the lines of the formalism of ref. [102] could be considered.

Perturbative limit The XF has been employed to address diverse classes of static and
dynamic problems in molecules [88–90] and solids [91] manifesting essential, though not
strong, non-adiabatic effects. For instance, it has been observed that, in determining
vibrational circular dichroism of chiral molecules [90,103,104] or in computing electronic
current densities [88,105,106], the BO approximation fails to fully account for electronic
effects during the dynamics. Even though non-adiabaticity is not strong in these examples
because the system does not evolve close to avoided crossings or conical intersections,
including excited-state effects as a perturbation to the BO (unperturbed) state is essential—
and sufficient—to recover the correct behavior. In the context of XF, the electron-nuclear
coupling term of Equation (7) has been treated as a perturbation to the BO Hamiltonian [90],
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where the nuclear velocity is the small parameter. This results in a vector potential that can
be seen as a position-dependent mass correction to the bare nuclear masses and that can
be used to correct vibrational harmonic frequencies of hydrogen-based molecules [89] or
phonon frequencies in solids [91].

Quantum-mechanical clock The separation of degrees of freedom at the basis of the
stationary version of the XF was used in refs. [107,108] to introduce the concept of time
in quantum mechanics via the classical limit of the quantum-mechanical clock’s degrees
of freedom R represented by the marginal wavefunction. A clock-dependent continuity
equation for the conditional wavefunction was then derived.

3. Exact Potentials Driving Dissociation and Ionization

Returning to the theme of dynamics of non-bound states, the exact TDPES of the XF
has proved to be a useful interpretative tool. Consider a laser field causing dissociation
and ionization in a diatomic molecule. If we are primarily interested in the dissociation
aspect, the original factorization of Equations (4)–(9) might be most helpful for analysis
since it provides a rigorous definition of the potentials that drive the nuclear motion.
If we are interested in the ionization aspect, we may instead want to utilize the reverse
factorization, to study the exact potential driving the electronic system. In this section, we
discuss examples of these two potentials, previously studied in refs. [16,17] and refs. [20,27]
respectively, for the case of a one-dimensional (1D) model of H+

2 , subject to a laser field.
The model used in refs. [16,17] is from Refs. [109–112], and involves one electronic

coordinate and one internuclear (relative) coordinate with soft-Coulomb-interactions. We
note that the laser does not couple directly to the relative nuclear coordinate: the dissocia-
tion is driven solely by the electronic motion. In the XF picture, from the nuclear viewpoint
this is represented entirely by the TDPES and the time-dependent vector potential. For one-
dimensional problems, we can always pick a gauge in which the vector potential vanishes
everywhere, and then the TDPES represents the complete potential driving the nuclear
system. This is the gauge chosen in this study [16,17], and the TDPES is obtained by inver-
sion of Equation (5). The two-dimensional TDSE for the electron-nuclear wavefunction
is first solved, starting in the ground state of the molecule, and then χ is constructed:
its magnitude is the nuclear density obtained by integrating the full wavefunction over
electronic coordinates and its phase is settled by the condition that A(R, t) = 0 [17].

The laser field has a wavelength of 228 nm, which corresponds to a frequency of about
twice the dissociation energy. A sketch is shown in the top middle panel of Figure 1. We see
from the black curves in the upper left panel (b), that for an intensity of I1 = 1014 W/cm2,
the system dissociates, accompanied by significant ionization. This suggests a Coulomb
explosion mechanism. On the other hand, for the weaker intensity of I2 = 2.5× 1013 W/cm2,
over the same time period there is dissociation with 〈R〉 reaching about half the distance
as for the stronger field, but very little ionization (0.008 of an electron by the end of the
time shown, as opposed to a little more than 0.5 for the stronger field). The other curves in
these plots show the predictions from approximate methods: Ehrenfest, time-dependent
Hartree, and exact-Ehrenfest. In the Ehrenfest approach [113,114], a single nuclear classical
trajectory, initially located at the 〈R〉 of the initial nuclear probability density and with zero
momentum, is propagated by the classical Hamilton’s equations with a force given by the
average of the soft-Coulomb nuclear-nuclear interaction and electron-density-weighted
electron-nuclear interaction. In exact-Ehrenfest, on the other hand, a classical nuclear
trajectory is propagated under the gradient of the exact TDPES [16,17]. These methods
both treat the nuclear dynamics classically, while time-dependent Hartree (time-dependent
self-consistent field) involves a quantum propagation of a nuclear wavefunction based on
an uncorrelated factorization of the molecular wavefunction [114] resulting in the potential
driving the nuclei determined self-consistently through the electronic density. We observe
that while all three of the approximate methods predict dissociation in the stronger field I1,
with exact-Ehrenfest being closest to the exact result, none of them is able to predict the
dissociation in the weaker field I2 case. The exact TDPES can help us understand why.
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The TDPES, shown in the lower set of panels in Figure 1b,c, shows a strong deviation
from the BO surface, with large oscillations in time in the region from near the equilibrium
distance on out. The tail of the TDPES alternately falls sharply and returns in correspon-
dence with the field, which softens the bond, releasing the nuclear density. In this way the
TDPES mediates the transfer of energy from the field-accelerated electronic motion to the
nuclei. The features are similar for both the stronger and weaker field cases, and why a
classical particle evolving on the TDPES does not therefore dissociate for the case of I2 is
perhaps not immediately obvious. The answer is revealed when we take a closer look at
the structure of the surfaces close to the equilibrium distance and plot the classical energy
of the particle evolving in the TDPES (the exact-Ehrenfest calculation) as a function of its
position. These are black dots shown in the time snapshots. While for the stronger field
I1, the particle quickly becomes loose of the binding potential, being kicked up by the
TDPES oscillations, in the case of the weaker field it gets trapped in a narrow potential
well not so far from the equilibrium bond length. Without tunneling, it cannot escape,
and therefore dissociation does not occur in the classical calculation. This shows that
the mechanism for dissociation of the quantum system in the weaker field is tunneling:
the TDPES transfers field energy to the nuclei via tunneling, and although the classical
exact-Ehrenfest calculation shows a larger amplitude of oscillation of 〈R〉 than the other
approximation methods, it ultimately cannot tunnel through the barrier. Despite treating
the nuclei quantum mechanically, so in principle being able to capture effects like tunneling,
the time-dependent Hartree method still fails. This is because of its uncorrelated nature: the
electronic density determining the potential for the nuclear motion is the same for every R,
and does not deviate far from the exact electronic density near the equilibrium bond-length,
due to the weak field strength. The reader is referred to ref. [17] where the Hartree surfaces
are explicitly shown. This example emphasizes that the mechanism of dissociation via
tunneling requires not only an quantum mechanical description of the nuclei but also an
adequate description of electron-nuclear correlation.

