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Abstract. The COVID-19 pandemic highlights the need for broad dissemination

of case surveillance data. Local and global public health agencies have initiated

efforts to do so, but there remains limited data available, due in part to concerns

over privacy. As a result, current COVID-19 case surveillance data sharing poli-

cies are based on strong adversarial assumptions, such as the expectation that an

attacker can readily re-identify individuals based on their distinguishability in a

dataset. There are various re-identification risk measures to account for adversar-

ial capabilities; however, the current array insufficiently accounts for real world

data challenges - particularly issues of missing records in resources of identifiable

records that adversaries may rely upon to execute attacks (e.g., 10 50-year-old male

in the de-identified dataset vs. 5 50-year-old male in the identified dataset). In this

paper, we introduce several approaches to amend such risk measures and assess

re-identification risk in light of how an attacker’s capabilities relate to missing

records. We demonstrate the potential for these measures through a record link-

age attack using COVID-19 case surveillance data and voter registration records

in the state of Florida. Our findings demonstrate that adversarial assumptions, as

realized in a risk measure, can dramatically affect re-identification risk estimation.

Notably, we show that the re-identification risk is likely to be substantially smaller

than the typical risk thresholds, which suggests that more detailed data could be

shared publicly than is currently the case.

Keywords: Data sharing · Re-identification risk · COVID-19 · Health data ·

Data privacy

1 Introduction

The Coronavirus Disease 2019 (COVID-19) outbreak caused a global pandemic that has

resulted in devastating and sustained health and economic crisis [1]. As of May 2022,
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there have been over 80 million confirmed cases (i.e., a person with laboratory confir-

mation of COVID-19 infection) in the United States and over 500 million worldwide.

Though expected to become endemic at some point, COVID-19 continues to be a public

health problem with waves of infection that are likely to reoccur for some time [2]. In

this respect, it provides a clear justification for the creation of more timely case reporting

strategies and surveillance efforts.

Public health departments typically rely on a case surveillance process to routinely

collect information that is critical for disease control and prevention [3]. Case surveil-

lance reports contain data on various infected individuals, including demographics,

symptoms, epidemiologic characteristics (e.g., case confirmed date and location), health

conditions, characteristics of hospitalizations, clinical outcomes, and exposure history.

When surveillance data is made accessible at the population scale, it can enable faster

responses to health emergencies and support data-driven public health research [4, 5].

Over the past several years, several resources of COVID-19 case surveillance data have

been made available for public use. For instance, the World Health Organization (WHO)

requests all member states to report data at a fidelity no less than national-level aggre-

gated counts of confirmed cases, deaths, and hospitalizations within 48 h of detection

[6]. In the United States, the Centers for Disease Control and Prevention (CDC) reports

aggregate case and death counts, as well as person-level data that includes age, race,

ethnicity, state, and county of residence of those infected [7, 8].

Despite the need to share COVID-19 case surveillance data, concerns about privacy

have been raised due to the sensitive nature of the information [9–11]. There are partic-

ular concerns that the identities of the corresponding individuals could be inadvertently

exposed. In public datasets, typically referred to as anonymised or de-identified data,

it is obvious that direct identifiers, such as personal names, national ID numbers, and

detailed residential addresses must be removed. However, it is possible that indirect

or, what is often referred to as, quasi-identifiers (QIDs) [12], such as the demographic

data shared in the CDC’s COVID-19 datasets, can indicate small groups of patients in a

de-identified dataset, which creates an opportunity for re-identification [13].

It is anticipated that attackers will rely upon QIDs to attempt to match de-identified

records to accessible identified datasets through record linkage mechanisms [14, 15].

Prior studies have measured re-identification risks for QIDs by considering the degree

of distinguishability within the de-identified dataset [16, 17]. The notion of k-anonymity

[13] leads to a typical risk threshold applied in this case, whereby a de-identified dataset

is considered protected if, and only if, each combination of QIDs appears at least k

times in the dataset. Currently, the CDC relies on this notion of privacy and releases two

datasets for COVID-19 case surveillance—one for public use and the other for scientific

use—at a level of 11- and 5-anonymity, respectively [7, 18].

The CDC’s data publication policies are based on strong adversarial assumptions.

Measures of privacy that focus solely on the degree of distinguishability within the

dataset to be shared (as k-anonymity does) assume that the recipient of the data is

aware that a named individual of interest is in the sample. However, this is a worst-case

scenario and weaker adversarial scenarios can be, and in many cases are, considered [19].

Specifically, distinguishability in the de-identified only creates a potential for intrusion.

