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ABSTRACT 

Reliability can be predicted by a limit-state function, which may vary with time and space. 

This work extends the envelope method for a time-dependent limit-state function to a time- and 

space-dependent limit-state function. The proposed method uses the envelope function of time- 

and space-dependent limit-state function. It at first searches for the most probable point (MPP) of 

the envelope function using the sequential efficient global optimization in the domain of the space 

and time under consideration. Then the envelope function is approximated by a quadratic function 

at the MPP, for which analytic gradient and Hessian matrix of the envelope function are derived. 

Subsequently, the second-order saddlepoint approximation method is employed to estimate the 

probability of failure. Three examples demonstrate the effectiveness of the proposed method. The 

method can efficiently produce an accurate reliability prediction when the MPP is within the 

domain of the space and time under consideration. 

 

1. INTRODUCTION 

Reliability is the probability that a product or component performs its intended function under 

a specific condition. Reliability can be predicted by a physics-based approach if the state of a 

component can be predicted by a physical model, which is called a limit-state function. A physics-

based reliability problem may be time- and space-independent, time-dependent, space-dependent, 

or time- and space-dependent.   

A time- and space-independent reliability problem involves limit-state functions that do not 

vary with respect to time and space, and its inputs might involve random variables or random fields 

at a specific point in space. Many methods are available for this problem. Monte Carlo simulation 
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(MCS) is one method. It is accurate when the sample size is sufficiently large, but it is 

computationally expensive [1, 2]. When failure probabilities are small in reliability analysis of 

engineering systems, subset simulation is an alternative method [3]. Importance sampling methods 

could be used to reduce the computational cost because they generate more samples in the failure 

region [4]. 

The first-order reliability method (FORM) [5-7] is much more efficient because it linearizes 

the limit-state function. FORM can produce satisfactory accuracy for many engineering 

applications, but it is less accurate for highly nonlinear limit-state functions. The second-order 

reliability method (SORM) [8, 9] can produce higher accuracy than FORM due to the second-

order approximation but is less efficient than FORM. The accuracy of SORM may be further 

improved by the second-order saddlepoint approximation (SOSPA) since the saddlepoint 

approximation may yield a more accurate probability estimation, especially in the tail area of 

distribution [10-12]. Reliability can also be predicted by regressions, such as the Gaussian process 

method [13-16] and the support vector machines method [17-19].  

The limit-state function may vary over time, which results in a time-dependent reliability 

problem. The input of the limit-state function may involve time and random processes. Rice’s 

formula-based methods are commonly used [20,21]. They are in general more efficient than other 

methods but may lead to large errors if up-crossing events are strongly dependent [21]. Regression 

methods can also be used and may achieve higher accuracy if the surrogate model is well trained 

[23-26]. Converting a time-dependent problem into a time-independent counterpart is possible by 

using the extreme value of the limit-state function [27-30]. The methods include the envelope 

function method [27], extreme value response method [28], and the composite limit-state function 

method [29,30], 
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The most general problems are those with time- and space-dependent limit-sate functions, 

which may take input of stochastic processes, random fields, and tempo-spatial variables [31-36]. 

Hu and Mahadevan developed a surrogate modeling approach for reliability analysis of a 

multidisciplinary system [31]. Shi et al. presented a method for the moment estimation of the 

extreme response using two strategies [32]. One strategy is combining the sparse grid technique 

and the fourth-moment method while the other one is combining the dimensional reduction with 

the maximum entropy method. Shi and Lu proposed an active learning Kriging method [33]. Wei 

and Du combined FORM and SORM for the time- and space-dependent reliability analysis [34, 

35]. Despite the progress, there is still a need to improve the accuracy and efficiency of time- and 

space-dependent reliability prediction. 

The proposed method is an extension of the time-dependent methodology in Ref. [37]. This 

method converts a time- and space-dependent problem into a time- and space-independent problem 

by using the envelope function or the extreme value of a limit-state function over the time and the 

space span. The MPP of the envelope function is found by combing the sequential efficient global 

optimization (EGO) with FORM. Then the quadratic envelope function is approximated at the 

MPP with its gradient and Hessian matrix. Then the probability of failure is estimated by the 

second-order saddlepoint approximation method.  

The rest of the paper is organized as follows. Section 2 reviews FORM for time- and space-

dependent reliability. Section 3 discusses the proposed method. Section 4 presents three examples, 

and Section 5 provides the conclusions and future work. 

2. Review of Fundamental Methodologies 

2.1   Problem Statement 

In this work, we consider a limit-state function given by 
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𝑦 = 𝑔(𝐗, 𝐳) (1) 

in which 𝐗 = [𝑋1, … , 𝑋𝑛]
T are n input random variables. The time variable is 𝑧1 ∈ [𝑧1, 𝑧1], and the 

spatial variables are 𝑧𝑘  with the following ranges: 𝑧𝑘 ∈ [𝑧𝑘, 𝑧𝑘], (𝑘 = 2,… ,𝑚) . Then, 𝐳 =

[𝑧1, 𝑧2, … ,  𝑧𝑚]
T is a vector of the temporal/spatial variables bounded on 𝛀 = [𝑧𝑘 , 𝑧𝑘]. 

The reliability over the temporal and spatial domain is defined by  

𝑅 = Pr{𝑔(𝐗, 𝐳) > 0, ∀𝐳 ∈ 𝛀} (2) 

where ∀ means “for all”. The associated probability of failure is given by 

𝑝𝑓 = Pr{𝑔(𝐗, 𝐳) ≤ 0, ∃𝐳 ∈ 𝛀} (3) 

where ∃ means “there exists at least one”. 

Note that the spatio-temporal domain in Eq. (1) is rectangular. In reality, the domain may be 

non-rectangular. This study focuses on only a rectangular domain.   

2.2 First Order Reliability Method (FORM) 

FORM is the commonly used reliability method. It is originally intended for time- and space-

independent reliability analysis. In this work, we at first review the time- and space-independent 

reliability problem with the FORM method, then the discussion furtherly can be extended to the 

time- and space-dependent reliability problem. 

2.2.1 Time- and space-independent reliability problem 

The time- and space-independent reliability is defined by 

𝑅 =  Pr{𝑦 = 𝑔(𝐗) > 0} (4) 

where 𝑦 is response and 𝐗 is a random vector. FORM at first searches for the most probable point 

(MPP) in the standard normal space. At first, random variables 𝐗 are transformed into standard 

and independent normal variables 𝐔 [38]. Then, the minimum distance from the origin to the limit-
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state surface 𝑔(𝐗) = 0 is identified. The distance is the reliability index 𝛽. The minimum distance 

point is called the MPP. The model for searching for the MPP is given by  

{ min  
√𝐮T𝐮

s. t.  𝑔(𝐗) = 𝑔( T(𝐮)) = 0
(5) 

where T(∙) is an operator of the transformation from 𝐔 to 𝐗.  