nuclear density

TDPES

BO surface 

• classical particle 

R

z

a)
b) c)

Figure 1. 1D model of laser-driven H+
2 dissociation: (a) Shows a sketch of the model molecule,

and the electric field of the λ = 228 nm laser applied to the system, with the shaded part indicating
the optical cycle for which snapshots for two different intensities are shown in the other panels.
(b) The top panel shows 〈R〉(t) as a measure of dissociation, for the stronger field intensity of I1,
and the lower panel shows Ip = 1−

∫
boxe

dz
∫

dR|Ψ(z, R, t)|2 which measures ionization through
the number of electrons outside a box chosen of size |z| ≤ 10 a.u; the exact is shown in black, while
predictions of the traditional classical Ehrenfest method is in red, the quantum time-dependent
Hartree in blue, and a classical evolution on the exact TDPES (labelled as exact-Ehrenfest) as green.
The lowest panel shows time-snapshots of the nuclear density and the TDPES, and the black dot
shows the position and energy of a classical particle evolving under the TDPES. (c) This shows the
same quantities as in (b) but for the weaker field intensity I2. Reproduced from ref. [17] with the
permission of AIP Publishing.
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We now briefly turn to the electron’s viewpoint, and ask what is the potential that is
driving its motion? In this case, we choose the reverse factorization where the marginal
has the electronic coordinate: Ψ(r, R, t) = Φr(R, t)χ(r, t), so that the equations are exactly
the same as Equations (4)–(9) but with r ↔ R. The electronic wavefunction satisfies a
TDSE, and, again picking a gauge where A = 0, the TDPES appearing in the equation for
Φ(r, t) (e-TDPES) together with the external laser field account completely for the electronic
system’s motion.

Although formally the same as the direct factorization equations Equations (4)–(9),
the structure of the TDPES is significantly different, with different terms in Equation (8)
contributing in different ways. In particular, the term in the e-TDPES that comes from the
electron-nuclear coupling operator Ûen, 1

2me
〈Φr|∇2

j Φr〉R (where ∇j is the gradient with
respect to the jth electronic coordinate) is significantly larger in the reverse factorization
than in the direct factorization, due to the division by the much smaller electron mass.
This term tends to give peak structures in the e-TDPES, which can have a significant
impact on the electron dynamics. For example, in the case of laser-controlled electron
localization [115–117], mentioned in Section 2.1, the peak led to an interatomic barrier
that enhanced the one in the traditional pictures that comes from Coulomb interaction,
resulting in an earlier localization time and smaller localization asymmetry than predicted
by traditional methods [19]. The traditional methods use a “quasistatic" picture where
the electron-nuclear electrostatic potential is added to the laser field to determine the
electronic wavefunction’s evolution. This work showed that the quasistatic approach
misses important effects coming from dynamical electron-nuclear correlation, that can have
a notable influence on the predicted observables.

Dynamical electron-nuclear correlation was also shown to be important in under-
standing the process of charge-resonance enhanced ionization (CREI). CREI refers to the
phenomenon that the ionization rate from a molecule can be several orders of magnitude
higher than the rate from the constituent atoms at a critical range of internuclear sepa-
rations [110,118–122]. This was originally explained by a quasistatic argument, where
nuclei are instantaneously fixed point particles. The combined electrostatic electron-nuclear
attraction, together with the field, leads to Stark-shifted atomic levels, and the potential
acting on the electrons involves both an outer barrier on the down-field side, and an in-
ternuclear barrier that grows as internuclear separation increases. Provided that the field
is turned on fast enough such that population in the up-field level remains and does not
tunnel back to the down-field atomic level, the molecule can rapidly ionize over both
the inner and outer barriers, at an optimal internuclear separation. This gives rise to the
enhanced ionization rate. By requiring that the Stark-shifted up-field atomic level exceeds
the top of both the inner and outer field modified Coulombic barriers, one finds the critical
internuclear separation for CREI as 4.07 divided by the ionization potential. The analysis
can be generalized to the case of a laser field whose period is shorter than the tunneling
time [118,123–125].

This physical picture is very instructive, but in modeling the experiment, the premise
of a quasi-static picture is questionable. A time-resolved study showed that even with static
nuclei, the ionization tends to occur in multiple sub-cycle bursts [124,125], not at the peak
of the field cycles, which was assumed in the prior analysis. Furthermore, to observe CREI,
the molecule needs to be stretched to the CREI region rapidly enough that appreciable
electron density remains un-ionized. In fact, in some experiments, CREI is not observed
because there is too much ionization before the critical distance is reached [126–128].
Typically, a fraction of the nuclear density remains near equilibrium separations, while a
fraction dissociates, and it is the electron density associated with the dissociating fragment
that is responsible for CREI. Thus not only the point particle picture for the nuclei is not
accurate, but also the nuclear dynamics means the quasistatic picture is not appropriate,
especially as in some dissociating channels the fragment velocities can be comparable to the
electronic velocities. Refs. [20,27] showed that the dynamical electron-nuclear correlation
terms in the exact e-TDPES are needed to accurately predict the ionization characteristics
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when modeling a real CREI experiment. Going beyond the quasistatic treatment by only
accounting for the width and splitting of the nuclear wave packet is generally not enough
to get the correct dynamics of CREI.

These examples show that the exact TDPES for nuclei or e-TDPES for electrons can
provide an illuminating picture on the nature of dynamical electron-nuclear correlation in
laser-driven dissociation and ionization, but such studies can only be done when the full
molecular TDSE can be somehow solved exactly or highly accurately. In the next section,
we discuss approximations based on the XF, which move the XF to be a useful approach for
real systems.

4. XF-Based Mixed Quantum-Classical Methods

Being an exact reformulation of the molecular TDSE, the XF equations are no easier
to solve than the original molecular TDSE; in fact, due to numerical stability issues, they
appear to be harder [92,93]! Although the form of the exact coupling terms can give us
insight and help us interpret phenomena related to electron-nuclear correlation, to have
a practical impact, the XF requires approximations. MQC approximations are a natural
direction for this, justified by the large mass of the nuclei [87].

