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ABSTRACT

Reliability can be predicted by a limit-state function, which may vary with time and space.
This work extends the envelope method for a time-dependent limit-state function to a time- and
space-dependent limit-state function. The proposed method uses the envelope function of time-
and space-dependent limit-state function. It at first searches for the most probable point (MPP) of
the envelope function using the sequential efficient global optimization in the domain of the space
and time under consideration. Then the envelope function is approximated by a quadratic function
at the MPP, for which analytic gradient and Hessian matrix of the envelope function are derived.
Subsequently, the second-order saddlepoint approximation method is employed to estimate the
probability of failure. Three examples demonstrate the effectiveness of the proposed method. The
method can efficiently produce an accurate reliability prediction when the MPP is within the

domain of the space and time under consideration.

1. INTRODUCTION

Reliability is the probability that a product or component performs its intended function under
a specific condition. Reliability can be predicted by a physics-based approach if the state of a
component can be predicted by a physical model, which is called a limit-state function. A physics-
based reliability problem may be time- and space-independent, time-dependent, space-dependent,
or time- and space-dependent.

A time- and space-independent reliability problem involves limit-state functions that do not
vary with respect to time and space, and its inputs might involve random variables or random fields

at a specific point in space. Many methods are available for this problem. Monte Carlo simulation



(MCS) is one method. It is accurate when the sample size is sufficiently large, but it is
computationally expensive [1, 2]. When failure probabilities are small in reliability analysis of
engineering systems, subset simulation is an alternative method [3]. Importance sampling methods
could be used to reduce the computational cost because they generate more samples in the failure
region [4].

The first-order reliability method (FORM) [5-7] is much more efficient because it linearizes
the limit-state function. FORM can produce satisfactory accuracy for many engineering
applications, but it is less accurate for highly nonlinear limit-state functions. The second-order
reliability method (SORM) [8, 9] can produce higher accuracy than FORM due to the second-
order approximation but is less efficient than FORM. The accuracy of SORM may be further
improved by the second-order saddlepoint approximation (SOSPA) since the saddlepoint
approximation may yield a more accurate probability estimation, especially in the tail area of
distribution [10-12]. Reliability can also be predicted by regressions, such as the Gaussian process
method [13-16] and the support vector machines method [17-19].

The limit-state function may vary over time, which results in a time-dependent reliability
problem. The input of the limit-state function may involve time and random processes. Rice’s
formula-based methods are commonly used [20,21]. They are in general more efficient than other
methods but may lead to large errors if up-crossing events are strongly dependent [21]. Regression
methods can also be used and may achieve higher accuracy if the surrogate model is well trained
[23-26]. Converting a time-dependent problem into a time-independent counterpart is possible by
using the extreme value of the limit-state function [27-30]. The methods include the envelope
function method [27], extreme value response method [28], and the composite limit-state function

method [29,30],



The most general problems are those with time- and space-dependent limit-sate functions,
which may take input of stochastic processes, random fields, and tempo-spatial variables [31-36].
Hu and Mahadevan developed a surrogate modeling approach for reliability analysis of a
multidisciplinary system [31]. Shi et al. presented a method for the moment estimation of the
extreme response using two strategies [32]. One strategy is combining the sparse grid technique
and the fourth-moment method while the other one is combining the dimensional reduction with
the maximum entropy method. Shi and Lu proposed an active learning Kriging method [33]. Wei
and Du combined FORM and SORM for the time- and space-dependent reliability analysis [34,
35]. Despite the progress, there is still a need to improve the accuracy and efficiency of time- and
space-dependent reliability prediction.

The proposed method is an extension of the time-dependent methodology in Ref. [37]. This
method converts a time- and space-dependent problem into a time- and space-independent problem
by using the envelope function or the extreme value of a limit-state function over the time and the
space span. The MPP of the envelope function is found by combing the sequential efficient global
optimization (EGO) with FORM. Then the quadratic envelope function is approximated at the
MPP with its gradient and Hessian matrix. Then the probability of failure is estimated by the
second-order saddlepoint approximation method.

The rest of the paper is organized as follows. Section 2 reviews FORM for time- and space-
dependent reliability. Section 3 discusses the proposed method. Section 4 presents three examples,
and Section 5 provides the conclusions and future work.

2. Review of Fundamental Methodologies
2.1 Problem Statement

In this work, we consider a limit-state function given by



y=9X2z) (1)
in which X = [Xy, ..., X,,] are n input random variables. The time variable is z; € [z;,%;], and the

spatial variables are z;, with the following ranges: z; € [gk, Ek], (k=2,..,m). Then, z =
(21,22, ..., Zm]" is a vector of the temporal/spatial variables bounded on Q = [z, Zx].
The reliability over the temporal and spatial domain is defined by
R =Pr{g(X,z) > 0,vVz € Q} (2)
where V means “for all”. The associated probability of failure is given by
pr = Pr{g(X,z) < 0,3z € Q} (3)
where 3 means “there exists at least one”.

