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ABSTRACT
Speech and language development in children are crucial for en-
suring effective skills in their long-term learning ability. A child’s
vocabulary size at the time of entry into kindergarten is an early
indicator of their learning ability to read and potential long-term
success in school. The preschool classroom is thus a promising
venue for assessing growth in young children by measuring their
interactions with teachers as well as classmates. However, to date
limited studies have explored such naturalistic audio communica-
tions. Automatic Speech Recognition (ASR) technologies provide an
opportunity for ’Early Childhood’ researchers to obtain knowledge
through automatic analysis of naturalistic classroom recordings in
measuring such interactions. For this purpose, 208 hours of audio
recordings across 48 daylong sessions are collected in a childcare
learning center in the United States using Language Environment
Analysis (LENA) devices worn by the preschool children. Approx-
imately 29 hours of adult speech and 26 hours of child speech is
segmented usingmanual transcriptions provided by CRSS transcrip-
tion team. Traditional as well as End-to-End ASRmodels are trained
on adult/child speech data subset. Factorized Time Delay Neural
Network provides a best Word-Error-Rate (WER) of 35.05% on the
adult subset of the test set. End-to-End transformer models achieve
63.5% WER on the child subset of the test data. Next, bar plots
demonstrating the frequency of WH-question words in Science vs.
Reading activity areas of the preschool are presented for sessions in
the test set. It is suggested that learning spaces could be configured
to encourage greater adult-child conversational engagement given
such speech/audio assessment strategies.
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1 INTRODUCTION
The diversity of language background, socio-economic conditions,
development level, or potential communication disorders repre-
sents a challenge in assessment of child speech and language skills
[17, 22]. The quality and amount of interaction in rich language
environments help in meeting essential language development out-
comes in early childhood [4]. Thus, early childhood researchers
are focusing on analyzing classroom interactions of preschool chil-
dren with adults (e.g., word counts, turn-taking, word diversity)
to monitor and provide proactive support to them. In such set-
tings, teachers prompt exploration by asking questions that en-
gage the children’s curiosity and experimentation, particularly in
science-focused activities[3]. Thus, tracking sentences with these
WH-question words or WH-words [18, 26] (what, where, when,
who, why, how) can help teachers review their interactions with the
children. Further, the WH-words representing the questions, can
be analyzed in terms of frequency of occurrence based on location.

For this purpose, the authors have collected multi-session dataset
in a real preschool during their daily activities. A typical preschool
is composed of separate areas for specific activities to be conducted
during alternate times of the day as seen in figure 1. Due to the
extensive amount of daylong recordings to be analyzed, it is not
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Figure 1: Illustrative example of floor plan for child learning
spaces within preschool classrooms. (i.e. learning stations:
Books/Reading, Science etc.)

feasible for humans to manually perform such analysis. Recently,
speech recognition[10, 20] and machine learning [6, 11] techniques
have been utilized for automated processing and analysis of child-
centered data. Previously, diarization[8, 9, 12] and children’s speech
recognition[10] has been attempted on this dataset.

In this study we are focusing on recognizing location-specific
WH-word frequency for adults using ASR. Adult speech trained
models are also evaluated on children’s speech for potential appli-
cations to child vocabulary and WH-word frequency measurement.

Next, an overview of this study is presented. In section 2, we look
at the Speech and Location data specifics. Section 3 explains the
Methodology including details of the acoustic and language models.
Section 4 presents the experimental Results with a discussion about
them. In section 5, Conclusion and Future Work is mentioned.

Figure 2: Data collection platforms used in this study: i)
Ubisense: RFID system location tracking, ii) LENA: Speech
and language capture recorder.

Set Adult Speech
Duration

Child Speech
Duration

Total Audio
Duration

Train. 18:52:17 16:38:26 113:09:23
Dev. 4:07:32 4:22:07 29:58:19
Test. 6:04:28 4:45:36 64:38:55
Overall 29:04:18 25:46:09 207:46:37

Table 1: Setwise Database Details where the durations are in
hours:minutes:seconds format.

