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A B S T R A C T

Assessing child growth in terms of speech and language development is a critical indicator of long term learning
ability and life-long development progress. The earlier a child who is at-risk is identified, the earlier support can
be provided to reduce the social impact of the speech or language issue. The preschool classroom provides
an opportunity for monitoring growth in young children’s interactions. To date, limited research has been
possible for young child based speech recognition in classroom settings due to speech data access, as well
as limitations on speech recognition performance for naturalistic child communication. This study addresses
American English speech recognition for children’s speech in a naturalistic noisy early childhood setting, where
child age varies from 3 to 5 years. This study investigates the effectiveness of data augmentation techniques to
improve both language and acoustic models, since this is relatively under explored for young child speech. We
consider alternate text augmentation approaches using adult data, Web data, and text generated by recurrent
neural networks. We also compare several acoustic augmentation techniques including: speed perturbation,
tempo perturbation, and adult data. In the study, we also comment on child word count rates to assess child
speech development. Finally, insights are provided into the statistical patterns of naturalistic child speech such
as word complexity, stop words, part of speech, etc., which are intended to serve as a representative of high
quality language engagement in adult–child learning environments.
1. Introduction

A supportive language environment generally includes gains in com-
munication and social skills of typically developing and children at risk
(e.g., speech or language delayed) (Burchinal et al., 2008). The amount
of teacher and peer language children are exposed to in preschool child-
hood settings contribute to essential language developmental outcomes
in early childhood. Adult and peer language has been shown to be even
more beneficial for children at risk (Brown et al., 1999; Perry et al.,
018), since it plays a role in improving social communication (Warren
nd Yoder, 2004). Therefore, identifying which children are at-risk for
ow language engagement is of high importance so that these children
ould, in turn, receive more teacher support in classroom settings.
imited research has been performed employing speech technologies to
easure child speech recognition when speech is recorded in naturalis-

ic learning environments. Advancements based on LENA Foundation1

ave shown that measuring child speech interaction is possible, but
esearch has shown that in early education spaces (Dykstra et al., 2012;
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1 http://www.lenafoundation.org/.

Gilkerson et al., 2017; Irvin et al., 2017), where children and adults
are mobile with diverse noise/acoustic conditions, and conversational
interactions are often spontaneous and unscripted, this and other prior
technologies run into significant challenges in diarizating speech.

It is known that automatic speech recognition (ASR) for child
conversational speech is more challenging than for adults, specifically
because of the developing language planning, physiology, and motor
skills of young speakers. Basically, children do not necessary have the
mature language/grammar skills to consistently form coherent logical
sentences, or accurately articulate each phoneme when proper word
selection is possible. Moreover, there is a lack of available child speech
corpora to advance such speech technology. The diversity of child
speech production physiology causes issues as well, since speaking
traits can vary significantly from child to child who are typically
developing, as well as those that might be at-risk. Children’s speech
structure within the age range of 3–5 years differs significantly from
6–18 year old speakers. Most prior child speech recognition efforts have
vailable online 12 March 2022
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focused on the older child group. Children in the age range of 3–5
have reduced vocal system physiologies, they are still developing their
speech motor skills, pronunciation, and vocabulary. Young children
do not necessarily follow adult grammar rules and proper linguistic
structure. In the studies by Justice et al. (2013) and Hart and Risley
(1995), the language interaction traits such as child word count rate
was shown to be important in the early stages of language development.
Not as much work as considered quantifying the language development
knowledge/experience in Wernicke’s area. Also, not all ASR recognition
errors are equally important. Thus, there is a need to analyze statistical
patterns of naturalistic child speech, that could serve as a sample of
high quality language engagement in adult–child learning spaces.

While research has considered child ASR in the past, most studies
focus on:

– older child speech (6–18 age group) (Gerosa et al., 2009; Fainberg
et al., 2016);

– child read speech, and structured human–computer interaction
speech;

Only a few studies have explored preschool child speech recogni-
tion, using words, phrases, and structured human–computer interaction
scenario (Smith et al., 2017; Kothalkar et al., 2018a,b; Hagen et al.,
2003). In our study, the scenario is based on American English natural-
istic conversational interaction between child–adult and child–child in
the preschool classroom, while wearing LENA recorders. We investigate
young child ASR, where age varies from 3 to 5 years. The extensive
work from the LENA Foundation has investigated naturalistic speech
of preschoolers, but always one-on-one scenarios where one child is
with one adult, normally in fairly quiet spaces. This prior effort has not
considered ASR, since their language assessment strategy only estimates
word count based on phoneme change sequence counting (Gilkerson
et al., 2017; Dykstra et al., 2013; Soderstrom and Wittebolle, 2013; Ota
and Austin, 2013).

The corpus used in our study is comprised of 15 h of transcribed
children audio for training. This task is very challenging, where past
studies suggest it is common to experience high word error rates
(WERs) in such ASR conditions. For example, on large 2000 h corpus,
adult conversational speech recognition yields 11% WER (Hadian et al.,
2018). Meanwhile, systems with 3 h and 40 h training sets, achieve
52% and 42% WER, respectively (Lileikytė et al., 2018, 2017; Hart-
mann et al., 2017). Therefore, training data size and speaker diversity
significantly impact system performance.

The motivational aims of this study are as follows:

– Investigate young child (age from 3 to 5 years) naturalistic Amer-
ican English speech recognition, when speech was recorded in
active learning spaces. Meanwhile most of the past studies ex-
plore older child (6–18 years) read speech/directed computer
interactive systems for child reading. Naturalistic speech offer
significantly different acoustic conditions as well as context based
voice exchanges;

– Assess the effect of data augmentation techniques for child speech
under low resource conditions, when only 15 h of children tran-
scribed speech is used;

– Explore if word count rates can provide insight to help separate
at-risk and typically developing children.

– Analyze statistical patterns of naturalistic child speech. Our aim
is to explore the most common 100 words spoken by children:
what has been said, and what is distribution of the word types/
categories.

It is specifically stated that the goal is not to achieve child ASR
WER’s similar to adult WER’s, since that may not be feasibly possible
given a child’s language/grammar and pronunciation abilities.