𝛽 = ‖𝐮‖ = √𝑢1
2 + 𝑢2

2 +⋯+ 𝑢𝑛2 (6) 

The solution from Eq. (5) is the MPP 𝐮MPP. 

Lastly, the reliability is calculated by  

𝑅 = Pr{𝑦 = 𝑔(𝐗) > 0} ≈ Φ(𝛽) = Φ(‖𝐮MPP‖) (7) 

where Φ(∙) is the cumulative distribution function (CDF) of the standard normal distribution. 

2.2.2 Time-dependent reliability problem 

When it comes to the limit-state function that varies over time, FORM can still be used to find 

the MPP. The MPP 𝐮MPP at the time instant 𝑧1 is identified by the following model: 

{
min  ‖𝐮‖

s. t.  𝑔(𝐗, 𝑧1) = 𝑔(T(𝐮), 𝑧1) = 0
(8) 

The limit-state function is linearized at 𝐮MPP(𝑧1) by  

𝑔(T(𝐮), 𝑧1) ≈ 𝑔( 𝐮MPP, 𝑧1) +∑
𝜕𝑔

𝜕𝑈𝑖

N

𝑖=1

|

𝐮MPP

(𝑈𝑖 − uMPP𝑖) = ∇𝑔 × (𝐔 − 𝐮MPP ) (9)  

 where  ∇𝑔 = [
𝜕𝑔

𝜕𝑈1
|
𝐮MPP

, … ,
𝜕𝑔

𝜕𝑈𝑛
|
𝐮MPP  

] is the gradient, and the probability of failure is computed 

by   

𝑝𝑓 = Pr(𝑔(𝐗, 𝑧1) ≤ 0, 𝑧1 ∈ [𝑧1, 𝑧1]) ≈ Pr(𝛽(𝑧1) + 𝛂(𝑧1)𝐔 ≤ 0, 𝑧1 ∈ [𝑧1, 𝑧1]) (10) 

where 𝛽(𝑧1) is the time-dependent reliability index, given by 

𝛽(𝑧1) = ‖𝐮MPP‖ (11) 
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and 𝛂(𝑧1) is the time-dependent unit gradient vector given by 

𝛂(𝑧1) =
∇𝑔(𝑧1)

∥ ∇𝑔(𝑧1) ∥
= [ 𝛼1(𝑧1), 𝛼2(𝑧1), … , α𝑛(𝑧1)] (12) 

As indicated in Eq. (9), the limit-state function 𝑔(𝐗, 𝑧1)  is approximated as a linear 

combination of standard normal random variables. Many methodologies are available for solving 

for the probability of failures, such as Rice’s formula-based methods and metamodeling-based 

methods. 

3 Envelope Method for Time- and Space-Dependent Problem 

The envelope function is tangent to all the instantaneous limit-state functions with respect to 

time and space. The envelope function of a limit-state function is in general nonlinear and can be 

approximated as a quadratic function at its MPP by the second-order approximation method. 

It is known that the MPP of the envelope function is the worst-case MPP of the limit-state 

function [37]. In other words, the MPP is the closest point between the origin and all the 

instantaneous limit-state functions. The MPP of the envelope function can be efficiently found by 

the sequential single-loop method [37]. Consequently, the gradient of the envelope function is 

consistent with the gradient of the worst-case limit-state functions at MPP [37]. However, as the 

curvature of the envelope function may not be the curvature of the worst-case limit-state function, 

the analytical Hessian matrix of the envelope function is derived. In this paper, we extend our work 

in a more general situation. The second derivative of the envelope function with respect to random 

variables and multiple temporal/spatial variables is analytically derived. As a result, the Hessian 

matrix of the envelope function can be accurately obtained.  

Different from the existing method [37], the new method also covers problems where a single 

call of a limit-state function returns a complete response with respect to time and space. Hence the 

method can be used for the following two cases. 
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Case 1: The input includes a realization of random variables 𝐗 , as well as a time 

instance/spatial location 𝐳, and the output is a single response. This case requires calling the limit-

state function repeatedly so that the worst-case response can be found.   

Case 2: The input includes a realization of random variables 𝐗 and the temporal/spatial domain  

𝛀 of 𝐳. Calling the limit-function returns a complete time- and space-dependent response with 

respect to 𝐳 in 𝛀. In this case, the output is a hypersurface of the response 𝑦(𝐳). For example, if 

we call a computational fluid dynamics (CFD) simulation, we obtain the 4-D pressure and velocity 

fields with respect to time and space. Since we know 𝑦(𝐳), the minimum value min
𝐳∈𝛀

𝑦(𝐳) is also 

known. 

In Sec. 3.1, we focus our discussions on Case 1 for limit-state function  𝑦 = 𝑔(𝐗, 𝐳). Since 

Case 2 is much easier than Case 1, we briefly discuss it at the end of Sec. 3.1. We then extend the 

method into a general problem with input random fields in Sec. 3.2.   

3.1 Problems include random variables, and explicit temporal/spatial parameters 

We now discuss Case 1 with the limit-state function is given in Eq. (1). For this case we need 

to search for the worst-case MPP. 

3.1.1 Search for worst-case MPP  

The time- and space-dependent probability of failure in the time span [𝑧1, 𝑧1] and the space 

span [𝑧𝑘, 𝑧𝑘] can be evaluated by the extreme value of the limit-state function. 

𝑝𝑓 = Pr(𝑔(𝐗, 𝐳) < 0, ∃𝐳 ∈ 𝛀) = Pr (min
𝐳∈𝛀

𝑔(𝐗, 𝐳) < 0) (13)  

Eq. (13) indicates that a failure occurs if the minimum response is negative. The function of 

the extreme response is equivalent to the envelope function or the composite limit-state function 

[29], which is given by 

𝐺(𝐗) = min
𝐳∈𝛀

𝑔(𝐗, 𝐳) = 𝑔(𝐗, 𝐳̃) (14) 
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where the envelope function 𝐺(𝐗) is the global minimum of 𝑔(𝐗, 𝐳) with respect to 𝐳, and the 

global minimum occurs at 𝐳̃. 

If FORM is used to linearize 𝐺(𝐗), the MPP is obtained by 

{
min√𝐮T𝐮
s. t.min

𝐳∈𝛀
𝑔(T(𝐮), 𝐳) = 0

(15) 

Eq. (15) requires a double loop optimization process because minimization appears in both the 

objective and constraint functions. The inner loop is for the minimum value of 𝑔(T(𝐮), 𝐳) relative 

to 𝐳 while the outer loop is the MPP search relative to 𝐮. In this work, we decouple the double 

loop into sequential single loops. 