WH-
Word
/Data

WHAT WHEN WHERE HOW WHY WHO Total

Adult
Speech

27/31
(755)

2/7
(163)

2/11
(152)

6/27
(173)

2/7
(97)

2/5
(141)

41/88
(1481)

Child
Speech

16/23
(412)

0/6
(78)

15/4
(97)

5/11
(104)

3/13
(107)

1/3
(35)

40/60
(833)

Table 2: Total count of WH-keywords as measured in man-
ual transcripts of the Testing subset for both adult and child
speech data in Science, Reading and all activity locations
represented as Total CountScience/Total CountReading (Total
CountAll locations).

2 SPEECH AND LOCATION DATA SPECIFICS
The details for Kentucky Preschool child-adult naturalistic audio
dataset used in this study, are mentioned below.

2.1 Speech data
2.1.1 Kentucky Preschool Corpus. The dataset in this paper consists
of spontaneous conversational speech recorded with the help of
lightweight compact digital audio recorder (LENA device[1, 27])
attached to children who are 3 to 5 year olds. The violet-colored
LENA device is shown in figure 2 are lightweight causing minimal
self awareness allowing voice capture of naturalistic conversations.
Out of the 48 recording sessions recorded at a daycare center in the
United States, some also have the devices worn by an adult. The
recordings continue as subjects move around during a school day
and are paused during nap time.

A total of 208 hours of speech and non-speech data was tagged
by the CRSS transcription team at UT Dallas resulting in around 29
hours of adult speech data and 26 hours of child speech data. This
was divided into training (Train.), development (Dev.) and testing
(Test.) sets as seen in table 1, for initial investigation of a Deep
Learning-based ASR system.

2.2 Location data
For the purpose of real-time classroom location tracking, a location
data collection system (Ubisense device [25]) was worn by all partic-
ipating children. Ubisense relies on RF receivers and transmitters,
which communicate using ultra wide band radio frequencies to
report the child’s location every second. The device is shown on
the left half of figure 2 . These communications are logged by a
separate computer running the Ubisense Location Engine software
packages [25]. With proper calibration, the accuracy of Ubisense
is +/- 15 cm under ideal measurement conditions, and +/- 30 cm
in challenging measurement conditions [13]. Ubisense has been
widely adopted in commercial and research endeavors [2, 16].

2.3 WH-word location-based manual
transcription

The frequency of occurrence of WH-words in science, reading as
well as all locations, is specified for both adult as well as children’s
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speech in table 2. It is interesting to observe that number of WH-
words in science and reading locations comprised 8.7% of WH-word
occurrences in all locations for adults, but 12.0% of WH-word occur-
rences in all locations for children. Thus, children spoke a slightly
higher percentage of their WH-words in science and reading lo-
cations Vs. all locations in comparison with adults, however the
context of these occurrences is not investigated in this study.

3 METHODOLOGY
In this section, we present the Acoustic Model (AM) and the Lan-
guage Model (LM) used to train the ASR system.

3.1 Acoustic models
Current AMs in both End-to-End as well as Hybrid ASR with strong
performance on standard Large Vocabulary Continuous Speech
Recognition (LVCSR) datasets are utilized for Kentucky data. End-
to-End systems have widely used Sequence-to-Sequence (S2S) mod-
els for their natural application of speech to text conversion as
they perform source sequence conversion to target sequence. These
include conventional Recurrent Neural Network (RNN) and Trans-
formers and here Transformers have outperformed RNN on several
benchmark datasets [5]. The standard hybrid model consists of n-
gram language model and a Time Delay Neural Network (TDNN).

3.1.1 CTC-Attention. Connectionist Temporal Classification, also
refferred as CTC, is a type of neural network output for a scoring
function, in training S2S models. It relieves the requirement of
one-to-one mapping with the help of a ’blank’ symbol, indicating
no label is seen. Using this, it can compute the probability of all
possible alignment paths taken during training for calculating the
probability of the entire target transcription. The attention based
models in contrast incorporates contextual information using both
input frames and history of the target label for the inference process.
The role of attention mechanism here is to find alignment between
input acoustic frames and text output. Attention-based approaches
are harder to train and susceptible to noise. Mostly a combination
of the two approaches in the form of multitask learning [7] is used.

