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ABSTRACT

Objective: Supporting public health research and the public’s situational awareness during a pandemic requires
continuous dissemination of infectious disease surveillance data. Legislation, such as the Health Insurance
Portability and Accountability Act of 1996 and recent state-level regulations, permits sharing deidentified
person-level data; however, current deidentification approaches are limited. Namely, they are inefficient, relying
on retrospective disclosure risk assessments, and do not flex with changes in infection rates or population dem-
ographics over time. In this paper, we introduce a framework to dynamically adapt deidentification for near-real
time sharing of person-level surveillance data.

Materials and Methods: The framework leverages a simulation mechanism, capable of application at any
geographic level, to forecast the reidentification risk of sharing the data under a wide range of generalization
policies. The estimates inform weekly, prospective policy selection to maintain the proportion of records corre-
sponding to a group size less than 11 (PK11) at or below 0.1. Fixing the policy at the start of each week facilitates
timely dataset updates and supports sharing granular date information. We use August 2020 through October
2021 case data from Johns Hopkins University and the Centers for Disease Control and Prevention to demon-
strate the framework’s effectiveness in maintaining the PK11 threshold of 0.01.

Results: When sharing COVID-19 county-level case data across all US counties, the framework’s approach
meets the threshold for 96.2% of daily data releases, while a policy based on current deidentification techniques
meets the threshold for 32.3%.

Conclusion: Periodically adapting the data publication policies preserves privacy while enhancing public health
utility through timely updates and sharing epidemiologically critical features.

Key words: data sharing, privacy, forecasting, infectious disease, simulation

INTRODUCTION data in a timely manner can support a wide variety of public health
The novel coronavirus 2019 (COVID-19) pandemic has put a spot- research endeavors (eg, from modeling disease transmissibility to
light on infectious disease surveillance systems® and the importance simulating interventions®>~°) and provide the public with situational
of making such information widely accessible.” Sharing surveillance awareness of outbreaks.*”® In recognition of such benefits, over the
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past year and a half, various organizations have worked to broaden
access to large epidemiological datasets. Recent instantiations of
COVID-19 initiatives include the National COVID Cohort Collabo-
rative of the U.S. National Institutes of Health,” the Datavant
COVID-19 Research Database,'® the Centers for Disease Control
and Prevention’s (CDC) COVID-19 Case Surveillance datasets,''™!3
and the Global.health data science initiative,"* among others.

While advances in surveillance have spurred rapid growth in the
volume and diversity of epidemiological resources, public data sharing
on a wide scale remains limited."® This is due to numerous social and
political factors, but it is evident that privacy is a core driving factor.
In the United States, for instance, infectious disease data are captured
by a variety of organizations, such as public health authorities, hospi-
tals, and pharmacies. In regard to public data dissemination, such
organizations may be subject to the Health Insurance Portability and
Accountability Act of 1996 (HIPAA) and related laws and policies.
Under HIPAA, an organization is permitted to publicly share patient-
level data only when it is deidentified, that is, when “there is no rea-
sonable basis to believe that the information can be used to identify an
individual.”'® Even when organizations are not covered by HIPAA,
they may be permitted to share data in a deidentified form as well. For
example, the California Consumer Protection Act, the Virginia Con-
sumer Data Protection Act, and the Colorado Privacy Act provide
exemptions to deidentified data sharing.'”"'* However, transforming
data into a deidentified form is a nontrivial endeavor. Numerous dem-
onstration attacks have shown that, with the right background knowl-
edge, a data recipient can leverage residual information in the records
to reidentify the individuals to whom the data correspond.>>** Con-
cerns over such intrusions to anonymity have discouraged organiza-

. . 26,2
tions from sharing data,>®?”

which raises the importance of the
question: How can organizations best comply with regulatory require-
ments while making surveillance data publicly available?

Under HIPAA, deidentification can be satisfied through two al-
ternative implementations. The first is Safe Harbor, which requires
the suppression of 18 direct (eg, patient name) and quasi-identifying
features (eg, geocodes with populations smaller than 20,000 resi-
dents). However, Safe Harbor requires hiding epidemiologically criti-
cal factors, such as reducing the granularity of dates of events to
their year, which renders such a policy useless for characterizing in-
fectious disease transmission. The alternative is Expert Determina-
tion, which indicates data are deidentified when “the risk is very
small that the information could be used to identify an individual
who is a subject of the information.”?® Various methods for risk as-
sessment have been developed, including those previously developed
for surveillance data,>® but provide limited guidance on adapting pol-
icies to the needs of the moment. Rather, they are retrospective in na-
ture in that they assume data have already been collected and are
ready for dissemination. Most methods further assume the number
of records in the dataset remains fixed.>® These assumptions differ
from the requirements of case reporting while in the face of a pan-
demic. Moreover, waiting to publish the data will hinder the ability
to characterize the current state and evolution of an outbreak.*3"32
The infection rate must also be considered in the deidentification ap-
proach as it directly and dynamically influences the number of
records in the dataset. Furthermore, several factors affect the privacy
d**?? and the

geolocations to which the pandemic spreads.>** These requirements

risk, including the demographics of the people infecte

motivate the need for methods that forecast surveillance data.