This study is the extension of our previous work (Lileikyte et al.,
99

2020). New research results are reported, providing long short-term
memory (LSTM) results with augmented data, WER analysis for each
child, and a unique first analysis of statistical patterns of naturalistic
child speech.

In this study: (i) we explore data augmentation techniques for young
child naturalistic speech recognition. Data augmentation has been shown
to consistently improve performance of adult ASR systems. However,
it has not been extensively studied for child naturalistic speech. To
cope with a limited amount of child training data, previous studies
have explored the use of adult speech (e.g., in Fainberg et al. (2016),
Smith et al. (2017) and Serizel and Giuliani (2014)). Children’s speech
between 3 to 5 years differs significantly from adult speech. As such,
migrating adult based speech technologies towards this young child
population is significantly more challenging. In our work, we explore
(1) language model augmentation via text generated using recurrent
neural networks (RNNs) (Mikolov and Zweig, 2012), and (2) acoustic
model augmentation using speed and tempo perturbation (Ko et al.,
2015). These techniques have been used for adult speech augmentation
(Mikolov and Zweig, 2012; Ko et al., 2015). However, to the best of
our knowledge, this work is perhaps one of the first to study these
approaches for child speech. Our earlier study (Lileikyte et al., 2020)
did explore initial approaches for data augmentation with promising
results. Here we compare these techniques and the use of adult data as
well.

(ii) We investigate word count rates to assess child speech development
of typically developing, as well as those children that might be at-risk. The
word counts are estimated based on the output hypothesis transcript
sequence of our ASR system. Word count estimation could provide
insight into the assessment of child language engagement in learning
spaces, and identify which child might need more teacher learning
engagement.

(iii) Finally, statistical patterns of naturalistic child speech are explored.
Specifically, we consider which words carry more meaningful informa-
tion for adult–child interaction, and therefore are more important for
automatic recognition. The analyses of statistical patterns of natural-
istic child speech are intended to serve as a sample of high quality
language engagement in adult–child learning environment.

2. Challenges in child speech recognition for naturalistic scenario

Speech recognition for preschool children (3–5 yrs) within a nat-
uralistic classroom setting is more challenging versus older children
speech recognition, where most prior child speech recognition efforts
have focused on (e.g., 6–18 yrs). Children in the 3–5 year range are still
developing pronunciation and grammar/language understanding for
proper sentence formulation. They have significantly different acoustic
speech production/model experience (see Table 1). These differences
are attributed mainly to anatomical and morphological differences in
the vocal tract geometry, less precise control of the articulators, and the
inability to control features such as prosody. They are also associated
with less formed knowledge and experience in grammar and vocabulary
associated with Wernicke’s area. A child’s vocal system is smaller than
an adult’s. The physiological development, both present and as they
grow, contribute to higher variability of child speakers, resulting in
gender (male/female) assessment as a difficult task. Children voices
when compared to those of adults include higher fundamental frequen-
cies, shifted formant frequencies due to reduced vocal tract lengths, and
greater spectral variability. Children display higher variability in speak-
ing rate, vocal effort, and degree of spontaneity. Children’s spontaneous
speech may be ill-formed, or include incomplete sentences. Example
phrases illustrating some common phenomena found in casual child
speech are given in Table 2. Children are also more likely to seamlessly
change conversational topics rapidly. Disfluencies such as filled pauses,
repetitions, repairs, and false starts are frequent in conversational child
speech. Paralinguistic events are more common for children speech,
such as non-speech vocalizations including laughter, crying, shouting,
yawning, coughing, or sneezing. Due to a lack of communication
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Fig. 1. A typical high quality childcare learning center.
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Table 1
Child speech development in different age groups.
Child age Lexicon Language model Acoustic model

3–5 years Still developing Still developing Still developing
6–18 years Developed Developed Developed

Table 2
Examples of conversational child speech phrases.
Event Example

Hesitations hmm but the prize box is happy okay
pretend hmm the blocks can walk

Filler words yeah does not match because we got pink
oh yeah that i thought you said sock socks they use socks

Paranormal [gasp] i am going to give [gasp] if i say your name
kitty meow [cough] meow come on kitties lets go

Word fragments can i have some jelly on my bisc- biscuit
that trea- treasure box is right here

Word repetitions well if you if you are a vampire you cannot play with us
do do you want to play something with me

experience, speech overlap is also frequent in child speech. While
an adult may follow socially accepted traditional conversational turn-
taking protocol, children typically speak with little regard to expected
sentence or turn-taking boundaries. The classroom setting is also noisy,
containing large crowd noise, babble noise, as well as competing speech
(see Fig. 1).

. Related work

State-of-the-art speech recognition systems have traditionally been
rained on large adult data sets. Large quantities of in-domain data are
ot always available, especially for young children’s speech due in part
o IRB/privacy issues, as well as child speech skill diversity.

Most corpora containing children’s speech focus on the 6–18 age
roup, and are either limited in scope or are task directed. Corpora such
s the American English CID children corpus (Lee et al., 1999), KIDS

(Eskenazi et al., 1997), CU Kids’ Audio Speech corpus (Hagen et al.,
2003), and PF-STAR (British English, Italian, German and Swedish)
(Batliner et al., 2005) are all read speech corpora. As for sponta-
eous speech, corpora include children–machine interaction scenarios
e.g., computer based education or speech training systems) rather than
hild–adult naturalistic scenarios. The NICE database consists of spoken
100

r

ialogue interaction between children and animated characters in a
ame setting (Bell et al., 2005). In Batliner et al. (2004), a child–robot

interaction corpus was presented, where children are spontaneously
communicating with the AIBO robot. In Narayanan and Potamianos
(2002), a database was collected in a Wizard-of-Oz scenario, where
children play a computer game and verbally interact with animated
characters. The corpus (Xiao et al., 2002) contains speech recorded dur-
ing child–machine interaction via a multimodal voice and pen interface.
ChIMP is a database of child–machine spoken dialog interaction also in
a game setting (Narayanan and Potamianos, 2002). The CHILDES cor-
pus (MacWhinney, 2014) is comprised of child–human conversational
speech.