By taking a classical limit for the nuclear motion, and discarding terms in the equa-
tions justified by the exact studies to have a small effect [33], refs. [24,25] derived the
coupled-trajectory MQC (CTMQC) approach. In CTMQC the electrons are propagated
quantum-mechanically whereas the nuclear dynamics consists of classical trajectories
coupled through the nuclear quantum momentum

Qν(R, t) = −
∇ν|χ(R, t)|
|χ(R, t)| = −

∇ν|χ(R, t)|2

2|χ(R, t)|2 (10)

When writing the nuclear wavefunction in terms of its modulus |χ(R, t)| and phase
S(R, t), the term in parenthesis in Equation (7) that depends on χ(R, t) can be rewritten as

−i∇νχ(R, t)
χ(R, t)

+ Aν(R, t) = ∇νS(R, t) + Aν(R, t) + iQν(R, t) (11)

The first two terms on the right-hand side sum up to the nuclear momentum field,
which has a clear classical interpretation. The last term, i.e., the quantum momentum, ap-
pears as an imaginary correction to the classical momentum, with no classical counterpart.

The conditional electronic wavefunction associated with each trajectory α is expanded
in the BO basis {Φl

R(r)} such that ΦR(r, t) → ΦRα(t)(r, t) = ∑l Cα
l (t)Φ

l
Rα(t)(r). Then the

CTMQC equations for the electronic and nuclear evolution are

Ċ(α)
l (t) = Ċ(α)

l,Eh(t) + Ċ(α)
l,XF(t) (12)

F(α)
ν (t) = F(α)

ν,Eh(t) + F(α)
ν,XF(t) (13)

where we note the shorthand f (R(α)(t), t) = f (α)(t). The first terms in the electronic and
nuclear equations are Ehrenfest-like terms

Ċ(α)
l,Eh(t) = −iE(α)

l C(α)
l (t)−∑

k

Nn

∑
ν

Ṙ(α)
ν (t) · d(α)

ν,lkC(α)
k (t) (14)

F(α)
ν,Eh(t) = ∑

l
|C(α)

l (t)|2(−∇νE(α)
l ) + ∑

l,k
C(α)∗

l (t)C(α)
k (t)(E(α)

l − E(α)
k )d(α)

ν,lk (15)

with d(α)
ν,lk being the non-adiabatic coupling vector (NAC) along the ν’th nuclear coordinate

between BO states l and k evaluated at the coordinate Rα(t), i.e., 〈Φl
R(r)|∇νΦk

R(r)〉|Rα and
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E(α)
k the k-th BO electronic surface. The second terms in Equations (12) and (13) are the

corrections coming from XF:

Ċ(α)
l,XF(t) =

Nn

∑
ν

Q(α)
ν (t)
Mν

·
(

f(α)ν,l −∑
k
|C(α)

k |
2f(α)ν,k (t)

)
C(α)

l (t) (16)

F(α)
v,XF(t) = ∑

µ

2Q(α)
µ (t)
Mµ

·
(

∑
l
|C(α)

l (t)|2f(α)µ,l

)(
f(α)ν,l −∑

k
|C(α)

k |
2f(α)ν,k (t)

)
(17)

The term f(α)ν,l is a momentum that equals the time-integrated adiabatic force accumu-
lated on the lth surface along the trajectory α:

f(α)ν,l = −
∫ t

0
∇νE(α)

l dτ (18)

and Q(α)
ν (t) is the quantum momentum evaluated at the position of the trajectory Rα(t). In

a trajectory-based scheme, at any given time, information of the position of all trajectories
is required to reconstruct the nuclear spatial distribution and compute the quantum mo-
mentum. Hence, this is a coupled-trajectory scheme, not an independent-trajectory one.
CTMQC has been successfully employed to simulate several excited-state processes, such
as the ring-opening process of oxirane [26,129] and the photo-isomerization of 2-cis-penta-
2,4-dienimiun cation, a retinal photoreceptor [130]. Key to its success in these problems is
its ability to capture decoherence from first principles, unlike traditional MQC methods as
we will shortly discuss.

Another approach is to use the electronic equation derived from XF, i.e., Equation (12),
in a surface-hopping scheme [21,22] where the nuclei evolve on a single BO surface at
any time, making hops between them according to a stochastic algorithm. This XF-based
surface-hopping (SHXF) has been applied to a range of complex systems, from organic
molecules to molecular motors [131–136]. Part of what has made SHXF able to treat such
large systems, is that the quantum momentum term is computed via auxiliary trajectories
thus enabling an independent trajectory scheme; these auxiliary trajectories approximately
mimic the local coupling of a trajectory to nearby ones. Instead, computing the quantum
momentum using coupled trajectories in the same way as in CTMQC, but within a surface-
hopping scheme, yields the coupled-trajectory surface-hopping (CTSH) method [23]. More
details on the different ways to compute the quantum momentum are given in Section 4.1,
and an investigation of their effect on dynamics in Section 5.

In traditional MQC schemes such as Ehrenfest and surface-hopping [1,2,114,137],
the electronic system suffers from “overcoherence”: after passing through a region of non-
adiabatic interactions, the nuclear wavepacket splits with different parts of the wavepacket
being correlated with different electronic surfaces. However, the Ehrenfest nuclear distri-
bution follows a mean-field surface and does not split (even if it approximates averaged
observables adequately), while, although the surface-hopping nuclear distribution is able
to split with different branches evolving on different electronic surfaces, the electronic
coefficients remain coherent. In a sense, surface-hopping is more unsettling than Ehrenfest,
because of the disconnect between electronic and nuclear systems. Although it is clear
how the Ehrenfest approach can be derived from a time-dependent self-consistent field
ansatz [114], a solid derivation of surface-hopping has proved to be challenging with recent
progress in ref. [138]. Various ad hoc decoherence corrections have been imposed on the
surface-hopping algorithm [1,139,140], most often involving an empirical parameter; they
are often adequate to reproduce experimental results, but not always, and not reliably.

On the other hand, due to its origin in the rigorous XF approach, the quantum mo-
mentum term in Equation (12) has been shown to give a first-principles description of
decoherence in a number of complex systems as well as in detailed studies on model
systems [21,25,26,130,135,141,142]; in some cases, the XF-based correction to surface-hopping
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performs similarly, or better, than the traditional decoherence-corrected methods [135]. A sig-
nificant improvement over traditional MQC methods was recently found in ref. [136]: here,
the quantum-momentum term has a role that goes beyond just decoherence. It was shown to
be crucial to describe processes where multiple electronic states are simultaneously coupled
in some regions of the nuclear configuration space via non-adiabatic coupling.

