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Abstract—Vehicle platooning for highway driving has many
benefits, such as lowering fuel consumption, improving traffic
safety, and reducing traffic congestion. However, its performance
could be undermined due to uncertainty. This work proposes a
new control method that combines distributed stochastic model
predictive control with Taguchi’s robustness (TR-DSMPC) for
vehicle platooning. The proposed method inherits the advantages
of both Taguchi’s robustness (maximizing the mean performance
and minimizing the performance variation due to uncertainty)
and stochastic model predictive control (ensuring a specific
reliability level). Taguchi’s robustness is achieved by introducing
a variation term in the control objective to bring a trade-
off between mean performance and its variation. TR-DSMPC
propagates uncertainty via an approximation method: First-
Order Second Moment, which is far more efficient than Monte
Carlo-based methods. The uncertainty is considered from two
perspectives, time-independent uncertainty by random variables
and time-dependent uncertainty by stochastic processes. We
compare the proposed method with two other MPC-based meth-
ods in terms of safety (spacing error) and efficiency (relative
velocity). The results indicate that our proposed method can
effectively reduce the performance variation and maintain the
mean performance.

Index Terms—Vehicle platooning, Taguchi’s robustness, dis-
tributed stochastic model predictive control, uncertainty.

NOMENCLATURE

Ca Aerodynamic drag coefficient.
E Mean control objective.
f Rolling friction coefficient.
H Random field.
Np The length of prediction horizon.
s Vehicle position.
T Vehicle torque.
u Control signal.
V Variation term of control objective.
v Vehicle velocity.
Y General model response.
Z Input random variables.
η Mechanical efficiency coefficient.
µ The mean value.
σ The standard deviation.
τ Inertial time lag.
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I. INTRODUCTION

AUTONOMOUS vehicle platooning for highway driv-
ing can improve traffic conditions by enhancing road

safety, increasing highway utility efficiency, and improving
fuel economy [1]–[3]. This is achieved by regulating the target
vehicles to operate at desired speed under specific traffic
conditions. Since the pioneering work in PATH project [4],
[5] in California, many research topics have been studied, such
as control policy [6], information flow topology [7], vehicle
dynamics model [8], and homogeneity and heterogeneity [9].
Relative advanced control methods are developed with many
successful applications [10]–[12].

Although considerable success has been achieved, chal-
lenges remain on the road toward safe and efficient platoon-
ing, such as uncertainty in vehicle dynamics [13], [14] and
vehicle-to-vehicle (V2V) communications [15], [16]. Uncer-
tainty could be from vehicle operation (time lag, mechanical
efficiency, etc.), outside environment (road friction, air drag,
etc.), and communication delay or packet drop, which may un-
dermine the controller performance. Considering uncertainty
is critical in controller design for successful platooning with
guaranteed performance.

Model Predictive Control (MPC) [17] is an advanced con-
trol method and has been applied to diverse applications
including vehicle platooning, with demonstrated exceptional
performance [18], [19]. Based on the current status, MPC
repeatedly solves an open loop Optimal Control Problem
(OCP) along the prediction horizon at every time instant.
However, MPC, which also is called nominal MPC, uses
a deterministic approach without taking the uncertainty into
account. The deterministic approach may be inadequate to deal
with real situations since uncertainties always exist.

Robust MPC (RMPC) [20] is one type of MPC to handle
uncertainty to improve control performance. RMPC uses min-
max OCP formulation [15], [16] to minimize the worst case in
all possible outcomes to ensure the control performance. For
example, the study in [16] uses RMPC to address uncertainty
in the dynamics model and V2V communications, which
shows that RMPC outperforms the nominal MPC for the
platooning task. This approach, however, has three drawbacks:
1) the control policy could be over-conservative or even
possibly infeasible since the worst case rarely happens [21];
2) finding the worst case introduces an additional computa-
tional cost that could be expensive, especially when multiple
parameters exist; 3) RMPC assumes that the uncertainties are
characterized by bounded distributions with finite outcomes,
which is different from the probabilistic nature in the real
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world. Using a probabilistic approach is more natural and
realistic to characterize the uncertainties in control design.

Stochastic MPC (SMPC) [22] treats uncertainties in a proba-
bilistic approach, thereby having a larger feasible design region
without over-conservative issues compared to RMPC. Ju et
al. [23] proposed a distributed SMPC (DSMPC) algorithm
with recursive feasibility. The Monte Carlo Simulation (MCS)
results show that DSMPC has a better average performance
than distributed RMPC (DRMPC).

Apart from the MPC-based controllers, other advanced
control strategies [24]–[26] are developed to improve the
control performance in platooning. For example, an adaptive
platooning strategy was proposed to account for bidirectional
interaction of vehicles and engine cohesiveness in hetero-
geneous platoons with uncertainty [27]. A fully distributed
event-triggered controller under intermittent communication
was developed by Wu et al. [28]. And a distributed H-infinity
control method was introduced in [29] for a multi-vehicle
system considering dynamics model uncertainty.

Another method for design under uncertainty is Taguchi’s
robust design [30]. It has many successful applications in many
fields [31]–[35] and can potentially improve the platooning
control further. Taguchi’s robustness minimizes the influence
of uncertainty without eliminating its sources. The main idea
is to balance the average control performance and its variation
such that the controller is capable to handle different situations
with smaller performance variations.