In this paper, we introduce an approach to adaptively generate
policies to publicly share deidentified patient-level epidemiological
data. The framework simulates disease cases to estimate the longitu-

dinal privacy risk of sharing infected individuals’ quasi-identifier in-
formation at different levels of granularity in the absence of actual
patient data. Periodically adjusting the policy allows the data sharer
to adapt data granularity according to the influx of new patient
records, while simultaneously allowing periods of consistent quasi-
identifier representation. We specifically apply the framework to il-
lustrate how policies could be developed to share COVID-19 patient
health information and compare such policies to a more traditional
deidentification approach relying on retrospective risk assessment.
Furthermore, to be consistent with the CDC’s current practice of us-
ing generalization and suppression for privacy,'® we use the frame-
work to explore a wide range of data generalization policies.

It should be recognized the framework applies to any type of epi-
demiological disease spread, adjusts for the demographic diversity
of individual US counties, and relies on public data sources. The
framework can also be reused to address emerging data sharing
needs, such as for vaccine registries.>>*® Dynamically adapting data
sharing policies holds the potential to consistently share more data
with the public in a timely and privacy-preserving manner, fueling

our data-driven response to infectious disease.®

MATERIALS AND METHODS

Due to the challenge of predicting exactly who will be infected, pro-
spectively fixing a data sharing policy requires probabilistic risk as-
sessment. Our framework provides longitudinal privacy risk
estimates for a data generalization policy within a specified geo-
graphic region. Given the appropriate population statistics, the
framework can utilize any geographic level of detail (eg, state,
county, or ZIP code). In this research, we apply the framework to
simulate disease spread on a county level to match the format of the
COVID-19 surveillance data made accessible by the CDC.'"!? In
this section, we summarize the framework’s features and its applica-
tion to contextualize the results. Specific technical details are pro-
vided in the Supplementary Information.

Privacy risk estimation framework

Figure 1 summarizes the framework. In the first step, we select a
data generalization policy, which defines the generalization of each
quasi-identifying feature considered. In this paper, we consider basic
demographic features and the date of diagnosis as quasi-identifiers,
as they are typical features organizations have been requested to
share (Table 1). The second step generates the county-level popula-
tion across the quasi-identifying features per the selected policy. We
use population count data from the U.S. Census Bureau to calculate
the number of people in the county that fall into each demographic
group,®” where each group is defined by a unique combination of
quasi-identifier values, excluding date of diagnosis.

The third step applies a Monte Carlo simulation (represented by
the black box in Figure 1) to generate synthetic patient datasets us-
ing the county-level population distribution and a time series of new
disease case counts. The time series’ periodicity defines the fre-
quency at which the updated dataset is released (eg, every day or ev-
ery week). To simulate the COVID-19 pandemic, we input time
series derived from the Johns Hopkins COVID-19 tracking data.’
The simulation algorithm (details of which are in the Supplementary
Information) initially assumes that the no one in the county is
infected. Then, for each time point, we randomly sample the number
of disease cases (without replacement) from the uninfected popula-
tion to form the newly reported patient dataset. The framework
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Figure 1. Privacy risk estimation framework. The curved rectangles represent processes, the cylinders represent data, and the hexagons represent user-defined
parameters. The algorithm that performs the processes within the black box is in the core of the proposed framework, employs Monte Carlo random sampling,
and is presented in greater detail in the Methods section. To obtain the privacy risk distributions, the simulation is repeated ntimes. The circled numbers denote

the framework steps.

Table 1. The quasi-identifiers considered in this study

Field Generalization strategy Generalization example
State of residence None® NA
County of residence None? NA
Date of diagnosis Combine into week ranges (Sunday—Saturday®) 01/05/21 —
01/03/21-01/09/21
Year of birth Convert to age ranges 1980 —
4045 years old
Sex Nullify value Female — null,
Male — null
Race Combine race groups AJAN — AJAN or PI,
PI— AIAN or PI
Ethnicity Nullify value Hispanic-Latino — null,

Non-Hispanic — null

Note: The middle column describes the generalization strategy for each quasi-identifier. The third column provides an example generalization for each quasi-

identifier. In the case of sex and ethnicity, the information is either included or null.
Abbreviations: AIAN: American Indian/Alaskan Native; PI: Pacific Islander.