For young children (up to 6 yrs) there are only a few data sets
which are not easily shared. The speech of preschoolers appears in
subsets of CU kids’ (Hagen et al., 2003) and PF-STAR (Batliner et al.,
2005) databases (4–6 years). These recordings contain isolated words
and read speech. One of the largest databases in existence for child
speech is from LENA Natural Language (Gilkerson and Richards, 2008),
comprised very young children (1 to 4 years) spontaneous naturalistic
speech. It is based on child–adult speech interaction in naturalistic
home environments. The CHILDES corpus (MacWhinney, 2014) also
contains naturalistic speech of young children ranging in age from
1 to 6 years. It should also be noted here that most child speech corpora,
unlike adult data (from LDC), are generally not made freely available
for the research community.

Some automatic speech recognition studies have been performed for
young children (3–6 yrs), however most ASR systems have investigated
older children. Isolated word and phrase recognition for 3 to 6 yr
children with speech disorders was analyzed in Smith et al. (2017),
Kothalkar et al. (2018a) and Hagen et al. (2003). The LENA naturalistic
peech database has been mostly used for word count estimation based
n phoneme change sequence, but not directly considering ASR (Gilker-
on et al., 2017; Dykstra et al., 2013; Sangwan et al., 2015; Soderstrom
nd Wittebolle, 2013; Ota and Austin, 2013). When the 6–18 yr age
roup is explored, besides isolated word and sentence recognition,
tudies have also included continuous child speech (Fainberg et al.,
016; Shahnawazuddin et al., 2017; Potamianos and Narayanan, 2003;
ilpon and Jacobsen, 1996; Hassanali et al., 2015; Tong et al., 2017;
erizel and Giuliani, 2014; Matassoni et al., 2018; Sirithunge et al.,
018; Hagen et al., 2007; Shivakumar et al., 2014; Sheng et al., 2019;
eung and Alwan, 2019; Gale et al., 2019; Li and Qian, 2019; Nagano
t al., 2019).

Most previous studies have explored older children’s speech

ecorded in relatively quiet environments, where spontaneous speech
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Fig. 2. LENA recording device, which children wear in the front pocket of a specially
designed vest.

is based on children-machine dialogues. Our study here focuses on very
young children’s speech (3 to 5 years), where spontaneous recordings
are obtained from naturalistic conversations between child–adult and
child–child during daily activities in noisy daycare spaces.

4. Data

All experiments reported here use American English child sponta-
neous conversations captured in a high quality childcare learning cen-
ter. All participating children were enrolled in a center-based program
in the United States.

Data was collected using LENA recorders from 33 children from
two pre-kindergarden classrooms of age 3 to 5 years, and from 4
adults/teachers (3 females and 1 male). Eight of the children are
at-risk (e.g., speech or language delayed) and were receiving speech-
language services. A total of 80 h of speech and non-speech child and
adult data was transcribed by the UTDallas CRSS transcription team
(e.g., speech/language science experts). The child training corpus con-
tains 15 h of manually transcribed audio, with transcripts containing
a total of 120 K word tokens. Adult data consists of 23 h of manually
transcribed audio, with 300 K words in the transcripts. The remaining
42 h (out of 80 h) are silence segments. In addition to data gathered
from the childcare learning center, an out-of-domain conversational-
like Web text corpus (Rousseau et al., 2014) was also used, consisting
of 2.6 million word tokens. All child based speech results are reported
using a held-out 3 h test set of child speech. For development, a
1.5 h data set was used. No speaker appeared simultaneously in either
training, development, and test sets.

The LENA system consists of an audio recording device and speech
analysis software (Xu et al., 2009). In this study, only LENA digital
recorder was used (i.e., no LENA Foundation analysis software was used
to analyze the audio). The LENA recorder was used with a specially de-
signed vest/shirt to minimize sound friction and optimize microphone
placement (see Fig. 2). The LENA vest/shirt plus LENA recorder was
worn by child participants during classroom routines such as breakfast,
classroom learning activity areas, and circle time. Recorders are light-
weight and compact, cause minimal self-awareness for speakers, and
allow voice capture during naturalistic conversations. The corpora
include speech initiated by the speaker wearing the recording unit
and speech originated by other speakers within his/her close proximity
(around 6 ft). Children typically would wear the vest/shirt for a half
or complete school day, and teachers were instructed to continue
their regular classroom routines. No other specialized directions were
provided to teachers or children. As illustrated in Fig. 3, recordings
(e.g., art, blocks) would contain speech in various environments such
as dramatic play, block center, manipulatives, science, art, books, mu-
sic, dining space, indoor and outdoor playground. All learning spaces
are open and can be noisy, providing free movement for children
between areas, resulting in distractions such as crowd/babble noise,
and competing speech content/sections.
101
Fig. 3. A typical high quality childcare learning center.

. Baseline recognition system

In our experiments, an ASR system is constructed using an initial
5 h of transcribed conversational child speech within an age range
f 3–5 years, as described in Section 4. Acoustic models are tied-
tate, left-to-right 3-state HMMs with Gaussian mixture observation
ensities. Also, triphone-based models are word position-dependent.
he acoustic models are trained on 39-dimensional Mel-Frequency
epstral Coefficients (MFCC). The features are 9 frame spliced and
rojected into 40 dimensions using linear discriminant analysis (LDA)
long with maximum likelihood linear transform (MLLT) application.
ext, speaker adaptive training (SAT) is performed using a single
eature-space maximum likelihood linear regression (fMLLR).

A 3-gram back-off language model is built using manual transcrip-
ions from the child corpus (more details in Section 4). The lexicon
sed is from Rousseau et al. (2014), which consists of the most frequent

150 K words found in the web based speech/text content. To build the
system, we use the Kaldi speech recognition toolkit (Povey et al., 2011).
ASR performance is measured with WER.

This baseline model was used to decode the core open test data
set, resulting in a child based WER of 69.4% (Table 3). A relatively
high WER is naturally expected, given the spontaneous young-child
multi-speaker conversational language environment.