For a re-identification attack to be successful, the recipient of the data either needs to
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know the identity of the corresponding individuals according to some prior experiences

(i.e., background knowledge) or they need to demonstrate re-identification by linking

the records to an external, identified dataset through QIDs [19, 20]. This is important to

recognize because the estimation of risk in these situations could be quite lower than in

the worst-case scenario. In recognition of this fact, alternative approaches estimate re-

identification risks based on population uniqueness [21–23]. This perspective, realized

in the k-map model [24] for instance, assumes the attacker only knows that the targeted

individual in the sample was drawn from a broader population of individuals, such that

uniqueness in the dataset is insufficient to claim re-identification success. This model is

used when the data sharer has a reasonable expectation of the identified resources that

will be leveraged for an attack.

The aforementioned risk measures assume that all individuals below a threshold

are equally at risk; by contrast, the marketer risk measure assumes a record’s risk is

inversely proportional to the number of records it relates to [25]. This risk measure

typically assumes that the de-identified dataset is a subset (or a sample) of the identified

dataset. However, in reality, both the de-identified and the identified datasets are samples

from a broader population, and they do not necessarily demonstrate a sub-/super-set

relationship. As a consequence, and as we show in this paper, there can be combinations

of QIDs in the de-identified dataset that do not exist in the identified dataset. Similarly,

the number of people with a certain combination of QIDs in the de-identified data could

be larger than that observed in the identified dataset. For example, imagine that there are

10 patients in the de-identified dataset who are male and 50 years old, but that there are

only 5 individuals present in the identified dataset who exhibit the same combination of

QIDs. This raises a question about how missing records should be handled in the risk

calculation. To the best of our knowledge, current re-identification risk measures do not

explicitly address such real world challenges.

Our study introduces novel re-identification risk measures to fill in the gap between

the previously proposed risk estimation methods and challenges caused by missing

records. Our study extends traditional risk measures to address missing record chal-

lenges and allow data sharers to evaluate re-identification risk under various assump-

tions of an attacker’s capability. To demonstrate how different assumptions could affect

the estimation of risks, we perform a re-identification risk analysis for case surveillance

data of COVID-19 and voter registration records in the United States. Our findings indi-

cate that the re-identification risks vary according to adversarial assumptions. Using an

actual record linkage test, we show that the external re-identification risk is likely to be

substantially smaller than 0.09, which corresponds to the CDC’s intended threshold of

11-anonymity. Our findings suggest that more detailed data could be shared publicly

than the current generalization level.

2 Methods

In this paper, the internal dataset refers to the de-identified patient-level data to be shared.

Formally, this is represented as a set D of n individuals d1, d2, . . . , dn defined over a

set of quasi-identifying features Y1, Y2, . . . , Ym. The records for these individuals can

be partitioned into a set of equivalence classes (i.e., the set of unique combinations of
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quasi-identifying values) q1, q2, . . . , qJ . Let fi be the number of records in D for the

equivalence class qj associated with record di.

In addition, we assume there exists one or more external datasets that potentially

contains the identities of the individuals whose records in the internal dataset are at risk

for re-identification. A typical example of such a dataset in the US that has been leveraged

for re-identification purposes is a voter registration list [15]. Set E of N individuals

e1, e2, . . . , eN is defined over the same set of quasi-identifying features Y1, Y2, . . . , Ym.

Let Fi be the number of records in E for the equivalence class qj associated with record

di in D. Records from the internal dataset and the external dataset are linked if they share

the same set of quasi-identifying features Y1, Y2, . . . , Ym.

We represent qj with fi larger than Fi as invalid classes, denoted as qj_invalid . There

are nr individuals from D who are in qj_invalid .

2.1 Internal Marketer Risk Measure

Based on the formulation introduced by Dankar et al. [24, 25], we define an Internal

Marketer (IM) Risk measure:

IM Risk(D) =

(∑n
i=1

1
fi

n

)

=
J

n
(1)

which corresponds to the probability that a record in a de-identified dataset can be cor-

rectly linked to a targeted individual through QIDs. This measure assumes the adversary

knows that a specific individual is in the de-identified dataset. As a result, it represents

a worst-case scenario for the data sharer.

2.2 Record Linkage and External Risk Measures

As alluded to earlier, the external dataset is typically a sample from a larger population

and, for some equivalence classes, patients in the internal dataset could be linked to

a fewer number of identified persons. This incorrectly implies that the probability of

correct re-identification is larger than 1. We introduce three new measures to correct this

sampling issue under specific adversarial assumptions.

