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Uncertainty quantification (UQ) is essential in scientific computation since it can provide 
the estimate of the uncertainty in the model prediction. Intensive computation is required for 
UQ as it calls the deterministic simulation repeatedly. This study discusses a physics-based 
label-free deep learning UQ method that does not need predictions at training points or labels. 
It satisfies the physical equations from which labels could be generated without solving the 
equations during the training process. Then inexpensive surrogate models are built with 
respect to model inputs. The surrogate models are used for UQ with a much lower 
computational cost. Two examples demonstrate that the label-free method can efficiently 
produce probability distributions of model outputs for given distributions of random input 
variables. 

I. Nomenclature 
𝑑𝑑 = number of training points 
f(⋅) = function whose surrogate model is built  
fNN(⋅) = surrogate model built from neural network  
h(⋅) = physical equation 
L = loss function 
m = number of output variables 
n = number of input variables 
w = vector of weights and biases in a neural network 
x = vector of input variables 
y = vector of input variables 
 

II. Introduction 
cientific computation and simulation have increasingly used in engineering analysis and design. The primary role 
of computational models is to make predictions for both analysis and design. Given a set of conditions or a design, 

we can predict how a component or system behaves. The computational model, however, is never perfect and exact, 
and uncertainty is always present. For example, the model input may have random variables, and as a result, the model 
prediction, the model output, or the response, is also uncertain. It is therefore important to quantify the uncertainty 
associated with the response predicted, and this is the major task of uncertainty quantification (UQ) [1-3]. 

Since uncertainty always exists in model parameters and model predictions, UQ is performed to quantify the effect 
of uncertainty in model input and model error on the model output (prediction). UQ needs to call computational models 
repeatedly to obtain probability distributions of responses given distributions of model input variables. In general, UQ 
is computationally expensive, especially when the dimension of model input is high [4, 5]. To this end, regression is 
commonly used to build a surrogate model to replace the original computational model. Regression can be performed 
by many methods, such as response surface modeling, Gaussian Process (GP) method, support vector machines 
(SVM), and neural network [6-8]. Regression starts from generating a set of input samples, getting labels (outputs) by 
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calling the computational model at the input samples, and then fitting a surrogate model with the input samples and 
their labels.  

As indicated by many studies, including our own, machine learning is particularly useful for UQ problems 
encountered in engineering design. Machine learning techniques can significantly reduce the computational burden in 
the following aspects: Reduce the dimension of uncertain input variables [9] and create accurate but inexpensive 
surrogate models [10-13], both for higher computational efficiency. Specific machine learning techniques have 
increasingly used. For example, the GP method for quantifying model structure uncertainty [14, 15]; the SVM method 
for estimating rare event probabilities [16], and other methods for predicting component and system reliability [17]. 
Many studies show that add physical constraints can significantly improve prediction accuracy [18, 19]. For instance, 
the constraints from physics can be added to the loss function of artificial neural networks [18], used as a priori 
information for deep learning [20], and incorporated into GP [21].  

Getting labels is usually costly since it runs the computational model many times. Physics-informed neural network 
(PINN) is proposed [22, 23] to obtain the solution of partial differential equations (PDEs) without solving the PDEs 
by classical numerical methods (e.g. the Finite Element Method). The PDEs are served as the so-called physical 
constraints during the training process of the neural network. This method has gained much attention because it makes 
the regression task feasible without solving the true label. Besides, the physical constraints prevent the regression from 
severe overfitting in conventional neural network, especially when labeled data are limited.  

Motivated by the label-free deep learning, this study investigates a label-free UQ method so that the computational 
efficiency can be enhanced. The method works for problems where responses are solved out from a system of 
equations derived from physical principles, and solving the system of equations is expensive while evaluating them is 
inexpensive. We call these equations physical equations. The strategy is to use only the input samples to build a 
surrogate model that satisfies the physical equations without solving them. As a result, there is no need to generate 
labels. Neural network is used to build the surrogate model. 