In [36], we proposed a preliminary concept regarding a new
control strategy integrated with Taguchi’s robustness. Now,
we extend the novel control strategy with detailed algorithm
formulation and comparison studies in this work. The main
contributions are summarized below.
• A novel control strategy, TR-DSMPC, is proposed that

combines Taguchi’s robustness strategy and distributed
SMPC to ensure both robustness and reliability.

• An approximation method called the First Order Second
Moment (FOSM) [37] is used for uncertainty propaga-
tion. FOSM is far more efficient than Monte Carlo-based
sampling methods [38]. Hence, the computational cost of
the proposed approach is significantly reduced.

• Uncertainty in different road conditions is modeled by
stochastic processes for vehicle control. This approach
provides a more realistic and natural way to model road
conditions that vary randomly and spatially.

The remainder of this paper is organized as follows. The
control problem to be studied is formulated in Section II,
including vehicle dynamics, information topology, FOSM, and
Taguchi’s robustness. The uncertainty modeling methods and
the proposed optimization model are introduced in Section
III. Numerical simulations and the comparison studies are
presented and discussed in Section IV. Conclusions and future
work are given in Section V.

II. PROBLEM FORMULATION

We consider a longitudinal heterogeneous vehicle platoon as
the application scenario as shown in Fig. 1. The platoon task
includes N + 1 vehicles (nodes), a leading vehicle (numbered

by 0) and N followers (numbered by 1, . . . , N ). A nonlinear
longitudinal dynamic model is utilized to characterize the
vehicle dynamic motions. The platoon uses a Predecessor Fol-
lowing (PF) topology to simulate the information flow. Other
information topologies also can be used, such as Predecessor-
leader following (PLF) topology, and Bidirectional (BD) topol-
ogy.

A. Model of Vehicle Dynamics

Each vehicle in the platoon is controlled with its own
state (position, velocity, torque, etc.) and control signal with
constraints. The vehicle longitudinal dynamics is characterized
by a discrete time state-space representation shown below.


si(k + 1) = si(k) + vi(k)∆t

vi(k + 1) = vi(k) + ∆t
mi

(
ηiTi(k)
ri
− Caivi(k)2 −migfi

)
Ti(k + 1) = Ti(k) + ∆t

τi
(ui(k)− Ti(k))

(1)
where si, vi, Ti represent the position, velocity, and torque
of the i-th vehicle, respectively; mi, ri are the mass and tire
radius of the i-th vehicle, respectively; and ηi, Cai , fi, and
τi are the mechanical efficiency coefficient, aerodynamic drag
coefficient, rolling friction coefficient, and inertial time lag of
the i-th vehicle, respectively, which are uncertain parameters
and influence the state of vehicles; ui is the control input of
the i-th vehicle; and g is the gravitational acceleration. We
simplify Eq. (1) as

xi(k + 1) = Aixi(k) +Biui(k) + ψi (2)

where xi = (si, vi, Ti)
T, and

Ai =

 1 ∆t 0

0 1− Cai
vi(k)∆t

mi

ηi∆t
miri

0 0 1− ∆t
τi

 (3)

Bi =

 0

0
1
τi

 (4)

ψi =

 0

−gfi∆t
0

 (5)

Then the heterogeneous platoon dynamics model can be
represented by

X(k + 1) = AX(k) +BU(k) + Ψ (6)

where X = (x1; ...;xN ) ∈ R3N×1, U = (u1, . . . ,uN )T,
A = diag(A1, . . . , AN ) ∈ R3N×3N , B =
diag(B1, . . . , BN ) ∈ R3N×N , and Ψ = (ψ1; . . . ;ψN ) ∈
R3N×N .
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Fig. 1. Longitudinal heterogeneous platooning with information flow. Vehicles are controlled by their controllers, separately, to maintain safe and efficient
platooning. Vehicles communicate according to the designed information topology.

B. Information Flow

The algebraic graph is utilized to describe information
flow topology [39]. A Laplacian matrix and a pinning matrix
are developed to describe the topology mathematically. The
Laplacian matrix L depicts the communication directions
among followers, which is defined as

L = [lij ] ∈ RN×N , lij =

{
−αij , if j 6= i∑N
r=1,r 6=i αir, if k = i

(7)

where αij = 1 if the follower i receives information from fol-
lower j; otherwise, αij = 0. The pinning matrix P represents
the communication between the leader and followers, which
is defined by

P = diag (p1, . . . , pN ) ∈ RN×N (8)

where pi = 1 if the follower i receives information from the
leader; otherwise, pi = 0. The above matrices vary according
to different topologies. PF topology is used in this work.

C. The First-Order Second Moment (FOSM)

FOSM [37] is an approximation method to propagate the
uncertainty from the input space to the output space. It is
based on the performance function simplified by the first-order
Taylor expansion. We denote the performance function by

Y = g(Z) (9)

where Z = (Z1, . . . , Zn)
T is a vector to represent input

random variables, Y is the model response. Then, we linearize
Eq. (9) by the first order Taylor expansion at the means of
input random variables. The linearized performance function
is given by

Y = g(Z) ≈ g (µZ) +∇g (µZ) · (Z − µZ) (10)

where µZ is a vector to represent the means of variables. The
mean performance (µY ) is obtained by substituting µZ into

Eq. (10). The random variables in this study are assumed to
be independent; therefore, the variance of the response σ2

Y is
given by

σ2
Y =

n∑
l=1

(
∂g

∂Zl

)2
∣∣∣∣∣
µz

σ2
Zl

(11)

In this work, FOSM is used for uncertainty quantification
of vehicle dynamics instead of sampling-based methods (e.g.,
Monte Carlo method) to reduce the computational cost.