Conservative External Marketer (CEM) Risk: In this scenario, we assume that, if

a person exists in the internal dataset, he should also be included in the external dataset.

However, for some qj_invalid , the fi may be larger than the corresponding Fi in the external

dataset. Thus, we add dummy records to the external dataset so that the equivalence class

is of the same size as that observed in the internal dataset. We leave the external dataset

unchanged for all qj, where fi is no larger than the corresponding Fi.

Figure 1 depicts a situation in which a de-identified patient dataset is linked to an

identified voter registration list. In this figure, there are three male patients who were

born in 1959, but there are only two voters in the same equivalence class. Thus, to

account for the “missing” patient, we add one voter record (“Imputed for Male 1959”

in the upper section of Fig. 1) to the identified dataset. We assume that the attacker has
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the same prior knowledge about individuals in qj_invalid and in qj. This yields an upper

bound for re-identification risk, which is calculated as follows:

CEM Risk(D, E) =

∑n
i=1

1
max(F i,fi)

n
(2)

Fig. 1. An illustration of record linkage and risk computation for CEM (upper), OREM (middle),

and AREM (lower).

Observable Records External Marketer (OREM) Risk: In this setting, we assume

that patients in the internal dataset with no corresponding records in the external dataset

(as defined by their QID) are protected by their lack of presence. As a result, in this
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measure, we assume they are not at risk of re-identification. Thus, these patients are

removed from the computation. As shown in the middle section of Fig. 1, three male

patients who were born in 1959 and one male patient who was born in 1950 are removed

from the internal dataset in the linkage process. This measure yields a risk that is no

greater than the upper bound and is calculated as follows:

OREM Risk(D, E) =

∑n−nr

i=1
1
Fi

n − nr

(3)

All Records External Marketer (AREM) Risk: In this setting, we assume that the

attacker has no knowledge about individuals in qj_invalid (i.e., in the equivalence classes

that do not have enough corresponding records in the external dataset). In the examples

shown in the bottom section of Fig. 1, we add dummy records to the external dataset in

the same manner as CEM risk. As a result, this risk is calculated as follows:

AREM Risk(D, E) =

∑n−nr

i=1
1
Fi

n
(4)

It should be recognized that AREM risk is a combination of the other two risk

measures. The numerator is the same as that in the OREM, while the denominator is the

same as that in CEM.

3 Experiments

We use two real datasets to demonstrate how risk is influenced by adversarial assump-

tions. For the internal dataset, we use case line data for COVID-19 confirmed cases in the

state of Florida (FL) as of June 3, 2021 [26]. This dataset is updated daily and includes

the following information about infected individuals: 1) residential county, 2) age, 3)

gender, 4) FL residency status, and 5) record date. For the external dataset, we use the

FL’s voter registration list as of June 8, 2020, the latest dataset accessible at the time

of this study. The voter registration list includes an individual’s 1) full name, 2) gender,

3) date of birth, 4) race, 5) residential address, 6) ZIP code, 7) county and 8) contact

information (such as email address). For the purpose of this study, we use county, year

of birth (YOB), and gender as quasi-identifiers. From the internal dataset, we remove

5% of records 1) whose patient ID, county, gender, and diagnosis date are unknown, 2)

have an age below 0, or 3) those are not FL residents. Table 1 provides a summary of

the datasets used in the experiments.

The COVID-19 case-line data covers January 5, 2020, to June 1, 2021. Since rapid

growth in cases is a characteristic of pandemic patient-level data, we evaluate risk at

each three-month interval till June 1, 2021, yielding six time points: April 1, July 1, and

October 1, 2020, and January 1, April 1, and June 1, 2021.

To investigate how different policies affect the risk across demographic groups, we

designed 12 alternative case-reporting policies, as shown in Table 2. These are defined

by the QID generalization levels, such that policies P1 through P11 vary in their gen-

eralization of age and sex. The policies include six potential generalizations of age and

two potential generalizations of sex. Here, suppressed indicates that the corresponding
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Table 1. Summary of the dataset used in this study. a b c represents the first quartile, median,

and third quartile. d ±e represents the mean and one standard deviation. f g% indicates that the

percentage of f patients (in a given category) is g% among all patients.

