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Abstract 

When limit-state functions are highly nonlinear, traditional reliability methods, such as the first 

order and second order reliability method, are not accurate. Monte Carlo simulation (MCS), on the 

other hand, is accurate if a sufficient sample size is used, but is computationally intensive. This 

research proposes a new system reliability method that combines MCS and the Kriging method 

with improved accuracy and efficiency. Accurate surrogate models are created for limit-state 

functions with the minimal variance in the estimate of the system reliability, thereby producing 

high accuracy for the system reliability prediction. Instead of employing global optimization, this 

method uses MCS samples from which training points for the surrogate models are selected. By 

considering the autocorrelation of a surrogate model, this method captures the more accurate 

contribution of each MCS sample to the uncertainty in the estimate of the serial system reliability 

and therefore chooses training points efficiently. Good accuracy and efficiency are demonstrated 

by four examples. 
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1. INTRODUCTION 

With the increasing complexity of engineering systems, the cost of system failures may also 

increase. In order to maintain low lifecycle cost and avoid tragic system failures, it is vital to 

predict the system reliability accurately in the design process. System reliability is the probability 

that a system performs its intended function without failures under given working conditions. With 

the system reliability available, designers can make more reliable decisions on maintenance plans, 

warranty policies, and cost assessment [1, 2].  

In general, system reliability methods are classified into two major groups: analytical methods 

and sampling-based methods. The most popular analytical methods are the First and Second Order 

Reliability Methods (FORM and SORM) [3-6], which employ a first and second order 

approximation, respectively, to a limit-state function in the vicinity of the Most Probable Point 

(MPP). But for limit-state functions that are not linear or quadratic, significant errors could be 

introduced by FORM and SORM. Both methods may also produce larges errors if multiple MPPs 

exist. 

Higher accuracy can be achieved by sampling-based methods. They include Monte Carlo 

simulation [7] and importance sampling [8-13]. MCS is widely used due to its easy implementation 

and high accuracy if a sufficiently large number of samples is used. MCS can deal with problems 

with almost any level of nonlinearity, but the computational cost is extremely high if reliability is 

high. Importance sampling methods could be used to reduce the computational cost because they 

generate more samples in the failure region. Most importance sampling methods require the MPP 

to center the sample distributions at the MPP. For a large-scale problem, searching for the MPP is 

expensive, and this reduces the efficiency of importance sampling. 
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In addition to the above two groups of methods, surrogate-based methods are increasingly used 

due to their ability of reducing computational cost by creating surrogate models, or meta-models 

[14, 15]. A surrogate model is a computationally inexpensive model created to substitute the 

original expensive limit-state function. The goal of metamodeling is to make the surrogate model 

accurate at an affordable computational cost. The general process of metamodeling starts with 

generating a small number of initial sample points (training points or TPs) by Design of 

Experiments (DOE) [16]. Based on these samples, an initial surrogate model is built by a 

metamodeling technique. Then more TPs are added to improve the accuracy of the surrogate model. 

Learning functions are employed to select the best TPs intelligently and the surrogate model is 

refined in a most efficient manner. 

Popular metamodeling techniques include the polynomial response surface method [17, 18], 

neural networks [19-21], support vector machines [22-24], polynomial chaos expansion [25], 

Kriging [26-28], etc. Kriging method could be used for interpolation. The prediction of an existing 

training point produces the exact value of the response at the point. Besides, due to its stochastic 

characteristics, Kriging provides not only the prediction of an untried point, but also the variance 

of the prediction. The variance indicates the uncertainty of the prediction. Based on Kriging, Jones 

et al. developed the Efficient Global Optimization (EGO) method [29]. EGO uses the Expected 

Improvement Function (EIF) to achieve a good balance between exploiting areas of the design 

space where good solutions have been found, and exploring the design space where the uncertainty 

is high. Later, Bichon et al. proposed the Efficient Global Reliability Analysis (EGRA) [30] and 

extended it to system reliability prediction with multiple failure modes [31]. The latter method is 

call EGRA-SYS. The method uses the Expected Feasibility Function (EFF) to choose new TPs in 

the vicinity of the limit state and helps build an accurate surrogate model with less function 
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evaluations. EGRA needs global optimization to find the optimum training point. Recently, Echard 

et al. proposed an active learning method to avoid global optimization. The method takes 

advantage of Kriging and Monte Carlo simulation (AK-MCS) [32], which chooses new TPs from 

a pre-sampled MCS population. As a result, no global optimization is needed. Fauriat and Gayton 

then applied AK-MCS to system reliability analysis [33]. 

The above methods make the Kriging predictions without exploiting the covariance between 

pairs of given points. We referred to them as Independent Kriging Methods (IKM). As a matter of 

fact, the predictions from Kriging are realizations of a Gaussian process and therefore are 

dependent on one another. Considering the dependence could further improve the efficiency and 

accuracy of the active learning methods, Zhu and Du proposed a reliability method with MCS and 

dependent Kriging predictions, called Dependent Kriging Method (DKM) [34]. Accounting for 

dependence between Kriging predictions and focusing directly on the accuracy of reliability 

estimation, DKM achieves better accuracy and efficiency.  

DKM is applicable only for component reliability analysis. The objective of the present study 

is to extend DKM to system reliability analysis. The contributions of this study include the 

following: (1) the extension of the component DKM to system problems so that multiple failure 

modes can be considered, (2) a new learning function that uses selected candidate points to relieve 

the computational burden greatly without jeopardizing the accuracy of reliability estimation, and 

(3) the development of a numerical procedure allows for accurate system reliability prediction at 

an affordable cost. 