6. DNN and LSTM system

In addition to the baseline HMM system, an advanced network
solution is also considered. A deep-neural network (DNN) system is
trained to estimate the HMM state likelihoods (Dahl et al., 2012). The
DNN uses the same features as our SAT GMM-HMM system described in
Section 5: features are spliced using a context of 9 frames, followed by
LDA+MLLT+fMLLR. Alignments are produced by the SAT GMM-HMM
system. In experiments with the original child training data set, we
use the following DNN topology: 2 hidden layers, 2048 neurons per
layer, and an output layer based on the softmax function. Sequence-
discriminative training is applied with an sMBR objective function
(Veselỳ et al., 2013). The learning rate is set to 1e–5, and the number
of epochs is 5. In this study, we perform acoustic model augmentation
experiments using DNN systems, with training data ranging from 15
to 158 h. For all experiments, the same DNN topology is used, but a
different number of hidden layers is employed. When the audio data set
is augmented from 38 to 75 h, 4 hidden layers are used. Furthermore,
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Table 3
Results for GMM-HMM contrastive language model training conditions: manual chil-
dren transcriptions (trs), manual adult transcriptions (adult), Web-texts (web), RNN
generated texts based on child transcripts (rnn). In all experiments, acoustic models
are based on children transcribed audio.
Language model N-gram #Tokens Ppx % wer

trs 1-gram 120K 358 84.3
trs 2-gram 120K 90 71.7
trs (baseline) 3-gram 120K 75 69.4
trs + adult 3-gram 420K 66 69.6
trs + web 3-gram 2.6M 62 69.4
trs + rnn 3-gram 30M 74 69.5
trs + adult + web + rnn 3-gram 33M 63 69.6

when increasing the quantity of training data, we expand the DNN
structure to 6 hidden layers.

The long short-term memory (LSTM) system
(Hochreiter and Schmidhuber, 1997) is trained using concatenated 40
imensional MFCC features and 100 dimensional i-vectors to perform
peaker adaptation (Saon et al., 2013). The i-vector extraction is
ased on a GMM Universal Background Model (UBM), trained using
DA+MLLT transformed MFCCs which are spliced across ±4 frames of
ontext. The GMM-UBM consists of 512 mixture components, and the
STM architecture has 3 hidden layers, followed by a softmax output
ayer. Each hidden layer contain 1024 neurons, with both recurrent
nd non-recurrent projection dimensions set to 256. The network is
ptimized using a stochastic gradient descent with an initial learning
ate of 3e–4 and a momentum of 0.9. A cross entropy criterion is
pplied for training, and the training process is repeated for 6 epochs.
nly a data set of 158 h is used for LSTM evaluation.

. Data augmentation

The constraint given for this ASR task is that the quantity of avail-
ble text data and available transcribed audio data for spontaneous
hild speech are both intentionally limited. In this section, alternate
ata augmentation approaches are analyzed for both language and
coustic models enhancement.

.1. Language model augmentation

To improve the language model, three alternate data augmentation
echniques are investigated: (i) adding adult data, (ii) incorporating
eb text content, and (iii) producing additional text sequences via
NNs (Mikolov and Zweig, 2012). The language model is estimated
sing supplemental text resources and interpolated with the original
aseline language model. The expectation maximization (EM) algo-
ithm is used for interpolation to minimize overall perplexity of the
evelopment set.
(i) Adult data usage. The use of manually annotated adult transcrip-

ions is investigated for data augmentation. All conversational based
dult data was recorded in the same childcare center, as described in
ection 4.
(ii) Web data usage. Recovery of conversational-like Web text data

similar to that in the child learning space was explored to improve the
language model (see Section 4).

(iii) RNN based text generation. We also investigate additional text
generation using an RNN as proposed in Mikolov and Zweig (2012).
The RNN consists of 2 hidden layers and 512 units per layer. We
randomly shuffled the training transcripts and split this into five non-
overlapping subsets. For each split, the RNN was trained using four sets
and the fifth set used for validation. The RNN finds long contextual
regularities, produces quite meaningful sentences, and maintains a
consistent vocabulary content to the original vocabulary lexicon.

To assess the improvement derived from the use of supplemental
text resources, contrastive experiments are performed with alternate
102
language models. The use of 1-gram and 2-gram models leads to
ASR performance degradation, as shown in Table 3. Augmentation
techniques are explored with 3-gram language models. From Table 3, it
is observed that each LM augmentation technique helps improve word
perplexity compared to the baseline. The highest perplexity reduction
of 13 points (75 vs. 62) is achieved with the language model incorporat-
ing Web texts, resulting in texts with 2.6M word tokens. A very similar
word perplexity of 63 is obtained using adult training transcripts, Web
texts, and RNN generated texts, resulting in texts with 33M word tokens
(bottom entry). However, while word perplexity is reduced, there is no
corresponding meaningful WER improvement achieved over the base-
line using alternate LM augmentation techniques. The outcome here
suggests that the children are producing ill-formed sentence structures
at some level, so augmenting with either adult text data, Web text data,
or RNN text generation is not producing the type of sentence structures
that typically developing or children at risk are employing. So using
more well formed text does not help in LM advancements. Alternate
strategies to create more child scenario sentence structures are needed.

7.2. Acoustic model augmentation

Acoustic data augmentation is assessed via three alternate ap-
proaches: speed and tempo perturbation combinations as described
in Ko et al. (2015), where an adult data set is used. We investigate
the impact of different perturbation coefficients and alternate number
of copies of the original child data set (15 h).

Speed perturbation. Speed perturbation emulates both pitch and
tempo variations in the speech signal. Speed modification is achieved
by resampling the signal. We use the speed command of the sox2 tool
(e.g., time-domain pitch synchronous overlap and add (TD-PSOLA)) to
modify the speed of the signal. We explore augmentation of the training
data set by changing the speed (e.g., overall duration) of the audio
signal, resulting in four versions of the original child training data with
speed scaling factors of 0.8, 0.9, 1.1, and 1.2 (10% and 20% increase
and decrease in the original rate of speed).