4.1. Computation of the Quantum Momentum

Currently, available codes to perform CTMQC simulations are G-CTMQC [23,143] and
PyUNIxMD [22]. G-CTMQC includes the coupled-trajectory schemes CTMQC and CTSH,
with hopping calculated either via fewest-switches hopping, or Landau-Zener, and it is
interfaced with the potential library ModelLib [144] Furthermore, it has been extended to
treat spin-forbidden electronic transitions mediated by spin-orbit coupling, both in the spin-
diabatic and spin-adiabatic representations [70,71]. PyUNIxMD has CTMQC and SHXF
(with fewest switches hopping probability) capabilities, and is interfaced with a number of
electronic structure codes. Recently, the simulation of photo-isomerization dynamics of a
protonated Schiff base was calculated using both SHXF and CTMQC, achieving results that
are in good agreement with each other [145].

In the CTMQC algorithm there are two main ways to compute the quantum momen-
tum. The first is based on the idea of reconstructing the nuclear density using a sum of
gaussians centered at the position of each classical trajectory

|χ(α)(t)|2 =
1

Ntr

Ntr

∑
β

∏Nn
ν=1g

σ
(β)
ν
(R(α)

ν (t)− R(β)
ν (t)) (19)

Note that we have indicated with the symbol g
σ
(β)
ν
(R(α)

ν (t)− R(β)
ν (t)) a normalized

three-dimensional gaussian (for each nucleus ν) centered at R(β)
ν (t) and with variance σ

(β)
ν .

Then, the quantum momentum is computed analytically applying Equation (10). In the
original CTMQC implementation [24–26] the variance of the gaussians was time-dependent
and determined from the distribution of classical trajectories along the dynamics. However,
to stabilize the dynamics and for practical reasons, a frozen gaussian approach with time-
independent widths is currently used. This results in the following expression for the
quantum momentum:

Q(α)
ν (t) = Γ(α)

ν

(
R(α)

ν (t)−RRR
0 (α)
ν (t)

)
(20)

where the slope of the quantum momentum is computed as Γ(α)
ν = ∑β Wαβ

ν where

Wαβ
ν =

∏Nn
ν g

σ
(β)
ν
(R(α)

ν (t)− R(β)
ν (t))

2σ
(β) 2
ν ∑Ntr

β′ ∏Nn
ν′ g

σ
(β′)
ν′

(
R(α)

ν′ (t)− R(β′)
ν (t)

) , (21)

and the center of the quantum momentum is defined as

RRR
0 (α)
ν (t) =

∑Ntr
β′ Wαβ′

ν R(β′)
ν (t)

∑β Wαβ
ν

(22)

Note that if the gaussians for all the trajectories carry the same nucleus-dependent
width σν, given e.g., by the widths of the initial nuclear wavepacket, then the slope becomes
independent of the trajectory index:

Γ(α)
ν → Γν =

1
2σν

2 (23)
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Because of the approximations introduced to derive CTMQC, the expression for
the quantum momentum Equation (20) does not satisfy the physical condition that no
population transfer among electronic states should be observed in regions where the
NAC vectors are zero, once averaged over all trajectories. The CTMQC equation for the
time-variation of the trajectory-averaged population of the lth electronic state, Pl(t) =

N−1
tr ∑α |C

(α)
l (t)|2 is:

dPl(t)
dt

=
1

Ntr
∑
να

(
−∑

k
Re(ρ(α)lk )d(α)

ν,lk·Ṙ
(α)
ν +

2Q(α)
ν

Mν
·
(

f(α)ν,l −∑
k

ρ
(α)
kk f(α)ν,k

)
ρ
(α)
ll

)
(24)

where ρ
(α)
lk = C(α)∗

l C(α)
k are electronic density-matrix elements. To enforce the condition

of zero net population transfer when d(α)
v,lk = 0, the second term on the right-hand-side

of Equation (24) is required to be zero, and this gives an expression for the quantum
momentum [26]. Note that this means the overall population transfer of the whole swarm of
trajectories comes solely from the NAC term in Equation (24) and the quantum momentum
affects the electronic population dynamics only indirectly through the evolution of the
coefficients appearing in the first term. The condition is imposed pairwise in the electronic
states and for each degree of freedom, which results in a different quantum momentum
center for each pair of electronic states which is required to be independent of the trajectory
index, RRR0 (α)

ν (t)→RRR0
lk,ν:

∑
να

2Q(α)
lk,ν(t)

Mν
·
(

f(α)ν,l − f(α)ν,k (t)
)

ρ
(α)
ll (t)ρ(α)kk (t) = 0 (25)

Imposing the condition, the numerical expression satisfies

Q(α)
lk,ν(t) = Γ(α)

ν

(
R(α)

ν (t)−RRR0
lk,ν(t)

)
(26)

where now the center of the quantum momentum is computed as

R0
lk,ν =

∑α Γ(α)
ν R(α)

ν

(
f (α)k,ν (t)− f (α)l,ν (t)

)
|C(α)

l (t)|2|C(α)
k (t)|2

∑α′ Γ
(α′)
ν

(
f (α
′)

k,ν (t)− f (α
′)

l,ν (t)
)
|C(α′)

l (t)|2|C(α′)
k (t)|2

(27)

A alternative approach is to choose the y-intercept of Equation (20), Γ(α)
ν RRR

0 (α)
ν (t),

as independent of the trajectory index instead [26].
In the implementation of the CTMQC algorithm the expression of the quantum mo-

mentum center to be used, either the original Equation (22) or the modified Equation (27), is
selected according to a given threshold (referred to as theM-parameter in the code). If the
population decoheres and the wavefunction collapses to a single BO state the quantum
momentum is set to zero. If the denominator of Equation (27) is very small for other reasons
different than decoherence, then the analytical expression (22) for the center of the quantum
momentum is used.

The CTSH algorithm also requires the quantum momentum in the electronic equation,
and it is implemented with the same two options as possibilities.

Instead, in the independent-trajectory surface-hopping scheme SHXF, auxiliary tra-
jectories are used to compute the quantum momentum. In the SHXF algorithm, when
the propagated nuclear trajectory enters a region of non-zero non-adiabatic coupling an
auxiliary trajectory is created on the BO state in which the population appears. This virtual
trajectory propagates with a momentum given by isotropic energy conservation until the
BO population in that state becomes negligible and the auxiliary trajectory is killed. At each
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time step, the quantum momentum is computed placing a gaussian centered at the position
of each trajectory and applying the analytical definition Equation (10)

Q(α)
ν (t) = − 1

2σν
2

(
R(α)

ν (t)−∑
l
|C(α)

l (t)|2R(α)
l,ν (t)

)
(28)

The variance of the gaussian centered on the auxiliary trajectory σν in each degree of
freedom ν is an input parameter, and, to eliminate empiricism is chosen to be that of the
initial distribution. This has given good results for the real molecules studied. Recently,
a new implementation of SHXF [146] was proposed in which a time-dependent width σν(t)
is computed by imposing maximum overlap between nuclear wavefunctions on different
BO states in phase space.