 Since the proposed method is based on Kriging and DKM, we briefly review them in Section 

2. In Section 3, the dependent Kriging method for systems (DKM-SYS) is explained in detail. 
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Section 4 provides four examples to illustrate the implementation process and the effectiveness of 

the new method. Conclusions are made in Section 5. 

2 LITERATURE REVIEW 

In this work, the component reliability is defined by 

 Pr{ ( ) 0}R y g= = >x   (1) 

where y is a component response and x  is a random vector. If 0y > , the failure mode does not 

occur; otherwise, the failure occurs.  

Next we herein review the methods that are needed by the proposed method.  

2.1 Kriging method 

Kriging is an interpolation method since its prediction at an existing TP is the exact value of 

the response at the point. For a performance function ( )y f= x , Kriging considers ( )y f= x  being 

a realization of Gaussian process defined by 

 T( ) ( )G Z= +x f(x) β x   (2) 

where Tf(x) β  is a determination term for the mean response, ( )f x  is a vector of regression 

functions, and β  is a vector regression coefficient. ( )Z ⋅  is a stationary Gaussian process with zero 

mean and covariance 

 2[ ( ), ( )] ( , )i j Z i jCov Z Z Rσ=x x x x   (3)  

where 2
Zσ  is the process variance, and ( , )R ⋅ ⋅  is the correlation function. The commonly used 

Gaussian correlation is the anisotropic squared exponential model, which is given by 

 2

1
( , ) exp ( )

d

i j k ik jk
k

R x xθ
=

 = − −  
∑x x   (4)  
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where ikx  and jkx  are the k-th components of ix  and jx , respectively, d is the dimensionality of 

x , and kθ  is a parameter that indicates the correlation between the points in dimension k. Due to 

the stochastic characteristics, Kriging provides not only the prediction at an untried point but also 

the variance of the prediction. The variance indicates the uncertainty of the prediction. At an 

untried point x, the Kriging predictor ˆ ( )g x  follows a Gaussian distribution denoted by 

 2ˆ ( ) ~ ( ( ), ( ))G Gg N µ σx x x   (5) 

where ( )Gµ x  and 2 ( )Gσ x  are the prediction and its variance, respectively. They are computed by 

[26]    

 T 1ˆ ˆ( ) ( ) ( ) ( )Gµ
−= + −x f x β r x R y Fβ   (6)  

 2 2 T 1 T 1 T 1 1 T 1ˆ {1 ( ) ( ) [ ( ) ( )] ( ) [ ( ) ( )]}T
G Zσ σ − − − − −= − + − −r x R r x F R r x f x F R F F R r x f x   (7) 

in which y  is a vector of responses at the TPs, F is a m p×  matrix with rows T( )f x , m is the 

number of TPs, and ( )⋅r  is the correlation vector containing the correlation between x  and each 

of the TPs.  

 T
1 2( ) [ ( , ), ( , ),..., ( , )]mr x R R R= x x x x x x   (8) 

R  is the correlation matrix, which is composed of correlation functions evaluated at each possible 

combination of the m TPs. R  is given by 

 [ ( , )],  1 ;1i jR i m j m= ≤ ≤ ≤ ≤R x x   (9) 

β̂  is the least square estimate of β  given by  

 T 1 1 T 1ˆ ( )− − −=β F R F F R y  (10) 

and 2ˆZσ  are determined through  
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 2 T 11 ˆ ˆˆ ( ) ( )Z m
σ −= − −y Fβ R y Fβ  (11) 

The parameters kθ  are determined through the maximum likelihood estimation, details of which 

are available in Ref. [26, 27]. 

2.2 Review of AK-SYS and EGRA-SYS 

Both AK-SYS [33] and EGRA-SYS [31] are system reliability methods and are based on the 

Kriging method. Once surrogate models of all the limit-state functions are built, the two methods 

use MCS to estimate the system reliability using the surrogate models. They at first generate a 

sufficient number of sample points MCSx  by MCS and use a few initial TPs to create initial 

surrogate models. New TPs are then added one by one so that the surrogate models are continually 

updated. AK-SYS and EGRA-SYS select new TPs using the strategies in AK-MCS [32] and 

EGRA [30], respectively. AK-MCS selects a new TP with a learning function defined by  

 
( )

( )
( )

g

g

U
µ

σ
=

x
x

x
  (12) 

U  is related to the chance of making a mistake on the sign of the prediction. The smaller is U , the 

higher is the likelihood. Consequently, the sample point with the smallest U  is selected as a new 

TP. For a system with multiple components, a composite learning function *U is used by AK-SYS 

[33]  and is given by * * *( ) ( ) ( )g gU µ σ=x x x . For a series system, * ( )gµ x  is the minimal value 

among the predictions of all components at x , and * ( )gσ x  is the corresponding standard deviation. 

EGRA-SYS [31] uses a different learning function, which is called the expected feasibility 

function (EFF) and is defined by  
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* * *
*

* * *

* * *
*

* * *

*

( ) ( ) ( )
( ) ( ( ) ) 2

( ) ( ) ( )

( ) ( ) ( )
( ) 2

( ) ( ) ( )

( )

g g g
g

g g g

g g g
g

g g g

g

e e e
EFF e

e e e

e

µ µ µ
µ

σ σ σ

µ µ µ
σ φ φ φ

σ σ σ

µ
δ

− +

− +

+

      − − −
= − Φ −Φ −Φ                  

      − − −
− − −                  

−
+ Φ

x x x
x x

x x x

x x x
x

x x x

x *

* *

( )
( ) ( )

g

g g

e µ
σ σ

−    −
−Φ            

x
x x

 (13) 

where e e δ− = − , e e δ+ = + , in which e  is the failure threshold, and δ  is usually chosen by 

*2 ( )gδ σ= x . ( )Φ ⋅  and ( )φ ⋅  are the cumulative density function (CDF) and probability density 

function (PDF) of a standard normal random variable. 