Female 508,316 53.5% 7,363,027 53.7%

Number of counties 67 67

Event date 2020-01-05 to 2021-06-01 NA 

Characteristic Distribution

COVID-19 Case line Voter Registration

Age 23 38 55 39.5±20.6 NA

Date of Birth NA 1912-12-12 to 2020-05-31

Race/Ethnicity NA 

Non-Hispanic White NA 9,009,488 65.7%

Hispanic NA 2,420,628 17.6%

Non-Hispanic Black NA 1,950,476 14.2%

    Other Races/Ethnicities NA 328,628 2.3%

Gender 

Male 441,413 46.4% 6,346,193 46.2%

QID is reported as a null value for all individuals and, thus, the corresponding QID is not

used in the linkage experiments. The current policy corresponds to the generalization

level for the actual COVID-19 case line data from the FL Department of Health.

The re-identification experiments are composed of four steps: 1) apply the pol-

icy to the COVID-19 data, 2) harmonize the patients’ demographic characteristics in

the COVID-19 database with the FL voter database, 3) match the de-identified patient

database with the identified voter database, and 4) compute the re-identification risk

measures.

In these experiments, we link patients by their county, YOB, and gender. YOB is

not directly available in the COVID-19 database and could be inferred from the age of

the patient at the COVID-19 positive test event date, but there is an ambiguity in the

transformation. For example, imagine that we observe a patient who is 30 years old,

for whom the event date is March 1st, 2021. This patient’s date of birth could be as

early as March 1, 1990, but as late as March 1, 1991. To address this issue, we create

a YOB range for each patient with (event date − age − 1, event date − age). In the

situation where age is generalized to a range in different case-reporting policies, such as

a 30-year range, the aforementioned example’s age is generalized to 30–59. The YOB

lower bound is 1961 and the upper bound is 1991. In general, the YOB lower bound is

(event date − age range upper bound − 1 and the YOB upper bound is (event date −

age lower bound). We compare the YOB of voter records to YOB lower bound and YOB

upper bound of patient records for the linkage.
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Table 2. Case-reporting generalization policy rules.

Policy Age generalization level Sex generalization level

P1 Suppressed Suppressed

P2 60 year range: 0–59, 60 +

P3 30 year range: 0–29, 30–59, 60–89, 90 +

P4 15 year range: 0–14, 15–29, 30–44, …

P5 5 year range: 0–4, 509, 10–14, 15–19, …

P6 1 year range

P7 Suppressed Male/Female

P8 60 year range: 0–59, 60+

P9 30 year range: 0–29, 30–59, 60–89, 90+

P10 15 year range: 0–14, 15–29, 30–44, …

P11 5 year range: 0–4, 509, 10–14, 15–19, …

Current policy 1 year range

4 Results

4.1 Internal Risk Evaluation

We evaluate the IM Risk at the end of each time period starting on the date of the

first confirmed case. As time proceeds, both the number of patients and the number of

unique QIDs groups grow, but at different rates. Figure 2 shows the risks for each policy.

Following the U.S. Institute of Medicine report [27] and European Medicines Agency

guidelines [28], we set a risk threshold of 0.09 (which corresponds to 11-anonymity for

a public dataset) as an acceptable level of risk for our following analysis. It can be seen

that in April 2020, all of the policies exhibited risks higher than the threshold. In July

2020, October 2020, and January 2021, policies P1-P3, P1-P4, and P1-P5 satisfy the

requirement, respectively. After April 2021, all of the policies were under the threshold.

Fig. 2. IM Risk evaluated as a function of time.
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4.2 External Risk Evaluation

We compare the CEM, OREM, and AREM risks by linking the FL COVID-19 case-line

data to FL’s voter registration list. Risk is evaluated at each of the six time points, the

results of which are summarized in Fig. 3. Recall that the CEM Risk is an upper bound

of the external marketer risk. In this case, some patients may not be matched to the

corresponding voters in the voter registration list, but we added dummy records in the

external dataset to acknowledge the existence of the missing records. It can be seen in

Fig. 3A that only policies P6 and P11, as well as the current policy, achieve risks that

are higher than the 0.09 threshold in April 2020. Still, these risks are lower than the IM

Risk. By July 2020, policy P6 and the current policy’s risks are higher than 0.09. By

October 2020, only the current policy has a risk higher than 0.09. After January 2021

Fig. 3. External risk evaluation with the A) CEM, B) OREM, and C) AREM risks over time.
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(one year after the first case-line data was released), all policies exhibit CEM risk that

is smaller than 0.09.

Next, we analyze the OREM (i.e., evaluated with all valid records) and AREM (i.e.,

evaluated with all the records) risks. As shown in Figs. 3B and 3C, none of the policies

have risks higher than 0.09 after April 2020.

