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Abstract

When limit-state functions are highly nonlinear, traditional reliability methods, such as the first
order and second order reliability method, are not accurate. Monte Carlo simulation (MCS), on the
other hand, is accurate if a sufficient sample size is used, but is computationally intensive. This
research proposes a new system reliability method that combines MCS and the Kriging method
with improved accuracy and efficiency. Accurate surrogate models are created for limit-state
functions with the minimal variance in the estimate of the system reliability, thereby producing
high accuracy for the system reliability prediction. Instead of employing global optimization, this
method uses MCS samples from which training points for the surrogate models are selected. By
considering the autocorrelation of a surrogate model, this method captures the more accurate
contribution of each MCS sample to the uncertainty in the estimate of the serial system reliability
and therefore chooses training points efficiently. Good accuracy and efficiency are demonstrated

by four examples.



1. INTRODUCTION

With the increasing complexity of engineering systems, the cost of system failures may also
increase. In order to maintain low lifecycle cost and avoid tragic system failures, it is vital to
predict the system reliability accurately in the design process. System reliability is the probability
that a system performs its intended function without failures under given working conditions. With
the system reliability available, designers can make more reliable decisions on maintenance plans,
warranty policies, and cost assessment [1, 2].

In general, system reliability methods are classified into two major groups: analytical methods
and sampling-based methods. The most popular analytical methods are the First and Second Order
Reliability Methods (FORM and SORM) [3-6], which employ a first and second order
approximation, respectively, to a limit-state function in the vicinity of the Most Probable Point
(MPP). But for limit-state functions that are not linear or quadratic, significant errors could be
introduced by FORM and SORM. Both methods may also produce larges errors if multiple MPPs
exist.

Higher accuracy can be achieved by sampling-based methods. They include Monte Carlo
simulation [7] and importance sampling [8-13]. MCS is widely used due to its easy implementation
and high accuracy if a sufficiently large number of samples is used. MCS can deal with problems
with almost any level of nonlinearity, but the computational cost is extremely high if reliability is
high. Importance sampling methods could be used to reduce the computational cost because they
generate more samples in the failure region. Most importance sampling methods require the MPP
to center the sample distributions at the MPP. For a large-scale problem, searching for the MPP is

expensive, and this reduces the efficiency of importance sampling.



In addition to the above two groups of methods, surrogate-based methods are increasingly used
due to their ability of reducing computational cost by creating surrogate models, or meta-models
[14, 15]. A surrogate model is a computationally inexpensive model created to substitute the
original expensive limit-state function. The goal of metamodeling is to make the surrogate model
accurate at an affordable computational cost. The general process of metamodeling starts with
generating a small number of initial sample points (training points or TPs) by Design of
Experiments (DOE) [16]. Based on these samples, an initial surrogate model is built by a
metamodeling technique. Then more TPs are added to improve the accuracy of the surrogate model.
Learning functions are employed to select the best TPs intelligently and the surrogate model is
refined in a most efficient manner.

Popular metamodeling techniques include the polynomial response surface method [17, 18],
neural networks [19-21], support vector machines [22-24], polynomial chaos expansion [25],
Kriging [26-28], etc. Kriging method could be used for interpolation. The prediction of an existing
training point produces the exact value of the response at the point. Besides, due to its stochastic
characteristics, Kriging provides not only the prediction of an untried point, but also the variance
of the prediction. The variance indicates the uncertainty of the prediction. Based on Kriging, Jones
et al. developed the Efficient Global Optimization (EGO) method [29]. EGO uses the Expected
Improvement Function (EIF) to achieve a good balance between exploiting areas of the design
space where good solutions have been found, and exploring the design space where the uncertainty
is high. Later, Bichon et al. proposed the Efficient Global Reliability Analysis (EGRA) [30] and
extended it to system reliability prediction with multiple failure modes [31]. The latter method is
call EGRA-SYS. The method uses the Expected Feasibility Function (EFF) to choose new TPs in

the vicinity of the limit state and helps build an accurate surrogate model with less function



evaluations. EGRA needs global optimization to find the optimum training point. Recently, Echard
et al. proposed an active learning method to avoid global optimization. The method takes
advantage of Kriging and Monte Carlo simulation (AK-MCS) [32], which chooses new TPs from
a pre-sampled MCS population. As a result, no global optimization is needed. Fauriat and Gayton
then applied AK-MCS to system reliability analysis [33].

The above methods make the Kriging predictions without exploiting the covariance between
pairs of given points. We referred to them as Independent Kriging Methods (IKM). As a matter of
fact, the predictions from Kriging are realizations of a Gaussian process and therefore are
dependent on one another. Considering the dependence could further improve the efficiency and
accuracy of the active learning methods, Zhu and Du proposed a reliability method with MCS and
dependent Kriging predictions, called Dependent Kriging Method (DKM) [34]. Accounting for
dependence between Kriging predictions and focusing directly on the accuracy of reliability
estimation, DKM achieves better accuracy and efficiency.

DKM is applicable only for component reliability analysis. The objective of the present study
is to extend DKM to system reliability analysis. The contributions of this study include the
following: (1) the extension of the component DKM to system problems so that multiple failure
modes can be considered, (2) a new learning function that uses selected candidate points to relieve
the computational burden greatly without jeopardizing the accuracy of reliability estimation, and
(3) the development of a numerical procedure allows for accurate system reliability prediction at
an affordable cost.

Since the proposed method is based on Kriging and DKM, we briefly review them in Section

2. In Section 3, the dependent Kriging method for systems (DKM-SYS) is explained in detail.



Section 4 provides four examples to illustrate the implementation process and the effectiveness of

the new method. Conclusions are made in Section 5.