The process of AK-SYS and EGRA-SYS is as follows: 

(1) Generate a small number of initial TPs, denoted by kTx ; evaluate the limit-state functions 

( )kT k kTg=y x , where 1,2,...,k M= , and M  is the number of components. 

(2) Build surrogate models ˆ ˆ ( )k k kTy g= x . 

(3) Generate Monte Carlo samples for input random variables MCSx . 

(4) Evaluate the composite U function and EFF function at MCSx  using the predictions and 

standard deviations from ˆ ˆ ( )k k kTy g= x . 

(5) Find the minimal value of the composite U learning function among those at all points in 

MCSx . For the EGRA method, find the maximal value of the composite EFF learning function 

among those at all points in MCSx . 

(6) Check the convergence: The process converges if *
min 2U ≥  or *

max 0.001EFF ≤ , and then 

perform reliability analysis using ˆ ˆ ( )k k kTy g= x ; otherwise, go to Step (7). 
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(7) Identify a new TP newx  with the minimal composite learning function value *
minU  or the 

maximal composite learning function *
maxEFF . 

(8) Calculate the component kU  or kEFF  with high uncertainty at newx , and check 2kU <  or 

0.001kEFF > . 

 (9) Add newx  and the responses at newx  to the existing training point set and update the 

surrogate models. 

Repeat steps (2) through (9) till convergence.  

As discussed previously, the larger is U or EFF, the higher is the chance that the Kriging model 

is accurate. In Step 8, the threshold of 2 is taken for U to check the convergence. The threshold of 

EFF is taken 0.001. 

The size of MCSx  is determined by the estimate of the probability of system failure sfp  and the 

coefficient of variation psfCOV . The relationship is given by 

 1 sf
psf

sf MCS

p
COV

p N
−

=   (14)  

where MCSN is the size of MCSx . MCSN  may vary so that 5%psfCOV ≤ .  

Without the consideration of correlation, AK-SYS and EGRA-SYS use only mean predictions 

as shown in the following indicator function  

 
*1,  ( )<0

( )
0,  otherwise

gI
µ= 



x
x   (15) 

Then fp is estimated by  

 
1

1 ( )
N

f i
i

p I
N =

= ∑ x   (16) 
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where N is the number of samples in MCSx . 

2.3 Review of dependent Kriging method for component reliability 

The dependent Kriging method (DKM) accounts for dependence between predictions to 

achieve better accuracy and efficiency. DKM uses all the information of the surrogate model

ˆ ˆ ( ) ( ) ( )y g µ ε= = +x x x , where 2( ) ~ (0, ( ))Nε σx x  with correlation matrix R . DKM computes 

fp  by 

 
( ) ( ) 0

( ) ( ) ( ) [ ( )]f
x x

p f d I f d E I
µ ε+ <

= = =∫ ∫x x x x x x   (17) 

where ( )I ⋅  is the indicator function defined by  

 
ˆ ˆ1,  ( ) ( ) ( ) 0

( )
0,  otherwise

y g
I x

µ ε= = + <
= 


x x x
  (18) 

fp  is a random variable since the domain of integration in Eq. (17) is random. The expectation 

of fp  is used to the estimate of the probability of failure [34] 

 
1 1

1 1[ ] ( )
N N

f i i
i i

E p E I e
N N= =

= =∑ ∑   (19)  

where  

 
( )( )
( )

i
i

i

e µ
σ

= Φ −
x
x

  (20) 

The variance of fp  is used to estimate the error of fp  and is given by  

 2
1 1,

1( ) [ (1 ) ( )]
N N

f i i ij i j
i i j i

Var p e e e e e
N = = ≠

= − + −∑ ∑   (21) 

where ˆ ˆPr{ ( ) 0, ( ) 0}ij i je g g= < <x x  is the CDF of the bivariate normal distribution defined by 

means [ , ]i jµ µ , standard deviations [ , ]i jσ σ , and correlation ijr . Eq. (21) indicates that ( )fVar p  



13 
 

is the sum of N terms of the N sample points. Each term can be considered as the contribution from 

each sample. The contribution of one sample i is defined as the learning function below. 

 
1,

(1 ) ( )
N

i i i ij i j
i j i

c e e e e e
= ≠

= − + −∑   (22)  

The learning function uses all the information of a Gaussian process, including its mean, 

variance, and correlation. As a result, it provides a more accurate and efficient way of selecting 

TPs to build surrogate models. In [34], selected candidate points (SCPs) are used to relieve the 

computational burden of the bivariate joint probability evaluation in Eq. (22). ije  is not calculated 

for all points in MCSx ,  and a smaller number of points in MCSx  are selected to form the SCPs. Then 

the evaluations of ije  is performed with only SCPs. The SCPs are selected based on two criteria. 

The first criterion is a small error in the estimate of fp , and this criterion requires a significant 

number of points fall into the failure region. The second criterion is a high contribution to ( )fVar p . 

Therefore the SCPs consist of all the points in the failure region and other points with the highest 

indicator function variances in the safe region. Details of the implementation is given in [34]. 

3. DEPENDENT KRIGING METHOD FOR SYSTEM RELIABILITY 

The new dependent Kriging method for systems (DKM-SYS) is the extension of component 

DKM to system reliability analysis. Similar to the component DKM, DKM-SYS consists of the 

same components: the estimate of probability of failure, a learning function, a stopping criterion, 

and an implementation process. 