*These values cannot be generalized since we simulate on a county level.

"This definition of a week is consistent with the one used by the CDC’s COVID-19 case forecasts.>®

assumes individuals are not reinfected (for simplicity, considering a
potentially negligible COVID-19 reinfection rate*®) and assumes
equal weighting across all individuals when sampling (to model the
general uncertainty of disease spread, particularly in pandemics*!).
The algorithm computes the reidentification risk on the patient
set at each time point, according to a specified risk measure. There
are various methods for measuring privacy risk.>® In this work, we
measure risk as the proportion of individuals in the dataset that fall
into a group of size less than k, where each group is defined by a
unique set of quasi-identifier values.***> We refer to this measure as
the PK risk and evaluate it given a set of k values (as defined below)
consistent with the standard thresholds used by public health au-
thorities.**™*® The PK risk assumes a data recipient knows (1) an in-
dividual is a member of the dataset, (2) the individual’s name and
quasi-identifying information, and (3) the individual’s relative date
of diagnosis for the disease of interest. In this scenario, the data re-
cipient attempts reidentification to learn the target individual’s sen-
sitive information from additional features included in the dataset

49:30)The more unique the record’s representa-

(eg, comorbidities
tion, the more likely the data recipient can reidentify the individ-

ual.2%?? In this research, we focus on this risk measure to follow the

CDC’s application of k-anonymization.’' The PK risk effectively
measures the proportion of records that fail to achieve k-anonymity.

In practice, obtaining such patient information is difficult.”>*
Thus, evaluating the PK risk provides an upper bound of reidentifi-
cation risk for the dataset. To demonstrate the approach’s flexibility
and to offer a different perspective on privacy risk, we further ana-
lyze the amortized reidentification risk®* in the Supplementary In-
formation. The amortized reidentification risk relaxes assumptions
(1) and (3) and considers the scenario in which the data recipient is
motivated to reidentify as many patients as possible to learn who
has the infectious disease of interest.

We highlight that, when applying the PK risk measure, we as-
sume the attacker knows the diagnosis occurred within a lagging pe-
riod of time (eg, within 1, 3, or 5 days prior to the documented
date). We allow this flexible assumption as it is unlikely a data recip-
ient knows the targeted individual’s exact diagnosis date,** particu-
larly when the time from a diagnostic test to case report extends
beyond 1 day. The group corresponding to an individual contains all
patients in the simulated patient set that match the individual on the
demographic features, with a diagnosis date falling within the lag-
ging period.
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The final step of the framework uses the privacy risk distribu-
tions to estimate when the policy meets a privacy risk threshold.
Computing the longitudinal privacy risk estimates under several
data sharing policies for the same county identifies which policies
likely meet the threshold at each point in the time series. The data
sharer can then choose which policy to apply according to informa-
tion priorities (eg, prioritizing age granularity over sex granularity).

Dynamic policy search

To dynamically adapt policies according to an expected infection
rate, we identify policies that are likely to satisfy a specific PK risk
threshold at varying volumes of new case records. For this policy
search, we choose a k of 11, which is as a typical group size incorpo-
rated into guidance issued at the state*™*® and federal** level. It is
also the group size applied to CDC’s COVID-19 Public Use Data
with Geography.'' We henceforth refer to the PK risk when k equal
to 11 as the PK11 risk. In this paper, we search for policies that
meet a PK11 threshold of 0.01; ie, the percentage of records falling
into a demographic group of size 10 or smaller should be less than
or equal to 1%. Similar investigations for k of 5 and 20 (other com-
mon group size thresholds) are provided in the Supplementary Infor-
mation.

The search uses the privacy risk estimation framework to evalu-
ate 96 alternative data sharing policies for each U.S. county (with
available census tract information) across a range of case count val-
ues. The policies include 6 potential generalizations of age, 4 gener-
alizations of race, 2 generalizations of sex, and 2 generalizations of
ethnicity. The generalization options follow a hierarchical structure
(see Figure 2), where moving up the hierarchy generalizes the infor-
mation to increase privacy at the cost of utility.’® For each policy,
county, and case number combination, the framework generates
1,000 PK11 estimates. A policy meets the threshold when the upper
bound of the estimates’ 95% quantile range is less than or equal to
0.01. We choose to evaluate a policy in this manner to increase the
likelihood supported policies meet the privacy risk threshold in ap-
plication. Note, the data sharer can adjust the size of the quantile
range to modify the confidence a policy will meet a specific privacy
risk threshold.