2 LITERATURE REVIEW

In this work, the component reliability is defined by
R="Pr{y=g(x)>0; (1)
where y is a component response and x is a random vector. If y >0, the failure mode does not

occur; otherwise, the failure occurs.
Next we herein review the methods that are needed by the proposed method.
2.1 Kriging method
Kriging is an interpolation method since its prediction at an existing TP is the exact value of

the response at the point. For a performance function y = f(x), Kriging considers y = f(x) being
a realization of Gaussian process defined by

G(x) =f(x)" B+ Z(x) )
where f(x)'B is a determination term for the mean response, f(X) is a vector of regression

functions, and P is a vector regression coefficient. Z(-) is a stationary Gaussian process with zero

mean and covariance
2
ColZ(x,),Z(x))]= o3 R(X;,X;) 3)
where o, is the process variance, and R(--) is the correlation function. The commonly used

Gaussian correlation is the anisotropic squared exponential model, which is given by

R(Xi’X_/) = exp|:_i Hk (xik Xk )2:| 4)

k=1



where x; and x, are the k-th components of X; and X, respectively, d is the dimensionality of

x, and 6, is a parameter that indicates the correlation between the points in dimension k. Due to

the stochastic characteristics, Kriging provides not only the prediction at an untried point but also
the variance of the prediction. The variance indicates the uncertainty of the prediction. At an

untried point x, the Kriging predictor g(x) follows a Gaussian distribution denoted by
£(%) ~ N(p5(%),05(x)) )
where 1;(x) and o (x) are the prediction and its variance, respectively. They are computed by
[26]
15 () =f(0" B+ r(xR (v - Fp) (©)
oo =6{1-rx)'R'r(x)+[F'R'r(x)-f(x)]"(F'R'F) '[F'R 'r(x) - f(x)]} (7)
in which y is a vector of responses at the TPs, Fis a mx p matrix with rows f(x)", m is the

number of TPs, and r(-) is the correlation vector containing the correlation between x and each
of the TPs.
r(x) =[R(X,X,), R(X,X,),..., R(X,X, )] (8)
R is the correlation matrix, which is composed of correlation functions evaluated at each possible
combination of the m TPs. R is given by
R=[R(x;,x))], 1<i<ml<j<m 9)
|§ is the least square estimate of B given by
B=(F'R'F)'F'Ry (10)

and &, are determined through



o1 AT - A
&, =—(y—Fp)'R(y-Fp) (11)
The parameters 6, are determined through the maximum likelihood estimation, details of which

are available in Ref. [26, 27].
2.2 Review of AK-SYS and EGRA-SYS

Both AK-SYS [33] and EGRA-SYS [31] are system reliability methods and are based on the
Kriging method. Once surrogate models of all the limit-state functions are built, the two methods

use MCS to estimate the system reliability using the surrogate models. They at first generate a
sufficient number of sample points X, by MCS and use a few initial TPs to create initial
surrogate models. New TPs are then added one by one so that the surrogate models are continually

updated. AK-SYS and EGRA-SYS select new TPs using the strategies in AK-MCS [32] and

EGRA [30], respectively. AK-MCS selects a new TP with a learning function defined by

U(x) :M (12)

o, (x)
U is related to the chance of making a mistake on the sign of the prediction. The smaller is U, the
higher is the likelihood. Consequently, the sample point with the smallest U is selected as a new

TP. For a system with multiple components, a composite learning function U is used by AK-SYS

[33] and is given by U (x) :|y; (x)| / a;(x). For a series system, ,u;(x) is the minimal value

among the predictions of all components at x, and & ; (X) is the corresponding standard deviation.

EGRA-SYS [31] uses a different learning function, which is called the expected feasibility

function (EFF) and is defined by



EFF(x) = (1, (x) - e)|:2® (%&(j‘)] —® [e;—/(%x)J o (e;—‘(‘gx)(")]]
* -0 (e -m®) (¢ -p®
_Gg(x{w( o (%) J ¢( o (%) ] ¢£ o (%) H (2

ol of)
o,(x) o,(x)

where e =e—6, ¢ =e+0 , in which e is the failure threshold, and & is usually chosen by

0= 20, (x). ®() and @(-) are the cumulative density function (CDF) and probability density

function (PDF) of a standard normal random variable.
The process of AK-SYS and EGRA-SYS is as follows:

(1) Generate a small number of initial TPs, denoted by x,, ; evaluate the limit-state functions
Vi =8, (X,;), where k=1,2,....,M ,and M is the number of components.

(2) Build surrogate models y, = g, (X,,).

(3) Generate Monte Carlo samples for input random variables X, .

(4) Evaluate the composite U function and EFF function at X, using the predictions and

standard deviations from y, = g, (X,;).
(5) Find the minimal value of the composite U learning function among those at all points in

X,cs - For the EGRA method, find the maximal value of the composite EFF learning function
among those at all points in X, .
(6) Check the convergence: The process converges if U >2 or EFF, <0.001, and then

perform reliability analysis using J, = g, (X,, ); otherwise, go to Step (7).

10



(7) Identify a new TP x,,, with the minimal composite learning function value U, or the
maximal composite learning function EFF., .

(8) Calculate the component U, or EFF, with high uncertainty at X, , and check U, <2 or

new?

EFF, >0.001.

(9) Add x,,, and the responses at X, to the existing training point set and update the

surrogate models.
Repeat steps (2) through (9) till convergence.
As discussed previously, the larger is U or EFF, the higher is the chance that the Kriging model

is accurate. In Step 8, the threshold of 2 is taken for U to check the convergence. The threshold of

EFF is taken 0.001.