3.1.2 Transformer. Transformers[5] were initially proposed for
Machine Translation task[21] and have been adapted for Speech
Recognition. It learns sequential information via Self-Attention
mechanism instead of recurrent connection employed in RNN. It
consists of multiple Dot-Attention layers. A Multi-Head Attention
(MHA) block allows the model to deal with multiple attentions
in parallel. It is used in both the Self-Attention Encoder and Self-
Attention Decoder networks. The MHA block between these two
networks is referred to as Encoder-Decoder Attention. It is trained
using CTC-attention based approach.

3.1.3 TDNN-F model. TDNNs are 1-dimensional Convolutional
Neural Networks that performed well for ASR. Factored form of
TDNNs known as TDNN-F[14], were introduced for improved per-
formance with lower footprint. TDNN-F models have same struc-
ture as TDNNs but have their layers compressed by Singular Value
Decomposition while ensuring one of the factors of each matrix
are constrained to be semi-orthogonal. TDNN-F model with skip
connections provide best results with Mel-Frequency Cepstral Co-
efficient (MFCC) features.

3.2 Language models
SRILM toolkit[19] is used for building and evaluating statistical
LMs based on backoffmodels, using standard smoothing algorithms.
SRILM toolkit along with CMU dictionary was used for developing
the 4-gram LM for TDNN-F AM using text from the training data.
RNN LM trained with the train subset was used with the various
End-to-End AMs for model rescoring.

3.3 Experimental Details
The Kaldi[15] and Espnet[23, 24] recipes perform speech perturba-
tion before training DNN models, so the final data for training was
thrice the training data listed in table 1. This resulted in approxi-
mately 54 hours of Kentucky adult data and 50 hours of Kentucky
child data for training the respective models.

3.3.1 End-to-End models for testing on child/adult test data. End-
to-End Transformer model utilized 80-dimensional Mel-Filterbank
(FBANK) as input features to the model. They were trained for 200
epochs with patience of 15 for early stopping. The best performing
model on development set was evaluated on the testing set.

3.3.2 Hybrid models for testing on adult test data. Hybrid TDNN-F
model utilized 39-dimensional MFCC as input for the model. They
were trained for 4 epochs consisting of 168 iterations in all. The
models trained on the last 20 iterations were combined for evalution
on the development and test set.

3.3.3 Evaluation metrics. ASR system performance is measured in
terms of Word-Error-Rate(%) which is defined as the percentage
of substitutions, insertions and deletions in the recognized text
transcript compared to the ground truth transcription.

Next we define the terms of Precision, Recall and F-score for
our task of predicting WH-words correctly by the ASR system vs.
the actual transcript. Precision is defined as the fraction of correct
predictions of a WH-word, with all the ASR system predictions of
that WH-word. Recall is defined as the fraction of relevant WH-
words in the ground truth transcript, that are predicted correctly
by the ASR system. F-score is defined as the harmonic mean of
Precision and Recall.

4 RESULTS AND DISCUSSION

ASR
Model

Features Train
Data

Test
Data

Dev-set
WER (%)

Test-set
WER (%)

Transformer FBANK Adult Adult 47.3% 53.9%
TDNN-F MFCC Adult Adult 28.82% 35.05%
Transformer FBANK Child Child 57.7% 68.3%
Transformer FBANK Adult+Child Child 51.7% 63.5%

Table 3: Automatic Speech Recognition system results on de-
velopment and test sets of adult/child speech data.

4.1 Adult data ASR performance
As expected, Transformers perform much worse than TDNN-F
model on the Kentucky adult data as seen in table 3. It provides
us a baseline performance for an end-to-end system. The Hybrid
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WH-Word
/ Location

WHAT WHEN WHERE HOW WHY WHO

Science 65.2% 100.0% 50.0% 83.3% 100.0% 66.7%
Reading 85.3% 92.3% 81.8% 94.1% 92.3% 75.0%
All 72.2% 69.0% 71.0% 72.8% 52.4% 73.2%

Table 4: F1-scores for correctly predictingWH-keywords us-
ing TDNN-F ASR system for adult speech data in Science,
Reading and all activity locations.