Dynamic policy evaluation

We use the summarized policy search results and forecasted
COVID-19 disease case counts to evaluate dynamic policy selection
in the context of the COVID-19 pandemic. In this experiment, we
measure the proportion of data releases in which the PK11 likely
remains below the policy search threshold of 0.01. The dynamic pol-
icy is evaluated for two distinct alternative data sharing scenarios:
(1) a daily release schedule with a 1-day lagging period assumption
and (2) a weekly release schedule. The daily release schedule shares
the actual date of diagnosis, prioritizing date granularity at the po-
tential cost of demographic granularity. The weekly release schedule
generalizes the date to week of diagnosis.

For each county, the dynamic policy method selects the generali-
zation policy from the search results at the beginning of each week
according to the forecasted COVID-19 case volumes. We use the
CDC COVID-19 ensemble model’s county-specific, 1-week fore-
casts for its superior accuracy over other models.>®*°” For the eval-
uation, we collected all model predictions from August 2020
through October 2021. We obtain daily increase predictions by uni-
formly distributing the weekly increase point estimate. In selecting
policies for the daily release schedule, we use the minimum number

of predicted cases in the week. This applies the most privacy preserv-
ing policy to all new cases reported in the week. For the weekly re-
lease schedule, we use the forecasted 1-week increase.

After selecting the sequence of policies for each county, we esti-
mate the privacy risk of sharing the actual reported number of
records via the privacy risk estimation framework. We define the ac-
tual number of disease cases per day or week by the Johns Hopkins
COVID-19 tracking data. The PK11 risk value for each time point
in each county is calculated as the upper bound of the 95% quantile
range of 1000 simulations. The evaluation measures the proportion
of releases the upper bound remains below 0.01. We additionally
evaluate the static application of a policy designed with current, ret-
rospective deidentification techniques, akin to those applied to the
CDC’s COVID-19 Public Use Data with Geography.'! The policy,
hereafter referred to as the k-anonymous policy, shares age intervals
in the form (0-17, 18-49, 50-64, and 65+); nearly fully specified
race; fully specified ethnicity, sex, and state and county of residence;
and date or week of diagnosis. We note the CDC’s policy, from
which the k-anonymous policy derives, was developed to meet regu-
latory requirements and public health standards under a different re-
lease schedule (once every 2 weeks) and in a retrospective manner
(the actual patient records are collected, deidentified and released in
a batch). The CDC’s policy is designed to achieve 11-anonymity (ie,
PK11=0) by generalizing the date of diagnosis to month and by
nulling out quasi-identifier information for small groups.'!!3%8
Thus, the k-anonymous policy resembles a policy developed with
traditional deidentification, but notably differs in its treatment of
dates of events and in its assumption of no suppression. We further
note this last feature is another unique factor to sharing surveillance
data in near-real time. Suppression cannot be applied with confi-
dence because it is almost impossible to forecast exactly which
records will fall into small demographic groups.

Case studies

To provide a specific illustration of the dynamic policy approach to
daily releasing updated, record-level disease surveillance data, we
consider two Tennessee counties. The first, Davidson County, is a
relatively large metropolitan region with a population of over
600,000 residents. The second, Perry County, is a relatively rural
area with around 8,000 residents.

In each case study, we select a policy on a weekly basis in the
same manner as the evaluation. However, to demonstrate how the
framework incorporates the data recipient’s potential knowledge of
diagnosis date, and accounting for the general turnaround time of
COVID-19 diagnostic tests results,’* ! we set a 5-day lagging pe-
riod. Under these constraints, weekly dynamic policy selection first
calculates a 5-day rolling sum of new disease case numbers through
the coming week. The minimum value of the rolling sum is used
to select the policy. We again estimate the privacy risk of sharing
the actual number of records under the sequence of selected policies
with the privacy risk estimation framework and the Johns Hopkins
COVID-19 tracking data. To evaluate the dynamic policy under
optimal case load forecasting, we repeat the process by replacing
the forecasted case counts with the actual case numbers in policy se-
lection.

Code

All experiments are performed using Python (version 3.8). The code,
and walkthroughs corresponding to each experiment, can be found
at https://github.com/vanderbiltheads/PandemicDataPrivacy
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Figure 2. The generalization hierarchies for age, race, sex, and ethnicity used in this paper, adapted from those of Wan et al.%® Each horizontal level is a potential
generalization state for the data generalization policy. For example, the policy could specify generalizing age to 5-year age intervals to 15-year age intervals, or
broader ranges. We represent year of birth as 1-year age at the bottom of the age hierarchy. Moving up the hierarchies, the data become more generalized to in-
crease privacy. An asterisk indicates the feature is generalized to a null value for all individuals, which is equivalent to suppression or nonrelease of the corre-

sponding field.