Note that the spatio-temporal domain in Eq. (1) is rectangular. In reality, the domain may be

non-rectangular. This study focuses on only a rectangular domain.
2.2 First Order Reliability Method (FORM)

FORM is the commonly used reliability method. It is originally intended for time- and space-
independent reliability analysis. In this work, we at first review the time- and space-independent
reliability problem with the FORM method, then the discussion furtherly can be extended to the
time- and space-dependent reliability problem.

2.2.1 Time- and space-independent reliability problem
The time- and space-independent reliability is defined by
R = Pr{y = g(X) > 0} (4)
where y is response and X is a random vector. FORM at first searches for the most probable point

(MPP) in the standard normal space. At first, random variables X are transformed into standard

and independent normal variables U [38]. Then, the minimum distance from the origin to the limit-



state surface g(X) = 0 is identified. The distance is the reliability index . The minimum distance

point is called the MPP. The model for searching for the MPP is given by

{min JvuTu (5)

s.t. g(X) = g(T(w) =0

where T(+) is an operator of the transformation from U to X.

B=lull= Jul +d ++ ©)

The solution from Eq. (5) is the MPP uypp.
Lastly, the reliability is calculated by
R =Pr{y = g(X) > 0} = ®(B) = ©(|lumpel) (7)
where ®(+) is the cumulative distribution function (CDF) of the standard normal distribution.
2.2.2 Time-dependent reliability problem
When it comes to the limit-state function that varies over time, FORM can still be used to find

the MPP. The MPP uypp at the time instant z; is identified by the following model:

min [|u]l
{s.t. 9(X,2y) = g(T(u),z,) =0 (8)

The limit-state function is linearized at uypp(z;) by

N
dg

g(T(w),z;) =~ g(umpp,z;) + ETiA (Ui — umpp;) = Vg X (U — uppp ) 9)

i=1 ' uMpp
where Vg = [a_g , ...,a—g l is the gradient, and the probability of failure is computed

Uy uMmpp OUn upmpp
by

pr = Pr(g(X, z1) <0,z € [51»21]) ~ Pr(ﬁ(zl) +a(z)U <0,z € [51'21]) (10)

where ((z,) is the time-dependent reliability index, given by

£(z1) = |[umppll (11)
6



and a(z,) is the time-dependent unit gradient vector given by

Vg(z,)

m = [al(zl): aZ(Zl)l ...,(Xn(zl)] (12)

a(z,) =

As indicated in Eq. (9), the limit-state function g(X,z;) is approximated as a linear
combination of standard normal random variables. Many methodologies are available for solving
for the probability of failures, such as Rice’s formula-based methods and metamodeling-based
methods.

3 Envelope Method for Time- and Space-Dependent Problem

The envelope function is tangent to all the instantaneous limit-state functions with respect to
time and space. The envelope function of a limit-state function is in general nonlinear and can be
approximated as a quadratic function at its MPP by the second-order approximation method.

It is known that the MPP of the envelope function is the worst-case MPP of the limit-state
function [37]. In other words, the MPP is the closest point between the origin and all the
instantaneous limit-state functions. The MPP of the envelope function can be efficiently found by
the sequential single-loop method [37]. Consequently, the gradient of the envelope function is
consistent with the gradient of the worst-case limit-state functions at MPP [37]. However, as the
curvature of the envelope function may not be the curvature of the worst-case limit-state function,
the analytical Hessian matrix of the envelope function is derived. In this paper, we extend our work
in a more general situation. The second derivative of the envelope function with respect to random
variables and multiple temporal/spatial variables is analytically derived. As a result, the Hessian
matrix of the envelope function can be accurately obtained.

Different from the existing method [37], the new method also covers problems where a single
call of a limit-state function returns a complete response with respect to time and space. Hence the

method can be used for the following two cases.



Case 1: The input includes a realization of random variables X, as well as a time
instance/spatial location z, and the output is a single response. This case requires calling the limit-
state function repeatedly so that the worst-case response can be found.

Case 2: The input includes a realization of random variables X and the temporal/spatial domain
Q of z. Calling the limit-function returns a complete time- and space-dependent response with
respect to z in Q. In this case, the output is a hypersurface of the response y(z). For example, if
we call a computational fluid dynamics (CFD) simulation, we obtain the 4-D pressure and velocity

fields with respect to time and space. Since we know y(z), the minimum value misgl y(z) is also
YAS

known.

In Sec. 3.1, we focus our discussions on Case 1 for limit-state function y = g(X,z). Since
Case 2 is much easier than Case 1, we briefly discuss it at the end of Sec. 3.1. We then extend the
method into a general problem with input random fields in Sec. 3.2.