Tempo perturbation. The tempo of the signal is modified, while the
pitch and spectral envelope of the signal is not changed. To perform
tempo perturbation, we used the sox with tempo command. It uses
an overlap-add technique based on waveform similarity (WSOLA) im-
plementation (Upperman, 2012). The training data set was enlarged
by creating four additional copies of the original child training data
by modifying the tempo with scaling factors to 0.8, 0.9, 1.1, and 1.2
(again, a 10% and 20% increase or decrease in tempo).

Adult data usage. We joined both child and adult training data audio
sets. The adult data set is comprised of 23 h of transcribed audio, where
most speakers are females. All data was recorded in the same childcare
center (see Section 4).

Acoustic model augmentation results are provided in Table 4. In the
experiments, we use a language model from manually annotated child
transcriptions.

Table 4 shows that for GMM-HMM system there is no WER improve-
ment obtained by incorporating various acoustic data sets. The lowest
69.4% WER is achieved using only the original child training or also
incorporating all augmented acoustic sets.

The performance of the DNN-HMM systems are also summarized in
Table 4. The top line shows that with the original children transcribed
audio set, there is an improvement of +4.3% absolute using DNN-HMM
training over GMM-HMM. Comparing DNN performance with different
acoustic model sets, it can be observed that an absolute WER reduc-
tion of 2.6% is achieved using the 45 h data set which incorporates
augmented speech audio data based on speed perturbed with 0.9, 1.1
factors (65.1% vs. 62.5%). Other perturbation combinations are also
shown to be beneficial compared to the original child training audio

2 http://sox.sourceforge.net/.

http://sox.sourceforge.net/
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Table 4
Results for GMM-HMM, DNN-HMM, LSTM contrastive acoustic model training condi-
tions: manually transcribed children audio (trs), copies of children training set with
different speed perturbation factors (speed), with different tempo perturbation factors
(tempo), adult transcribed audio (adult). Different amount of hours for training is used
(#Hrs).
Acoustic model Perturb. factors #Hrs % wer

GMM DNN LSTM

trs – 15 69.4 65.1 –
trs + adult – 38 74.1 65.2 –
trs + speed 0.9, 1.1 45 69.5 62.5 –
trs + tempo 0.9, 1.1 45 70.3 64.1 –
trs + speed 0.8, 0.9, 1.1, 1.2 75 70.8 63.2 –
trs + tempo 0.8, 0.9, 1.1, 1.2 75 70.0 64.7 –
trs + speed + tempo 0.8, 0.9, 1.1, 1.2 135 70.3 64.1 –
trs + speed + tempo + adult 0.8, 0.9, 1.1, 1.2 158 69.4 62.2 57.8

Table 5
Results for the best GMM-HMM, DNN-HMM, LSTM in terms of substitution, deletion,
and insertion.
System % wer Sub Del Ins

GMM 69.4 39.4 25.4 4.6
DNN 62.2 35.4 22.3 4.6
LSTM 57.8 35.3 16.1 6.4

Table 6
Results for the best GMM-HMM, DNN-HMM, LSTM for each child. In all experiments,
language models are based on children transcriptions, and all augmented audio data
sets are incorporated for acoustic models.
#ID child % wer

GMM DNN LSTM

1 (at-risk) 74.6 69.0 63.3
2 (at-risk) 70.7 64.1 62.9
3 (at-risk) 82.9 76.4 72.6
4 (at-risk) 67.4 60.5 55.5
5 (at-risk) 66.9 60.5 54.8
6 79.6 72.8 68.8
7 71.2 61.0 57.6
8 62.8 56.6 47.3
9 50.9 45.6 39.9
10 85.1 76.6 74.6
11 60.2 52.8 48.1
12 77.4 69.6 67.5

set, but not better than using two copies of the speed perturbation. Also,
there is only a tiny improvement obtained using all incorporated data in
comparison with two copies of the speed perturbation. We investigate
the expanded 158 h data set that includes additional transcribed adult
data. In this case, however, an improvement of +7.2% is achieved over
baseline (69.4% vs. 62.2%).

Finally, we explore LSTM system with the expanded 158 h data set.
In this case, the greatest WER improvement of +11.6% is observed over
the baseline (69.4% vs. 57.8% in Table 4).

Table 5 shows the results of our best GMM-HMM (69.4% WER),
DNN-HMM (62.2% WER), and LSTM (57.8% WER) systems in terms
of substitution, deletion, and insertion. For all systems, the majority of
errors are in fact substitution errors versus insertions and deletions.

The results of our best GMM-HMM, DNN-HMM, and LSTM systems
(69.4%, 62.2%, and 57.8% WER) for each child are summarized in Ta-
ble 6 to explore per child performance variability. Considering first the
LSTM system, it is seen that WER of children at risk ranges from 54.8%
to 72.6%; meanwhile, WER of typically developing children range
from 39.9% to 74.6%. The highest recognition results are obtained for
typically developing children child#9, child#11, child#8, followed by
child at risk #5 and child#4. The WERs of GMM-HMM, DNN-HMM
system are higher, but the best recognition results are arranged in the
same order as LSTM. In general, average WERs for typically developing
children were lower (69.6%, 62.1%, 57.7%) versus at risk children
(72.5%, 66.1%, 61.8%) for (GMM, DNN, LSTM) systems.
103
Table 7
Word counts of each child in test set: the number of words in references (#N ref), in
hypothesis (#N hyp) obtained using LSTM system.
#ID child #N ref #N hyp

1 (at-risk) 562 479
2 (at-risk) 699 655
3 (at-risk) 726 605
4 (at-risk) 1865 1700
5 (at-risk) 2780 2446
6 1197 1096
7 1515 1431
8 2310 2030
9 3077 2840
10 3634 3445
11 3715 3322
12 3794 3333

At this point, it is clear that benefits can be achieved using various
data augmentation concepts for child speech in naturalistic settings.
While WERs do improve, their values are fundamentally different from
adults. This is expected, since the fundamental structure of child lan-
guage/grammar as well as word pronunciation may not follow a tra-
ditional assumed set of rules experienced for adult speech. So, at this
point, given the available knowledge estimated and extracted from the
child portion of child–adult/child–child naturalistic communication,
we now turn to a systematic investigation of child word and language
structure in order to explore ways to understand language engagement.