RESULTS

Dynamic policy search

We summarize the policy search results in Figure 3. To aid in readabil-
ity, we represent the generalization of each quasi-identifier in a policy
with a 4-character alphanumeric code. From left to right, the characters
represent the age, race, sex, and ethnicity generalizations. We further
summarize the results by categorizing US counties by population size.

Once a generalization policy meets the PK11 threshold for a
given number of cases, it is unlikely records fall into a demographic
group of size 10 or less. Further increasing the case volume increases
the number of records in each group and decreases the PK11 value.
As such, a policy is listed under the smallest case quantity at which
the policy meets the PK11 threshold for every county in the cate-
gory. It should also be noted there exists a parent—child relationship
between policies. For example, policy 2*** is the parent of policy
3#** where the former only differs from the latter by generalizing
age to a lesser degree. When a parent policy meets the PK11 thresh-
old, all its child policies also meet the threshold.

As Figure 3 displays, the number of acceptable policies increases
with the number of new cases. In most cases, larger counties achieve
more acceptable policies than smaller counties at a given case quan-
tity. The maximum number of acceptable policies is 73. The most

granular policies across all county categories are 1C*e, 2Bse, and
3Ase. Each of these policies prioritizes different types of informa-
tion. Policy 1C*e offers the most granular age information at the
cost of race and sex information, while Policy 3Ase reduces age
granularity to increase race and sex specificity.

The case number values are window-size agnostic, such that the
policy search results hold regardless of the time period considered. For
example, assume a county with fewer than 1000 residents updates its
disease surveillance dataset daily. Further, assume the county adjusts
for sets a 5-day lagging period assumption. When the expected num-
ber of new cases from the current day and the previous 2 days sum to
50, the current day’s records should be generalized according to either
policy **** or **s*, The same policies are supported if, instead, the
dataset is updated weekly (and diagnosis date is generalized to week
of diagnosis) and 50 new cases are expected for the current week.

Dynamic policy evaluation

We summarize the evaluation results, categorizing counties in the
same manner as the policy search, in Table 2. There are several ma-
jor findings. First, dynamically adapting the generalization policy
meets the PK11 threshold more frequently than statically applying
the k-anonymous policy. On average, the dynamic policy meets the

2202 1890100 /0 U0 Jasn se|ie( je sexa| Jo AlsieAiun Aq /GEZES59/£58/G/62/3101e /eiwel/woo dnooiwspese//:sdiy Wol) papeojumod



858 Journal of the American Medical Informatics Association, 2022, Vol. 29, No. 5

Number of new cases in time period

10 " 50 75 150 300 500 750 1k 1.25k 1.5k 2k 25k 3k 4k 5k 7.5k 10k 15k 20k
g (©. 1K) NA NA NA NA NA NA NA NA
E
: 1.‘1 1csn acr:
8— [1k, 50k) T 10%) AN
D' 17 20 27
= |[50k, 100k) 4Cs* 3C™  A™
8 18 e 28
sg 4*se 4C"e 3Cs"
12 |[100k, 1M) e e
20 25 kbl
2C* 30" 16
1M+ 4C’e 4Cse
28 2 a0
Policy Code: Total number of policies
Age Race Sax that meet PK11 threshold
OAse *: No age *: No race : No sex :
. . . Male. Femal of 0.01:
> 0 gl m 4: 0-59, B0+ C: Black/White, Not Black/White S: Male, Female
S § x g‘ 3: 0-29, 30-59, 60-89, 90+ B: Black, White, Asian, Other .j
o 2: 15-year age range, 90+ A: Black, White, Asian, Ethniclty 0 48 96
= 1: 5-year age range, 90+ American Indian/ Alaskan *No ethnicity
0: Year of birth Native, Native Hawaiian/ e: Hispanic-Latino,
Pacific Islander, Mixed, Other ~ Non-Hispanic

Figure 3. Generalization policies with a PK11 upper bound (calculated as the upper bound of the 95% quantile range of 1,000 framework simulations) less than or
equal to 0.01 at varying disease case volume thresholds. A 4-character alphanumeric code indicates the policy’s generalization levels. All policies additionally in-
clude state and county of residence and some generalization of diagnosis date. A policy is eligible to be listed under the minimum number of new cases (table
column) at which it meets the PK11 threshold for every county in the category (table row). A maximum of 2 policies are listed in each cell among the actual num-
ber of policies supported. The number in the bottom right-hand corner of each cell indicates how many of the 96 searched policies meet the risk threshold at the

case volume.