The first loop is FORM analysis, the MPP 𝐮MPP
(1)

 at the initial 𝐳̃(0) = [𝑧1
0, 𝑧2

0, … 𝑧𝑚
0 ] is obtained 

by 

{min
√𝐮T𝐮

s. t.  𝑔(T(𝐮), 𝐳0) = 0
(16) 

Then 𝐳 is determined by fixing the random variables on its realization 𝐮MPP
(1)

, and 𝐳 is denoted 

by 𝐳̃(1), which is given by 

𝐳̃(1) = argmin
𝐳∈𝛀

𝑔 (T(𝐮MPP
(1)

), 𝐳) (17) 

In the next loop, the new MPP 𝐮MPP
(2)

  is located at point 𝐳̃(1) using Eq. (16). And then 𝐳 is 

updated to 𝐳̃(2). 

𝐳̃(2) = argmin
𝐳∈𝛀

𝑔 (T(𝐮MPP
(2)

), 𝐳) (18) 

The above process is repeated until convergence, and the MPP is found. It is the worst-case 

MPP of the limit-state function with respect to 𝐳. 
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3.1.2 Find the global minimum value of 𝑮(𝐗)  

The global minimum value of 𝐺(𝐗) occurs at 𝐳̃(1) = [𝑧̃1
(1), 𝑧̃2

(1), … , 𝑧̃𝑚
(1)], which is given by 

𝐳̃(1) = argmin
𝐳∈𝛀

𝑔(T(𝐮MPP), 𝐳) (19) 

Note that finding the optimal point is still in the sequential loops. There are many methods to 

solve the optimal point 𝐳̃(1) corresponding to the global minimum value of 𝐺(𝐗). The first partial 

derivative of the limit-state function with respect to 𝑧𝑘 at MPP is as below: 

{
 
 

 
 
𝜕𝑔(T(𝐮MPP), 𝑧1, 𝑧2, … , 𝑧𝑚)

𝜕𝑧1
= 0

⋮
𝜕𝑔(T(𝐮MPP), 𝑧1, 𝑧2, … , 𝑧𝑚)

𝜕𝑧𝑚
= 0

(20) 

The optimal point 𝐳̃(1) = [z̃1
(1), z̃2

(1), … z̃𝑚
(1)] can be obtained by solving Eq. (20). 

We use efficient global optimization (EGO) to find the MPP. EGO has been widely used in 

various areas because it can efficiently search for the global optimum [39]. Suppose we have called 

the limit-state function at several initial training points of 𝐳𝑖𝑛 and the number of initial training 

points is 𝑛𝑖𝑛, which denote by as follows 

𝐳𝑖𝑛 = [
𝑧1
1 ⋯ 𝑧𝑚

1

⋮ ⋱ ⋮
𝑧1
𝑛𝑖𝑛 ⋯ 𝑧𝑚

𝑛𝑖𝑛
] 

and the associated responses are 𝐲𝑖𝑛 = [𝑔(T(𝐮∗), 𝐳1), 𝑔(T(𝐮∗), 𝐳2), … , 𝑔(T(𝐮∗), 𝐳𝑛𝑖𝑛)]T . An 

initial function is fitted from (𝐳𝑖𝑛, 𝐲𝑖𝑛) by the following surrogate model [39]: 

𝑦̂ = 𝑔(𝐳) = 𝑔(T(𝐮∗), 𝐳) = 𝐹(𝐳)T𝛾 + 𝑒(𝐳) (21) 

where 𝐹(𝐳)T𝛾 is a deterministic term, 𝑒(𝐳) is a vector of regression functions, 𝛾 is a vector of 

regression coefficients, and 𝑒(𝐳) is a stationary Gaussian process with zero mean and a covariance 

given by  
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Cov(𝑒(𝐳1), 𝑒(𝐳2)) = 𝜎𝑒
2𝐶(𝐳1, 𝐳2) (22) 

where 𝜎𝑒
2 is process variance, and 𝐶(∙,∙) is the correlation function. 

The output of the surrogate model is a Gaussian random variable following 

𝑦̂ = 𝑔(𝐳)~𝑁(𝜇(𝐳), 𝜎2(𝐳)) (23) 

where 𝜇(𝐳) and 𝜎(𝐳) are the mean and standard deviation of 𝑦̂, respectively. 

The initial model is likely not accurate. The expected improvement (EI) metric [39] is used to 

identify new training points that will be added to refine the model. The improvement is defined by 

I = max(𝑦∗ − 𝑦, 0) (24) 

where 𝑦∗ = min
𝑖=1,2,…,𝑛𝑖𝑛

𝑔(𝐳𝑖) is the minimum from the sampling training points. 

EI is computed by      

EI(𝐳) = E[max(𝑦∗ − 𝑦, 0)] = (𝑦∗ − 𝜇(𝐳))Φ(
𝑦∗ − 𝜇(𝐳)

𝜎(𝐳)
) + 𝜎(𝐳)𝜙 (

𝑦∗ − 𝜇(𝐳)

𝜎(𝐳)
) (25) 

where 𝜙(∙) is the probability density function (PDF). 

A new training point 𝐳𝑛𝑒𝑤 is identified by minimizing the expected improvement. 

𝐳𝑛𝑒𝑤 = argminEI
𝐳

(𝐳) (26) 

By combining sequential strategy with EGO, 𝐮MPP of envelope function 𝐺(𝐗) can be obtained 

efficiently by solving Eq. (15). The probability of failure with FORM is estimated by      

𝑝𝑓 = Pr(𝑔(𝐗, 𝐳) < 0, ∃𝐳 ∈ 𝛀) ≈ Pr (𝐺(𝐗) < 0) = Φ(−𝛽) (27) 

where 𝛽 =∥ 𝐮MPP ∥ is the first-order reliability index.  

In general, the envelope function is nonlinear, and FORM may not be accurate enough. Thus, 

a second-order method is preferred, and it uses the envelope theorem to obtain the second-order 

information of the extreme limit-state function. Then SOSPA is used to estimate the probability of 

failure. 
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3.1.3 Derivatives of the envelope function 

The envelope function is generally nonlinear, and we therefore approximate it as a quadratic 

function, instead of a linear function in FORM. As a result, we need the gradient ∇𝐺 and Hessian 

matrix 𝐇 at the MPP of the envelope function. The quadratic function is formed as follows [12]: 

 𝐺(𝐔) = a + 𝐛T𝐔 + 𝐔T𝐂𝐔 (28) 

where      

{
 
 

 
 𝑎 =

1

2
(𝐮MPP)

T𝐇𝐮MPP − ∇𝐺(𝐮MPP)
T𝐮MPP

𝐛 = ∇𝐺(𝐮MPP) − 𝐇𝐮MPP = (𝑏̃1, 𝑏̃2, … , 𝑏̃𝑛)

𝐂 =
1

2
𝐇 = diag(𝑐̃1, 𝑐̃2, … , 𝑐̃𝑛)

(29) 

∇𝐺(𝐮∗) = [
𝜕𝐺

∂𝑈1
|
𝐮MPP

, … . ,
𝜕𝐺

∂𝑈𝑛
|
𝐮MPP

]

T

is the gradient of the envelope function. 𝐇 is the Hessian 

matrix shown below. 