D. Taguchi’s Robustness

As shown in Fig. 2, Taguchi’s robustness minimizes the ef-
fects of uncertainty in the design objective without eliminating
the source of uncertainty. As a result, the design is insensitive
to uncertainty. High robustness is obtained by changing the
nominal values of design variables.

Using the notion of Taguchi’s quality loss [30], we consider
robustness in a broader sense: maximize the insensitivity of
the response to uncertainty and their average performance.
We now illustrate the idea using a nominal-the-best type
performance. Let T r = (Tr1, . . . , Trm)

T be the design targets,
and the quality loss function is defined as

L(Y ) =
m∑
i=1

wi (Yi − Tri)2 (12)

where wi is a weighting factor determined by the cost. This
quality loss consideration is the same as the loss function in
MPC [17] and SMPC [23].

The quality loss L(Y ) is a random variable. Taguchi’s
robustness is achieved by introducing another term in the
traditional quality loss function. The modified loss function
is given by

EL(Y ) =
m∑
i=1

wi

[
(µYi − Tri)

2
+ σ2

Yi

]
(13)
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Fig. 2. The concept of Taguchi’s robustness. (a) Quality loss function. (b) Robustness illustration. The robustness is achieved by balancing the mean target
and its variation.

where EL(Y ) is the expected quality loss; µYi
and σ2

Yi
are

defined in Section II-C.
Minimizing Eq. (13) can bring the mean performance to

the target and reduce the variation of the performance, which
offers a balance between the mean performance and its varia-
tion. We modify the MPC cost function based on the idea to
improve the controller performance under uncertainty.

III. DISTRIBUTED SMPC WITH TAGUCHI’S ROBUSTNESS
(TR-DSMPC)

The control objective is to enable the followers to track the
leader with the desired gap between any adjacent vehicles. A
constant spacing policy (di−1,i = d0) is applied in this work,
where d0 is a predefined constant. The uncertainty considered
in this work are from two parts, 1) vehicles: the mechanical
efficiency coefficient (ηi) and inertial time lag (τi); 2) outside
environment: aerodynamic drag coefficient (Cai ) and rolling
friction coefficient (fi). PF topology is used to simulate the
information flow as mentioned before. The uncertainty from
vehicle communications is not considered in this work. Next,
we introduce the methods for uncertainty modeling, the objec-
tive function formulation, and the constraints of optimization.

A. Uncertainty Modeling

The uncertainty of the parameters is considered in two ways
in this work, time-independent and time-dependent uncer-
tainty. Time-independent means that the parameter is constant
over time. This simplified consideration is implemented in
the current vehicle control design [16], [23]. However, the
parameters are not always time-independent as studied in [40],
[41]. For example, the friction factor changes along different
locations of a road. The location or displacement is related to
velocity and additionally to time. The vehicle state varies over
time. Therefore, it is better to use time-dependent uncertainty.

Time-dependent uncertainties are modeled by stochastic
processes. The values of the process at two time instants are
correlated with respect to the distance (or time). The closer are

the two points in a road, the stronger is their correlation. We
employ stochastic processes (or called random fields) [42] to
simulate the road condition related parameters, such as friction
factor and air drag coefficient. The correlation between any
arbitrary points t1 and t2 is described by an auto-correlation
function (squared exponential kernel) that is defined by

ρ1,2 = exp

{
−
(
|t1 − t2|
θt

)2
}

(14)

where θt is the correlation length along time.
In this work, we assume that the parameter uncertainties are

Gaussian random fields. Then, the truncated Karhunen-Loeve
(K-L) expansion [43] is utilized to generate the samples or
functional data. The K-L expansion is given by

H(t) = µ(t) +
M∑
i=1

√
λiϕi(t)ξi (15)

where µ(t) is the mean function of the random field; λi and ϕi
are the eigenvalues and eigen-functions of the auto-correlation
function in Eq. (14); ξi is a group of independent standard
normal variables; and M is the truncation number. When µ(t)
is a constant that does not change with time, the random field
is a stationary random field. In Section IV, we will provide
two simulations that consider uncertainty as time-independent
and time-dependent, respectively.

B. Objective Function

Similar to MPC, TR-DSMPC predicts the future behavior
along a horizon (Np) at each sampling time based on the
current vehicle state. The optimal control signal is obtained by
iteratively solving a local optimization problem in a sequence
of time instances. With the availability of the current plant
state (Xp(k) = (xp,1(k); . . . ;xp,N (k))

T ∈ R3N×1), we
have the predicted control signal (up,i(k + j + 1)) after local
optimization, and the predictions along prediction horizon
are obtained, which are denoted by Xp(k + j + 1), where
j = 0, . . . , Np−1.
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Before introducing the objective function, we first define
some terms which are used to formulate the optimization
objective. The state of the leading vehicle is defined as
x0(t) = (s0(t), v0(t), T0(t))

T which is known. The desired
state that the followers aim to track at instant k is denoted by
xd,i(k) = [sd,i(k), vd,i(k), Td,i(k)]

T. And we have the desired
control signal ud,i(k) = Td,i(k). Then, the desired state for
each follower is obtained by

sd,i(k) = s0(k)− id0

vd,i(k) = v0(k)

Td,i(k) = Caiv0(k)2 +migfi

(16)

Another term is the assumed state, xa,i(k) =

[sa,i(k), va,i(k), Ta,i(k)]
T which is obtained from the

previous prediction of local optimization of the vehicle. The
assumed state of vehicle i shifts along the time instances
iteratively. The followers can not only track its assumed
state but also treat the assumed state of other vehicles as
the objective trajectory. In other words, all nodes can send
information to node i, but the use of information from
different nodes depends on the topology. Likewise, we have
the assumed control signal ua,i(k).