Table 2. Average proportion of time periods where the upper bound of the 95% quantile range of the PK11 risk is less than or equal to 0.01

in the COVID-19 pandemic (August 2, 2020 to October 23, 2021)

Average proportion of daily releases
that meet the PK11 threshold in the
COVID-19 pandemic [95% quantile range]

(n=1448)

Average proportion of weekly releases that
meet the PK11 threshold in the COVID-19 pandemic
[95% quantile range]

(n=164)

County population size

k-Anonymous policy

Dynamic policy

k-Anonymous policy

Dynamic policy

<1000 (n=35)

1000-50 000 (2 =2129)

50 000-100 000 (2= 398)
100 000-1 000 000 (2= 538)

0.900 [0.790, 0.998
0.389[0.118, 0.815

0.145[0.009, 0.521

1[1,1]
0.971[0.902, 1]
0.928 [0.868, 0.987]
0.947 [0.882, 0.998]

0.605 [0.266, 0.987]
0.072 [0, 0.406]
0.004 [0, 0.031

0.999 [0.984, 1]
0.960 [0.906, 1]
0.97410.922, 1]
0.982[0.938, 1]

[ ]
[ ]
0.181[0.042, 0.532]
[ ]
[ ]

>1 000 000 (== 39) 0.118 [0.007, 0.304

0.961[0.874, 0.998]

]
0.008 [0, 0.026]
]

0.05710,0.288 0.962 [0.906, 1]

threshold for at least 92.8% of the 448 daily releases and 96.0% of
the 64 weekly releases. The k-anonymous policy meets the threshold
as few as 11.8% of the daily releases and 0.4% of the weekly
releases. Second, we find that new cases do not occur every day or
every week, particularly in counties with fewer residents. As such,
there are fewer days the PK11 upper bound can potentially exceed
the threshold, inflating proportions in smaller counties.

Case study: Davidson County, TN

Figure 4 shows how the forecasted case volumes do not match the
weekly seasonality of the actual reported cases in Davidson County.
Consequently, the CDC ensemble model tends to overestimate case

loads, leading to the selection of more granular policies. Despite the
rippling effects of the overestimation, the 95% quantile range of the
forecast-driven PK11 remains below 0.01 throughout most of the
time frame. Several days exceed the threshold, most of which occur
when the selected policies disagree whether to share record-level
data under the **** policy or to not share. When sharing fewer
than 11 new case records in a 5-day window under the forecast-
driven dynamic policy, all new records fall into a demographic
group smaller than size 11, resulting in a PK11 of 1.0. Notably, the
PK11 never exceeds the threshold when selecting policies according
to the actual case counts. Adapting the policy according to perfect
forecasts provides optimal privacy protection.

2202 4800100 /0 UO J8sn sejleq Je sexa] Jo AlsIsAun Ag LGEZESG9/E58/G/62/101e/BIWEl/W00 dno-olwsapede//:sd)y wolj pepeojumoq



Journal of the American Medical Informatics Association, 2022, Vol. 29, No. 5 859

4000 Forecasted counts
¥ Weekly minimum - forecast

— Actual counts l
B Weekly minimum - actual

:

New case numbers
(5-day rolling sum)
N
s

y PR
VU

1000 ¥AA

Rt v [/

01 il

3Cs"1 o Forecasted counts
@ 4C*e-{ @ Actual counts ® ©
-
o ® Both
o A*se @ 00 o
=
?:; hg ee0 ee0 oo
o e ®e®000 ® ®0 00 [o]
o
-8 el @000 #8000 ®0ee® o000
E *s*POOGO @ O e900e 2290000000000 @0 ® ®*00
L g 0000000 ® o esesee0 ® ®
>
ke weon | 20900090 ®00
L e e 200 O©

Do not | (XX ]

share

1.004 —— Mean - forecast r

95% quantile range - forecast
0754 =—— Mean - actual

95% quantile range - actual
0.509 == Selected threshold

0.251

PK11 risk

0.02

0,01 === e e e e e e -

_— (Tt =tnecs V|

2020-09 2020-11 2021-01

2021-03

2021-05 2021-07 2021-09

Date

Figure 4. Dynamic policy selection applied to Davidson County, TN, in the COVID-19 pandemic (August 2, 2020 to October 23, 2021). (Top) The 5-day rolling sum of
the forecasted and actual case counts reported in Davidson County. The forecasted counts are from the CDC’s COVID-19 ensemble model and the actual counts are
from the Johns Hopkins surveillance data. The blue triangles and red squares denote the minimum value within each week (defined as Sunday-Saturday per the
CDC model’s definition). The minimum values are used to select a policy from policy search results. (Middle) The selected policy at the beginning of each week in
the pandemic. Each policy is represented by a 4-character alphanumeric code following the key in Figure 3. The policies are ordered by increasing case count
thresholds from bottom to top. Green circles indicate agreement between the policies selected from the forecasted and actual case counts. (Bottom) The PK11
from sharing the actual number of records under the two sequences of policies detailed in the middle graph. The expectation and 95% quantile range are calculated
from 1,000 independent framework simulations, while applying a 5-day lagging period assumption. The horizontal dashed line marks the PK11 threshold of 0.01.