The size of X, is determined by the estimate of the probability of system failure p,, and the
coefficient of variation COV . The relationship is given by

5
cov. = |—Ls_ (14)

psf
p_gf'N MCS

<5%.

where N, is the size of X,,;. N,,; may vary so that COV,, <

Without the consideration of correlation, AK-SYS and EGRA-SYS use only mean predictions

as shown in the following indicator function

1, 1 (x)<0
1= 4 (15)
0, otherwise
Then p, is estimated by
1 N
pp = 2 1(x) (16)
i=1

11



where N is the number of samples in X, .

2.3 Review of dependent Kriging method for component reliability
The dependent Kriging method (DKM) accounts for dependence between predictions to

achieve better accuracy and efficiency. DKM uses all the information of the surrogate model
= 8(x) = u(x) + (x), where £(x)~ N(0,0°(x)) with correlation matrix R. DKM computes

p; by

pr= | f®dx=[Ix)f(®)dx=E(x)] (17)

H(x)+e(x)<0

where 7(-) is the indicator function defined by

1) :{1, y=8(x)=u(x)+&(x)<0 (18)

0, otherwise
p, is arandom variable since the domain of integration in Eq. (17) is random. The expectation
of p, is used to the estimate of the probability of failure [34]

1Y 1Y
_NZ ‘ﬁg (19)

i=1

where
X
o, = (- %), 20)
o(x;)
The variance of p, is used to estimate the error of p, and is given by
1
Var(pf)zN Z[e(l e)+ Z (e, —ee,)] 21

i=1 i=1, j#i

where e; =Pr{g(x;) <0,g(x,) <0} is the CDF of the bivariate normal distribution defined by

means [z, 4,], standard deviations [o;,,0,], and correlation 7, . Eq. (21) indicates that Var(p,)

12



is the sum of N terms of the NV sample points. Each term can be considered as the contribution from

each sample. The contribution of one sample i is defined as the learning function below.

¢ =¢ (I- ei) + i (eg/ - eiej) (22)

i=1, j#i
The learning function uses all the information of a Gaussian process, including its mean,
variance, and correlation. As a result, it provides a more accurate and efficient way of selecting
TPs to build surrogate models. In [34], selected candidate points (SCPs) are used to relieve the

computational burden of the bivariate joint probability evaluation in Eq. (22). ¢, is not calculated
for all points in X,,¢, and a smaller number of points in Xx,,.; are selected to form the SCPs. Then
the evaluations of ¢, is performed with only SCPs. The SCPs are selected based on two criteria.
The first criterion is a small error in the estimate of p,, and this criterion requires a significant
number of points fall into the failure region. The second criterion is a high contribution to Var(p,).

Therefore the SCPs consist of all the points in the failure region and other points with the highest

indicator function variances in the safe region. Details of the implementation is given in [34].

3. DEPENDENT KRIGING METHOD FOR SYSTEM RELIABILITY

The new dependent Kriging method for systems (DKM-SYS) is the extension of component
DKM to system reliability analysis. Similar to the component DKM, DKM-SYS consists of the
same components: the estimate of probability of failure, a learning function, a stopping criterion,
and an implementation process.

3.1 Estimate of p,

In this work, we consider a series system with & failure modes. For a series system, if at least

one failure mode occurs, the system fails, and then the system reliability is computed by

13



R, =Pr{g,(x)>0MNg,(x)>0M....Ng,(x)>0}

where (] denotes intersection. The safe region Q is therefore defined by

Q={x|g,(x)>0Ng,(x)>0N....Ng,(x)>0}

The system is safe at point x if x falls into Q. Thus R, is computed by

R, = f(x)dx = [1,(x)f(x)dx = E[1,(%)]

where the system indicator function is defined by

{1, xeQ
I(x)=

0, otherwise

R_ can be estimated by

N
y=L$y
i=1 NS

where [, =1 (x;). The system reliability at x, € X, 1S
Pr{l; =1} = Pr{g,(x;) >0 &, (x,) > 0N

Thus, the probability of system failure at x; € X, is

1 N
psf :l_Rs :l_ﬁzlln

si

g, (x,)>0}

(23)

24)

(25)

(26)

27)

(28)

(29)

In this work, we generate surrogate models for limit-state functions separately and assume the

predictions of the k responses at the same point are independent. (The responses of a single limit-

state function at two points, however, are still dependent.) Thus, the joint probability density

functions (PDF) of the k responses at point X, are the product of their marginal PDFs. Eq. (28) is

then rewritten as

14



Pr{l =1} :lM_[Pr{grk (x,)> 0} (30)

At point x,, the reliability of component & is

Pr{gk(xi)>0}:®(%j:rﬂ 31)

Thus
Pel, =1} =] [ (32)
Pr{l =0} = 1—1M[r,ﬂ. (33)

The expectation of the system indicator at X, is

ELI1=1-(Prll, =1)+0-®riz, =0) =] [ (34)

The variance of the system indicator is

Varll;]= E[(Isi)z]_(E[Isi])z ZH”M _(Hrkij Z(I_Hrkijnrki 35)

Since R is a random variable, its expectation is used for the estimate of the system reliability;

namely

E[R,] :%ZE”&'] =%Z(Hmj (36)

i=1 =1

The probability of system failure p,, is

E[psf]zl_%Z(Hrkij (37)

The variance of p,, is the same with the variance of R, which is calculated by

15



Var[p,s1=Var[R]1=— Varz Z Varll ]+ ZZ Z cov(/;,1 (38)

i=l j>i
Var[p,] is determined by the covariance cov(/;,/;), which is given by
cov(ly,1;)=E[l,1;]- E[1;]E[1;]=Pr{l, =11, =1} — E[1]E[]] (39)
where
M M
EUEU =] Tn] 17 (40)

k=

k=

Let H =Pr{l, =1,1, =1}, Eq. (38) becomes

Var[psf]=%{i{(1 ﬁanrk}+2ZZ(H—ﬁqiﬁrkj]} (41)

i=1 k=1 =l j>i k=1 k=1

where
H=Pr{l, = LI, = I} =Pr{[,(x,)>0N..Ng.(x,)> O]n[gl(xj) > Oﬂ"‘mék(xj) >0]} (42)
Eq. (42) is the probability of system safety at points x; and x . Since the predictions of all the

responses are independent, H is given by

H=Pr{l =11, =1}= HPr{gkl>O g, >0 =r, (43)

k=1

where 7, is the probability that component  is safe at point i and ;.