For the PF topology used in this paper, the i-th vehicle
only makes use of the information of (i − 1)-th vehicle.
We consider the control objective from three aspects that are
safety, efficiency, and control, to optimize the spacing error of
distance, the tracking error of speed, and the error of control
signal. Therefore, the first part (similar to Eq. (12)) of the
control objective of each following vehicle can be formulated
as

EJi (yi(k), ui(k)) =

Np−1∑
j=0

(
∆y2

i (k + j + 1)

+ ∆u2
i (k + j + 1) + ∆y2

a,i(k + j + 1)

(17)

where yi(k) = [si(k), vi(k)]
T, hence ∆y2

i (k + j + 1) and
∆y2

a,i(k + j + 1) represent the safety and efficiency, respec-
tively; ∆u2

i (k+ j + 1) represents the control error. We define
β = k + j + 1 and have

∆y2
i (β) =

[
yp,i(β)− yd,i(β)

]T
Qd,i

[
yp,i(β)− yd,i(β)

]
(18)

∆y2
a,i(β) =

[
yp,i(β)− ya,i(β)

]T
Wa,i

[
yp,i(β)− ya,i(β)

]
+
[
yp,i(β)− ya,i−1(β)

]T
Wn,i

[
yp,i(β)− ya,i−1(β)

]
(19)

∆u2
i (β) = [up,i(β)− ua,i(β)]

T
Ri [up,i(β)− ua,i(β)] (20)

where Qd,i ∈ R2×2, Wa,i ∈ R2×2, Wn,i ∈ R2×2, Ri ∈ R1×1

are weighting matrices or weighting factors.
Next, we derive the second part of the objective function,

the variance of ∆yi, ∆ya,i, and ∆ui denoted by σ2
∆yi

, σ2
∆ya,i

,

and σ2
∆ui

, respectively, where ∆yi =
[
yp,i(β)− yd,i(β)

]T
,

∆ya,i =
[
yp,i(β)− ya,i(β)

]T
+
[
yp,i(β)− ya,i−1(β)

]T
, and

∆ui = [up,i(β)− ua,i(β)]
T.

As mentioned in Section II-A, ηi, Cai , fi, and τi are
uncertain parameters. According to Eq. (9), we have Zi =
[Zi,1, Zi,2, Zi,3, Zi,4]

T
= [ηi, Cai , fi, τi]

T. We simplify Eq.
(1) as

yi(t) = [si (Zi, t) , vi (Zi, t)] = f (Zi, t)

= f (ηi, Cai , fi, τi, t)
(21)

Since yd,i(β), ya,i(β), ya,i−1(β) are constant, according to
Eq. (11), we have the standard deviation σ∆yi

(k) at the k-th
instance which is obtained by

σ∆yi
(k) = [σ∆si , σ∆vi ]

T

=


√√√√ 4∑

l=1

(
∂si (Zi, k)

∂Zi,l

)2

σ2
Zl
,

√√√√ 4∑
l=1

(
∂vi (Zi, k)

∂Zi,l

)2

σ2
Zl

T

(22)
The variance (σ2

∆yi
(k)) is obtained by

σ2
∆yi

(k) = [σ∆si , σ∆vi ]Qd,i [σ∆si , σ∆vi ]
T (23)

Similarly, we have

σ2
∆ya,i

(k) = [σ∆si , σ∆vi ]Wa,i [σ∆si , σ∆vi ]
T

+ [σ∆si , σ∆vi ]Wn,i [σ∆si , σ∆vi ]
T

(24)

According to Eq. (16) that ud,i(k) = Td,i(k) = Caiv0(k)2 +
migfi and Eq. (20), we have

σ2
∆ui

(k) = Riσ
2
∆ui

(k) (25)

The variation term in Eq. (13) is given by

VJi (yi(k), ui(k)) =

Np−1∑
j=0

[
w∆yi

σ2
∆yi

(k + j + 1)

+w∆ya,i
σ2

∆ya,i
(k + j + 1) + σ2

∆ui
(k + j + 1)

] (26)

where w∆yi
and w∆ya,i

are the weighting factors for σ2
∆yi

and σ2
∆ya,i

, respectively. Because σ2
∆ui

is far larger than σ2
∆yi

and σ2
∆ya,i

, weighting factors need to be applied to show the
influence of the two terms in optimization.