Both SHXF and CTSH follow the same equations, except for the computation of the
quantum momentum, and, in particular, Equation (28) of SHXF approximately mimics the
computation with coupled trajectories of CTSH using the original definition Equation (22)
in Equation (20). Although similar in spirit, we see that there is a significant difference
in centers of the quantum momentum (second term on the right of Equation (28) c.f.
Equation (20)). For two-state problems, while all trajectories of the ensemble contribute in
CTSH, only two trajectories enter in SHXF: the running state, and one auxiliary trajectory.
In fact, in the two-state case, Equation (28) reduces to

Q(α)
ν = − 1

2σν
2

(
R(α)

ν,a (t)− R(α)
ν,in(t)

)
(1− |C(α)

a (t)|2) (29)

where R(α)
ν,a (t) denotes the position of the active trajectory (running state), with electronic

coefficient C(α)
a (t), and R(α)

ν,in(t) the auxiliary trajectory. In contrast, the center of the quan-
tum momentum in CTSH is vastly different in Equation (22), including contributions from
all trajectories on all surfaces, even though the originating equation is the same.

The main advantages of SHXF are computational efficiency and numerical stability.
However, both SHXF and CTSH suffer from deficiencies inherited from the ad hoc nature
of the surface-hopping procedure itself: the ambiguity of velocity-adjustments after a
hop [135,147–149], and the incorrect forces in the vicinity of a NAC region where the exact
force tends to have a diabatic or averaged character rather than that from one surface.
Further, although the disconnect between the single-surface evolution of the nuclei and
the coherent electronic evolution is partially ameliorated with the XF term, reducing the
difference between the electronic population at a given time and the fraction of trajectories
evolving on a given surface, this so-called “internal consistency" is not guaranteed. Finally,
from the XF side, we note that the modified computation of the quantum momentum
Equation (27) is not possible within SHXF because the trajectories are not coupled to
each other.

5. Computing the Quantum Momentum

We now investigate the effect on the dynamics of a one-dimensional system of the
three ways of calculating the quantum momentum term: with coupled-trajectories (CTSH
and CTMQC) using the original definition Equation (22), and using the modified imple-
mentation Equation (27), and with the auxiliary trajectories method (as done in SHXF).
Further we compare the effect of the XF terms in the nuclear equation of CTMQC versus
the surface-hopping schemes SHXF and CTSH.

We choose our model system as the Tully model with an extended coupling region
with reflection (ECR) [137], where an incoming nuclear wavepacket enters a region of
extended non-adiabatic coupling between two BO surfaces that are asymptotically parallel.
Along with other Tully models, the performance of CTMQC was studied in detail in ref. [25].
In that work, a time-dependent variance was computed for the gaussians. Nevertheless the
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results of ref. [25] are in good agreement with our wok in which a frozen gaussian approach
Equation (23) was used instead.

The analytical form of the electronic Hamiltonian matrix elements, the BO surfaces,
and the NAC are shown in Figure 2.
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Figure 2. Analytical form of the electronic Hamiltonian on the left, with the BO potential energy
surfaces (red and black) and NAC (dashed green) shown on the right for ECR model.

The parameters were chosen to be A = 6× 10−4 a.u., B = 0.1 a.u. and C = 0.90 a.u.
and the atomic mass 2000 a.u. We will study two cases, a Gaussian nuclear wavepacket
incoming on the lower surface from the left with a higher (k0 = 30 a.u.) and a lower
(k0 = 10 a.u.) initial momentum. In the NAC region, some population is transferred to the
upper surface and in both cases, the off-diagonal elements of the density matrix in the BO
basis (coherences) rise and then eventually vanish after passing the non-adiabatic region:
For the higher initial momentum, the nuclear wavepacket associated with the lower surface
moves faster, separating in nuclear space from the part that has transferred to the upper
surface, while for the low initial momentum case one branch of the nuclear wavepacket is
reflected and the other is transmitted. The decay of the coherence cannot be accounted for by
uncorrected surface hopping since the electronic equations are propagated fully coherently
along each independent trajectory [137], and the method becomes “internally inconsistent"
in that the BO population determined from the modulus-square of the associated electronic
coefficient differs from that determined by the fraction of nuclear trajectories evolving on
that surface [1,2,114,137,139,140].

We ran 1000 Wigner-distributed trajectories starting on the lower BO surface for CTSH
and SHXF, while CTMQC calculations converge already with 200 trajectories. The initial
position was R0 = −15 a.u. and the variance σ0 of the gaussian wavepacket at time zero
was chosen to be 20 times the inverse of the initial momentum. The time-step used in the
calculations is 0.1 a.u.

5.1. ECR Model k0 = 30 a.u.

As we can see from panel A) in Figure 3, both CTMQC and the CTSH electronic
populations with the modified definition of the quantum momentum (Equation (27)) are
on top of each other and closely reproduce the exact result. For CTSH, measuring the
population instead by the fraction of trajectories evolving on the surface yields small
oscillations around the exact results. On the other hand, panel A) in Figure 3 shows that
both CTMQC and CTSH with the original definition of the quantum momentum predict a
small population transfer back to the ground state after the first interaction region when
considering the electronic populations. Interestingly, the fraction of trajectories measure,
however, does not show this, and instead has a similar trend as the exact but with an
underestimate of CTSH. Comparing with panel B) of Figure 3, we see that the trend in
the electronic populations is the same in SHXF. That is, the electronic populations yield a
back-transfer when the original definition of the quantum momentum is used, whether it
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is computed via auxiliary trajectories as in SHXF or with coupled-trajectories as in CTSH.
The two ways yield similar results for the populations, although it should be noted that
the SHXF results show a dependence on the width-parameter of Equation (28). Taking
σ = σ0 arguably gives an overall closer result to the parameter-free CTSH population,
although SHXF with σ = σ0/10 matches closely the CTSH populations at earlier times. The
fraction of trajectories in SHXF does not show the back-transfer, just as that in CTSH did
not; this measure in SHXF with σ = σ0/10 gives a larger underestimate of the population
transfer. But the fraction of trajectories measure for either σ-parameter in SHXF as well
as either definition of the quantum momentum in CTSH are quite close to the exact,
and close to that of CTMQC with the modified definition. At the same time we observe
that uncorrected SH electronic populations are close to that of the exact while the fraction
of trajectories closely resembles that of CTSH. However the uncorrected SH coherences
do not decay in time and would lead to errors in later evolution if the system encounters
another interaction region.
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Figure 3. Upper panels: electronic populations (A,B), and of the excited state ρ22(t) (solid) and
fraction of trajectories on the excited state Π2(t) = N2(t)/Ntraj (dotted), with N2(t) being the number
of trajectories running on the upper surface at a given time and Ntraj the total number of trajectories,
are plotted for ECR model with k0 = 30 a.u., as functions of time starting at 400 a.u. which is when
the trajectories and the quantum wavepacket approach the NAC region. The label Qm indicates the
use of Equation (27), i.e., the modified definition of the quantum momentum, while Qo indicates
the use of Equation (22), i.e., the original definition. Lower panels: electronic coherences (C,D),