Eq. (41) can be rewritten as

Varlp, 1=~ Z{( Hrkler,a+2 > (Hrku lM_Irklﬁr,g ]} (44)

i=1 J=Lj#i \ k=1 k=1 k=1

or
N

Varlp 1=~ 26 @5)

i=1

16



where

¢ :%2{(1—[}[”/@}1;[@4_2 Z (Hrkij_ L rkiHrkjj} (46)

j=1,j=i \ k=1 1 k=l

Therefore, the standard deviation of p,, is

1 N
(ijf = ﬁ ; ¢ (47)

o, 1s an indicator of the uncertainty associated with the estimate of the system reliability. If
there was no model uncertainty, o, , would be zero. The higher o, , is, the higher the uncertainty

associated with the system reliability estimated based on the surrogate models is. We therefore use

o, tomeasure the error of the system reliability prediction.
3.2 Learning function
A learning function is used to select new TPs to refine the surrogate model. As indicated in Eq.

(44), each TP contributes to c,, Of Var[p,]. The sum of terms involving X, in Var[p,] is ¢; in

Eq. (46). Thus, we use ¢; as the learning function. Maximizing ¢, identifies a new TP that has the
highest contribution to the uncertainty of the estimate of system reliability; namely

X =X

new h

h=arg max {c} (48)

i=1,2,.,Nycs
where X, is the A-th point in X, . Adding the highest contribution point as new TP is the most

effective way to refine the surrogate model with fast convergence [34].

17



3.3 Stopping criterion

When o, , is small enough, no more new TPs are needed. Then the surrogate models are used

to calculate p,, . Let the confidence of the probability of system failure be 1—-a and the allowable
relative error be &, and then the confidence interval of the estimate is computed by
Elp, ]+ D(a/ 2)0%_ .

The relative error is defined by

Elp, 10 @20, ~Elp,] |0 @/,
E[p,] | Ep,]

n= | (49)

If n7 is smaller than the allowable error, the process terminates. Thus, the stopping criterion is

determined by

O-Psf S| 1 77 | (50)
Elp,] |®(a/2)|

3.4 Implementation
Accounting for the dependence between responses requires calculations of bivariate
probabilities given by

T = Pr{g, > 0,g, > 0}, (k=1L..M:i,j=1,2,---,N,i # j) (51)
Calculating 7 is time consuming. For example, if the size of X, is 10°, the number of

N(1+N) _10°(1+10°%)
2

~1.5%10" . To relieve the

calculating the joint probability in 7, is

computational burden, we use the so-called selected candidate points (SCPs), denoted by Xg,

which are selected from X,,¢. The size of Xg is much smaller than that of X,,.¢. To ensure a

18



significant number of points fall into the failure region, we adjust the size of SCPs N,

sel

using the

following condition.

NF sel
25% < =l < 750, (52)
N

sel

where N, is the number of failure points in the SCPs. SCPs consist of all points in the failure

region and the other points with highest indicator function variances in the safe region. Using SCPs,
the computational effort needed is greatly reduced. In the examples in Sec.4, we use 200 SCPs.

The stopping criterion in Eq. (50) needs to be modified accordingly. The probability of system

failure using X is calculated by

1 Ny
sel i=1
and
1 Nyl
Opyf sel = N_ : G (54)
sel =
The stopping criterion becomes
o el
PS/”‘S ! S | —~ 77 | (55)
E[py.]" |07 (@/2)]

The flowchart of the DKM-SYS is provided below.

Place Figure 1 here

Fig.1 Flowchart of DKM-SYS
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3.5 Parallel systems
The above results can be extended to parallel systems. For a parallel system with & failure

modes, the probability of failure can be computed by
P =Prig(x)<0Ng,(x)<0N....N g (x) <0} (56)
Let G,(x)=-g;(x), then
P, =Pr{G,(x) > 0N G,(x) > 0M....N"G,(x) > 0} (57)
Eq. (57) evaluates the probability of a union of n-events as Eq. (23) does. Hence the proposed

method can be used to calculate Eq. (57), which leads to the parallel system reliability R, =1—-p .

4. EXAMPLES

The proposed method is evaluated with four examples. The first example is a mathematical
problem, which clearly demonstrates the application details and effectiveness of DKM-SY'S, while
the other three examples show possible engineering applications.

In all examples, initial TPs are generated by the Latin hypercube sampling (LHS) [35], and the
initial sample size is 12. The efficiency is measured by the number of limit-state function calls.
The accuracy is measured by the percentage error with respect to the direct MCS. The error is

calculated by

MCS
_|Py ~ Py
&= MCS
sf

x100% (58)

where p;fcs and P, are probabilities of system failure from the direct MCS and the other method,

respectively. Since Kriging-based reliability methods are stochastic methods, we run each method
20 independently, and the average results are used for comparison. The standard deviation of the

number of function calls and probabilities of system failure are also provided. A smaller standard

20



deviation means that the results are concentrated closer to their mean values, which indicates that
the method tends to produce more stable results. We therefore use the standard deviation as an
indicator of the robustness of the method.
4.1 Example 1

This example involves two random variables and three mathematical equations. For this two-
dimensional problem, it is easy to demonstrate the effectiveness of the proposed method. The

three limit-state functions are given by [36]

g, (x) = (x2 +11)(x, —1)/5-cos(3x,) -5 (59)
2,(X) = (x, +x, —5)* /30 + (x, — x, —=12)* /120~ 1—cos(3x,) / 10 (60)
2,(x) = 80/(x} +8x, —5)—cos(3x,) /101 61)

where x, ~ N(4,0.7%), i=1,2. Figs. 2 and 3 show the TPs and surrogate models using AK-SYS

and DKM-SY'S method, respectively.