Case study: Perry County, TN

Figure 5 shows that case counts remain relatively small before, as
well as after, infection spikes in October 2020 and August 2021.
Throughout most of these intervals of low-infection rates, the se-
lected policies from each data source indicate that record-level data
should not be shared on a daily basis. However, when the 5-day roll-

ing sums oscillate around 11 cases, the forecasted values again over-
estimate the weekly minimum case loads, resulting in a PK11 of 1.0.
Despite the privacy leaks in the forecast-driven dynamic policy, the
dynamic policy guided by the actual disease case counts again main-
tains the PK11 values below the threshold throughout the time
frame.
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Figure 5. Dynamic policy selection applied to Perry County, TN in the COVID-19 pandemic (August 2, 2020 to October 23, 2021). (Top) The 5-day rolling sum of the
forecasted and actual case counts reported in Davidson County. The forecasted counts are from the CDC’s COVID-19 ensemble model and the actual counts are
from the Johns Hopkins surveillance data. The blue triangles and red squares denote the minimum value within each week (defined as Sunday-Saturday per the
CDC model’s definition). The minimum values are used to select a policy from policy search results. (Middle) The selected policy at the beginning of each week in
the pandemic. Each policy is represented by a 4-character alphanumeric code following the key in Figure 3. The policies are ordered by increasing case count
thresholds from bottom to top. Green circles indicate agreement between the policies selected from the forecasted and actual case counts. (Bottom) The PK11
from sharing the actual number of records under the two sequences of policies detailed in the middle graph. The expectation and 95% quantile range are calcu-
lated from 1,000 independent framework simulations, while applying a 5-day lagging period assumption. The quantile ranges are too narrow to be seen outside
the mean. The horizontal dashed line marks the PK11 threshold of 0.01.

DISCUSSION

This paper introduces a framework to dynamically adjust data shar-

ing policies to publicly share infectious disease surveillance data.

The framework forecasts privacy risk according to the expected vol-

ume of new cases, enabling data sharers to prospectively adapt poli-
cies before seeing case loads. We demonstrate how dynamically
changing the policy per the framework’s recommendations main-
tains the privacy risk below the specified privacy risk threshold
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more frequently than statically applying a policy developed through
retrospective deidentification methods, for both the PK and mar-
keter risk-based approaches. The dynamic policy also enhances sur-
veillance utility by fluctuating data generalization with the infection
rate, allowing the data sharer to prioritize sharing certain patient in-
formation; bypassing the delay of accumulating patient records be-
fore performing a risk assessment; and sharing dates of events.
These last two features are crucial for characterizing disease trans-
mission.>! Forecasting also enables greater consistency in quasi-
identifier representation, as the policy can be maintained throughout
the forecasted interval of time. Moreover, predicting which policies
provide sufficient privacy protection could potentially automate pa-
tient deidentification.

We demonstrate two approaches to dynamic policy adaptation.
In the PK risk-based approach, we fix county of residence and date
of diagnosis granularity while varying the demographic granularity.
We make this tradeoff to support consistent data updates but ac-
knowledge that it may induce certain data utility constraints. For in-
stance, if an application requires uniform demographic granularity,
the demographic values may need to be further generalized. An al-
ternative dynamic policy approach could preserve the demographic
granularity over time by using the privacy risk estimation frame-
work’s predictions to generalize the date of diagnosis into variably-
sized time windows. Still, this would impose a utility constraint on
date information and cause the data publication schedule to vary. In
the marketer risk-based approach (see the Supplementary Informa-
tion), we show that when the potential attacker has less background
knowledge, the dynamic policy can preserve date of diagnosis granu-
larity while monotonically increasing the demographic granularity
of the entire dataset over time.

We do not advocate for which measure provides the best privacy
protection, nor do we specify which applications each approach best
supports; rather, this investigation shows how the privacy risk esti-
mation framework’s flexibility can inform different approaches to
dynamic policy adjustment.