3.1 Problems include random variables, and explicit temporal/spatial parameters

We now discuss Case 1 with the limit-state function is given in Eq. (1). For this case we need
to search for the worst-case MPP.
3.1.1 Search for worst-case MPP

The time- and space-dependent probability of failure in the time span [gl,fl] and the space

span [gk, Ek] can be evaluated by the extreme value of the limit-state function.
pr =Pr(g(X,z) <0,3z€ Q) = Pr (ming(X, z) < 0) (13)
z€EQ

Eq. (13) indicates that a failure occurs if the minimum response is negative. The function of
the extreme response is equivalent to the envelope function or the composite limit-state function
[29], which is given by

G(X) =ming(X,z) = g(X,2) (14)

8



where the envelope function G(X) is the global minimum of g(X, z) with respect to z, and the
global minimum occurs at Z.

If FORM is used to linearize G (X), the MPP is obtained by

minyuTu

s.t.min g(T(u),z) = 0 (15)

Eq. (15) requires a double loop optimization process because minimization appears in both the
objective and constraint functions. The inner loop is for the minimum value of g(T(u), z) relative
to z while the outer loop is the MPP search relative to u. In this work, we decouple the double

loop into sequential single loops.
The first loop is FORM analysis, the MPP ul(vh),P at the initial Z(¥ = [2?, 29, ... 23] is obtained
by

{minv uTu (16)

s.t. g(T(a),zy) =0

Then z is determined by fixing the random variables on its realization ul(vgp, and z is denoted

by 2, which is given by

ZM = argmin g (T(uﬁgp), z) (17)

7€Q

In the next loop, the new MPP ul(\/?l)JP is located at point Z(") using Eq. (16). And then z is

updated to Z?).

7z = argmin g (T(ul(\illp), z) (18)

Z€Q

The above process is repeated until convergence, and the MPP is found. It is the worst-case

MPP of the limit-state function with respect to z.



3.1.2 Find the global minimum value of G(X)

The global minimum value of G (X) occurs at Z0 = [z, 2V

,z9, ., 291, which is given by
Z2() = argmin g(T(uypp), 2) (19)
z€Q
Note that finding the optimal point is still in the sequential loops. There are many methods to
solve the optimal point Z corresponding to the global minimum value of G (X). The first partial
derivative of the limit-state function with respect to z;, at MPP is as below:

ag(T(uMPP)' 21,23y «ny Zm)

0z, =0
: (20)
Lag(T(uMPP)fZLZZ: ey Zm) —0
0z,

The optimal point Z() = [ZF), Zgl), Zf,})] can be obtained by solving Eq. (20).

We use efficient global optimization (EGO) to find the MPP. EGO has been widely used in
various areas because it can efficiently search for the global optimum [39]. Suppose we have called
the limit-state function at several initial training points of z" and the number of initial training

points is n;,, which denote by as follows

zq Zm

zm = :
Nin .. Nin

Zl Zm

and the associated responses are y"* = [g(T(u*),z'), g(T(u*),z3),...,g(T(u*),z"n)]T. An
initial function is fitted from (z", y™™) by the following surrogate model [39]:

y=9() =g(T(u),z) =F(2)"y +e(2) (21)
where F(z)Ty is a deterministic term, e(z) is a vector of regression functions, y is a vector of
regression coefficients, and e(z) is a stationary Gaussian process with zero mean and a covariance

given by

10



Cov(e(zy),e(z;)) = 02C(2y,2,) (22)
where 62 is process variance, and C(+,) is the correlation function.
The output of the surrogate model is a Gaussian random variable following
¥ = g@)~N(u(z),0%(2)) (23)
where u(z) and o(z) are the mean and standard deviation of ¥, respectively.
The initial model is likely not accurate. The expected improvement (EI) metric [39] is used to
identify new training points that will be added to refine the model. The improvement is defined by
[ = max(y* —y,0) (24)

where y* = i_lrrzlinn' g(z") is the minimum from the sampling training points.
=L,4,..Nin

EI is computed by

El(z) = E[max(y* — y,0)] = (y* — u(z))® (y . (z)) +o(2)¢ (” . (z)> (25)

o(z) a(z)
where ¢ () is the probability density function (PDF).
A new training point Z,,, 1s identified by minimizing the expected improvement.

Znew = argminEl(z) (26)
Z

By combining sequential strategy with EGO, uypp of envelope function G (X) can be obtained
efficiently by solving Eq. (15). The probability of failure with FORM is estimated by
pr =Pr(g(X,z) < 0,3z € Q) = Pr (G(X) < 0) = ®(—p) (27)
where § =|l uypp |l is the first-order reliability index.
In general, the envelope function is nonlinear, and FORM may not be accurate enough. Thus,
a second-order method is preferred, and it uses the envelope theorem to obtain the second-order
information of the extreme limit-state function. Then SOSPA is used to estimate the probability of

failure.