Place Figure 2 here

(a) Training points (b) Final surrogate models

Fig. 2 Training points and surrogate models of AK-SYS

Place Figure 3 here

(a) Training points (b) Final surrogate models
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Fig. 3 Training points and surrogate models of DKM-SYS

The average numbers of function calls and the average probabilities of system reliability based
on direct MCS and LHS are provided in Table 1 and Table 2, respectively. The difference of results
from the two sampling methods is not significant since the sample size is large. For this reason,
we compare two different sampling methods for only this example.

We also compare the probabilities of system failure from DKM-SYS, AK-SYS and EGRA-
SYS with those from the direct MCS and LHS. In both tables, the results show that DKM-SY'S is
more accurate than AK-SYS and EGRA-SYS. DKM-SYS is also more efficient than AK-SYS and
DKM-SYS since the former method has smaller average numbers of function calls. Limit-state
function 3 is far away from the origin as shown in Figs. 2 and 3, and it is hard to obtain an accurate
surrogate model. This function consumes the majority of the computational effort by DKM-SY'S,

AK-SYS and EGRA-SYS.

Table 1 Average results from 20 runs based on direct MCS

Place Table 1 here

Table 2 Average results from 20 runs based on Latin hypercube sampling

Place Table 2 here
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4.2 Exmaple 2

This is an engineering problem with a small probability of system failure. This problem
involves a liquid hydrogen fuel tank that is used on a space launch vehicle [31, 37, 38]. The tank
has a honeycomb sandwich deign. It is subjected to stress caused by ullage pressure, head pressure,
axial force due to acceleration, and bending and shear stress due to the weight of the fuel. There
are three failure modes related to the von Mises strength, isotropic strength, and honeycomb
bucking. The limit-state functions for the von Mises and isotropic strength are given by

84000¢

&(X) = -1 (62)
JNZ+N2=N,N, +3N?,
840001
& (X)=——"~1 (63)
%

The limit-state function of honeycomb buckling is defined by a response surface generated

from the structural sizing program and is given by [31, 38].

2:(X)=0.847+0.96y, +0.986y, —0.216y, +0.077y?

(64)
+0.11y; +0.007y: +0.378y, y, —0.106y,y, —0.11y, y,
where
yl = 4(tplate - 0075) (65)
v, =20(¢, —0.1) (66)
V3= —6OOO(NL +0.003) (67)

xy
The five independent random variables are given in Table 3. The reliability analysis results are
provided in Table 4.

Table 3 Random variables
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Place Table 3 here

Table 4 shows that the average total function call of AK-SYS and EGRA-SYS are 56.1 and
43.35 respectively, while the average total function call of DKM-SYS is 42.45. This demonstrates
that DKM-SY'S is more efficient. DKM-SYS is also more accurate than AK-SYS and EGRA-SYS,
because the error of DKM-SYS is only 0.57% and the errors of the other two methods are relatively
large.

Table 4 Comparison of average results from 20 runs

Place Table 4 here

4.3 Example 3

This is an engineering problem that involves a relatively large set of input random variables.
As shown in Fig. 4, a cantilever beam [39] with ten random variables is used to prove the
robustness of DKM-SYS method.

The beam is subjected to external forces /' and />, external moments M; and M-, and external

distributed loads denoted by(q,,,q,,) and (q,,,9z,) . These forces, moments, distributed loads,

together with the yield strength S and the maximum allowable shear stress 7, are normally

distributed random variables. Their information is given in Table 5. The deterministic parameters

are listed in Table 6.
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Place Figure 4 here

Fig.4 A cantilever beam

Table 5 Random variables

Place Table 5 here

Table 6 Deterministic parameters

Place Table 6 here

The maximum normal stress of the beam should be smaller than its yield strength, and this is
given by

g(X)=5- 6Mz (68)
wh

where the bending moment at the left end point of the beam is

M:iMl+2Flbl+iqL,<d o4 o) Z(qR, W =)0 ) (g

1 i=

The deflection of the right end point of the beam should not greater than the allowable defection

0,

allowable

=2 cm.
(X) 5 5 allowable (70)

where 0 is computed by
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=2 — - ~ oy o
(9r — 4y )(L 2 ) qn(L (qu —g, L—-d)
; 120(d, - Z " Z‘ 120(d, - c,) ]

where the Young’s modulus is £ =2x10" Pa, and the moment of inertia is / = wh’ /12. P is the

reaction force at the fixed end, which is given by

2

: 2 (g —9,)(d, ¢,
P=z +ZqLi(di—C,-)+Z(qR’ q”;(’ %) (72)

The last limit-state function specifies that the shear stress should not be greater than the
maximum allowable shear stress

3P
g3 (X) = Tmax —r= Tmax _m (73)

The results from Table 7 also show that DKM-SYS has better performance than AK-SYS and
EGRA-SYS in accuracy, efficiency. The significant advantage of DKM-SYS over AK-SYS and
EGRA-SYS in this example is the efficiency. On average, the total function calls of AK-SYS and
EGRA-SYS are 353.64 and 477, while DKM-SY'S just needs 129.5 function calls.