3.1 Estimate of sfp  

In this work, we consider a series system with k failure modes. For a series system, if at least 

one failure mode occurs, the system fails, and then the system reliability is computed by  
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 1 2Pr{ ( ) 0 ( ) 0 ..... ( ) 0}s kR g g g= > > >x x x     (23) 

where   denotes intersection. The safe region Ω  is therefore defined by 

 1 2{ | ( ) 0 ( ) 0 ..... ( ) 0}kg g gΩ = > > >x x x x     (24) 

The system is safe at point x if x falls into Ω . Thus sR  is computed by  

 ( ) ( ) ( ) [ ( )]s s sR f d I f d E I
Ω

= = =∫ ∫x x x x x x   (25) 

where the system indicator function is defined by   

 
1,  

( )
0,otherwise

x
xsI

∈Ω
= 


  (26) 

sR  can be estimated by 

 
1 1

1 1( )
N N

s s i si
i i

R I I
N N= =

= =∑ ∑x   (27) 

where ( )si s iI I= x . The system reliability at i MCS∈x x  is 

 1 2ˆ ˆ ˆPr{ 1} Pr{ ( ) 0 ( ) 0 ..... ( ) 0}si i i k iI g g g= = > > >x x x     (28) 

Thus, the probability of system failure at i MCS∈x x  is  

 
1

11 1
N

sf s si
i

p R I
N =

= − = − ∑   (29) 

In this work, we generate surrogate models for limit-state functions separately and assume the 

predictions of the k responses at the same point are independent. (The responses of a single limit-

state function at two points, however, are still dependent.) Thus, the joint probability density 

functions (PDF) of the k responses at point ix  are the product of their marginal PDFs. Eq. (28) is 

then rewritten as 
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1

ˆPr{ 1} Pr{ ( ) 0}
M

si k i
k

I g
=

= = >∏ x   (30) 

At point ix , the reliability of component k is  

 ( )ˆPr{ ( ) 0}
( )
xx
x

k i
k i ki

k i

g rµ
σ
 

> = Φ = 
 

  (31) 

Thus                                    

 
1

Pr{ 1}
M

si ki
k

I r
=

= =∏   (32) 

 
1

Pr{ 0} 1
M

si ki
k

I r
=

= = −∏   (33) 

The expectation of the system indicator at ix  is  

 
1

[ ] 1 (Pr{ 1}) 0 (Pr{ 0})
M

si si si ki
k

E I I I r
=

= ⋅ = + ⋅ = =∏   (34) 

The variance of the system indicator is  

 
2

2 2

1 1 1 1

[ ] [( ) ] ( [ ])  =  = 1
M M M M

si si si ki ki ki ki
k k k k

Var I E I E I r r r r
= = = =

   
= − − −   

   
∏ ∏ ∏ ∏   (35) 

Since sR  is a random variable, its expectation is used for the estimate of the system reliability; 

namely   

 
1 1 1

1 1[ ] [ ]
MN N

s Si ki
i i k

E R E I r
N N= = =

 
= =  

 
∑ ∑ ∏   (36) 

The probability of system failure sfp  is 

 
1 1

1[ ] 1
MN

sf ki
i k

E p r
N = =

 
= −  

 
∑ ∏   (37) 

The variance of sfp  is the same with the variance of sR , which is calculated by 
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 2 2
1 1 1

1 1[ ] [ ] [ [ ] 2 cov( , )]
N N N N

sf s Si si si sj
i i i j i

Var p Var R Var I Var I I I
N N= = = >

= = = +∑ ∑ ∑∑   (38) 

[ ]sfVar p  is determined by the covariance cov( , )si sjI I , which is given by  

 cov( , ) [ ] [ ] [ ] Pr{ 1, 1} [ ] [ ]si sj si sj si sj si sj si sjI I E I I E I E I I I E I E I= − = = = −   (39) 

where  

 
1 1

[ ] [ ]
M M

si sj ki kj
k k

E I E I r r
= =

=∏ ∏   (40) 

Let Pr{ 1, 1}si sjH I I= = = , Eq. (38) becomes 

 2
1 11 1 1 1

1[ ] 1 2
M M M MN N N

sf ki kj ki kj
i i j ik k k k

Var p r r H r r
N = = >= = = =

      = − + −     
      

∑ ∑∑∏ ∏ ∏ ∏   (41) 

where 

 1 1ˆ ˆ ˆ ˆPr{ 1, 1} Pr{[ ( ) 0 ... ( ) 0] [ ( ) 0 ... ( ) 0]}si sj i k i j k jH I I g g g g= = = = > > > >x x x x       (42) 

Eq. (42) is the probability of system safety at points ix  and jx . Since the predictions of all the 

responses are independent,  H  is given by 

 
1

ˆ ˆPr{ 1, 1} Pr{ 0, 0}
M

si sj ki kj kij
k

H I I g g r
=

= = = = > > =∏   (43) 

where kijr  is the probability that component k is safe at point i and j. 

Eq. (41) can be rewritten as 

 2
1 1,1 1 1 1 1

1[ ] 1 2
M M M M MN N

sf ki ki kij ki kj
i j j ik k k k k

Var p r r r r r
N = = ≠= = = = =

    
= − + −    

    
∑ ∑∏ ∏ ∏ ∏ ∏   (44) 

or                                                       

 2
1

1[ ]
N

sf i
i

Var p c
N =

= ∑   (45) 
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where            

 2
1 1,1 1 1 1 1

1 1 2
M M M M MN N

i ki ki kij ki kj
i j j ik k k k k

c r r r r r
N = = ≠= = = = =

    
= − + −    

    
∑ ∑∏ ∏ ∏ ∏ ∏   (46) 

Therefore, the standard deviation of sfp  is  

 
1

1
sf

N

p i
i

c
N

σ
=

= ∑   (47) 

sfpσ  is an indicator of the uncertainty associated with the estimate of the system reliability. If 

there was no model uncertainty, 
sfpσ  would be zero. The higher 

sfpσ  is, the higher the uncertainty 

associated with the system reliability estimated based on the surrogate models is. We therefore use 

sfpσ  to measure the error of the system reliability prediction. 