𝐇 =

[
 
 
 
 
 
𝜕2𝐺

𝜕𝑈1
2 ⋯

𝜕2𝐺

𝜕𝑈1𝜕𝑈𝑛
⋮ ⋱ ⋮

𝜕2𝐺

𝜕𝑈𝑛𝜕𝑈1
⋯

𝜕2𝐺

𝜕𝑈𝑛2 ]
 
 
 
 
 

𝐮MPP

(30) 

The envelope function 𝐺(𝐗) at 𝐮MPP is given by 

𝐺(𝐔) = min
𝐳∈𝛀

𝑔(𝐔, 𝐳) =𝑔(𝐔, 𝐳̃)|𝐮MPP (31) 

where 𝐳̃ = [z̃1, … , z̃𝑚] is the optimal point where the global minimum value of function 𝑔(𝐔, 𝐳) 

occurs, and it is found by 

𝜕𝑔(𝐔, 𝐳)

𝜕𝑧1
=
𝜕𝑔(𝐔, 𝐳)

𝜕𝑧2
= ⋯ =

𝜕𝑔(𝐔, 𝐳)

𝜕𝑧𝑚
= 0 (32) 

The envelope function satisfies the following equation:  
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{
𝑔̇(𝐔, 𝑧̃1, 𝑧2, … , 𝑧𝑚) = 0

⋮
𝑔̇(𝐔, 𝑧1, 𝑧2, … , 𝑧̃𝑚) = 0

(33) 

where 𝑔̇ is the derivative of 𝑔 with respect to 𝑧𝑖. 

Next, the first derivative of 𝐺(𝐔) with respect to a random input variable 𝑈𝑖 at 𝐮MPP is 

𝜕𝐺

𝜕𝑈𝑖
=
𝜕𝑔

𝜕𝑈𝑖
+
𝜕𝑔

𝜕z̃1

𝜕z̃1
𝜕𝑈𝑖

+
𝜕𝑔

𝜕z̃2

𝜕z̃2
𝜕𝑈𝑖

+⋯+
𝜕𝑔

𝜕z̃𝑚

𝜕z̃𝑚
𝜕𝑈𝑖

(34) 

By plugging Eq. (33) into Eq. (34), it becomes 

𝜕𝐺

𝜕𝑈𝑖
=
𝜕𝑔

𝜕𝑈𝑖
(35) 

Eq. (35) indicates that the gradient of the envelope function ∇𝐺 is equal to the gradient of the 

limit-state function ∇𝑔 at the MPP. Subsequently, the second derivative of 𝐺(𝐔) with respect to 

the input random variables 𝑈𝑗  at 𝐮∗ is 

𝜕2𝐺

𝜕𝑈𝑖𝜕𝑈𝑗
=

𝜕

𝜕𝑈𝑗
(
𝜕𝐺

𝜕𝑈𝑖
) =

𝜕

𝜕𝑈𝑗
(
𝜕𝑔

𝜕𝑈𝑖
)   =

𝜕2𝑔

𝜕𝑈𝑖𝜕𝑈𝑗
+

𝜕2𝑔

𝜕𝑈𝑖𝜕𝑧̃1

∂𝑧̃1
∂𝑈𝑗

+⋯+
𝜕2𝑔

𝜕𝑈𝑖𝜕𝑧̃𝑚

𝜕𝑧̃𝑚
𝜕𝑈𝑗

(36) 

Take the derivative of Eq. (32) with respect to 𝑈𝑗, and it is given by 

∂𝑔̇

∂𝑈𝑗
+
∂𝑔̇

∂𝑧̃𝑘

∂𝑧̃𝑘
∂𝑈𝑗

= 0 (37) 

∂𝑧̃𝑘
∂𝑈𝑗

= −
∂𝑔̇

∂𝑈𝑗

∂𝑔̇

∂𝑧̃𝑘
⁄ = −

𝜕2𝑔

𝜕𝑧̃𝑘𝜕𝑈𝑗

𝜕2𝑔

𝜕𝑧̃𝑘
2⁄ (38) 

 The Hessian matrix H with respect to random variables and multiple temporal/spatial variables 

is obtained by plugging Eq. (38) into Eq. (36) at 𝐮MPP, 𝑧̃𝑘. 

𝜕2𝐺

𝜕𝑈𝑖𝜕𝑈𝑗
|
𝐮∗,z̃𝑘

=
𝜕2𝑔

𝜕𝑈𝑖𝜕𝑈𝑗
−∑

𝜕2𝑔

𝜕𝑈𝑖𝜕𝑧̃𝑘

𝜕2𝑔

𝜕𝑈𝑗𝜕𝑧̃𝑘

𝜕2𝑔

𝜕𝑧̃𝑘
2⁄

𝑚

𝑘=1

(39) 

The forward finite difference method with step size 𝛿 = max (|𝑢|/1000, 𝜖), where 𝜖 = 10−4 , 

is employed to calculate the derivations in Eq. (39).  
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3.1.4 Saddlepoint approximation  

Once the envelope function is approximated by a quadratic function, we use the second order 

saddlepoint approximation to estimate the probability of failure. The reason we use saddlepoint 

approximation is due to its high accuracy in the tail area of a distribution; a failure usually occurs 

in a tail area.  

Eq. (28) can be written as the sum of quadratic functions of different standard normal variables 

𝐺(𝐔) =∑𝑄𝑖(𝐔̃)

𝑛

𝑖=1

=∑(𝑎̃𝑖 + 𝑏̃𝑖𝑈̃𝑖 + 𝑐̃𝑖𝑈̃𝑖
2)

𝑛

𝑖=1

(40) 

The cumulant generating function (CGF) of 𝐺(𝐔) is given by 

𝐾𝑄(𝑡𝑠) =∑𝐾𝑄𝑖(𝑡𝑠)

𝑛

𝑖=1

(41) 

After the CGF 𝐾𝑄(𝑡𝑠) is obtained, it is straightforward to find the PDF of the limit-state 

function, and this needs to solve the saddlepoint 𝑡𝑠 , which is found by solving the following 

equation: 

𝐾𝑄
 ′(𝑡𝑠) = 0 (42) 

where 𝐾𝑄
 ′(𝑡𝑠) is the first derivative of 𝐾𝑄(𝑡𝑠). The details of the implementation of SOSPA refer 

to Ref. [12]. According to Lugannani and Rice’s formula, 

Then the probability of failure is evaluated by 

𝑝𝑓 ≈ Pr(𝐺(𝐔) < 0)  = Φ(𝑤) + 𝜙(𝑤) (
1

𝑤
−
1

𝑣
) (43) 

where 

𝑤 = sgn(𝑡𝑠){2[−𝐾𝑄(𝑡𝑠)]}
1
2 (44) 

𝑣 = 𝑡𝑠[𝐾𝑄
′′(𝑡𝑠)]

1
2 (45) 
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in which sgn(𝑡𝑠) = +1,−1, or 0, depending on whether 𝑡𝑠 is positive, negative, or zero. 𝐾𝑄
′′(𝑡𝑠) 

is the second derivative of 𝐾𝑄(𝑡𝑠)  concerning 𝑡𝑠 . Since the above method uses SOSPA and 

envelope theorem, we denote this method as SOSPA/ENV. 