11



3.1.3 Derivatives of the envelope function
The envelope function is generally nonlinear, and we therefore approximate it as a quadratic
function, instead of a linear function in FORM. As a result, we need the gradient VG and Hessian

matrix H at the MPP of the envelope function. The quadratic function is formed as follows [12]:

G(U) =a+b'U+UTCU (28)
where
{ _ l TH —VvG T
|a=5 (umpp)  Huypp — VG (uypp)  Uypp
b = VG(uMpp) - HuMpp = (El' EZ' . Bn) (29)
1
C = EH = diag(fl, 52, ey ETL)
T
VG(u*) = 96 , .,a—G l is the gradient of the envelope function. H is the Hessian
OUslyy, OUnlyuprpp
matrix shown below.
0%G 0%G
oU? au,0U,
H= : : (30)
0%G 0%G
aU,0U; auz unpp
The envelope function G (X) at uypp is given by
G(U) = ming(U,z) = g(U,2)|uypp (31)

where Z = [Zy, ..., Z;,] is the optimal point where the global minimum value of function g(U, z)

occurs, and it is found by

99(U,z) 09U,z 99Uz

dz, 0z, 0z, (32)

The envelope function satisfies the following equation:

12



g(U; Zl; Zy, ...,Zm) =0
| (33)

g(U, Zl' Zz, ...,Zm) - 0

where g is the derivative of g with respect to z;.

Next, the first derivative of G (U) with respect to a random input variable U; at uypp is

oG 0 dg 07 dg 07 dg 0%
e M Pk P . (39)
an aUl aZl (')Ul aZZ aUl aZm aUl
By plugging Eq. (33) into Eq. (34), it becomes
oG 0
< (35)

aU;  aU;
Eq. (35) indicates that the gradient of the envelope function VG is equal to the gradient of the

limit-state function Vg at the MPP. Subsequently, the second derivative of G (U) with respect to

the input random variables U; atu” is

902G 0 (0G d (0 02 d%g 0z 0%g 0z
= ( ): ( g) = 9 + g~ _1_|_..._|_ g~ _m (36)
Take the derivative of Eq. (32) with respect to U;, and it is given by
dg 0g 0Z
4+ 2% _p 37
au, 9z, U, (37)
0z dg /0g 02 02
k__99 /99 _ 9 /o9 (38)

au; —  au;/ 0z, 97,0U;/ 822
The Hessian matrix H with respect to random variables and multiple temporal/spatial variables

is obtained by plugging Eq. (38) into Eq. (36) at uypp, Z.
92 o« 0%2g  d%g o>
9 9 9 g (39)

926G ~
0U0U; £ 0U;0%, 0U;0%,/ 07

U;0U;

ll*,zk

The forward finite difference method with step size § = max (Ju|/1000, €), where € = 10™% ,

is employed to calculate the derivations in Eq. (39).

13



3.1.4 Saddlepoint approximation

Once the envelope function is approximated by a quadratic function, we use the second order
saddlepoint approximation to estimate the probability of failure. The reason we use saddlepoint
approximation is due to its high accuracy in the tail area of a distribution; a failure usually occurs
in a tail area.

Eq. (28) can be written as the sum of quadratic functions of different standard normal variables
n n
G(U) = Z Q:(0) = Z(di + b,U; + ¢,07) (40)
i=1 i=1
The cumulant generating function (CGF) of G (U) is given by

Ko(ts) = ) Ko,(t) (41)

After the CGF K (t) is obtained, it is straightforward to find the PDF of the limit-state
function, and this needs to solve the saddlepoint tg, which is found by solving the following
equation:

Ko(ts) =0 (42)
where KQ’ (ts) is the first derivative of K, (ts). The details of the implementation of SOSPA refer

to Ref. [12]. According to Lugannani and Rice’s formula,

Then the probability of failure is evaluated by

by = PrGU) < 0) = o(w) + p(w) (- —7) (43)

where
w = sgn(t:){2[~Kq (ts)]}% (44)
v= K@ (45)

14



in which sgn(t;) = +1,—1, or 0, depending on whether t; is positive, negative, or zero. K, (t)
is the second derivative of K, (ts) concerning ts. Since the above method uses SOSPA and
envelope theorem, we denote this method as SOSPA/ENV.

Case 2: Calling the limit-function returns a complete time- and space-dependent response

In this case, the output is a hypersurface of the response y(z). The complete response y(z) is

available, so the minimum value H(IEISIII y(z) is also known. We do not need to use the sequential
Z

single loops in case 1. Thus, the MPP in Eq. (15) can be obtained from the following model:

{min\/ uTu

. _ (46)
s.t. min y(z)=0

where melsrll y(z) is a function of u and is obtained by calling the limit-state function once at u,
z

where u is the vector of independent normal variables transformed from X. We just need a single-
loop MPP search, which is more efficient than the sequential loop approach.