3.2 Learning function  

A learning function is used to select new TPs to refine the surrogate model. As indicated in Eq. 

(44), each TP contributes to 
sfpσ  or [ ]sfVar p . The sum of terms involving ix  in [ ]sfVar p  is ic  in 

Eq. (46). Thus, we use ic  as the learning function. Maximizing ic  identifies a new TP that has the 

highest contribution to the uncertainty of the estimate of system reliability; namely  

 
1,2,...,

arg max { }
x x

MCS

new h

ii N
h c

=

=
 =

  (48) 

where hx  is the h-th point in MCSx . Adding the highest contribution point as new TP is the most 

effective way to refine the surrogate model with fast convergence [34]. 
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3.3 Stopping criterion 

When 
sfpσ  is small enough, no more new TPs are needed. Then the surrogate models are used 

to calculate sfp . Let the confidence of the probability of system failure be 1 α−  and the allowable 

relative error be 𝜀𝜀, and then the confidence interval of the estimate is computed by   

[ ] ( / 2)
sfsf pE p α σ±Φ . 

The relative error is defined by  

 
1 1[ ] ( / 2) [ ] ( / 2)

[ ] [ ]
sf sfsf p sf p

sf sf

E p E p

E p E p

α σ α σ
η

− −±Φ − Φ
= =   (49) 

If η  is smaller than the allowable error, the process terminates. Thus, the stopping criterion is 

determined by 

 1[ ] ( / 2)
sfp

sfE p

σ η
α−≤

Φ
  (50) 

3.4 Implementation 

Accounting for the dependence between responses requires calculations of bivariate 

probabilities given by 

 Pr{ 0, 0}, ( 1,.. ; , 1, 2, , , )kij ki kjr g g k M i j N i j= > > = = ≠   (51) 

Calculating kijr is time consuming. For example, if the size of MCSx  is 105, the number of 

calculating the joint probability in kijr  is 
5 5

10(1 ) 10 (1 10 ) 1.5 10
2 2

N N+ +
= ≈ × . To relieve the 

computational burden, we use the so-called selected candidate points (SCPs), denoted by Sx , 

which are selected from MCSx . The size of Sx  is much smaller than that of MCSx . To ensure a 
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significant number of points fall into the failure region, we adjust the size of SCPs selN  using the 

following condition.   

 ,25% 75%F sel

sel

N
r

N
≤ = ≤   (52) 

where ,F SelN is the number of failure points in the SCPs. SCPs consist of all points in the failure 

region and the other points with highest indicator function variances in the safe region. Using SCPs, 

the computational effort needed is greatly reduced. In the examples in Sec.4, we use 200 SCPs. 

The stopping criterion in Eq. (50) needs to be modified accordingly. The probability of system 

failure using Sx  is calculated by  

 ,
1

1[ ] 1
selN

sf sel i
isel

E p r
N =

= − ∑   (53) 

and   

 ,
1

1 selN

Psf sel i
isel

c
N

σ
=

= ∑   (54) 

The stopping criterion becomes  

 ,
1

,[ ] ( 2)
sfP sel

sf selE p

σ η
α−≤

Φ
  (55) 

The flowchart of the DKM-SYS is provided below. 

------------------------------- 

Place Figure 1 here 

------------------------------- 

Fig.1 Flowchart of DKM-SYS 
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3.5 Parallel systems 

The above results can be extended to parallel systems. For a parallel system with k failure 

modes, the probability of failure can be computed by  

 1 2Pr{ ( ) 0 ( ) 0 ..... ( ) 0}sf kp g g g= < < <x x x    (56) 

Let ( ) ( )i iG g= −x x , then  

 1 2Pr{ ( ) 0 ( ) 0 ..... ( ) 0}sf kp G G G= > > >x x x    (57) 

Eq. (57) evaluates the probability of a union of n-events as Eq. (23) does. Hence the proposed 

method can be used to calculate Eq. (57), which leads to the parallel system reliability 1 ss fR p= − . 

4. EXAMPLES 

The proposed method is evaluated with four examples. The first example is a mathematical 

problem, which clearly demonstrates the application details and effectiveness of DKM-SYS, while 

the other three examples show possible engineering applications. 

In all examples, initial TPs are generated by the Latin hypercube sampling (LHS) [35], and the 

initial sample size is 12. The efficiency is measured by the number of limit-state function calls. 

The accuracy is measured by the percentage error with respect to the direct MCS. The error is 

calculated by 

 100%
MCS

sf sf
MCS
sf

p p
p

ε
−

= ×   (58) 

where MCS
sfp and sfp are probabilities of system failure from the direct MCS and the other method, 

respectively. Since Kriging-based reliability methods are stochastic methods, we run each method 

20 independently, and the average results are used for comparison. The standard deviation of the 

number of function calls and probabilities of system failure are also provided. A smaller standard 
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deviation means that the results are concentrated closer to their mean values, which  indicates that 

the method tends to produce more stable results. We therefore use the standard deviation as an 

indicator of the robustness of the method. 