In summary, the weighted optimization objective is formu-
lated as

Ji (yi(k), ui(k)) = EJi (yi(k), ui(k)) + VJi (yi(k), ui(k))
(27)

C. Constraints

The constraints include control signal bounds, vehicle dy-
namics constraints, and probabilistic constraints (chance con-
straints). The control signal bounds indicate the limitation of
control inputs. The vehicle dynamics constraints are the equal-
ity constraints to ensure that vehicle dynamics is physically
feasible. And the probabilistic constraints or reliability con-
straints are applied to the terminal state of local optimization to
ensure that vehicles operate within the vicinity of a predefined
safety region.
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TABLE I
INFORMATION OF DETERMINISTIC PARAMETERS AND RANDOM PARAMETERS

Random Variables Distribution Mean Standard deviation
m1,...,7 (kg) Deterministic (2.5, 2.3, 2.0, 1.9, 1.7, 1.6, 1.5)×103 -
R1,...,7 (m) Deterministic (0.45, 0.45, 0.3, 0.3, 0.27, 0.24, 0.23) -
η1,...,7 Uniform 0.92 0.0346

CA,1,...,7(N · s2m−2) Normal (0.9, 0.9, 0.7, 0.7, 0.45, 0.45, 0.45) (0.135, 0.135, 0.105, 0.105, 0.0675, 0.0675, 0.0675)
τ1,...,7(s) Uniform 0.5 0.1732
f1,...,7 Normal 0.01 0.001

For i-th vehicle, the bounded constraints and dynamics
constraints are denoted by

ulb,i(k + j + 1) < up,i(k + j + 1) < uub,i(k + j + 1)

ẋi(j + 1) = Aixi(j) +Biui(j) + Ci

j = 0, 1, . . . , Np − 1
(28)

The probabilistic constraints of the terminal state are based
on the standard deviation of spacing error (σ∆si ), relative
velocity (σ∆vi ), and control error (σ∆ui(k)). By multiplying
the standard deviation by a scaling factor δ, the probabilistic
constraints are shown below.

−δσ∆si < si (k +Np)− sd,i (k +Np) < δσ∆si

−δσ∆vi < vi (k +Np)− vd,i (k +Np) < δσ∆vi

−δσ∆ui < Ti (k +Np)− Td,i (k +Np) < δσ∆ui

(29)

which means that the spacing error, relative velocity, and
control error are within the 2δ standard deviation of the desired
state.

D. Optimization Formulation

With the objective function and constraints discussed above,
we have the proposed optimization model for each vehicle as
follows:

min
Ui

Ji (yi(k), ui(k))

s.t. ulb,i(k + j + 1) < up,i(k + j + 1) < uub,i(k + j + 1)

ẋi(j + 1) = Aixi(j) +Biui(j) + Ci

− δσ∆si < si (k +Np)− sd,i (k +Np) < δσ∆si

− δσ∆vi < vi (k +Np)− vd,i (k +Np) < δσ∆vi

− δσ∆ui
< Ti (k +Np)− Td,i (k +Np) < δσ∆ui

j = 0, 1, . . . , Np − 1
(30)

In summary, the proposed method (TR-DSMPC) can be
viewed as an extension of SMPC. Different from SMPC,
TR-DSMPC incorporates Taguchi’s robustness in the control
objective that maximizes the mean performance and minimizes
its variations. The robustness of the proposed method is to
maximize the mean performance and minimize the variation
of the performance, which is different from the robustness of
RMPC that minimizes the worst case. Besides, TR-DSMPC
employs an approximation uncertainty quantification method
(FOSM), which is far more efficient than Monte Carlo based
sampling methods that classical SMPC employs. Next, we use
two simulations to illustrate the control effect of TR-DSMPC.

IV. NUMERICAL SIMULATION

In this section, we provide two simulations to evaluate the
performance of TR-DSMPC. Both two simulations contain
one leading vehicle (numbered by 0) and seven followers
(numbered from 1 to 7) under PF topology. The desired space
(d0) between any two adjacent vehicles is 20 m. In other
words, the distance from the rear end of the preceding vehicle
to the front end of the following vehicle is designed to be 20
m. The detailed settings of the two simulations are as follows.
• The whole simulation time is 48 s with the simulation

time step of 0.2 s;
• The leading vehicle starts with an initial speed of 25

m/s, and it decelerates from 3 to 5 s with −4 m/s2 and
accelerate from 27 to 35 s with 1 m/s2;

• The initial velocity of all followers is 30 m/s, and the
initial spacing error between any adjacent vehicles are 0
m;

• The maximum and minimum acceleration for all follow-
ers are 1.5 m/s2 and −8 m/s2, respectively.

Fig. 3. An illustration of performance variation under uncertainty. It includes
random spacing errors of Follower 1 from 100 simulations with 100 samples
of random parameters. It shows the variation of controller performance due
to uncertainty.

Using the same scenario, we compare TR-DSMPC with
nominal distributed nominal MPC (DMPC) and distributed
stochastic MPC (DSMPC) for the two simulations. A predic-
tion horizon length (Np) needs to be determined for all of
the three methods. It is revealed that the computational cost
increases with the increasing of prediction horizon [44], [45].
For TR-DSMPC and DSMPC, we found that Np = 10 is
good enough to fulfill the control objective. However, DMPC
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Fig. 4. Means and standard deviations of spacing errors of followers with random variables. SE - spacing error; Std - standard deviation; F1–F7: Followers
1 to 7. The results are obtained from 100 control simulations.

needs a minimum prediction horizon of 20; namely, Np = 20.
Hence, we use Np = 10 for TR-DSMPC and DSMPC and
Np = 20 for DMPC.