Case 2: Calling the limit-function returns a complete time- and space-dependent response  

In this case, the output is a hypersurface of the response 𝑦(𝐳). The complete response 𝑦(𝐳) is 

available, so the minimum value min
𝐳∈𝛀

𝑦(𝐳) is also known. We do not need to use the sequential 

single loops in case 1. Thus, the MPP in Eq. (15) can be obtained from the following model: 

{
min√𝐮T𝐮
s. t.min

𝐳∈𝛀
𝑦(𝐳) = 0

(46) 

where min
𝐳∈𝛀

𝑦(𝐳) is a function of 𝐮 and is obtained by calling the limit-state function once at 𝐮,  

where 𝐮 is the vector of independent normal variables transformed from X. We just need a single-

loop MPP search, which is more efficient than the sequential loop approach. 

The model in Eq. (46) may have multiple MPPs [40]. The accuracy of the reliability prediction 

may be poor if only one MPP is used and if other MPPs also have significant contributions. There 

are three strategies to deal with multiple MPPs. The first strategy is to repeat the standard MPP 

search with different starting points and find different solutions if they exist. The second strategy 

is to use an optimization algorithm that can find multiple local optima. The methods include 

genetic algorithm [40] and particle swarm optimization [41]. The third strategy is to employ 

methodologies specifically designed for multiple MPP search [29,42]. Although there is no 

guarantee to find all possible MPPs, these strategies can significantly increase the chance of 

finding multiple MPPs [29,40-42]. Once all potential MPPs are identified, the corresponding limit-

state surfaces are linearized at these points as  

𝑄𝑖(𝐔) = −∇𝐺(𝐮MPP𝑖)
T𝐮MPP𝑖 + ∇𝐺(𝐮MPP𝑖)𝐔 (47) 
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where 𝑖 = 1,2, … ,𝑚, in which 𝑚  is the number of MPPs. The reliability is calculated as the 

reliability of a series system. 

𝑅 = Pr(⋂𝑄𝑖(𝐔) > 0

𝑚

𝑖=1

) = (⋂ = −∇𝐺(𝐮MPP𝑖)
T𝐮MPP𝑖 + ∇𝐺(𝐮MPP𝑖)𝐔 > 0

𝑚

𝑖=1

) (48) 

Since 𝑄𝑖(𝐔)  follows a normal distribution, all the responses at their MPPs follow a 

multivariate normal distribution, whose joint probability density is integrated in the safe region, 

resulting the reliability. The second order method is used for higher accuracy. The method still 

uses a multivariate normal distribution, whose mean vector is obtained by the second order 

saddlepoint approximation and whose covariance matric is estimated by the first order 

approximation [12]. 

3.2 Extension to problems with random variable, random fields, and temporal/spatial 

variables 𝐳 

We have discussed limit-state functions with random variables 𝐗  and temporal/spatial 

variables 𝐳. In this subsection, we discuss how to extend the method to limit-state functions with 

random variable 𝐗, random fields 𝓕(𝐳) and temporal/spatial variables 𝐳. A limit-state function is 

given by 𝑦(𝐳) = 𝒈(𝐗,𝓕(𝐳), 𝐳). The time- and space-dependent probability of failure is calculated 

by  

𝑝𝑓 = Pr(𝑔(𝐗,𝓕(𝐳), 𝐳) < 0, ∃𝐳 ∈ 𝛀) = Pr (min
𝐳∈𝛀

𝑦(𝐳) < 0) (49) 

Eq. (49) indicates that failure happens when the minimum value of the limit-state function 𝑔(𝐗, 

𝓕(𝐳),𝐳) is negative. There are still two cases: a single call of a limit-state function does not return 

a time- and space-dependent response and a single call of a limit-state function returns a complete 

response with respect to time and space. 
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Case 1 requires calling the limit-state function repeatedly to obtain the worst-case response in 

𝛀. We need to convert random fields into time- and space-dependent random variables so that the 

proposed method can be used. The expansion optimal linear estimation method (EOLE) [43] can 

be used to convert the random fields 𝓕(𝐳) into independent standard Gaussian random variables 

𝛏 = (𝜉1, 𝜉2, … , 𝜉𝑟), where r is the dimension of 𝛏. Take a two-dimensional random field ℱ(𝒛), 

where 𝒛 = (𝑧1, 𝑧2), as an example. 𝑧1 and 𝑧2 are discretized into 𝑛𝑧1 and 𝑛𝑧2 points, respectively. 

The autocorrelation coefficient matrix is given by 

𝚺 = [𝜌(𝐳𝑖,  𝐳𝑗)]𝑛𝑧1𝑛𝑧2×𝑛𝑧1𝑛𝑧2
(50) 

where 𝜌(𝐳𝑖 ,  𝐳𝑗)  is the correlation between two points 𝐳𝑖  (𝑖 = 1,2, … , 𝑛𝑧1𝑛𝑧2)  and 𝐳𝑗  (𝑗 =

1,2, … , 𝑛𝑧1𝑛𝑧2) in the domain of ℱ(𝐳). Then ℱ(𝒛) is expanded by 

ℱ(𝛏, 𝐳) ≈ 𝜇(𝐳) + 𝜎(𝐳)∑
𝜉𝑘

√𝜆𝑘

𝑟

𝑘=1

𝛟𝑘
T𝚺(: , 𝐳), 𝑘 = 1,2, … , 𝑟 (51) 

where 𝜇(𝐳) is the mean of ℱ(𝐳), and 𝜎(𝐳) is the standard deviation of ℱ(𝐳). 𝜉𝑘 (𝑘 = 1,2, … 𝑟) are 

independent standard normal variables, 𝛌 = (𝜆1, 𝜆2, … , 𝜆𝑟)  is the eigenvalue vector, and 

𝛟1, 𝛟2, … , 𝛟𝑟 are eigenvectors of 𝚺. Note that 𝑟 is determined as the smallest integer that meets 

the following criterion: 

∑ 𝜆𝑘
𝑟
𝑗=1

∑ 𝜆𝑘
𝑛𝑧1𝑛𝑧2
𝑗=1

≥ 𝜂 (52) 

where 𝜂 is a hyperparameter determining the accuracy of the expansion. It takes a value close to, 

but not larger than 1. The smaller is 𝜂, the less accurate is the expansion. If 𝜂 = 1, the expansion 

is exact at the points of discretization. Normally, 𝜂 is set to 0.9999.  