4.1 Example 1 

This example involves two random variables and three mathematical equations. For this two-

dimensional problem, it is easy to demonstrate the effectiveness of the proposed method.  The 

three limit-state functions are given by [36] 

 2
1 2 1 2( ) ( 11)( 1) / 5 cos(3 ) 5g x x x= + − − −x   (59) 

 2 2
2 1 2 1 2 1( ) ( 5) 30 ( 12) 120 1 cos(3 ) /10g x x x x x= + − + − − − −x   (60) 

 2
3 1 2 2( ) 80 ( 8 5) cos(3 ) /10 1g x x x= + − − −x   (61) 

where 2~ (4,0.7 ),  1, 2ix N i = . Figs. 2 and 3 show the TPs and surrogate models using AK-SYS 

and DKM-SYS method, respectively. 

------------------------------- 

Place Figure 2 here 

------------------------------- 

 

(a) Training points                                        (b) Final surrogate models 

Fig. 2 Training points and surrogate models of AK-SYS 

        

------------------------------- 

Place Figure 3 here 

------------------------------- 

 

                          (a) Training points                                         (b) Final surrogate models 
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Fig. 3 Training points and surrogate models of DKM-SYS 

 

The average numbers of function calls and the average probabilities of system reliability based 

on direct MCS and LHS are provided in Table 1 and Table 2, respectively. The difference of results 

from the two sampling methods is not significant since the sample size is large. For this reason, 

we compare two different sampling methods for only this example. 

We also compare the probabilities of system failure from DKM-SYS, AK-SYS and EGRA-

SYS with those from the direct MCS and LHS.  In both tables, the results show that DKM-SYS is 

more accurate than AK-SYS and EGRA-SYS. DKM-SYS is also more efficient than AK-SYS and 

DKM-SYS since the former method has smaller average numbers of function calls. Limit-state 

function 3 is far away from the origin as shown in Figs. 2 and 3, and it is hard to obtain an accurate 

surrogate model. This function consumes the majority of the computational effort by DKM-SYS, 

AK-SYS and EGRA-SYS.   

 

Table 1 Average results from 20 runs based on direct MCS 

------------------------------- 

Place Table 1 here 

------------------------------- 

 

 

Table 2 Average results from 20 runs based on Latin hypercube sampling 

------------------------------- 

Place Table 2 here 

------------------------------- 
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4.2 Exmaple 2 

This is an engineering problem with a small probability of system failure. This problem 

involves a liquid hydrogen fuel tank that is used on a space launch vehicle [31, 37, 38]. The tank 

has a honeycomb sandwich deign. It is subjected to stress caused by ullage pressure, head pressure, 

axial force due to acceleration, and bending and shear stress due to the weight of the fuel. There 

are three failure modes related to the von Mises strength, isotropic strength, and honeycomb 

bucking. The limit-state functions for the von Mises and isotropic strength are given by  

 1 2 2 2

84000
( ) 1

3
plate

x y x y xy

t
g

N N N N N
= −

+ − +
X   (62) 

 2

84000
( ) 1plate

y

t
g

N
= −X   (63) 

The limit-state function of honeycomb buckling is defined by a response surface generated 

from the structural sizing program and is given by [31, 38].  

 
2

3 1 2 3 1
2 2
2 3 1 2 1 3 2 3

( ) 0.847 0.96 0.986 0.216 0.077
0.11 0.007 0.378 0.106 0.11

g y y y y
y y y y y y y y
= + + − +

+ + + − −

X
  (64) 

where  

 1 4( 0.075)platey t= −   (65) 

 2 20( 0.1)hy t= −   (66) 

 3
16000( 0.003)

xy

y
N

= − +   (67) 

The five independent random variables are given in Table 3. The reliability analysis results are 

provided in Table 4. 

Table 3 Random variables  
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------------------------------- 

Place Table 3 here 

------------------------------- 

 

Table 4 shows that the average total function call of AK-SYS and EGRA-SYS are 56.1 and 

43.35 respectively, while the average total function call of DKM-SYS is 42.45. This demonstrates 

that DKM-SYS is more efficient. DKM-SYS is also more accurate than AK-SYS and EGRA-SYS, 

because the error of DKM-SYS is only 0.57% and the errors of the other two methods are relatively 

large. 

Table 4 Comparison of average results from 20 runs 

------------------------------- 

Place Table 4 here 

------------------------------- 

 

4.3 Example 3 

This is an engineering problem that involves a relatively large set of input random variables. 

As shown in Fig. 4, a cantilever beam [39] with ten random variables is used to prove the 

robustness of DKM-SYS method.  

The beam is subjected to external forces F1 and F2, external moments M1 and M2, and external 

distributed loads denoted by 1 1( , )L Rq q  and 2 2( , )L Rq q . These forces, moments, distributed loads, 

together with the yield strength S and the maximum allowable shear stress maxτ  are normally 

distributed random variables. Their information is given in Table 5. The deterministic parameters 

are listed in Table 6. 

 

------------------------------- 



25 
 

Place Figure 4 here 

------------------------------- 

Fig.4 A cantilever beam 

 

Table 5 Random variables  

------------------------------- 

Place Table 5 here 

------------------------------- 

 

Table 6 Deterministic parameters 

------------------------------- 

Place Table 6 here 

------------------------------- 

 

The maximum normal stress of the beam should be smaller than its yield strength, and this is 

given by  

 1 2

6( ) Mg S
wh

= −X   (68) 

where the bending moment at the left end point of the beam is   

 
2 2 2 2

1 1 1 1

( )( ) ( )( )(2 )
2 6

Li i i i i Ri Li i i i i
i i i

i i i i

q d c d c q q d c d cM M Fb
= = = =

− + − − +
= + + +∑ ∑ ∑ ∑   (69) 

The deflection of the right end point of the beam should not greater than the allowable defection 

2allowableδ =  cm. 