Due to the randomness of the model parameters, we exe-
cute the control task using Monte Carlo Simulation (MCS)
with a sample size of 100 to assess the performance of
different methods. As mentioned in Section II-A, the random
parameters include the mechanical efficiency coefficient (ηi),
aerodynamic drag coefficient (Cai ), rolling friction coefficient
(fi), and inertial time lag (τi). Their distributions and other
model parameters are provided in Table I.

Next, we discuss the details of the two simulations and the
results.

A. Time-independent randomness

In this simulation, we treat the uncertainty as time-
independent, which means that the parameters are constant

over time. The 100 MCS samples are randomly generated
from the distributions of the parameters. The randomness of
the parameters is propagated to the vehicle state (position,
velocity, and torque), which leads to performance fluctuation
of the controllers.

We evaluate the controller performance from two aspects,
safety (spacing error) and efficiency (relative velocity). The
spacing error (SE) of Follower 1 is presented in Fig. 3 from
the 100 MCS samples. It is shown that the spacing error curves
vary with different values of the uncertain parameters. The
different values represent different road conditions during the
platooning task. We obtain similar results of relative velocity
(RV) for other followers using other control methods (DMPC,
DSMPC). To better show the difference of the methods, we
provide the statistical properties (mean and standard deviation)
in terms of SE and RV along time to assess the performance
of different methods.
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TABLE II
MAXIMUM AND AVERAGE OF STATISTICAL PERFORMANCE FOR SIMULATION 1.

Follower Methods Spacing Error (m) Relative velocity (m/s)

Mean Std Mean Std

Average Max Average Max Average Max Average Max

1 DMPC 0.3169 5.1453 0.1308 0.4150 0.3144 5.0 0.0407 0.3439
DSMPC 0.2079 3.9658 0.0974 0.5767 0.2583 5.0 0.0477 0.7088

TR-DSMPC 0.2377 3.9751 0.0752 0.5569 0.2647 5.0 0.0453 0.6772
2 DMPC 0.0939 0.7094 0.1565 0.4906 0.0401 0.6917 0.0510 0.4443

DSMPC 0.1029 1.8674 0.1044 0.6129 0.0956 1.6206 0.0546 0.7764
TR-DSMPC 0.1268 1.8731 0.0944 0.5892 0.0908 1.6499 0.0571 0.7295

3 DMPC 0.0923 0.9107 0.1692 0.6793 0.0460 0.9119 0.0618 0.6169
DSMPC 0.1237 1.7087 0.1039 0.6524 0.0818 1.2571 0.0594 0.7826

TR-DSMPC 0.1408 1.7355 0.1036 0.6214 0.0845 1.2375 0.0676 0.7483
4 DMPC 0.1021 1.2009 0.1671 0.6630 0.0560 1.0958 0.0626 0.6491

DSMPC 0.1450 1.6670 0.1209 0.6321 0.0843 1.2023 0.0742 0.7518
TR-DSMPC 0.1485 1.6258 0.1076 0.5475 0.0841 1.1727 0.0834 0.6919

5 DMPC 0.1285 1.7713 0.1774 0.9524 0.0774 1.3873 0.0801 0.9038
DSMPC 0.1734 1.9551 0.1311 0.9066 0.1010 1.2388 0.0962 0.9177

TR-DSMPC 0.1946 2.0354 0.1695 0.7766 0.1133 1.2833 0.1344 0.8586
6 DMPC 0.1379 1.9507 0.2111 1.2898 0.0919 1.4281 0.120 1.1396

DSMPC 0.2158 2.0790 0.2004 1.0535 0.1242 1.1925 0.1353 0.9804
TR-DSMPC 0.2239 2.0034 0.2303 1.0119 0.1327 1.1884 0.1788 0.9050

7 DMPC 0.3028 2.4295 0.5128 2.8870 0.1685 1.5240 0.2452 1.4290
DSMPC 0.3057 2.1530 0.3575 2.0190 0.1641 1.2230 0.2047 1.0563

TR-DSMPC 0.3472 2.1306 0.4639 2.4693 0.1786 1.2504 0.2723 0.9294

Fig. 5. Mean spacing error tracking of seven followers under time-
independent randomness assumption.

The spacing errors of seven followers are shown in Fig.
4. DMPC has a good performance on the mean spacing
error, but its standard deviation is larger than DSMPC in
general, especially for Follower 7. TR-DSMPC has a similar
mean performance in spacing error with DSMPC with smaller
variation than DSMPC, except for Follower 7. We have similar
results for relative velocity which are not provided in the
paper for space consideration. To better show the difference of
different methods, we provide the maximum value of mean and
standard deviation of spacing error, average value of mean and
standard deviation of spacing error, maximum value of mean
and standard deviation of relative velocity, average value of
mean and standard deviation of relative velocity in Table II.

The bold numbers represent the better performance of the

Fig. 6. Mean velocity tracking of seven followers under time-independent
randomness assumption.

proposed method compared with other methods. According
to Table II, Follower 1 has improvement in both safety and
efficiency. Both the average of standard deviations for spacing
error and relative velocity are decreased, especially for the
spacing error (0.0752), although the average of mean spacing
error increases to 0.2377 compared with DSMPC. TR-DSMPC
for Followers 2–4 has a smaller average value for the standard
deviation of spacing error compared with other methods. And
only the maximum values either for spacing error or relative
velocity are smaller than other methods for Followers 5–7.
Overall, TR-DSMPC for Follower 1 has the most significant
improvement.