Then the limit-state function becomes 𝑦 = 𝑔(𝐗̃, 𝐳), where 𝐗̃ = (𝐗, 𝛏). It is a function given in 

Eq. (1) and the proposed method in Sec. 3.1 of case 1 can be used.  
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For Case 2, a single call of a limit-state function returns a complete response with respect to 

time and space. After random fields are expanded with respect to random variables, the problem 

becomes the one discussed in Sec. 3.1 for Case 2. The same method in Sec. 3.1 can then be used. 

3.3 Implementation 

The detailed steps of solving time- and space-dependent reliability problems using SOSPA are 

summarized below. 

Step 1: Transform random variables 𝐗 into 𝐔 in the standard normal space. 

Step 2: Set 𝑘 = 1. Generate a random point 𝐳 ∈ Ω as the initial optimal point 𝐳̃(0)  and use a 

unit vector as the initial MPP 𝐮MPP
(1)

= 𝐮0. 

Step 3: Perform the MPP search at the point 𝐳̃(𝑘−1) , and obtain the MPP 𝐮MPP
(𝑘)

 and the 

corresponding 𝛽(𝑘) by solving the following optimization model: 

{
min√𝐮T𝐮

s. t.  𝑔(T(𝐮), 𝐳̃(𝑘−1)) = 0
 

Step 4: Determine the optimal point 𝐳̃(𝑘) implementing EGO method at 𝐮MPP
(𝑘)

. The optimal 

point 𝐳̃(𝑘)  makes the limit-state function minimized. The initial number of training points to 

determine the time and spatial parameters is 𝑛𝑖𝑛=2. 

𝐳̃(𝑘) = argmin
𝐳∈𝛀

𝑔 (T(𝐮MPP
(𝑘)

), 𝐳) 

Step 5: Repeat step 3 and step 4 until convergence. The convergence criterion is defined as 

|𝛽(𝑘) − 𝛽(𝑘−1)| ≤ 𝜀 

The tolerance 𝜀 can take a small positive value, for example, 10−4. If |𝛽(𝑘) − 𝛽(𝑘−1)| ≤ 10−4, 

terminate the iteration. Otherwise, set 𝑘 = 𝑘 + 1, and return to step 3. Note that the method of a 
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single-loop MPP search can be used if calling the limit-state function returns a complete time- and 

space-dependent response 

Step 6: Calculate the gradient ∇𝐺 and Hessian matrix 𝐇 of the envelope function. 

Step 7: Calculate the probability of failure using SOSPA/ENV from the above information 

𝐮MPP
(𝑘)

,  gradient ∇𝐺, and Hessian matrix 𝐇. 

4 EXAMPLES 

In this section, three examples are used to demonstrate the proposed method. Example 1 is a 

mathematical problem that is used to show the details of the proposed method. The remaining 

examples are engineering problems. MCS is employed to provide accurate solutions for the 

accuracy comparison. SOSPA/ENV is compared with the FORM-based envelope method 

(FORM/ENV). The errors of SOSPA/ENV and FORM/ENV are calculated by 

𝜀 =
|𝑝𝑓 − 𝑝𝑓

MCS|

𝑝𝑓
MCS

× 100% (53) 

where 𝑝𝑓 is the result from SOSPA/ENV or FORM/ENV, and 𝑝𝑓
MCS is the result from MCS. We 

also use the number of function calls as a measure of efficiency. 

4.1 Example 1: A math problem 

This example is a math problem, which belongs to Case 1 without any random field input. The 

limit-state function 𝑔(𝐗, 𝑠, 𝑡) regarding random variables and explicit temporal/spatial parameter 

is defined by 

𝑔(𝐗, 𝑠, 𝑡) = 𝑋1
2𝑋2 − 5𝑋1𝑡 + (𝑋2 + 1)𝑡

2 − 2𝑋2s + 𝑋1𝑠
2 − 8 (54) 

where 𝐗 = (𝑋1, 𝑋2) , 𝑋𝑖 (𝑖 = 1,2)  are normally distributed with parameters 𝜇𝑖 = 3.5  and 𝜎𝑖 =

0.25. The temporal parameter is 𝑡 ∈ [0,5] and the spatial parameter is 𝑠 ∈ [0,5]. Therefore, 𝐳 =

(𝑠, 𝑡), and Ω = {[0,5] × [0,5]}.  𝑋1 and 𝑋2 are independent.  
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We can easily plot the envelope function for this problem since an analytic envelope function 

𝐺(𝐗) is available for this problem. From the partial derivatives of the limit-state function with 

respective to 𝑡 and 𝑠 

{
 
 

 
 
𝜕𝑔(𝐗, 𝑠, 𝑡)

𝜕𝑡
= 0

𝜕𝑔(𝐗, 𝑠, 𝑡)

𝜕𝑠
= 0

(55) 

we have 

{
 

  𝑡 =
5𝑋1

2(𝑋2 + 1)

𝑠 =
𝑋2
𝑋1

(56) 

 Plugging Eq. (56) into Eq. (54) yields the envelope function.  

𝐺(𝐗) = 𝑋1
2𝑋2 −

25𝑋1
2

4(𝑋2 + 1)
−
𝑋2
2

𝑋1
− 8 (57) 

The envelope function at the limit state 𝐺(𝐗) = 0 is plotted in Fig. 1, and the failure region is 

colored grey. The figure shows that the envelope function is nonlinear. 

------------------------------- 

Place Fig. 1here 

------------------------------- 

Fig. 1 The envelope function 

Even though the envelope function has an explicit function, we treat it as a black box by 

following the numerical procedure discussed in Sec. 3. SOSPA/ENV searches for the worst-case 

MPP with the sequential EGO. Table 1 shows the iteration history of the MPP search. The worst-

case MPP is found at 𝐮MPP = (−2.1702,−2.6185)  with 𝑡̃ = 1.8150  and 𝑠̃ = 0.8763 . Fig. 2 

displays the convergence history of first-order reliability index 𝛽 . With FORM/ENV, the 

probability of failure is 𝑝𝑓 = 3.3575 × 10
−4. 
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Once the worst-case MPP is available, the gradient and Hessian matrix are computed at the 

MPP. The latter is given by 

∇2𝐺(𝐮MPP) = [
0.1200 0.5542
0.5542 −0.1494

] 

 

Table 1 Iteration history of searching for the worst-case MPP 

------------------------------- 

Place Table 1 here 

------------------------------- 

 

------------------------------- 

Place Fig. 2 here 

------------------------------- 

Fig. 2 Convergence history of reliability index 𝛽 

Then SOSPA/ENV produces 𝑝𝑓 = 4.9022 × 10−4. The number of simulations for MCS is 

𝑁𝐶 = 10
7. The time and space intervals are discretized evenly into 20 points, yielding 400 points. 