Despite the merits of this work, we wish to highlight several
limitations to guide future extensions and transition into applica-
tion. First, the dynamic, forecast-driven approach did not always
meet the privacy risk threshold in the PK risk-based scenario. How-
ever, the framework’s policy search results remain relatively ro-
bust. Policies chosen from forecasted counts are typically similar or
close to those chosen from actual case counts. And when overesti-
mating the number of cases, the privacy risk does not always dra-
matically exceed the threshold. Furthermore, we selected policies
according to a 95% empirical confidence interval, but the policy
search can readily incorporate larger confidence intervals as organ-
izations deem desirable. Expanding the intervals further increases
the likelihood the dynamic policy will meet the threshold in appli-
cation. Moreover, when adjusting policies according to the actual
case counts, the privacy risk never exceeds the threshold. Thus, the
dynamic policy approach can be improved through more accurate
forecasts and a model that accounts for potential case load overes-
timation.

Second, our approach does not incorporate suppression to pro-
tect the most unique patient records in the dataset. This is because
it is nearly impossible to accurately forecast the exact records which
will fall into small demographic groups. It is possible, however, dur-
ing the enforcement of a selected policy (using the framework)
to suppress actual patient records that need to be published and
fall into population demographic bins corresponding to very few

individuals, such as patient records that are population uniques, or
patient records that correspond to population groups with fewer
than k individuals (for PK risk). Such records with certainty would
not meet the k-anonymity requirement. Additional risk analysis can
be performed to estimate the risk of actual records in not meeting
the k-anonymity requirement in a data release and suppress fields in
records that are associated with a high estimated risk. Still, the
framework’s policy search and the policy selection approach de-
pend on many adjustable parameters (eg, the number of performed
simulations, the expected number of new disease cases, the specific
bins randomly selected to simulate new cases, and the size of the
quantile range used for the confidence a policy will meet a given
risk threshold), which can be adjusted to mitigate the need for sup-
pression.

Third, as we aim to generally support public data sharing, we fo-
cus on privacy risk without measuring the utility of a data generali-
zation policy. Though we provide the data sharer with policy
options, from which they can choose how to prioritize sharing
quasi-identifier information, and our approach generally supports
surveillance utility in terms of providing granular date information
and timely updates, we do not address the more complex problem of
policy planning. For instance, maximizing the granularity of one
quasi-identifier early in the time series could hinder policy flexibility
in the future. In the scenario where another quasi-identifier becomes
important to public health research later, the data sharer may want
to change the generalization of previously released data to comple-
ment the new priority. However, if the earlier policy has already
consumed the available privacy risk, the policy may not be altered
without potentially exposing patients’ identities. Previously released
data may be shared again with more detail, but not less. Future
work should quantitatively measure data utility to inform data shar-
ers in policy planning.

Fourth, the privacy risk estimation framework depends on ran-
dom sampling methods that may not realistically simulate the pan-
demic spread of disease. We assign an equal likelihood of infection
to all uninfected county residents at any given time in the simula-
tions, and do not allow reinfections. In reality, the actual likelihood
varies according to contact patterns of infectious individuals (ie,
through households or at work),*>®* and reinfections are possible,
though not likely in the case of COVID-19.%° Still, we believe that
Monte Carlo simulations, constrained to run within the relatively
contained geographic region of a county, provide a reasonable range
and estimate of infection outcomes, as they have shown to be adept
at simulating complex, high-dimensional patterns.®* Further frame-
work refinement should address the possibility of reinfection for dis-
eases for which reinfection is more likely.

Fifth, the framework does not compute the reidentification risk
of sharing a specific record. Rather, it estimates the range and expec-
tation of privacy risk for a population. Future work should evaluate
how well the framework’s estimates compare to the reidentification
risk of sharing actual disease surveillance data.

Finally, while this paper focuses on deidentification through gen-
eralization, an alternative approach would rely on the principle of
differential privacy. Differential privacy offers formal privacy guar-
antees®’; but as has been recently noted,® realizing this definition in
practice requires injecting noise into the data, a strategy that is not
appropriate for every data sharing scenario. Moreover, the CDC’s
COVID-19 datasets apply generalization and suppression.'® There-
fore, to be consistent with the CDC’s current practice, we focused
our framework’s application on data generalization policies.
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CONCLUSION

Disease surveillance data are variable, between geographic areas
and over time. As such, data must be consistently updated in a
timely manner. To support public health research and the public’s
situational awareness during a pandemic, the data must also contain
granular date information. The privacy risk estimation framework
we propose enables a prospective approach to surveillance data dei-
dentification. In contrast to traditional methods, prospective policy
selection offers increased flexibility, with intermittent consistency,
to support near-real time data dissemination. Moreover, we show
that forecast-driven deidentification offers better privacy protection
than the static data sharing policy application.
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