|ρ12|2 = ∑
Ntraj
α |Cα∗

1 (t)Cα
2 (t)|2/Ntraj. The color code is the same as in the upper panels. The coupled-

trajectory results are compared with exact results in the left panels, whereas auxiliary-trajectory
results are shown in the right panels. For reference, surface-hopping (SH) results with no decoherence
corrections are shown in the right panels.

The incorrect back-transfer of population seen in the electronic populations when
using the original definition of quantum momentum can be related directly to the violation
of the condition of zero net population transfer in regions of zero NAC. To demonstrate this,
we plot the spatial distribution of trajectories at different times in Figure 4 for CTSH and
SHXF along with the NAC. The top panels show that the nuclear distributions for CTSH
with the two definitions are similar at these times, and that between 1000 and 1200 a.u., only
a small fraction of trajectories are in a region of non-negligible non-adiabatic coupling; so
the population transfer seen with the original definition Equation (22) is a violation of the
condition. The lower panels show that a similar violation occurs for SHXF σ = σ0 and σ0/10,
consistent with the unphysical population transfer seen there. However, using the fraction
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of trajectories measure of populations appears to remedy this problem: the fewest-switches
hopping probability is proportional to the NAC so if this is too small, then the system is
very unlikely to hop. Thus, in a sense, the fewest-switches hopping probability somewhat
takes care of the zero net population transfer in regions of zero NAC, since the probability
is zero when the NAC is. We trade one violation for another: the violation of the internal
inconsistency enables us to obtain physically reasonable populations through the fraction
of trajectories measure of populations instead of through the electronic coefficients, which
avoids us violating the condition of zero net population transfer in regions of zero NAC.

Looking at the coherences plotted in panel C) of Figure 3, both CTSH and CTMQC
with the modified definition of the quantum momentum are in agreement with each other
and show faster decoherence rates than the exact calculations, while using the original
definition of the quantum momentum predicts slower decoherence times. On the other
hand, as we see in panel D) the coherences for SHXF σ = σ0 are similar to those of CTSH
with the original quantum momentum definition, and the decoherence rate increases with
decreasing σ as expected from Equation (28).
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Figure 4. Spatial distribution of trajectories for the ECR model with k0 = 30 a.u.: CTSH with original
definition of the quantum momentum using Equation (22) (panel A), CTSH with the modified
definition of the quantum momentum using Equation (27) (panel B), SHXF with σ = σ0 (panel C)
and SHXF σ = σ0/10 (panel D).

5.2. ECR Model k0 = 10 a.u.

As we can see in Figure 5, in contrast to the higher momentum case, there is substantial
disagreement between the methods for the low incoming momentum case.

First let us consider the coupled-trajectory methods with the modified quantum momen-
tum expression, Equation (27). CTMQC with Equation (27) closely reproduces the exact results,
slightly overestimating the population transfer to the excited state and underestimating the
back-transfer from the part of the nuclear wavepacket that reflects. Using Equation (27) the
electronic populations of CTSH however do not reproduce the transfer back to the ground
state that would be associated with reflecting trajectories. On the other hand, the CTSH
fraction of trajectories reproduces the populations better than the electronic populations, even
though, in a sense the latter are more fundamentally derived [23]; we had seen this also
for the higher momentum case in Section 5.1 when the original definition of the quantum
momentum was used, but now here we see it also for the modified definition. Unlike the
higher momentum case, this cannot be attributed to violation of the zero net population
transfer condition since the modified definition respects this condition.
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Figure 5. Upper panels: electronic populations (A,B) of the excited state (solid) and fraction of
trajectories on the excited state (dotted) are plotted for ECR model with k0 = 10 a.u. Lower panels:
electronic coherences (C,D).

With the modified definition of the quantum momentum, although the CTSH trajectory-
averaged electronic populations are similar to CTMQC until about 4000 a.u., the coefficients
are different from about 3000 a.u. onwards, as is evident from the coherences shown in
the lower panel. CTMQC coherences decay after the first passage on a similar but shorter
time-scale as the exact before rising later when the reflected trajectories pass the NAC.
But CTSH coherences rise after a much shorter time: the CTSH trajectories spend more
time in the NAC region, reflecting earlier, and the coefficients of the individual trajectories
evolve, even if the population averaged over all trajectories remains constant. The quantum
momentum term (which depends on |C(α)

1 (t)|2|C(α)
2 (t)|2) in the equation of motion for the

coefficients remains activated in CTSH from 3200 a.u. onwards, unlike in CTMQC where
it is essentially zero from 3200 a.u. to about 4000 a.u. These observations are illustrated
in Figure 6. The figure also shows the electronic energies associated with each trajectory,
which, for the CTMQC maps out the effective approximate TDPES. While the CTSH trajecto-
ries dwell in the NAC region, there is a significant hopping probability, yielding changes in
which surface a given trajectory evolves on. Even at large times, the internal inconsistency
is severe in both the reflected and transmitted region. In particular, in the first non-adiabatic
event, some trajectories do not hop but the associated electronic coefficient changes to the
upper surface leading to a transmitted part of the nuclear distibution with poor internal
consistency as we observe on the trailing edge of the transmitted trajectories (Figure 6).
Arguably the trend of the fraction of trajectories measure of populations in Figure 5 is closer
to the exact than that from the electronic populations, just as the running state population
is closer to that of CTMQC in Figure 6. The reason why the CTSH trajectories stay longer in
the NAC region and reflect earlier than the CTMQC trajectories is related to the effective
potential energies they experience: the ones which have hopped to the upper surface evolve
on the more sharply rising upper BO surface, with a velocity penalty to conserve energy
from making the hop, while the CTMQC ones evolve on an approximate TDPES which
tends to be bounded by the upper BO surface but can be below it. The CTMQC trajectories
(black dots moving on the thin red lines representing the BO energy curves in the left
panels) leave the NAC region earlier than the CTSH ones (black dots in the right panels),
and move further to the right, before the reflection occurs. While at the beginning of the
non-adiabatic event (shown at time t = 2875 a.u. in Figure 6) the distributions of CTMQC
and CTSH trajectories are similar, the issues just described can be identified at later times,
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for instance at t = 3215 a.u. and t = 3395 a.u. in Figure 6. The distribution generated by
the CTSH evolution at t = 3795 a.u. and t = 4675 a.u. has a splitting that agrees better with
CTMQC than at previous times. Movies describing the full dynamics as documented in
Figure 6 are provided as Supplementary Material.