Accordingly, the number of function calls of MCS is 4 × 109. 

All the results are shown in Table 2. SOSPA/ENV is much more accurate than FORM/ENV 

as the error of the former is 3.5% while that of the latter is 33.9%. SOSPA/ENV, however, is less 

efficient than FORM/ENV.  

Table 2 Results of Example 1 

------------------------------- 

Place Table 2 here 

------------------------------- 
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4.2 Example 2: A Truss Structure 

A truss structure is shown in Fig. 3. This example belongs to Case 1 without any random field 

input. The inputs of this truss structure are random variables, temporal parameter 𝑡 and spatial 

parameter ℎ. Each bar of the system has its cross-sectional area 𝐴𝑖 and the modulus of elasticity 

𝐸𝑖 , 𝑖 = 1,2,3 . The coefficient of thermal expansion of all bars is 𝛼 = 12 × 10−6℃−1 . The 

temperature change is related to the installation height of the truss structure and is given by ∆𝑇 =

𝑇𝑒−0.01(∆ℎ
2+2∆ℎ+1)2, where ∆ℎ ∈ [2,5] m is the difference of two different installation heights. A 

downward force 𝑃 = 𝑃0(0.9 + 0.1cos (0.2𝑡)) is applied at joint A, where 𝑡 ∈ [0,10] years. The 

domain Ω of 𝐳 = [∆ℎ, 𝑡] is {[2,5] × [0,10]}. All the random variables are given in Table 3.  

------------------------------- 

Place Fig. 3 here 

------------------------------- 

Fig. 3 A truss structure 

The perpendicular displacement of joint A is calculated by 

∆𝛿 =
𝐴

𝐵
(58) 

where  

𝐴 = 𝐿AD(𝑃𝐴1𝐸1𝐿ACcos𝜃1
2 + 𝑃𝐴2𝐸2𝐿ABcos𝜃2

2 + 𝐴1𝐴3𝐸1𝐸3𝐿AC𝑇𝛼cos𝜃1
2

+ 𝐴2𝐴3𝐸2𝐸3𝐿AB𝑇𝛼cos𝜃2
2 + 𝐴1𝐴2𝐸1𝐸2𝑇𝛼(𝐿ABsin𝜃1cos𝜃2

2 + 𝐿ACsin𝜃2cos𝜃1
2

+ 𝐿ACsin𝜃1cos𝜃2cos𝜃1 + 𝐿ABsin𝜃2cos𝜃2cos𝜃1)) 

𝐵 = 𝐴1𝐴3𝐸1𝐸3𝐿ACcos𝜃1
2 + 𝐴2𝐴3𝐸2𝐸3𝐿ABcos𝜃2

2 + 𝐴1𝐴2𝐸1𝐸2𝐿AD(sin𝜃2
2cos𝜃1

2 + sin𝜃1
2cos𝜃2

2

+ 2sin𝜃1sin𝜃2cos𝜃1cos𝜃2) 

𝜃1 = arctan (
𝐿𝐴𝐷

√𝐿𝐴𝐵
2 − 𝐿𝐴𝐷

2
) 
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𝜃2 = arctan (
𝐿𝐴𝐷

√𝐿𝐴𝐶
2 − 𝐿𝐴𝐷

2
) 

A failure occurs when ∆𝛿 > 0.65 mm. Thus, the limit-state function is defined by 

𝑔(X, 𝑠, 𝑡) = 0.65 − ∆𝛿 (59) 

Table 3 Random variables of Example 2 

------------------------------- 

Place Table 3 here 

------------------------------- 

 

107  samples are used for MCS and the domain of 𝐙 = (∆ℎ, 𝑡)  is discretized evenly into 

10 × 10 = 100 points. FORM/ENV and SOSPA/ENV are used to calculate the probability of 

failure. Table 4 shows the results. Even though FORM/ENV is more efficient than SOSPA/ENV, 

it produces a large error. SOSPA/ENV achieves higher accuracy than FORM/ENV although it 

needs more function calls. 

Table 4 Results of Example 2 

------------------------------- 

Place Table 4 here 

------------------------------- 

 

4.3 Example 3: An Electron Accelerator 

Fig. 4 shows an electron accelerator that accelerates electrons. The inputs of this example are 

random variable L and random field 𝑉(𝑤, ℎ, 𝑡) . Calling the limit-state function can return a 

complete time-and space-dependent responses by sampling the random field  𝑉(𝑤, ℎ, 𝑡). This 

problem belongs to Case 2 with an input random field, and it therefore requires single-loop MPP 

search. The device is placed horizontally. Electrons are emitted from the electrode and then enter 

the electric field E in the accelerator, and finally fly out. The initial velocity of the electrons is a 
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non-stationary Gaussian random field 𝑉0(𝑤, ℎ, 𝑡), whose mean is 𝜇𝑉0 = 105𝑒−0.001(𝑤
2+ℎ2+(𝑡−6)2) 

m/s and standard deviation is 𝜎𝑉0 = 10000 m/s. The spatial variable 𝑤 ∈ [−0.05,0.05] m is the 

width of the electrode, and ℎ ∈ [−0.05,0.05] m  is the height of the electrode. The temporal 

variable is 𝑡 ∈ [0,10] s. The autocorrelation coefficient function of the Gaussian field is given by 

𝜌𝑉0(𝑤1, ℎ1, 𝑡1; 𝑤2, ℎ2, 𝑡2) = exp [−(
𝑤1 − 𝑤2

5
)
2

− (
ℎ1 − ℎ2
5

)
2

− (
𝑡1 − 𝑡2
10

)
2

] (60) 

The length of the accelerator 𝐿 is normally distributed with 𝑁(1, 0.012) m. The electric field 

𝐸(𝑤, ℎ) is a two-dimensional stationary Gaussian random field, whose mean 𝜇𝐸  and standard 

deviation 𝜎𝐸  are 10 N/C and 1 N/C, respectively. Its autocorrelation coefficient function is given 

by 

------------------------------- 

Place Fig. 4 here 

------------------------------- 

Fig.4 An electron accelerator 

𝜌𝐸(𝑤1, ℎ1; 𝑤2, ℎ2) = exp [− (
𝑤1 − 𝑤2

5
)
2

− (
ℎ1 − ℎ2
5

)
2

] (61) 

 If the acceleration time and the interaction among the electrons are negligible, the velocity 

𝑉(𝑤, ℎ, 𝑡) of the electrons after acceleration is  

𝑉(𝑤, ℎ, 𝑡) = √
2𝑞𝐸(𝑤, ℎ)𝐿

𝑚
+ 𝑉0

2(𝑤, ℎ, 𝑡) (62) 

where 𝑞 = 1.6 × 10−19C  and 𝑚 = 9.109 × 10−31kg  are the electric quantity and mass of an 

electron, respectively. The target velocity is 𝑉𝑡 = 1.4519 × 106  m/s. The domain Ω  of 𝐳 =