The tracking performance of TR-DSMPC in terms of mean
spacing error and mean velocity of all followers are provided
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Fig. 7. The optimization objective (cost) over time for different methods under time-independent randomness assumption. The loss of all methods are from
two parts, the mean performance and its variance.

TABLE III
MEAN COST AT TWO TIME PERIODS FOR SIMULATION 1

Follower Mean cost (×107)

15–27 s 38–48 s

DMPC DSMPC TR-DSMPC DMPC DSMPC TR-DSMPC
1 5.547 4.421 0.251 7.911 7.939 0.450
2 3.816 2.915 0.155 6.926 6.953 0.396
3 2.960 2.254 0.213 5.676 5.738 0.369
4 2.783 2.277 0.345 6.210 6.330 0.484
5 1.906 1.589 0.699 3.540 3.616 0.530
6 1.830 1.651 0.887 3.904 4.0 0.612
7 1.876 1.743 1.130 4.381 4.513 0.858

Fig. 8. An example of time-dependent randomness. The figure shows five
possibilities that the rolling friction factor varies at different locations on a
road.

in Figs. 5 and 6. It is shown that all followers can successfully
track the behavior of the leading vehicle by maintaining ideal
spacing and velocity upon steady state from around 15–27 s
and 38–48 s.

Except for the mean spacing error, we also provide the
mean cost of the optimization objective for different methods
in Fig. 7. DMPC and DSMPC only minimize the cost of mean
performance. TR-DSMPC minimizes the cost of both the mean
performance and its variation. After the control optimization
is finished, we add the cost induced by the their variations
to the objective of DMPC and DSMPC, so that we compare
the cost for different methods using the same scale. From Fig.
7, TR-DSMPC has the best performance by minimizing the
cost of mean performance and its variation for all vehicles.
As mentioned previously, the vehicles are in steady state from
15–27 s and 38–48 s. We compare the average of the mean
cost quantitatively for the two time periods in Table III. The
cost for TR-DSMPC decreases significantly at the two steady
periods.

B. Time-dependent randomness

In the second simulation, we consider more realistic uncer-
tainties, the time-dependent uncertainty. Specifically, aerody-
namic drag coefficient (Cai ) and rolling friction coefficient (fi)
are modeled by stochastic processes. The other two parameters
are still random variables. The stochastic processes are used to
generate samples with the squared exponential kernel function
as discussed in Section III-A. We set the term µ(t) in Eq. (15)
as a constant so that the stochastic processes are stationary.
The generated five samples for fi are shown in Fig. 8.
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Fig. 9. Means and standard deviations of spacing errors of followers with random process. The results are obtained based on 100 control simulations.

Fig. 10. Mean spacing error tracking of seven followers under time-dependent
randomness assumption.

Fig. 11. Mean velocity tracking of seven followers under time-dependent
randomness assumption.
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TABLE IV
MAXIMUM AND AVERAGE OF STATISTICAL PERFORMANCE FOR SIMULATION 2

Follower Methods Spacing Error (m) Relative velocity (m/s)

Mean Std Mean Std

Average Max Average Max Average Max Average Max
1 DMPC 0.3109 5.1444 0.1252 0.4028 0.3165 5.0002 0.0474 0.3435

DSMPC 0.210 3.9979 0.0948 0.5576 0.2597 5.0002 0.0545 0.7024
TR-DSMPC 0.2330 4.0115 0.0759 0.5629 0.2669 5.0002 0.0507 0.7227

2 DMPC 0.0927 0.5862 0.1434 0.5330 0.0364 0.6570 0.0565 0.4739
DSMPC 0.0966 1.6836 0.0959 0.6303 0.0879 1.4395 0.0590 0.7928

TR-DSMPC 0.1088 1.6778 0.0871 0.6002 0.0814 1.4684 0.0580 0.7651
3 DMPC 0.1449 0.8857 0.1652 0.6127 0.0508 0.8939 0.0645 0.5654

DSMPC 0.1686 1.6943 0.1057 0.6747 0.0806 1.3382 0.0672 0.7490
TR-DSMPC 0.1946 1.7005 0.1047 0.5931 0.0848 1.2920 0.0690 0.6890

4 DMPC 0.1845 1.2599 0.1752 0.6308 0.0653 1.1295 0.0684 0.5564
DSMPC 0.2249 1.6680 0.1059 0.6346 0.0824 1.1845 0.0716 0.6291

TR-DSMPC 0.2189 1.6307 0.1134 0.5631 0.0850 1.1310 0.0838 0.5931
5 DMPC 0.3820 1.4002 0.2082 0.8695 0.0779 1.1974 0.0906 0.8018

DSMPC 0.2959 1.4944 0.1402 0.7705 0.0854 1.0812 0.0969 0.7727
TR-DSMPC 0.3430 1.5849 0.1861 0.6276 0.0980 1.0924 0.1234 0.6863

6 DMPC 0.4701 1.4258 0.2546 1.2467 0.0790 1.0971 0.1152 1.0965
DSMPC 0.3642 1.3454 0.2458 0.9578 0.0897 0.9172 0.1394 0.8675

TR-DSMPC 0.3742 1.3320 0.2281 0.7248 0.0941 0.9164 0.1503 0.6850
7 DMPC 0.6082 1.5853 0.4179 1.5976 0.1107 1.1159 0.1865 1.2410

DSMPC 0.4281 1.2951 0.2773 1.0506 0.1011 0.8784 0.1604 0.8722
TR-DSMPC 0.4129 1.3132 0.2678 0.8514 0.1082 0.9699 0.1708 0.7499

TABLE V
MEAN COST AT TWO TIME PERIODS FOR SIMULATION 2.