In Figure 6, comparing the CTSH electronic populations (green dots) in the top right-
hand plots at each time with the running state (red dots, or, compare with the bottom
plots) attests to the breakdown of the internal consistency of the algorithm, discussed
above. Specifically, we note that in some regions of space and already at early times,
the running state for each trajectory (the red dots are at zero for the ground electronic state
and one for the excited state), differs from the value of the excited-state population for
those same trajectories. When a trajectory is on the ground-state potential energy curve,
the corresponding population associated to the excited state (ρα

22(t)) should become zero as
the trajectory leaves the interaction region. However, this is not always the case, as evident
from Figure 6. For CTMQC, this issue of internal consistency does not exist. We show for
completeness, in the same figure but in the middle plots of each panel, the contribution of
the quantum-momentum XF term in the electronic evolution equation (in particular, we
show as blue dots the second term in the right-hand side of Equation (24) but without the
trajectory-sum). We note that at times t = 3215, 3395, 3795 a.u. the effect of such term is
non-zero, in contrast to what is predicted by CTMQC.

We turn now to the CTMQC and CTSH results using the original definition of the
quantum momentum Equation (22). With this definition we see from the lower left panel of
Figure 5 that neither of these decohere during this time period. The CTMQC populations
continue to evolve throughout, beginning to differ from the exact result already around
about 2400 a.u. Soon after this time, many of the trajectories have moved passed the NAC
region, as evident in Figure 7 (black dots in the bottom panels of each plot on the left shown
at different times along the dynamics—those times are different than Figure 6 since the
overall evolution is different if compared to the previous case where the modified quantum
momentum was used), and there is violation of the zero net population transfer condition
in this part of the nuclear wavepacket. In fact the contribution of the quantum momentum
term to the equation of motion for the coefficient (blue dots on the left panels in Figure 7)
can be larger in the transmitted part than it is in the NAC region, which is a big distinction
with the modified quantum momentum result where it was zero in the transmitted region
(compare Figures 6 and 7). Driven by the quantum momentum (which is predominantly
negative in this leading edge [141]) populations in this region start transferring back to
the ground state after previously having transferred to the excited state, earlier than when
the modified quantum momentum definition is used. The effective TDPES shown by the
electronic energies associated with each CTMQC trajectory shows a significant difference
from that when using the modified definition of the quantum momentum in Figure 6,
and does not reduce to the BO surfaces away from the interaction region as they should.
The distribution of nuclear trajectories do not show a clear splitting. Finally, note that the
population of the electronic excited state at the positions of the trajectories (green dots on
the left in Figure 7) clearly attests to the lack of spatial splitting and efficient decoherence
observed for the dynamics of the trajectories.
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Figure 6. Top panels in each plot: Time snapshots of the electronic populations of the excited state
for CTMQC (left) and CTSH (right), with the modified definition of the quantum momentum, at the
positions of the trajectories (green dots) and running state (red dots). Middle panels in each plot: XF
contribution to the time-variation of the electronic populations (blue dots), i.e., the second-term on
the right-hand-side of Equation (24) but without the trajectory-sum. Lower panels in each plot: BO
surfaces (thin red lines), NAC (thin dashed lines), and spatial distribution of the nuclear trajectories
on the BO surfaces (black dots).
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Figure 7. Same as in Figure 6 but using the original definition of the quantum momemtum.

The electronic populations of CTSH with the original quantum momentum definition
Equation (22) show a strikingly different behavior than that of CTMQC, with many contin-
uing to rise after the first transfer event, before leveling off (see the right panels of Figure 7
for CTSH results to be compared to the CTMQC results just described). As in CTMQC
with this definition, there is violation of the zero net population transfer condition in the
transmitted wavepacket, but the populations behave very differently: each of the transmit-
ted and reflected wavepackets have populations spanning both upper and lower surfaces
in CTSH, and the unphysical growth of the trajectory-averaged populations in Figure 5
comes primarily with trajectories associated with the transmitted part of the wavepacket.
In contrast, in CTMQC, there is a linear shape to the population going from more on the
upper surface on the reflected side to more on the lower surface on the transmitted packet.
Interestingly, the CTSH fraction of trajectories is similar to that with the modified definition
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of the quantum momentum, and has a trend closer to the exact. Although the electronic
populations differ, because the nuclear trajectories follow adiabatic forces and are in similar
regions of space, the hopping probabilities are similar, since hopping can only occur in the
region of the NAC, so, as observed in the higher-momentum case, in a sense ameliorates
the violation of the condition of zero net transfer in regions of zero NAC. Movies describing
the full dynamics as documented in Figure 7 are provided as Supplementary Material.
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Figure 8. Spatial distribution of trajectories for the ECR k = 10 a.u. model. CTSH with original
definition of the QM (panel A), CTSH with the modified definition of the QM (panel B), SHXF with
σ = σ0 (panel C) and SHXF σ = σ0/10 (panel D).

Turning now to the independent trajectory surface-hopping calculations shown in
the upper right panel of Figure 5. We see that uncorrected surface hopping in fact looks
very similar to CTSH with the modified definition of the quantum momentum, in both
the populations as well as the fraction of trajectories but gives poor coherences (lower
right panel). Including the XF correction with σ = σ0, leads to a large back-transfer of
electronic populations, but again with a similar fraction of trajectories as the uncorrected
surface hopping and the CTSH cases. Taking instead σ = σ0/10 further causes the system
to decohere faster initially and improves the internal consistency but at the expense of
worse agreement with the exact. A comparison of the histogram of the nuclear trajectories
at different time-snapshots is shown in Figure 8 for CTSH with the modified and original
definitions of quantum momentum and SHXF with the two different values of σ, showing
they yield similar nuclear distributions as a function of time, consistent with the fraction of
trajectories being similar. At the later times when the transmitted part of the wavepacket
has left the NAC region, the associated populations of CTSH Q0 and SHXF however
continue to evolve (compare with Figure 7 and the movies), consistent with the violation of
the condition of zero net population transfer.