Table 7 Comparison of average results from 20 runs

Place Table 7 here

4.4 Example 4
This problem involves more failure modes than the previous examples. A crank-slider system

is considered which has four components shown in Fig. 5 [40]. An external moment is applied to
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joint A to drive link AB rotating around A. The task is to predict the system reliability when

6, =7 /2 and five failure modes are considered for this system.

Place Figure 5 here

Fig. 5 A crank-slider system

For link AB, the length is /;, and the width and height of the cross section are b, and 74, . The

M(h/2)

maximal normal stress S, =
bh 112

developed in the link AB should be smaller than the

allowable normal stress S, and this is given by
g (X)=5,-5, (74)
For link BC, the length is /,, and the width and height of the cross section are b, and 4, . The

force developed in the link F},. should be smaller than the critical force for buckling P, .

& (X)=F, - F4 (75)
T’E,l bH
where FBC =M/117 Pc, =(Tz)22 and I, = izz .
2

For shaft DE, the length and diameter are /; and d,. It has two failure modes caused by

excessive deflection and excessive normal stress, respectively. The corresponding limit-state

functions are given by

(76)

{g3 (X)=0,;—9;
2,(X)=8,-5,

where o, is the allowable deflection, and ¢, is the maximal deflection given by
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5 - Fyesin(z/2-6)1,(1° - 1})*"
’ 93 LE,(x/4)d,/2)*

(77)

where E, is the Young’s modulus of shaft DE. S , is the allowable normal stress, and S, is the

maximal normal stress developed in the shaft and is calculated by

S _Mmaxc _ FBC Sln(ﬂ/z_el)(l3_l4)(d4/2)
4= =

I, (14)(d, 12)*

(78)
For spring DE, the outer diameter and inner diameter of the spring are D and d. The developed
maximal shear stress 7, should not be greater than the allowable shear stress of the spring coils

as”*
gsX)=7,—75 (79)

where 7, is computed by

. (80)

_Fyccos(#/2-6,)D( 4D-d  0.615d
nd’ 4D-4d D
All the random variables are listed in Table 8, and the deterministic parameters are listed in

Table 9. The reliability analysis results are provided in Table 10.

Table 8 Random variables

Place Table 8 here

Table 9 Deterministic parameter

Place Table 9 here
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Table 10 Comparison of average results from 20 runs

Place Table 10 here

Table 10 shows the comparison between AK-SYS, EGRA-SYS, DKM-SYS, and MCS. It is
obvious that DKM-SY'S can achieve better accuracy and efficiency than AK-SYS and EGRA-SYS.
In particular, the total average function call of DKM-SYS is 193.7, while that of AK-SYS and

EGRA-SYS are 466.4 and 658.8, respectively.

5. CONCLUSIONS

This work develops a new system reliability method for series systems with multiple dependent
failure modes using the Kriging method. High efficiency and accuracy are achieved through the
following means: 1) the use of surrogate models from Kriging, 2) the use of all information from
Kriging, such as the prediction and its standard deviation, in the estimate of the system reliability,
and 3) an efficient way for selecting training points for refining surrogate models. Since the
dependence between Kriging predictions at different points are considered and the error of system
reliability estimate is directly quantified (instead of the error of surrogate models), the new method
improves the performance of Kriging-based system reliability methods.

The proposed method extends the Kriging method from component reliability analysis to
system reliability in an efficient manner. It can be potentially used for system reliability-based

design and robust system design.

29



ACKNOWLEDGEMENTS
The authors gratefully acknowledge the support from the National Science Foundation through

grants CMMI 1924413 and CMMI 1923799.

REFERENCES

[1] Singh, A., Mourelatos, Z. P., and Li, J., 2010, "Design for Lifecycle Cost Using Time-
Dependent Reliability," Journal of Mechanical Design, 132(9), pp. 091008-091008-091011.

[2] Hu, Z., and Du, X., 2014, "Lifetime cost optimization with time-dependent reliability,"
Engineering Optimization, 46(10), pp. 1389-1410.

[3] Lee, 1., Choi, K. K., and Gorsich, D., 2010, "Sensitivity analyses of FORM-based and DRM-
based performance measure approach (PMA) for reliability-based design optimization (RBDO),"
International Journal for Numerical Methods in Engineering, 82(1), pp. 26-46.

[4] Du, X., and Hu, Z., 2012, "First Order Reliability Method With Truncated Random Variables,"
Journal of Mechanical Design, 134(9), pp. 091005.

[5] Zhu, Z., Hu, Z., and Du, X., 2015, "Reliability Analysis for Multidisciplinary Systems
Involving Stationary Stochastic Processes," Proceedings of the IDETC/CIE, ASME Paper, No.
DETC2015-46168.

[6] Ditlevsen, O., and Madsen, H. O., 1996, Structural reliability methods, Wiley, Chichester; New
York.

[7] Zio, E., 2013, System Reliability and Risk Analysis, Springer, London.

[8] Balesdent, M., Morio, J., and Marzat, J., 2013, "Kriging-based adaptive Importance Sampling
algorithms for rare event estimation," Structural Safety, 44, pp. 1-10.

[9] Dubourg, V., Sudret, B., and Deheeger, F., 2013, "Metamodel-based importance sampling for
structural reliability analysis," Probabilistic Engineering Mechanics, 33, pp. 47-57.

[10] Echard, B., Gayton, N., Lemaire, M., and Relun, N., 2013, "A combined Importance Sampling
and Kriging reliability method for small failure probabilities with time-demanding numerical
models," Reliability Engineering & System Safety, 111, pp. 232-240.