The model in Eq. (46) may have multiple MPPs [40]. The accuracy of the reliability prediction
may be poor if only one MPP is used and if other MPPs also have significant contributions. There
are three strategies to deal with multiple MPPs. The first strategy is to repeat the standard MPP
search with different starting points and find different solutions if they exist. The second strategy
is to use an optimization algorithm that can find multiple local optima. The methods include
genetic algorithm [40] and particle swarm optimization [41]. The third strategy is to employ
methodologies specifically designed for multiple MPP search [29,42]. Although there is no
guarantee to find all possible MPPs, these strategies can significantly increase the chance of
finding multiple MPPs [29,40-42]. Once all potential MPPs are identified, the corresponding limit-

state surfaces are linearized at these points as

Q;(U) = —VG (uypp;) "uppp; + VG (uypp;)U (47)

15



where i = 1,2, ..., m, in which m is the number of MPPs. The reliability is calculated as the
reliability of a series system.
m m
R = Pr(ﬂ Q:(U) > 0) = (ﬂ = —VG (uympp;) "uppp; + VG (uypp)U > 0) (48)
i=1 i=1
Since Q;(U) follows a normal distribution, all the responses at their MPPs follow a
multivariate normal distribution, whose joint probability density is integrated in the safe region,
resulting the reliability. The second order method is used for higher accuracy. The method still
uses a multivariate normal distribution, whose mean vector is obtained by the second order
saddlepoint approximation and whose covariance matric is estimated by the first order
approximation [12].
3.2 Extension to problems with random variable, random fields, and temporal/spatial
variables z
We have discussed limit-state functions with random variables X and temporal/spatial
variables z. In this subsection, we discuss how to extend the method to limit-state functions with
random variable X, random fields F(z) and temporal/spatial variables z. A limit-state function is
given by y(z) = g(X, F(z),z). The time- and space-dependent probability of failure is calculated
by
pr =Pr(g(X,¥(2),z) <0,3z€ Q) = Pr (rzneisrlly(z) < 0) (49)
Eq. (49) indicates that failure happens when the minimum value of the limit-state function g(X,
F(z),z) is negative. There are still two cases: a single call of a limit-state function does not return

a time- and space-dependent response and a single call of a limit-state function returns a complete

response with respect to time and space.

16



Case 1 requires calling the limit-state function repeatedly to obtain the worst-case response in
Q. We need to convert random fields into time- and space-dependent random variables so that the
proposed method can be used. The expansion optimal linear estimation method (EOLE) [43] can
be used to convert the random fields F(z) into independent standard Gaussian random variables
&= (&1,¢,,...,&), where r is the dimension of & Take a two-dimensional random field F(z),
where z = (z,, z,), as an example. z; and z, are discretized into n,, and n,, points, respectively.

The autocorrelation coefficient matrix is given by

= [p(z; (50)

Zj)]nzanZ XMz Nz,
where p(zi, zj) is the correlation between two points z; (i = 1,2,..,n, n,,) and z; (j =

1,2,...,n;,n,,) in the domain of F(z). Then F(z) is expanded by

- &
FEz) ~uz +o(z) ) —rx:,2),k=12,..,r (51)

where u(z) is the mean of F(z), and o(z) is the standard deviation of F(z). &, (k = 1,2, ...7) are
independent standard normal wvariables, A = (44,4;,...,4,) is the eigenvalue vector, and
¢4, d,, ..., §, are eigenvectors of X. Note that r is determined as the smallest integer that meets
the following criterion:

j=1 %

o, 2
5

j=1

(52)

where 7 is a hyperparameter determining the accuracy of the expansion. It takes a value close to,
but not larger than 1. The smaller is 7, the less accurate is the expansion. If n = 1, the expansion
is exact at the points of discretization. Normally, 7 is set to 0.9999.

Then the limit-state function becomes y = g(X, z), where X = (X, £). It is a function given in

Eq. (1) and the proposed method in Sec. 3.1 of case 1 can be used.

17



For Case 2, a single call of a limit-state function returns a complete response with respect to
time and space. After random fields are expanded with respect to random variables, the problem
becomes the one discussed in Sec. 3.1 for Case 2. The same method in Sec. 3.1 can then be used.
3.3 Implementation

The detailed steps of solving time- and space-dependent reliability problems using SOSPA are
summarized below.

Step 1: Transform random variables X into U in the standard normal space.

Step 2: Set k = 1. Generate a random point z € Q as the initial optimal point Z(*) and use a

unit vector as the initial MPP ul(v}g,P = u,.