[𝑤, ℎ, 𝑡] is {[−0.05,0.05] × [−0.05,0.05] × [0,10]}.  The limit-state function is defined by  

𝑔(𝐗, 𝑉(𝑤, ℎ, 𝑡)) =  𝑉(𝑤, ℎ, 𝑡) − 𝑉𝑡 (63) 

in which a failure occurs if the velocity after acceleration is smaller than the target velocity.  
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The EOLE method is used to generate the series expansion of the nonstationary Gaussian field 

𝑉0(𝑤, ℎ, 𝑡) . 𝑤, ℎ , and 𝑡  are evenly discretized into 10  points, so there are a total of 1000 

discretization points. The 1000 × 1000 autocorrelation coefficient matrix 𝚺𝑉0 of the random field 

is obtained. The three most significant eigenvalues of 𝚺𝑉0  are 841, 146, and 12, and therefore 

𝑉0(𝑤, ℎ, 𝑡)  can be expanded with three standard independent normal variables 𝜉𝑘, 𝑘 = 1,2,3 . 

Similarly, we use EOLE to generate the series expansion of 𝐸(𝑤, ℎ) and keep only the first two 

orders. With 1000 discretization expansions points of  𝑉(𝑤, ℎ, 𝑡) , the minimal value of  

𝑔min(𝑤, ℎ, 𝑡) can be found. Then the standard FORM method is employed to find the worst-case 

MPP 𝐮MPP = (−2.2726,−0.0164,−0.0038, 0.0014,−2.2726,−0.0050)  and the reliability 

index 𝛽 = 3.2140. To check if the worst-case 𝐮MPP is the global solution of Eq. (46) and detect if 

there are multiple MPPs, we use the first strategy discussed in Sec. 3.1.4. We repeat the standard 

MPP search using different starting point (0, 0, 0, 0, 0, 0), (1.5, 1.5, 1.5, 1.5, 1.5, 1.5), (-2, -2, -2, 

-2, -2, -2), and (3, 3, 3, -3, -3, -3). The final solutions from different starting points converge to the 

same solution. Thus, it is likely that the worst-case MPP 𝐮MPP is the global MPP of Eq. (46) and 

that there is only one MPP. Then FORM/ENV produces 𝑝𝑓 = 6.5558 × 10−4  with only 28 

function calls which leading tremendous efficiency improvement instead of using sequential loops 

to find the worst-case MPP. SOSPA/ENV produces 𝑝𝑓 = 7.8862 × 10
−4 with 87 function calls. 

MCS uses 107 samples of all random variables at each of the 1000 discretization points of the 

temporal/spatial variables. The results are provided in Table 5. By using the sing-loop MPP search 

method, the function calls of both FORM/ENV and SOSPA/ENV methods are reduced 

tremendously.  SOSPA/ENV is more accurate than FORM/ENV but less efficient.  

 

Table 5 Results of Example 3 
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------------------------------- 

Place Table 5 here 

------------------------------- 

 

Conclusions 

In this work, the envelope method for time-dependent reliability is extended to time- and space-

dependent reliability analysis for limit-state functions with input of random variables, random 

fields, and temporal and spatial parameters. The envelope function is obtained with respect to 

temporal/spatial variables. Then the time- and space-dependent problem is converted into a time- 

and space-independent counterpart, and the second order saddlepoint approximation method is 

used to estimate the reliability. Equations of the second derivatives of the envelope function are 

derived for the second order approximation. The major computational cost is the MPP search and 

second derivative calculations. In this case, efficient global optimization is used for the MPP 

search, and other global optimization methods can also be used. The first and second derivatives 

are evaluated by the finite difference method. The results show that the proposed method is much 

more accurate than the first-order approximation method since the envelope function is in general 

nonlinear. The new method, however, is less efficient than the first-order approximation method 

because it requires second derivatives of the envelope function. 

The new method shares the same drawbacks of the MPP-based reliability methods. If only one 

MPP is found but multiple MPPs exist or if the global MPP is not found, the accuracy of the 

reliability prediction will be low. If the MPP occurs on the boundary of the time and space domain, 

the derivatives of the envelope function may not exist, and the proposed method may not work. 

How to address these problems needs further investigations.   
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Table 1 Iteration history of searching for the worst-case MPP 

Iterations u* t̃ s̃ 

1 (-7.4573, -2.0392) 0.9157 1.2272 

2 (-3.9028, -1.4544) 1.2886 1.0077 

3 (-3.1172, -2.0203) 1.4821 0.8722 

4 (-2.7126, -2.3219) 1.5695 0.8059 

5 (-2.5333, -2.4574) 1.7458 0.9219 

6 (-2.3025, -2.5225) 1.7859 0.8956 

7 (-2.2254, -2.5784) 1.8030 0.8843 

8 (-2.1928, -2.6021) 1.8101 0.8795 

9 (-2.1928, -2.6120) 1.8131 0.8776 

10 (-2.1735, -2.6161) 1.8143 0.8767 

11 (-2.1712, -2.6178) 1.8148 0.8764 

12 (-2.1702, -2.6185) 1.8150 0.8763 

 

 

 

Table 2 Results of Example 1 

 

Method Probability of failure Error Number of function calls 

MCS 5.080 × 10−4 - 4 × 109 

FORM/ENV 3.3575 × 10−4 33.9% 314 

SOSPA/ENV 4.9022 × 10−4 3.5% 333 
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Table 3 Random variables of Example 2 

 

Variable 

(Unit) 
Mean 

Standard 

deviation 
Distribution 

𝐴1(mm
2) 60 0.6 Normal 

𝐴2(mm
2) 60 0.6 Normal 

𝐴3(mm
2) 60 0.6 Normal 

𝐸1(GPa) 200 20 Lognormal 

𝐸2(GPa) 200 20 Lognormal 

𝐸3(GPa) 200 20 Lognormal 

𝑃0(KN) 40 6 Normal 

𝐿AB(mm) 200 2 Normal 

𝐿AD(mm) 231 2.31 Normal 

𝐿AC(mm) 283 2.83 Normal 

𝑇(℃) 35 7 Lognormal 

 

Table 4 Results of Example 2 

 

Method Probability of failure Error (%) Number of function calls 

MCS 3.0270 × 10−4 - 109 

FORM/ENV 2.7654 × 10−4 8.64% 189 

SOSPA/ENV 2.9958 × 10−4 1.03% 305 

 

Table 5 Results of Example 3 

 

Method Probability of failure Error (%) Number of function calls 

MCS 8,1360 × 10−4 - 107 

FORM/ENV 6.5558 × 10−4 19.4% 28 



33 

 

SOSPA/ENV 7.8862 × 10−4 3.1% 87 

 

 

 

 