4.3 Internal vs. External Risks

As anticipated, a comparison of IM Risk and external risks shows that risks decrease for

all policies once a real identified dataset is factored into the risk assessment. However,

the rate of change in risk is not constant across all policies. To illustrate this fact, we

defined a risk reduction rate from the IM Risk to the external risk as follows:

Risk reduction rate

=
Internal marketer risk − External marketer risk

Internal marketer risk
× 100% (5)

Figure 4 shows the risk reduction rate for each policy. In this figure, the arrows

indicate a hierarchical structure, where moving up the hierarchy means the data becomes

more specific. The lattice graphs illustrate the partially ordered generalization levels

between policies. Here, the current policy corresponds to the most specific policy. The

arrow between two policies indicates a decrease in the generalization level of one of the

QID variables. Specifically, an orange arrow indicates a change in age generalization

level, whereas a blue arrow indicates a change in sex generalization level but remains

the same level of age generalization.

The results show that policies P1 and P7 exhibit the largest reduction rates with

respect to the three external marketer risk measures. When compared to policy P1, change

in the age generalization level from completely suppressed to the 30-year-old range (i.e.,

P3) result in risk reduction rate decreases by 20%. When the age generalization level is

less strict (e.g., 15-year-old range, 5-year-old range, and 1-year-old range), the effect on

the risk reduction rate is almost constant.

4.4 Risk Reduction Rate

Figure 5 depicts the risk reduction rates for different measures. It was observed that the

average risk reduction rate for the current policy evaluated with the CEM Risk is 24%

larger than the AREM Risk. As the age generalization level becomes more specific, the

average risk reduction rate differences between the CEM Risk and the AREM Risk grow

(i.e., from P1 to P6, and P7 to the current policy). However, for all policies, there is no

difference between the average risk reduction rate for the OREM and AREM risks.
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Fig. 4. Risk reduction rates (average of the six time points ± 1 standard derivation) from the IM

risk to the external risks for policies organized in generalization hierarchy: A) CEM, B) OREM,

and C) AREM risks.

Fig. 5. Change in risk reduction rates (average value across six time points ± 1 standard

derivation) between risks evaluated with: A) CEM and AREM risks and B) OREM and AREM

risks.
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5 Discussion and Conclusion

As this work shows, re-identification risk measures have insufficiently addressed real

world data challenges, particularly the missing records in an identified resource that an

attacker is expected to leverage. The external marketer risk measures we introduced show

that missing records can contribute to risk in different ways depending on adversarial

assumptions. Our experiments with FL COVID-19 case line data show that such assump-

tions non-trivially affect re-identification risk estimation. In particular, our results reveal

that the risks under all 12 policies are below the typical risk threshold of 0.09 as of April

2021 for the internal marketer risks. The CEM, OREM, and AREM risks are below the

threshold as of January 2021, April 2020, and April 2020, respectively. It suggests that

more detailed data could be shared publicly than the current generalization policy.

Further, in our comparison of risk reduction rates, we observed that there is no

difference in the risk reduction rates between the OREM and the AREM Risk. This

suggests that the data sharer could use either risk measure considering an attacker’s

decision to target the invalid groups does not affect external marketer risk estimation.

We also observed that the risk reduction rates between the IM Risk and external risks are

relatively stable for all policies evaluated with the OREM and AREM risks. This suggests

that data sharers could use the IM Risk as a proxy to estimate the external risks for a

data sharing policy based on the reduction rate and use that estimation for other policies.

Finally, the reduction rate between the IM Risk and the CEM Risk is the smallest. Thus,

the CEM Risk is a more reliable measure compared to the other two measures. The risk

reduction rate could be utilized as an approximation for the CEM Risk from the IM Risk

when the external dataset is not accessible.

There are also several limitations we wish to acknowledge as opportunities for future

investigations and improvements. First, residency does not always imply the place where

an individual currently lives. Our study assumes residency per the voter registration list

is equal to the residency in the internal dataset. Second, we only evaluate the risks with

COVID-19 case surveillance data from Florida. Yet different states may adopt different

approaches to collecting, generalizing, and releasing medical data. Third, the FL’s voter

registration list is updated on a monthly basis, such that an analysis of the recency of

the voter data for the COVID data should be assessed to determine the influence on

risk. One particularly notable question is how to maximize the re-identification risk-

utility trade-off when data is released with dynamically updated policies [29]. Fourth,

our study evaluates re-identification risks without considering the benefits inherent in

sharing data and the attacker’s gain from the re-identification attack. Future studies could

use economic arguments (e.g., based on game theory) to analyze the balance between

privacy and utility [30].
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