Step 3: Perform the MPP search at the point Z¥~ | and obtain the MPP ul(v’[?,P and the

corresponding B by solving the following optimization model:

{min\/ uTu

s.t. g(T(w),z¢ V) =0
Step 4: Determine the optimal point Z) implementing EGO method at ugj‘gp. The optimal

point Z¥) makes the limit-state function minimized. The initial number of training points to

determine the time and spatial parameters is 1, =2.

7 = argmin g (T(ul(\jff),P), z)

ZEQ

Step 5: Repeat step 3 and step 4 until convergence. The convergence criterion is defined as
B® - gDl <
The tolerance & can take a small positive value, for example, 10™%. If | g —p (k_1)| <1074,

terminate the iteration. Otherwise, set k = k + 1, and return to step 3. Note that the method of a

18



single-loop MPP search can be used if calling the limit-state function returns a complete time- and
space-dependent response
Step 6: Calculate the gradient VG and Hessian matrix H of the envelope function.

Step 7: Calculate the probability of failure using SOSPA/ENV from the above information

()

u,pp, gradient VG, and Hessian matrix H.

4 EXAMPLES

In this section, three examples are used to demonstrate the proposed method. Example 1 is a
mathematical problem that is used to show the details of the proposed method. The remaining
examples are engineering problems. MCS is employed to provide accurate solutions for the
accuracy comparison. SOSPA/ENV is compared with the FORM-based envelope method

(FORM/ENYV). The errors of SOSPA/ENV and FORM/ENV are calculated by

[pr — /"]

p]l:/ICS

€= X 100% (53)

where py is the result from SOSPA/ENV or FORM/ENV, and p}"cs is the result from MCS. We

also use the number of function calls as a measure of efficiency.
4.1 Example 1: A math problem

This example is a math problem, which belongs to Case 1 without any random field input. The
limit-state function g(X; s, t) regarding random variables and explicit temporal/spatial parameter
is defined by

gX,s,t) = X2X, = 5X;t + (X, + 1)t? — 2X,s + X;5> — 8 (54)

where X = (X1,X,), X; (i = 1,2) are normally distributed with parameters y; = 3.5 and o; =
0.25. The temporal parameter is t € [0,5] and the spatial parameter is s € [0,5]. Therefore, z =

(s,t),and Q = {[0,5] X [0,5]}. X; and X, are independent.

19



We can easily plot the envelope function for this problem since an analytic envelope function
G (X) is available for this problem. From the partial derivatives of the limit-state function with

respective to t and s

ag(X,s,t
gXs ):0

ot
dg(X,s,t) _o (55)

ds

we have

L 5X,
S 2(X,+ 1)
=%

(56)
s

Plugging Eq. (56) into Eq. (54) yields the envelope function.

, 25X%2 X2
GX)=X2X,———L __"2_3 (57)

The envelope function at the limit state G (X) = 0 is plotted in Fig. 1, and the failure region is

colored grey. The figure shows that the envelope function is nonlinear.

Place Fig. lhere

Fig. 1 The envelope function
Even though the envelope function has an explicit function, we treat it as a black box by
following the numerical procedure discussed in Sec. 3. SOSPA/ENV searches for the worst-case
MPP with the sequential EGO. Table 1 shows the iteration history of the MPP search. The worst-
case MPP is found at uypp = (—2.1702,—2.6185) with £ = 1.8150 and § = 0.8763. Fig. 2
displays the convergence history of first-order reliability index . With FORM/ENV, the

probability of failure is p; = 3.3575 x 107*.
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Once the worst-case MPP is available, the gradient and Hessian matrix are computed at the
MPP. The latter is given by

0.1200 0.5542

2 _
ViG(umee) = [0'ccan 01494

Table 1 Iteration history of searching for the worst-case MPP

Place Table 1 here

Place Fig. 2 here

Fig. 2 Convergence history of reliability index
Then SOSPA/ENV produces py = 4.9022 X 107*. The number of simulations for MCS is
N; = 107. The time and space intervals are discretized evenly into 20 points, yielding 400 points.
Accordingly, the number of function calls of MCS is 4 X 10°.
All the results are shown in Table 2. SOSPA/ENV is much more accurate than FORM/ENV
as the error of the former is 3.5% while that of the latter is 33.9%. SOSPA/ENV, however, is less
efficient than FORM/ENV.

Table 2 Results of Example 1

Place Table 2 here
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4.2 Example 2: A Truss Structure

A truss structure is shown in Fig. 3. This example belongs to Case 1 without any random field
input. The inputs of this truss structure are random variables, temporal parameter t and spatial
parameter h. Each bar of the system has its cross-sectional area A; and the modulus of elasticity
E;, i =1,2,3. The coefficient of thermal expansion of all bars is @ = 12 X 107°C™1. The
temperature change is related to the installation height of the truss structure and is given by AT =
Te'O'Ol(Ah2+2Ah+1)2, where Ah € [2,5] m is the difference of two different installation heights. A
downward force P = P;(0.9 + 0.1cos (0.2t)) is applied at joint 4, where t € [0,10] years. The

domain Q of z = [Ah, t] is {[2,5] X [0,10]}. All the random variables are given in Table 3.