8. Child language engagement

A rich, supportive language environment within the early childhood
classroom is essential for all children. It is important to recognize
that both environment and the role of adult-to-child and peer-to-
child communication, serve as key components for young children’s
language development — particularly children at-risk or with disabili-
ties (Brown et al., 1999; Mahoney and Wheeden, 1999; Sontag, 1997;
Warren and Yoder, 2004; Perry et al., 2018). There is a need to assess
language/communication engagement of children at-risk for or with
disabilities to determine if these children should receive greater teacher
and peer support during learning activities.

In this section, we assess children’s speech development using word
count rates. Word counts are estimated based on hypothesis output
transcription from our best ASR system (LSTM with 57.8% WER, Ta-
ble 6). It should be noted that in this context, even somewhat greater
WERs are acceptable as long as most errors are substitution errors. Our
test set consists of children’s speech as described in Section 4. For the
purpose of word count, while WER is 57.8%, it should be noted that
the majority of errors are substitution errors vs. insertions and deletions
(see Table 5). The results of word count estimation for children’s speech
are provided in Table 7. From word count references (column #N
ref), it can be observed that child#1, child#2, and child#3 are at-
risk and have the lowest vocal interaction level. Child#4 and child#5
are at-risk, but have relatively high vocal communication interaction.
Comparing word counts from references ( Table 7, column #N ref) with
counts in the hypothesis (column #N hyp), it can be seen that even
with ASR system errors, it is still possible to establish which children
have low conversational interaction and are at-risk (e.g., child#1,
child#2, and child#3). The system reorders only child#3 based on
word counts in this hypothesis. We note that after reordering, child#3
is still included as the at-risk category with the lowest speech engage-
ment. Due to challenges in this naturalistic child–child and adult–child
learning space, word counts are not always accurate, however they are
consistent, and we are still able to quantify which children have low
conversational interaction.
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Fig. 4. Child word count in ASR system hypothesis: (A) 100 most frequently occurring words, and word count of unique other words. (B) Total word count of 100 most frequently
occurring words, and word count of all other words.
c
s
t
m
e
a
t
o
s
t
n
o

9

i
o
i
c

f
W
f
a
w
w
h
s
i
S
w
i
w
a
n
s

r
n
s
[
f
1
E
r
s
s
+

m
s
S

9. Statistical patterns of naturalistic child speech for American
English

Child speech from naturalistic real world conditions rarely conform
grammatically or in word choice to an orderly structure of formal adult
speech. In spontaneous child speech, speaking rates and styles vary
across children, word selection may be non-traditional, and grammar
rules are typically not strictly followed.

Typically adults are able to decode child speech more successfully
than ASR systems. ASR systems focus on identification of individual ele-
ments, such as phones, words or sentences. Humans have the capability
to focus on pivot words around which the surrounding lexical items
assume their shape. ASR systems assume that all recognition errors are
equally important in the decoding process, however not all errors are
equal. For example, it is not as important to recognize some common
occurring stop words versus less frequently occurring words which have
ultiple syllables, or more information bearing content. Stop words
re typically associated with single/short syllable words, which occur
ften with limited information context: a, the, it, and, or, of, etc. A list
f common words can be used in conjunction with other knowledge
ources to interpret the speech stream. It is important to effectively
ecognize multi-syllable words as this class provides more meaningful
nformation regarding child sentence/language perplexity. In contrast,
top words do not carry meaningful information.

In this section we analyze statistical patterns of spontaneous child
peech for American English. The analyses presented here are intended
o serve as a representative sample to assess high quality language
ngagement between adult–child diads in learning spaces.

.1. Word frequency and category

It is known that words differ greatly in terms of their frequency of
ccurrence in language. Common words occur more frequently than
he least common, and may reflect different levels of information
ontent. Recognizing information rich words are more important than
ow information words.

The most frequent 100 words of our best ASR system hypothesis
containing only child speech as described in Section 4) are summarized
in Table 8. The most common words occur by at least several orders
of magnitude more frequently than the least common. From column
#N indicating word count, it can be observed that of the 100 most
frequently occurring words, the most frequent word ‘‘I’’ occurs 20 times
more frequently than the least occurring word ‘‘too’’.

Total word counts of ASR system hypothesis are shown in Fig. 4.
t can be observed that the 100 most frequent words make up 63% of
he spoken words: the 100 most frequent words occurred 14 313 times,
hile the remaining 1566 words occurred only 9066 times.
A summary of the most frequent 100 words in the references which

ontain children conversational speech can be found in Appendix. We
ote even with ASR system errors, there is a 91% correct ASR word
atch for this top 100 word list.
Although a list of common words does not provide sufficient data

o interpret speech, it can be used in conjunction with other knowl-
104

dge sources. We characterize these most common words in terms of
ategories and parts of speech in order to analyze word and language
tructure diversity and perplexity (column category in Table 8): quan-
ity, animal, question, social, time, stop words, other. Fig. 5 shows that
ost words (55%) come from the stop words category as expected, how-
ver this category comprises low information bearing content (e.g. a,
nd, the). The category of quantity accounts for 10% of the individual
okens. The other categories contain varying low percentages. The parts
f speech are also summarized in Fig. 5. The most frequent parts of
peech are verbs (27%), adverbs (14%), and pronouns (14%), that
ypically do not bear as much meaningful information. In contrast,
ouns and adjectives bring more meaningful information, but occur
nly 13% and 8%, respectively.

.2. Syllable structure

In this section, we characterize the most frequently occurring words
n terms of syllable structure. Single-syllable words may carry some
r only limited information (e.g., stop words such as of, the, and, or,
t, etc.). However, other single-syllable words carry more meaningful
ontent (e.g., cat, bat, jump, run, help, stop, stand, walk, etc.).