WH-Word
/ Location

WHAT WHEN WHERE HOW WHY WHO

Science 41.5% 0% 53.3% 28.6% 50.0% 0%
Reading 56.0% 60% 40.0% 58.9% 66.6% 0%
All 47.3% 39.1% 30.2% 44.5% 56.0% 39.8%

Table 5: F1-scores for correctly predictingWH-keywords us-
ing Transformer (adult+child) ASR system for child speech
data in Science, Reading and all activity locations.

TDNN-F model is able to achieve decent performance based on the
strength of it’s language model in combination with a powerful
acoustic model.

4.2 Child data ASR performance
For the children’s speech, enough triphones are not present in this
combination of training dataset. Hence, only End-to-Endmodels are
trained for evaluating children’s speech and results are presented in
table 3. Training models on combined adult and children’s speech
component of the training data, improves the performance of the
model on development set (6% absolute) and test set (4.8% absolute).

4.3 F1-scores for WH-word recognition in
Science and Reading activity locations

Most of the F1-scores for recognition of WH-words are better or
equivalent in Reading zones compared to Science zones as seen in
tables 4 and 5. A contributing factor could be that the count of WH-
words in reading zones is more than twice the count of WH-words
in science zones, as seen in table 2. The highest occurring WH-
word ’What’ in both adult as well as children’s speech and across all
locations, has better F1-scores for Reading, followed by all locations
and lastly Science location. This maybe due to the environmental
acoustic conditions created by the activities conducted in these
locations, resulting in better performing ASR system in Reading
locations.

4.4 WH-word frequency bar plots
There are 41 occurrences of WH-words in Science areas and 88
occurrences of WH-words in Reading areas for the adult speech test
subset as seen in table 2. The ASR system predicts 26 WH-words in
Science areas and 76WH-words in Reading areas correctly. Figure 3
shows the bar plots for the frequency of occurrence ofWH-words in
Science vs. Reading areas usingmanual transcription (actual) as well
as ASR prediction (predicted) i.e. Recall for the actual occurrences.
Here, ’What’ has the highest frequency in both the areas, followed

Figure 3: Distribution bar plot of actual and predicted
adult word frequency for Science vs. Reading based activity
area(e.g. defined locations in child learning space; see Fig. 1);
for sessions in the test set.

by ’How’. But the actual count of ’How’ keyword is much less in
Science location compared to Reading location, which indicates
except for the most frequent WH-word ’What’, other WH-words
were far fewer in science zones for the test subset.

The ASR system has closely predicted the actual WH-word fre-
quencies (i.e. Recall) in Reading locations, even for low frequency
WH-words like ’When’, ’Where’, ’Why’ and ’Who’. Except for the
high frequency word ’What’, the ASR system performs equally well
in terms of Recall for ’Science’ as well as ’Reading’ locations.

5 CONCLUSION AND FUTUREWORK
In preschool classroom, teachers prompt exploration by asking ques-
tions that engage the children’s attention. Thus, tracking sentences
with these WH-words can help teachers review their interactions
with the children. To achieve this goal in an automated fashion, ASR
systems with good performance on benchmark datasets are evalu-
ated for a naturalistic audio dataset collected at a preschool daycare
center in the United States. TDNN-F Hybrid ASR model achieved
the best WER performance overall while Transformer-based ASR
model achieved best performance for End-to-End ASR systems on
adult speech. End-to-End speech recognition for children’s speech
showed potential for future applications by utilizing adult speech
in the training. Bar plots for WH-word frequency are plotted for
Science vs. Reading activity locations and followed the pattern
of the manual transcripts closely, which was confirmed by the F-
scores. Utilization of more advanced models and training strategies
will help in improving the ASR system performance. Introducing
a diarization pre-processing component in the pipeline, will help
in transitioning this research system for real-world application of
providing feedback to educators.
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