Place Fig. 3 here

Fig. 3 A truss structure

The perpendicular displacement of joint 4 is calculated by
AS == (58)
where
A = Lap(PA{E Lyccos8? + PAyE,Lpgcos% + Ay A3E 1 EsLycTacos6?
+ A A3E,E3LagTacos8% + A1 Ay E1E;Ta(Lagsind;cosf2 + Lcsinf,cosf?
+ LpcsinB;cosf,cos0, + Lagsinf,cosf,cosh,))
B = AjA3E E3LpccosO? + AyAsE,E3Lpgcosf + Ay A E1E,Lap(sind2cos6? + sinf2cosh?

+ 2sinf;sinf,cos6, cosb,)

L
6, = arctan <$>

V L,ZqB - L,Zcm

22



L
6, = arctan <$>

v L,ch - L.»24D
A failure occurs when A§ > 0.65 mm. Thus, the limit-state function is defined by
gX,s, t) = 0.65 — AS (59)

Table 3 Random variables of Example 2

Place Table 3 here

107 samples are used for MCS and the domain of Z = (Ah,t) is discretized evenly into
10 X 10 = 100 points. FORM/ENV and SOSPA/ENV are used to calculate the probability of
failure. Table 4 shows the results. Even though FORM/ENYV is more efficient than SOSPA/ENV,
it produces a large error. SOSPA/ENV achieves higher accuracy than FORM/ENV although it
needs more function calls.

Table 4 Results of Example 2

Place Table 4 here

4.3 Example 3: An Electron Accelerator

Fig. 4 shows an electron accelerator that accelerates electrons. The inputs of this example are
random variable L and random field V(w, h,t). Calling the limit-state function can return a
complete time-and space-dependent responses by sampling the random field V(w,h,t). This
problem belongs to Case 2 with an input random field, and it therefore requires single-loop MPP
search. The device is placed horizontally. Electrons are emitted from the electrode and then enter

the electric field £ in the accelerator, and finally fly out. The initial velocity of the electrons is a
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non-stationary Gaussian random field Vo (w, h, t), whose mean is py, = 10° e ~0-001(W?+h?+(t-6)%)

m/s and standard deviation is oy, = 10000 m/s. The spatial variable w € [—0.05,0.05] m is the
width of the electrode, and h € [—0.05,0.05] m is the height of the electrode. The temporal

variable is t € [0,10] s. The autocorrelation coefficient function of the Gaussian field is given by

Wy — W2 (hy —R\% [ty — t)\2
PVO(W1»h1»t1iW2:h2’tz) = exp l— (%) —< : 5 2) —( 110 2) l (60)

The length of the accelerator L is normally distributed with N(1,0.01%) m. The electric field
E(w, h) is a two-dimensional stationary Gaussian random field, whose mean u; and standard

deviation o are 10 N/C and 1 N/C, respectively. Its autocorrelation coefficient function is given

by

Place Fig. 4 here

Fig.4 An electron accelerator

pr (W1, hy; Wy, hy) = exp l_ (u)z - (hl _ h2>zl (61)

5 5
If the acceleration time and the interaction among the electrons are negligible, the velocity

V(w, h, t) of the electrons after acceleration is

\/ZqE(W, h)L
V(w,h,t) = — + V¢ (w, h, t) (62)

where ¢ = 1.6 X 10719C and m = 9.109 x 10731kg are the electric quantity and mass of an

electron, respectively. The target velocity is V, = 1.4519 X 10® m/s. The domain Q of z =

[w, h, t] is {[-0.05,0.05] X [—0.05,0.05] X [0,10]}. The limit-state function is defined by
gX,V(w,h ) = V(w,h,t) =V, (63)