[11] Wang, Z., and Wang, P., 2015, "An Integrated Performance Measure Approach for System
Reliability Analysis," Journal of Mechanical Design, 137(2), pp. 021406-021406-021411.

[12] Helton, J. C., Johnson, J. D., Sallaberry, C. J., and Storlie, C. B., 2006, "Survey of sampling-
based methods for uncertainty and sensitivity analysis," Reliability Engineering & System Safety,
91(10), pp. 1175-1209.

[13] Hurtado, J. E., and Barbat, A. H., 1998, "Monte Carlo techniques in computational stochastic
mechanics," Archives of Computational Methods in Engineering, 5(1), pp. 3.

[14] Viana, F. A.., Simpson, T. W., Balabanov, V., and Toropov, V., 2014, "Special Section on
Multidisciplinary Design Optimization: Metamodeling in Multidisciplinary Design Optimization:
How Far Have We Really Come?," AIAA Journal, 52(4), pp. 670-690.

[15] Picheny, V., 2009, "Improving accuracy and compensating for uncertainty in surrogate
modeling," Ph.D. dissertation, University of Florida, Gainesville, FL.

[16] Sacks, J., Welch, W. J., Mitchell, T. J., and Wynn, H. P., 1989, "Design and Analysis of
Computer Experiments," Statistical Science, 4(4), pp. 409-423.

30



[17] Youn, B. D., and Choi, K. K., 2004, "A new response surface methodology for reliability-
based design optimization," Computers & Structures, 82(2), pp. 241-256.

[18] Bucher, C. G., and Bourgund, U., 1990, "A fast and efficient response surface approach for
structural reliability problems," Structural Safety, 7(1), pp. 57-66.

[19]Hurtado, J. E., Alvarez, D. A., 2001, "Neural-network-based reliability analysis: a comparative
study," Computer methods in applied mechanics and engineering, 191(1-2), pp. 113-132.

[20] Elhewy, A. H., Mesbahi, E., and Pu, Y., 2006, "Reliability analysis of structures using neural
network method," Probabilistic Engineering Mechanics, 21(1), pp. 44-53.

[21] Xiao, N.-C., Zuo, M. J., and Zhou, C., 2018, "A new adaptive sequential sampling method to
construct surrogate models for efficient reliability analysis," Reliability Engineering & System
Safety, 169, pp. 330-338.

[22] Basudhar, A., Dribusch, C., Lacaze, S., Missoum, S., 2012, "Constrained efficient global
optimization with support vector machines," Structural and Multidisciplinary Optimization, 46(2),
pp. 201-221.

[23] Bourinet, J. M., Deheeger, F., and Lemaire, M., 2011, "Assessing small failure probabilities
by combined subset simulation and Support Vector Machines," Structural Safety, 33(6), pp. 343-
353.

[24] Basudhar, A., Missoum, S., and Safety, 2013, "Reliability assessment using probabilistic
support vector machines," International Journal of Reliability and Safety, 7(2), pp. 156-173.

[25] Schobi, R., Sudret, B., and Marelli, S., 2017, "Rare Event Estimation Using Polynomial-
Chaos Kriging," ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A:
Civil Engineering, 3(2), pp. D4016002.

[26] Lophaven, S. N., Nielsen, H. B., and Sondergaard, J., 2002, "DACE-A Matlab Kriging
toolbox, version 2.0," Technical University of Denmark, Lyngby, Denmark.

[27] Martin, J. D., and Simpson, T. W., 2005, "Use of Kriging Models to Approximate
Deterministic Computer Models," AIAA Journal, 43(4), pp. 853-863.

[28] Kleijnen, J. P., "Design and Analysis of Simulation Experiments," Springer International
Publishing, pp. 3-22.

[29] Jones, D. R., Schonlau, M., and Welch, W. J., 1998, "Efficient global optimization of
expensive black-box functions," Journal of Global optimization, 13(4), pp. 455-492.

[30] Bichon, B. J., Eldred, M. S., Swiler, L. P., Mahadevan, S., and Mcfarland, J. M., 2012,
"Efficient Global Reliability Analysis for Nonlinear Implicit Performance Functions," AIAA
Journal, 46(10), pp. 2459-2468.

[31] Bichon, B. J., McFarland, J. M., and Mahadevan, S., 2011, "Efficient surrogate models for
reliability analysis of systems with multiple failure modes," Reliability Engineering & System
Safety, 96(10), pp. 1386-1395.

[32] Echard, B., Gayton, N., and Lemaire, M., 2011, "AK-MCS: An active learning reliability
method combining Kriging and Monte Carlo Simulation," Structural Safety, 33(2), pp. 145-154.
[33] Fauriat, W., and Gayton, N., 2014, "AK-SYS: An adaptation of the AK-MCS method for
system reliability," Reliability Engineering & System Safety, 123, pp. 137-144.

[34] Zhu, Z., and Du, X., 2016, "Reliability Analysis With Monte Carlo Simulation and Dependent
Kriging Predictions," Journal of Mechanical Design, 138(12), pp. 121403-121403-121411.

[35] Viana, F. A. C., Venter, G., and Balabanov, V., 2010, "An algorithm for fast optimal Latin
hypercube design of experiments," International Journal for Numerical Methods in Engineering,
82(2), pp. 135-156.

31



[36] Sadoughi, M., Li, M., and Hu, C., 2018, "Multivariate system reliability analysis considering
highly nonlinear and dependent safety events," Reliability Engineering & System Safety, 180, pp.
189-200.

[37] McDonald, M., and Mahadevan, S., 2008, "Design Optimization With System-Level
Reliability Constraints," Journal of Mechanical Design, 130(2), pp. 021403-021403-021410.