Interestingly, the trend in the populations of SHXF is more similar to that in CTMQC
with Equation (22) and opposite to that of CTSH (with Equation (22)), after the first
interaction region. Despite being similar in the underlying equations, this may not be
surprising given the very different implementation of Equation (22) in the two methods
(see discussion at the end of Section 4.1). In the case of the higher-momentum k = 30 a.u.,
the population trends in CTSH and SHXF were in fact similar: likely because there is
essentially one localized wavepacket on the upper surface and one on the lower, so the
coupled-trajectory computation of the quantum momentum with Equation (22) is similar
to the auxiliary-trajectory way which takes simply each independent active trajectory plus
one auxiliary trajectory on the other surface. For the lower momentum case k = 10 a.u.,
two wavepackets develop on the lower surface going in opposite directions, as well as a
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wavepacket on the upper surface: while CTSH computes the quantum momentum from
contributions from all of these, again the SHXF just takes the independent active surface
trajectory plus one auxiliary trajectory on the other surface, trajectory-by-trajectory.

6. Discussion

The XF approach offers new insights into the interaction of coupled quantum subsys-
tems, through its definition of exact coupling terms between the wavefunctions. For the
degrees of freedom chosen as the marginal in the factorization, one obtains an effective
TDSE in which the potentials contain the full effects of the correlated motion of the other
subsystems. This has proven instructive in revealing molecular dissociation mechanisms
under different laser parameters, as well as highlighting the effects of electron-nuclear
correlation in ionization processes going beyond the usual quasi-static picture of the nuclear
potentials. The generality of the XF idea has led to adventures in a wide range of applica-
tions outside coupled electron-nuclear dynamics, including electron-electron factorization
to define a new single-active electron picture, quantum embedding for strongly correlated
electronic systems, and inclusion of photons for molecular polaritonics.

The most practical impact of the XF approach so far has been in the development
of rigorous MQC methods, and CTMQC and SHXF have both successfully predicted
dynamics in a number of complex situations [26,129–135], giving improved results from
first-principles compared to traditional MQC methods [136]. These methods involve
computing a term that depends on the nuclear quantum momentum, for which three
different implementations exist. In particular, with coupled trajectories, there is the original
definition coming directly from ∇ν|χ(R, t)|/|χ(R, t)|, as well as a modified definition
that ensures the physical condition that there should be no net population transfer in
regions of zero NAC. Further these two definitions can be used either in the full CTMQC
scheme where there are XF corrections in both electronic and nuclear equations of motion,
or in a surface-hopping scheme CTSH where they appear only in the electronic equation.
The quantum momentum may also be computed via auxiliary trajectories rather than
coupled trajectories, which is done in the surface-hopping scheme SHXF.

The effects of these different methods were studied here on two cases of dynamics
through Tully’s model of an extended coupling region between two BO surfaces. In one
case, the incoming momentum of the nuclear wavepacket is high enough that there is a
single pass through the NAC region with significant transfer of population to the other BO
surface, and we showed that while CTMQC with the modified definition yields accurate
population transfer and coherence properties, CTMQC with the original definition of the
quantum momentum suffers from the violation of the condition. The original definition
however yields accurate population transfer and coherences when used within surface-
hopping framework, provided the fraction of trajectories measure is used, but at the
expense of violating internal consistency. This is because the hopping probability is only
non-zero in regions of the NAC, so in this sense, takes care of the condition. This is true
both for when the quantum momentum is computed using coupled trajectories, or from
auxiliary trajectories.

In the second case, the incoming momentum is low enough that part of the wavepacket
that transfers to the upper surface, reflects and recrosses the NAC region a second time.
Here CTMQC with the modified definition does a good job, although underestimates
the second rise in coherence, while the other methods are less accurate and also less in
agreement with each other. Using the modified definition in a surface-hopping approach
however yields poor electronic populations likely due to the incorrect forces on the nuclei
from the BO surfaces in the region of interaction, and incorrect imposition of energy
conservation on an individual trajectory level, that lead the trajectories to spend longer in
these regions. Using the original definition of the quantum momentum leads to unphysical
population transfer. Again the fraction of trajectories measure reduces the error and,
temporarily, gives a reasonable trend.
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The method that is most well-grounded from a theoretical point of view is CTMQC,
and, with the modified definition of the quantum momentum, gives reliable results for
both the populations and coherences. From a practical standpoint, it has the advantage
of needing fewer trajectories for convergence, and no adjustable parameters. However,
the method can be more numerically challenging to deal with than methods like surface
hopping. In CTSH the forces that propagate the trajectories are purely adiabatic, and the
NAC vectors d(α)

ν,lk, which are computational expensive for molecular systems, are not
needed along the dynamics unless the velocity rescaling after a surface hop has occurred is
performed along the direction of the corresponding NAC vector. Note that in the electronic
Equation (14) only the time-derivative coupling, i.e d(α)

ν,lk · Ṙ
(α)
ν (t) = 〈Φl

R(r)|Φ̇k
R(r)〉Rα is

needed, and this term can be efficiently computed for instance as the overlap between
the wavefunctions at subsequent time steps [150]. However with coupled trajectories,
patience is required to wait for all the trajectories at each time-step in order to compute
the coupled-trajectory term. The computational advantage of SHXF is evident due to its
use of independent trajectories supplemented with auxiliary trajectories. So, in addition
to the first-principles nature of the electronic equation, SHXF has an attraction due to
its independent trajectories, but surface-hopping in itself is unsatisfactory due to the
ad hoc aspects such as the very hopping procedure, choice of velocity adjustment, energy
conservation on the independent trajectory level, and the choice of how to deal with
forbidden hops. These problems contribute to the internal consistency, which is generally
partly reduced by the XF-based quantum momentum term as seen in previous studies on
decoherence, but we have seen here that it can also exacerbate it. Still, even then, we can
sometimes temporarily take advantage of this internal inconsistency by using the fraction
of trajectories measure, since it takes care of the condition that there should be zero net
population transfer when there is zero NAC; this is only temporary since the evolving
populations will continue to be wrong, and will give poor results when the system then
meets another interaction region.

In conclusion, the XF offers a new playground for the development of non-adiabatic
dynamics of electrons and ions, and we hope this work will be helpful to inform future
adventures in this area.
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dashed lines), and evolution of the spatial distribution of the nuclear trajectories on the BO surfaces
(black dots). Video S2: Middle and lower panels are the same as in video S1 but for CTSH with the
modified definition of the quantum momentum. Middle panel also includes the running state in
CTSH (red dots). Video S3: Same as in video S1 but for CTMQC with the original definition of the
quantum momentum. Video S4: Same as in video S2 but for CTSH with the original definition of the
quantum momentum.
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