in which a failure occurs if the velocity after acceleration is smaller than the target velocity.
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The EOLE method is used to generate the series expansion of the nonstationary Gaussian field
Vo(w,h,t). w,h, and t are evenly discretized into 10 points, so there are a total of 1000
discretization points. The 1000 x 1000 autocorrelation coefficient matrix Xy, of the random field
is obtained. The three most significant eigenvalues of X, are 841, 146, and 12, and therefore
Vo(w, h,t) can be expanded with three standard independent normal variables &,k = 1,2,3.
Similarly, we use EOLE to generate the series expansion of E(w, h) and keep only the first two
orders. With 1000 discretization expansions points of V(w,h,t), the minimal value of
Imin(W, h, t) can be found. Then the standard FORM method is employed to find the worst-case
MPP upypp = (—2.2726,—0.0164,—0.0038,0.0014, —2.2726,—0.0050) and the reliability
index f = 3.2140. To check if the worst-case uypp is the global solution of Eq. (46) and detect if
there are multiple MPPs, we use the first strategy discussed in Sec. 3.1.4. We repeat the standard
MPP search using different starting point (0, 0, 0, 0, 0, 0), (1.5, 1.5, 1.5, 1.5, 1.5, 1.5), (-2, -2, -2,
-2,-2,-2),and (3, 3, 3, -3, -3, -3). The final solutions from different starting points converge to the
same solution. Thus, it is likely that the worst-case MPP uypp is the global MPP of Eq. (46) and
that there is only one MPP. Then FORM/ENV produces py = 6.5558 X 10~* with only 28
function calls which leading tremendous efficiency improvement instead of using sequential loops
to find the worst-case MPP. SOSPA/ENV produces p; = 7.8862 X 10~* with 87 function calls.
MCS uses 107 samples of all random variables at each of the 1000 discretization points of the
temporal/spatial variables. The results are provided in Table 5. By using the sing-loop MPP search
method, the function calls of both FORM/ENV and SOSPA/ENV methods are reduced

tremendously. SOSPA/ENV is more accurate than FORM/ENV but less efficient.

Table 5 Results of Example 3
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Place Table 5 here

Conclusions

In this work, the envelope method for time-dependent reliability is extended to time- and space-
dependent reliability analysis for limit-state functions with input of random variables, random
fields, and temporal and spatial parameters. The envelope function is obtained with respect to
temporal/spatial variables. Then the time- and space-dependent problem is converted into a time-
and space-independent counterpart, and the second order saddlepoint approximation method is
used to estimate the reliability. Equations of the second derivatives of the envelope function are
derived for the second order approximation. The major computational cost is the MPP search and
second derivative calculations. In this case, efficient global optimization is used for the MPP
search, and other global optimization methods can also be used. The first and second derivatives
are evaluated by the finite difference method. The results show that the proposed method is much
more accurate than the first-order approximation method since the envelope function is in general
nonlinear. The new method, however, is less efficient than the first-order approximation method
because it requires second derivatives of the envelope function.

The new method shares the same drawbacks of the MPP-based reliability methods. If only one
MPP is found but multiple MPPs exist or if the global MPP is not found, the accuracy of the
reliability prediction will be low. If the MPP occurs on the boundary of the time and space domain,
the derivatives of the envelope function may not exist, and the proposed method may not work.

How to address these problems needs further investigations.
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Table 1 Iteration history of searching for the worst-case MPP

Iterations u’ t 3

1 (-7.4573,-2.0392) 0.9157 1.2272

2 (-3.9028,-1.4544) 1.2886 1.0077

3 (-3.1172,-2.0203) 1.4821 0.8722

4 (-2.7126,-2.3219) 1.5695 0.8059

5 (-2.5333,-2.4574) 1.7458 0.9219

6 (-2.3025,-2.5225) 1.7859 0.8956

7 (-2.2254,-2.5784) 1.8030 0.8843

8 (-2.1928,-2.6021) 1.8101 0.8795

9 (-2.1928,-2.6120) 1.8131 0.8776

10 (-2.1735,-2.6161) 1.8143 0.8767

11 (-2.1712,-2.6178) 1.8148 0.8764

12 (-2.1702,-2.6185) 1.8150 0.8763

Table 2 Results of Example 1
Method Probability of failure Error Number of function calls
MCS 5.080 x 10~* - 4% 10°

FORM/ENV 3.3575 x 107* 33.9% 314
SOSPA/ENV 49022 x 10~* 3.5% 333
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Table 3 Random variables of Example 2

V(%lritt))l © Mean géi?i?gi Distribution

A;(mm?) 60 0.6 Normal

A, (mm?) 60 0.6 Normal

A;(mm?) 60 0.6 Normal
E;(GPa) 200 20 Lognormal
E,(GPa) 200 20 Lognormal
E;(GPa) 200 20 Lognormal

Py(KN) 40 6 Normal

Lag(mm) 200 2 Normal

Lap(mm) 231 2.31 Normal

Lac(mm) 283 2.83 Normal
T(°C) 35 7 Lognormal

Table 4 Results of Example 2
Method Probability of failure Error (%) Number of function calls
MCS 3.0270 x 10~* - 10°
FORM/ENV 2.7654 x 107* 8.64% 189
SOSPA/ENV 2.9958 x 107* 1.03% 305
Table 5 Results of Example 3
Method Probability of failure Error (%) Number of function calls

MCS 8,1360 x 10~* - 107
FORM/ENV 6.5558 x 1074 19.4% 28
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SOSPA/ENV

7.8862 x 107*

3.1%

87
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