[38] Smith, N., and Mahadevan, S., 2005, "Integrating System-Level and Component-Level
Designs Under Uncertainty," Journal of Spacecraft and Rockets, 42(4), pp. 752-760.

[39] Du, X., 2010, "System reliability analysis with saddlepoint approximation," Structural and
Multidisciplinary Optimization, 42(2), pp. 193-208.

[40] Hu, Z., and Du, X., 2018, "Integration of Statistics- and Physics-Based Methods—A
Feasibility Study on Accurate System Reliability Prediction," Journal of Mechanical Design,
140(7), pp. 074501-074501-074507.

List of Table Captions

Table 1 Average results from 20 runs based on direct MCS

Table 2 Average results from 20 runs based on Latin hypercube sampling
Table 3 Random variables

Table 4 Comparison of average results from 20 runs

Table 5 Random variables

Table 6 Deterministic parameters

Table 7 Comparison of average results from 20 runs

Table 8 Random variables

Table 9 Deterministic parameter

Table 10 Comparison of average results from 20 runs

List of Figure Captions

Fig.1 Flowchart of DKM-SYS

Fig. 2 Training points and surrogate models of AK-SYS
Fig. 3 Training points and surrogate models of DKM-SYS
Fig.4 A cantilever beam

Fig. 5 A crank-slider system

32



Table 1 Average results from 20 runs based on direct MCS

Number of function calls

Method Dy e (%)
M N> N3
AK-SYS | 2.7249x10% | 1.94 | 2530 | 28.20 | 30.60
EGRA-SYS | 2.7241x10?% | 1.97 | 26.05 29 32.05
DKM-SYS |2.7403x102 | 1.37 | 17.85 | 22.25 | 22.45
MCS 2.750x102 | N/A | 5x10° | 5x10° | 5x10°
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Table 2 Average results from 20 runs based on Latin hypercube sampling

Number of function calls

Method Dy e (%)
' M N> N3

AK-SYS | 2.7389x102 | 1.24 | 255 28.5 30.0

EGRA-SYS | 2.7472x102 | 1.26 | 26.4 28.7 29.4

DKM-SYS |2.7403x102 | 1.23 | 18.8 22.6 23.6

LHS 2.7474x102 | N/A | 5x10° | 5x10° | 5x10°
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Table 3 Random variables

Random variables | Distribution

Xi " N(0.07433,0.005)
X t, N(0.1,0.01)

X N, N(13,60)

Xi N, N(4751,48)

Xs N, N(-684,11)
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Table 4 Comparison of average results from 20 runs

Number of function calls

Method Dy e (%)
M N> N3
AK-SYS | 6.9756x10* | 1.52 12 31.50 | 12.60
EGRA-SYS | 6.9603x10* | 2.01 12 18.10 | 13.25
DKM-SYS | 7.0107x10*| 0.57 12 19.10 | 12.40
MCS 6.9855x10* | N/A | 2x107 | 2x107 | 2x107
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Table 5 Random variables

Random Variables Distribution
X, M, (Nm) N(50x10°,5x10%)
X, M ,(Nm) N(30x10°,3x10%)
X, F,(m) N(1.8x10*,2x10%)
X, F,(m) N(3x10*,3x10%)
X, q,,(N/m) N(3x10%,1x10%)
X, ¢ (N/m) N(2x10*,1x10%)
X, q,,(N/m) N(2x10*,1x10%)
X, Gz, (N/m) N(1x10°,10)
X, S(Pa) N(4.5x107,4.5x10°%)
X, r..(Pa) N(3.5x10°,5x10°)




Table 6 Deterministic parameters

Parameters Values
a,(m) 1.5
a,(m) 4.5
b, (m) 0.75
b,(m) 2.5
¢, (m) 0.25
¢,(m) 1.75
d,(m) 1.25
d,(m) 4.75
L(m) 5
w(m) 0.2
h(m) 0.4
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Table 7 Comparison of average results from 20 runs

Number of function calls

Method Dy &(%)
M N> N3
AK-SYS |5.2592x107 | 1.74 | 245.89 12 95.75
EGRA-SYS | 5.2542x103 | 1.71 | 355 15 107
DKM-SYS |5.2657x107 | 0.94 | 70.80 | 13.05 | 45.65
MCS 5.2567x107 | N/A | 1x107 | 1x107 | 1x10’
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Table 8 Random variables

Random Variables Distribution
X, M, (Nm) N(350,65)
X, [, (m) N(0.3,107")
X, L, (m) N(0.9,2x107)
X, b,(m) N(0.022,5x10™*)
X h,(m) N(0.019,5x10™*)
X, b,(m) N(0.015,5x107")
X, h, (m) N(0.009,5x10™")
X, d,(m) N(0.0228,1x10™)
X, D(m) N(34.7x107,1x107")
X, 7, (m) N(50x10°,10x10°)




Table 9 Deterministic parameter

Deterministic Parameters Values
E,(Pa) 200x10°
E,(Pa) 200x10°
K 1
[;(m) 0.95
[, (m) 0.30
S.1(Pa) 400x10°
S,4(Pa) 460x10°
0,3(m) 0.0053
d(m) 29.5x107°
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Table 10 Comparison of average results from 20 runs

Number of function calls

Method Dy e (%)
N1 N> N3 Ns N5

AK-SYS | 1.3638x102 | 1.92 | 149.95| 215 12 12 77.45

EGRA-SYS | 1.3655x102 | 1.91 | 214.75|303.70 | 12 17.40 | 110.95

DKM-SYS | 1.3713x10 | 0.81 | 54.35 | 76.25 | 12.05 | 12.15 | 38.90

MCS 1.3643x102 | N/A | 5x10° | 5x10° | 5x10° | 5x10° | 5x10°
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Fig. 5 A crank-slider system
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