 2 ( ) allowableg δ δ= −X   (70) 

where δ is computed by  
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2 3 42 3 2 2 2

1 1 1
5 4 52 2 2

1 1 1

( ) ( ) ( )1 [
2 6 2 6 24

( )( ) ( ) ( )( ) ]
120( ) 24 120( )

i i i i Li i

i i i

Ri Li i Ri i Ri Li i

i i ii i i i

M L a F L b q L cML PL
EI
q q L c q L d q q L d

d c d c

δ
= = =

= = =

− − −
= + + − −

− − − − −
− + +

− −

∑ ∑ ∑

∑ ∑ ∑
  (71)   

where the Young’s modulus is 112 10E = ×  Pa, and the moment of inertia is 3 /12I wh= . P is the 

reaction force at the fixed end, which is given by  

 
2 2 2

1 1 1

( )( )( )
2

Ri Li i i
i Li i i

i i i

q q d cP F q d c
= = =

− −
= + − +∑ ∑ ∑   (72) 

The last limit-state function specifies that the shear stress should not be greater than the 

maximum allowable shear stress  

 3 max max
3( )

2
Pg
wh

τ τ τ= − = −X   (73) 

The results from Table 7 also show that DKM-SYS has better performance than AK-SYS and 

EGRA-SYS in accuracy, efficiency. The significant advantage of DKM-SYS over AK-SYS and 

EGRA-SYS in this example is the efficiency. On average, the total function calls of AK-SYS and 

EGRA-SYS are 353.64 and 477, while DKM-SYS just needs 129.5 function calls. 

Table 7 Comparison of average results from 20 runs  

------------------------------- 

Place Table 7 here 

------------------------------- 

 

4.4 Example 4 

This problem involves more failure modes than the previous examples. A crank-slider system 

is considered which has four components shown in Fig. 5 [40]. An external moment is applied to 
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joint A to drive link AB rotating around A. The task is to predict the system reliability when 

2 / 2θ π=  and five failure modes are considered for this system.  

------------------------------- 

Place Figure 5 here 

------------------------------- 

  Fig. 5 A crank-slider system 

For link AB, the length is 1l , and the width and height of the cross section are 1b  and 1h . The 

maximal normal stress 1
1 3

1 1

( / 2)
/12

M hS
b h

=  developed in the link AB should be smaller than the 

allowable normal stress 1aS  and this is given by 

 1 1 1( ) ag S S= −X   (74) 

For link BC, the length is 2l , and the width and height of the cross section are 2b  and 2h . The 

force developed in the link BCF  should be smaller than the critical force for buckling crP . 

 2 ( ) cr BCg P F= −X   (75) 

where 1/BCF M l= , 
2

2 2
2

2( )cr
E IP

Kl
π

=  and 
3

2 2
2 12

b hI = . 

For shaft DE, the length and diameter are 3l  and 4d . It has two failure modes caused by 

excessive deflection and excessive normal stress, respectively. The corresponding limit-state 

functions are given by 

 3 3 3

4 4 4

( )
( )

a

a

g
g S S

δ δ = −


= −

X
X

  (76) 

where 3aδ  is the allowable deflection, and 3δ  is the maximal deflection given by 
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( ) 2 2 3/2

1 4 3 4
3 4

3 4 4

sin / 2 ( )
9 3 ( / 4)( / 2)

BCF l l l
l E d
π θ

δ
π
− −

=   (77) 

where 4E  is the Young’s modulus of shaft DE. 4aS  is the allowable normal stress, and 4S  is the 

maximal normal stress developed in the shaft and is calculated by 

 ( )1 3 4 4max
4 4

4 4

sin / 2 ( )( / 2)
( / 4)( / 2)

BCF l l dM cS
I d

π θ
π

− −
= =   (78) 

For spring DE, the outer diameter and inner diameter of the spring are D and d. The developed 

maximal shear stress 5τ  should not be greater than the allowable shear stress of the spring coils

5aτ . 

                                                              5 5 5( ) ag τ τ= −X  (79) 

where 5τ  is computed by 

 
( )1

5 3

cos / 2 4 0.615
4 4

BCF D D d d
d D d D
π θ

τ
π

− − = + − 
  (80) 

All the random variables are listed in Table 8, and the deterministic parameters are listed in 

Table 9. The reliability analysis results are provided in Table 10. 

Table 8 Random variables      

------------------------------- 

Place Table 8 here 

------------------------------- 

Table 9 Deterministic parameter 

------------------------------- 

Place Table 9 here 

------------------------------- 
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Table 10 Comparison of average results from 20 runs   

------------------------------- 

Place Table 10 here 

------------------------------- 

 

Table 10 shows the comparison between AK-SYS, EGRA-SYS, DKM-SYS, and MCS. It is 

obvious that DKM-SYS can achieve better accuracy and efficiency than AK-SYS and EGRA-SYS. 

In particular, the total average function call of DKM-SYS is 193.7, while that of AK-SYS and 

EGRA-SYS are 466.4 and 658.8, respectively.  

5. CONCLUSIONS 

This work develops a new system reliability method for series systems with multiple dependent 

failure modes using the Kriging method. High efficiency and accuracy are achieved through the 

following means: 1) the use of surrogate models from Kriging, 2) the use of all information from 

Kriging, such as the prediction and its standard deviation, in the estimate of the system reliability, 

and 3) an efficient way for selecting training points for refining surrogate models. Since the 

dependence between Kriging predictions at different points are considered and the error of system 

reliability estimate is directly quantified (instead of the error of surrogate models), the new method 

improves the performance of Kriging-based system reliability methods. 