Follower Mean cost (×107)

15–27 s 38–48 s

DMPC DSMPC TR-DSMPC DMPC DSMPC TR-DSMPC
1 5.570 4.458 0.253 7.902 7.925 0.448
2 3.864 2.954 0.158 6.920 6.952 0.393
3 2.954 2.340 0.228 5.973 6.018 0.421
4 2.690 2.393 0.278 6.709 6.668 0.498
5 2.068 1.971 0.504 5.720 5.033 0.610
6 2.539 2.351 0.536 9.167 7.225 0.839
7 3.490 2.927 0.725 14.045 10.175 1.316

Similarly, the mean spacing errors and their standard devi-
ations are provided in Fig. 9. The uncertainty consideration is
more complex than the previous simulation. The mean spacing
errors of DMPC increase from Followers 1 to 7 after conver-
gence. The standard deviations of DMPC are larger than TR-
DSMPC and DSMPC in general. TR-DSMPC has a similar
mean performance to DSMPC. The variations of spacing error
for Followers 1–3 decrease, however, the differences from the
figure for Followers 4–7 are subtle. Similarly, the figure for
relative velocity is voided for space consideration.

Likewise, Table IV is provided to show the subtle difference
between different methods. Overall, Follower 1 has the most
significant improvement by TR-DSMPC. TR-DSMPC has the
lowest average standard deviation of spacing error (0.0759)
that decreased around 20% compared with DSMPC, and its
average value of mean spacing error only increases a bit. The
average value of mean relative velocity is smaller than DMPC
but slightly larger than DSMPC, and the average value of
its standard deviation is smaller than DSMPC but larger than
DMPC. Spacing error and relative velocity represent the safety
and efficiency of platooning, respectively. Therefore, we see

that Follower 2 has improvement in both safety and efficiency,
specifically, lower average standard deviation than other meth-
ods. As for Followers 3–7, the main improvement is in safety
with either smaller average values of the mean spacing error
or smaller average values of its standard deviation.

The tracking performance (mean spacing error and mean
velocity) of TR-DSMPC for all followers is shown in Figs.
10 and 11. The mean spacing errors are with small errors
for Followers 4–7 after convergence, because of the complex
uncertainty consideration. All followers can track the speed of
the leading vehicle well.

The mean cost for different methods in this simulation has
the similar pattern to the cost in the previous one. We avoid
the cost figure for the example. A mean cost table (Table
V) at the two steady periods is given below. TR-DSMPC
still outperforms DMPC and DSMPC for the more complex
uncertainty consideration.

TABLE VI
COMPARISON OF THE COMPUTATIONAL COST OF DIFFERENT METHODS

FOR TWO SIMULATIONS.

Simulation Method Computation time (s)
Time-independent randomness DMPC 118.59

DSMPC 206.55
TR-DSMPC 403.66

Time-dependent randomness DMPC 118.59
DSMPC 206.55

TR-DSMPC 403.66

For a fair comparison, we also provide the computational
complexity of different methods in terms of computation time
for both simulations in Table VI. The proposed method needs
more computational time due to a more complex objective
function.

Moreover, we tested two additional cases with the two
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uncertainty modeling methods. One includes four followers
with random initial spacing errors, and the other includes
10 followers with both random initial spacing errors and
random initial velocities. Therefore, we have four additional
simulations in total. The simulation results are consistent with
the results above.

V. CONCLUSIONS

In this paper, we proposed a new control methodology (TR-
DSMPC) for longitudinal heterogeneous vehicle platooning
by introducing Taguchi’s robustness into distributed stochastic
model predictive control. The first order second moment
(FOSM) was used for uncertainty quantification, which is
far more efficient than Monte Carlo-based methods. The
simulation results showed that TR-DSMPC can successfully
reduce the performance variations by maintaining the mean
performance. The cost comparison between different methods
showed that the robustness is improved by minimizing the
mean performance and its variation. The reason that the im-
provement is not significant for some vehicles can be explained
follows:
• The PF topology may not be perfect for this platooning

task. The evidence is as follows: 1) Follower 1 that
receives information from the leading vehicle has a
significant improvement, and 2) Other followers that do
not receive information from the leading vehicle have a
much smaller improvement.

• Robust design has a better performance for nonlinear
models than linear models. The performance could be
significantly improved if a model has a higher non-
linearity.

Reliability consideration in this work is to force vehicles
operating within a pre-defined range centered at the target
state. The range size depends on uncertainty of the vehicle
state. We can also use a threshold of spacing error or other
criteria to determine the vehicle is safe or not. The state
variables are assumed to be independent.

One future research direction is to study the influence of dif-
ferent information flow topology on control performance. It is
also interesting to investigate the performance of TR-DSMPC
for more complex application scenarios (e.g. platooning with
both longitudinal and lateral motions). At last, the uncertainty
from vehicle communications and the dependency between
state variables can be considered and incorporated into our
proposed approach.
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