In contrast, multi-syllable words consistently bear meaningful in-
ormation content (e.g., computer, hippopotamus, running, histogram,
ashington, etc.). Table 8 (column syllable #N) lists the 100 most

requent lexical items of naturalistic child speech of which only 7%
re two-syllable (going, kitty, kitties, meow, mister, because, little),
hile others are single-syllable. Both stop words and single-syllable
ords carry very limited meaningful information, and do not reflect
igh quality language engagement between adult–child in learning
paces. Meanwhile, for adults, it is multi-syllable words that carry
mportant information and dominate conversation (as reported on the
witchBoard corpus by Greenberg (1997)). This statistical skew to-
ards short syllabic forms provides another interpretative constraint
n decoding speech streams. Knowing the number of syllables in a
ord also provides some degree of grammatical information. This is
consequence of the tendency for multi-syllabic words to be either a
oun, verb, or adjective. In general, verbs are rarely longer than two
yllables in length (Greenberg, 1997).

It is difficult to accomplish accurate automatic syllabification in
eal time. Here, we analyze the heterogeneity of syllabic forms of
aturalistic child speech in an offline manner. Table 8, column syllable
tructure, provides the composition of syllabic forms from consonants
C] and vowels [V], where the syllable type is based on the most
requent variation. In the study of Switchboard corpus (Greenberg,
997) it was illustrated that syllabic composition of spontaneous adult
nglish might assume a wide range of patterns (e.g., ‘‘strengths’’ is
epresented as CCCVCCC). However, syllable structure of English adult
peech is more homogeneous, with the four most common syllable
tructures consisting of: consonant + vowel [CV], consonant + vowel
consonant [CVC], vowel + consonant [VC] or vowel [V].
The syllable structure of conversational child speech is also ho-

ogeneous, as shown in Fig. 6. Here, 70% of the adult–child corpus
yllables are made up of CVC (36%), CV (18%), and VC (16%) classes.
yllables with complex patterns do not occur frequently (e.g., words
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CVCVC structure occur 2% of the time: ‘‘kitties’’, ‘‘because’’). The
results from Table 8, Figs. 5 and 6 illustrate that stop words make up
5% of conversational words. As such, raw word counts while useful,
o not convey the full information bearing quality of child speech
n adult–child conversational interaction. Identifying question words
4%), animal (4%), nouns (13%), and verbs (27%) provide greater
nsight as to the quality of child conversational interaction.

0. Conclusions

This study has investigated the use of speech technology to assess
ord and word structure in child language engagement (American
nglish) in naturalistic learning spaces. We investigated the benefits
f applying data augmentation techniques for young child (age from 3
o 5 years) communications in assessing child naturalistic engagement
n adult–child learning spaces through speech recognition. We explored
everal data augmentation techniques to advance language and acous-
ic models to improve child speech recognition, and showed which
echnology improvements provided gains in ASR performance. We also
xplored assessment of child language development and engagement
ia word count rates. The results showed that even low performing
SR systems can contribute to effective conversation engagement as-
essment. Finally, we analyzed the statistical patterns of naturalistic
hild speech. It was demonstrated that the most common word type
n conversational adult–child speech are stop words which carry little
eaningful information, followed by single syllable words which have
105

a

ess information bearing content. Multi-syllable words occur only 7% of
he time, but carry significantly more value for engagement assessment.

In addition to ASR advancement, alternate text augmentation ap-
roaches were investigated to increase the limited amount of original
ranscribed conversational child speech using: (i) adult text data, (ii)
eb text data, and (iii) texts generated by RNN. Interpolating these

exts collectively leads to a perplexity improvement of 13 points, but
nfortunately did not result in a corresponding improvement in ASR
ER over the original baseline.
Next, acoustic data augmentation techniques for child speech were

xplored based on: (i) speed perturbation, (ii) tempo perturbation, and
dding (iii) adult data. The experiments were performed with training
ata varying from 15 to 158 h. Both speed and tempo perturbation were
hown to improve WER, with speed perturbation factors of 0.9, 1.1 to
e the most beneficial. The greatest WER reduction of 11.6% absolute
as achieved over the baseline after incorporating all augmented audio
ata sets, and using our LSTM system.
Conversational interaction using word counts were also explored

o assess children’s speech engagement. The system helped establish
relative rank ordering of children’s conversational interaction, and

herefore serves to provide a potential separation grade between at-
isk and typically developing children within similar child–adult active
earning spaces.

Finally, we analyzed statistical patterns of conversational preschool-
rs speech, since it was hypothesized that not all recognition errors
re equally important. In naturalistic child speech, the most common
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Table 8
Statistical properties for the most common 100 words from CRSS-UTDallas Adult–Child
corpus, results from ASR system hypothesis containing child speech: the word count
(#N), syllable type composed of consonant (C) and vowel (V), syllable count (syllable
#N), category, and part of speech.