The proposed method extends the Kriging method from component reliability analysis to 

system reliability in an efficient manner. It can be potentially used for system reliability-based 

design and robust system design.  
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Table 1 Average results from 20 runs based on direct MCS 

Method sfp  ε (%) 
Number of function calls 

N1 N2 N3 

AK-SYS 2.7249×10-2  1.94 25.30  28.20  30.60  

EGRA-SYS 2.7241×10-2 1.97 26.05 29 32.05 

DKM-SYS 2.7403×10-2  1.37 17.85  22.25  22.45  

MCS 2.750×10-2 N/A 5×106 5×106 5×106 
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Table 2 Average results from 20 runs based on Latin hypercube sampling 

Method sfp  ε (%) 
Number of function calls 

N1 N2 N3 

AK-SYS 2.7389×10-2  1.24 25.5 28.5 30.0 

EGRA-SYS 2.7472×10-2 1.26 26.4 28.7 29.4 

DKM-SYS 2.7403×10-2  1.23 18.8  22.6 23.6  

LHS 2.7474×10-2 N/A 5×106 5×106 5×106 
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Table 3 Random variables 

 Random variables Distribution 

X1 platet  ( )N 0.07433,0.005   

X2 ht   ( )N 0.1,0.01   

X3 xN   ( )N 13,60   

X4 yN   ( )N 4751,48   

X5 xyN   ( )N 684,11−   
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Table 4 Comparison of average results from 20 runs 

Method sfp  ε (%) 
Number of function calls 

N1 N2 N3 

AK-SYS 6.9756×10-4 1.52 12 31.50 12.60 

EGRA-SYS 6.9603×10-4 2.01 12 18.10 13.25 

DKM-SYS 7.0107×10-4 0.57 12 19.10 12.40 

MCS 6.9855×10-4 N/A 2×107 2×107 2×107 
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Table 5 Random variables 

 Random Variables Distribution 

1X  1(Nm)M  
3 3N(50 10 ,5 10 )× ×  

2X  2 (Nm)M  
3 3N(30 10 ,3 10 )× ×  

3X  1(m)F  4 3N(1.8 10 ,2 10 )× ×  

4X  2 (m)F  4 3N(3 10 ,3 10 )× ×  

5X  1(N/m)Lq  4 3N(3 10 ,1 10 )× ×  

6X  1(N/m)Rq  4 3N(2 10 ,1 10 )× ×  

7X  2 (N/m)Lq  4 3N(2 10 ,1 10 )× ×  

8X  2 (N/m)Rq  3N(1 10 ,10)×  

9X  (Pa)S  7 6N(4.5 10 ,4.5 10 )× ×  

10X  max (Pa)τ  6 5N(3.5 10 ,5 10 )× ×  
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Table 6 Deterministic parameters 

Parameters Values 

1(m)a  1.5 

2 (m)a  4.5 

1(m)b  0.75 

2 (m)b  2.5 

1(m)c  0.25 

2 (m)c  1.75 

1(m)d  1.25 

2 (m)d  4.75 

(m)L  5 

(m)w  0.2 

(m)h  0.4 
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Table 7 Comparison of average results from 20 runs 

Method sfp  ε(%) 
Number of function calls 

N1 N2 N3 

AK-SYS 5.2592×10-3 1.74 245.89 12 95.75 

EGRA-SYS 5.2542×10-3 1.71 355 15 107 

DKM-SYS 5.2657×10-3 0.94 70.80 13.05 45.65 

MCS 5.2567×10-3 N/A 1×107 1×107 1×107 
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Table 8 Random variables 

 Random Variables Distribution 

1X  1(Nm)M  N(350,65)  

2X  1(m)l  4N(0.3,10 )−  

3X  2 (m)l  3N(0.9,2 10 )−×  

4X  1(m)b  4N(0.022,5 10 )−×  

5X  1(m)h  4N(0.019,5 10 )−×  

6X  2 (m)b  4N(0.015,5 10 )−×  

7X  2 (m)h  4N(0.009,5 10 )−×  

8X  4 (m)d  4N(0.0228,1 10 )−×  

9X  (m)D  3 4N(34.7 10 ,1 10 )− −× ×  

10X  5 (m)aτ  6 6N(50 10 ,10 10 )× ×  
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Table 9 Deterministic parameter 

Deterministic Parameters Values 

2 (Pa)E  200×109 

4 (Pa)E  200×109 

K  1 

3(m)l  0.95 

4 (m)l  0.30 

1(Pa)aS  400×106 

4 (Pa)aS  460×106 

3(m)aδ  0.0053 

(m)d  29.5×10-3 
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Table 10 Comparison of average results from 20 runs 

Method sfp  ε (%) 
Number of function calls 

N1 N2 N3 N4 N5 

AK-SYS 1.3638×10-2 1.92 149.95 215 12 12 77.45 

EGRA-SYS 1.3655×10-2 1.91 214.75 303.70 12 17.40 110.95 

DKM-SYS 1.3713×10-2 0.81 54.35 76.25 12.05 12.15 38.90 

MCS 1.3643×10-2 N/A 5×106 5×106 5×106 5×106 5×106 
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Fig.1 Flowchart of DKM-SYS 
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Fig. 2 Training points and surrogate models of AK-SYS 
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Fig. 3 Training points and surrogate models of DKM-SYS 
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Fig.4 A cantilever beam 

 
  



47 
 

 
Fig. 5 A crank-slider system 
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