Word #N Syllable struc. Syllable #N Category Part of speech

1 I 830 V 1-syllable stop pronoun
2 to 714 CV 1-syllable stop preposition
3 you 684 VV 1-syllable stop pronoun
4 the 643 CV 1-syllable stop determiner
5 a 420 V 1-syllable stop determiner
6 and 387 VCC 1-syllable stop conjunction
7 it 320 VC 1-syllable stop pronoun
8 have 292 CVC 1-syllable stop verb
9 we 291 CV 1-syllable stop pronoun
10 this 286 CVC 1-syllable stop pronoun
11 that 270 CVC 1-syllable stop pronoun
12 on 266 VC 1-syllable stop preposition
13 get 256 CVC 1-syllable other verb
14 my 250 CV 1-syllable stop pronoun
15 me 243 CV 1-syllable stop pronoun
16 is 233 VC 1-syllable stop verb
17 can 232 CVC 1-syllable stop verb
18 one 226 VVC 1-syllable quantity adjective
19 going 214 CVVC 2-syllable other verb
20 do 203 CV 1-syllable stop verb
21 no 197 CV 1-syllable stop exclamation
22 in 194 VC 1-syllable stop preposition
23 want 191 VVCC 1-syllable social verb
24 go 180 CV 1-syllable other verb
25 what 179 CVC 1-syllable question pronoun
26 not 149 VCV 1-syllable stop adverb
27 meow 149 CVV 2-syllable animal noun
28 got 137 CVC 1-syllable other verb
29 for 137 CVC 1-syllable stop preposition
30 your 133 VVC 1-syllable stop pronoun
31 be 130 CV 1-syllable stop verb
32 look 124 CVC 1-syllable other verb
33 mess 123 CVC 1-syllable other noun
34 but 119 CVC 1-syllable stop conjunction
35 are 119 VC 1-syllable stop verb
36 like 118 CVC 1-syllable social verb
37 he 117 CV 1-syllable stop pronoun
38 oh 114 VC 1-syllable stop exclamation
39 don’t 114 CVCC 1-syllable stop verb
40 here 111 CVC 1-syllable stop adverb
41 just 110 CVCC 1-syllable stop adjective
42 hey 110 CV 1-syllable stop exclamation
43 was 100 VVC 1-syllable stop verb
44 up 98 VC 1-syllable stop adverb
45 need 98 CVC 1-syllable social verb
46 kitty 98 CVCV 2-syllable animal noun
47 out 95 VC 1-syllable stop adverb
48 all 95 VC 1-syllable quantity determiner
49 well 94 VVC 1-syllable stop adverb
50 its 94 VCC 1-syllable stop determiner
51 uh 92 VC 1-syllable stop exclamation
52 put 89 CVC 1-syllable other verb
53 of 89 VC 1-syllable stop preposition
54 see 87 CV 1-syllable other verb
55 there 86 CVC 1-syllable stop adverb
56 guys 85 CVC 1-syllable other noun
57 yeah 84 VV 1-syllable stop exclamation
58 make 84 CVC 1-syllable other verb
59 when 83 CVC 1-syllable question adverb
60 two 83 CV 1-syllable quantity noun
61 some 83 CVC 1-syllable quantity determiner
62 three 79 CCV 1-syllable quantity noun
63 so 79 CV 1-syllable stop adverb
64 ah 79 VC 1-syllable stop exclamation
65 play 78 CCV 1-syllable other verb
66 at 73 VC 1-syllable stop preposition
67 more 72 CVC 1-syllable quantity determiner

(continued on next page)

sed words are stop words and single-syllable words that carry lim-
ted meaningful information. In contrast, for adults the multi-syllable
106
Table 8 (continued).
Word #N Syllable struc. Syllable #N Category Part of speech

68 then 71 CVC 1-syllable stop adverb
69 how 71 CV 1-syllable question adverb
70 these 68 CVC 1-syllable stop pronoun
71 am 68 VC 1-syllable stop verb
72 know 67 CVC 1-syllable other verb
73 with 66 CVC 1-syllable stop preposition
74 right 66 CVC 1-syllable other adjective
75 now 63 CV 1-syllable time adverb
76 kitties 63 CVCVC 2-syllable animal noun
77 time 59 CVC 1-syllable time noun
78 them 59 CVC 1-syllable stop pronoun
79 because 58 CVCVC 2-syllable stop conjunction
80 why 57 CCV 1-syllable question adverb
81 can’t 57 CVCC 1-syllable stop verb
82 off 55 VC 1-syllable stop adverb
83 mister 55 CVCCVC 2-syllable other noun
84 dog 54 CVC 1-syllable animal noun
85 woof 53 VVC 1-syllable stop noun
86 little 53 CVCV 2-syllable quantity adjective
87 blue 52 CCV 1-syllable other adjective
88 big 51 CVC 1-syllable quantity adjective
89 whoa 50 CV 1-syllable stop exclamation
90 watch 50 VVC 1-syllable other verb
91 back 50 CVC 1-syllable other verb
92 come 49 CVC 1-syllable other verb
93 if 49 VC 1-syllable other conjunction
94 said 47 CVC 1-syllable other verb
95 good 45 CVC 1-syllable social adjective
96 green 44 CCVC 1-syllable other adjective
97 our 43 VV 1-syllable stop pronoun
98 four 43 CVC 1-syllable quantity noun
99 five 43 CVC 1-syllable quantity noun
100 too 42 CV 1-syllable stop adverb

words which carry more content based structure generally dominate
the conversation. Finally, a systematic study of the top 100 most
frequently occurring words, as well as their syllable structure revealed
much insight into the distribution of word type, as well as the word
frequency typical in adult–child conversational analysis in preschool
learning spaces. This in theory, would offer opportunities to strengthen
the quality of teacher adult–child and peer-child interactions for all
children in preschool learning spaces.
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Appendix. The most common 100 child words in ASR system
references (#N is the word count)

Word #N Word #N Word #N
1 I 908 35 your 125 69 uh 68
2 the 725 36 here 125 70 three 68
3 to 712 37 its 121 71 there 68
4 you 694 38 be 121 72 make 67
5 a 490 39 look 120 73 woof 66
6 and 481 40 but 119 74 well 66
7 it 392 41 just 118 75 kitties 66
8 can 310 42 ho 117 76 down 66
9 me 307 43 don’t 117 77 these 65
10 this 295 44 when 116 78 mister 65
11 have 282 45 watch 108 79 will 64
12 do 271 46 hey 100 80 right 64
13 we 266 47 kitty 97 81 because 64
14 is 266 48 play 94 82 them 62
15 in 263 49 oh 93 83 off 62
16 my 248 50 with 91 84 too 59
17 meow 232 51 need 88 85 put 59
18 on 231 52 for 88 86 four 56
19 going 221 53 two 87 87 they 55
20 get 216 54 was 85 88 then 55
21 one 215 55 some 85 89 guys 54
22 what 196 56 now 85 90 did 53
23 that 185 57 all 83 91 dog 52
24 want 182 58 more 82 92 why 50
25 no 174 59 so 81 93 little 48
26 go 173 60 at 80 94 blue 48
27 he 154 61 how 78 95 our 47
28 are 144 62 know 77 96 green 46
29 not 143 63 out 76 97 eat 45
30 like 142 64 ah 75 98 come 45
31 up 141 65 see 73 99 back 45
32 of 140 66 can’t 70 100 time 44
33 got 138 67 if 69
34 mess 128 68 yeah 68
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