 

III. Problem Statement 
Computational models are given by 

𝑦𝑦𝑖𝑖 = 𝑓𝑓𝑖𝑖(𝒙𝒙), 𝑖𝑖 = 1,2, … ,𝑚𝑚 (1) 

where 𝒙𝒙 is a vector of input variables, and 𝑦𝑦𝑖𝑖  is a response. In many applications. The relationship between the input 
and output is not explicit, and it is derived from the following system of physical equations: 

�

ℎ1(𝒙𝒙, 𝑦𝑦1) = 0
ℎ2(𝒙𝒙, 𝑦𝑦2) = 0

⋯⋯
ℎ𝑚𝑚(𝒙𝒙, 𝑦𝑦𝑚𝑚) = 0

(2) 

where 𝒚𝒚 = (𝑦𝑦1,𝑦𝑦2, … , 𝑦𝑦𝑚𝑚)T = �𝑓𝑓𝑖𝑖(𝒙𝒙)�
𝑖𝑖=1,𝑚𝑚
T

 is the solution of the system of physical equations. Solving the system of 
physical equations is usually computationally expensive.  

 The task of UQ in this study is illustrated in Fig. 1 and is stated as follows: 
• Given: Distributions of 𝒙𝒙 and the system of physical equations ℎ𝑖𝑖(𝒙𝒙,𝑦𝑦𝑖𝑖) = 0, 𝑖𝑖 = 1,2 …  𝑚𝑚 
• Find: Distributions of 𝒚𝒚  

 
 

 
 

Fig. 1 Task of UQ. 
 

𝒉𝒉(𝒙𝒙,𝒚𝒚) = 0 
Distribution of 𝒙𝒙 Distribution of 𝒚𝒚 
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 After the joint distribution of 𝒚𝒚 is available, it can be used for reliability analysis, robustness assessment, and many 
other analysis tasks, as demonstrated in Example 1. It can also be used for design under uncertainty, such as reliability-
based design, robust design, and design decision making, as demonstrated in Example 2. 

IV. Methodology 
Traditional UQ needs to evaluate computational models 𝑦𝑦𝑖𝑖 = 𝑓𝑓(𝒙𝒙), where 𝑦𝑦𝑖𝑖 , 𝑖𝑖 = 1,2, … ,𝑚𝑚,  must be solved out 

from the system of physical equations in Eq. (2). Solving for 𝑦𝑦𝑖𝑖  may be computationally expensive but evaluating the 
system of physical equations is much cheaper. The label-free UQ method does not solve the system of physical 
equations and only evaluates them because no labels are needed. The deep learning neural network method is used. 
The label-free UQ method consists of two steps.  

Step 1 creates surrogate models. The surrogate models are given by 
𝑦𝑦𝑖𝑖 = 𝑓𝑓𝑖𝑖𝑁𝑁𝑁𝑁(𝒙𝒙), 𝑖𝑖 = 1,2, … ,𝑚𝑚 (3) 

The regression method we use is neural network, which builds surrogate models based on data. In regular neural 
network regression, a dataset with labels is given by ��𝒙𝒙(𝑖𝑖),𝒚𝒚(𝑖𝑖)��

𝑖𝑖=1,𝑑𝑑
, where 𝑑𝑑  is the size of the dataset. The model 

parameters of a neural network, which are to be learned, include weights and biases in all layers. They are denoted by 
𝒘𝒘.  

The to-be-determined parameters 𝒘𝒘 will be obtained during the model training process. In this work, we do not 
have labels, and our dataset is ��𝒙𝒙(𝑖𝑖)��

𝑖𝑖=1,𝑑𝑑
. To this end, we will use the system of physical equations directly as 

proposed in other physics-based informed deep learning [22]. The strategy is to satisfy the physical equations at the 
training points ��𝒙𝒙(𝑖𝑖)��

𝑖𝑖=1,𝑑𝑑
.  

⎩
⎨

⎧ℎ1�𝒙𝒙
(𝑖𝑖),𝒚𝒚1𝑁𝑁𝑁𝑁� = 0

ℎ2�𝒙𝒙(𝑖𝑖),𝒚𝒚2𝑁𝑁𝑁𝑁� = 0
⋯⋯

ℎ𝑚𝑚�𝒙𝒙(𝑖𝑖),𝒚𝒚𝑚𝑚𝑁𝑁𝑁𝑁� = 0

(4) 

where 
𝒚𝒚𝑗𝑗𝑁𝑁𝑁𝑁 = 𝑓𝑓𝑗𝑗𝑁𝑁𝑁𝑁�𝒙𝒙(𝑖𝑖);𝒘𝒘�, 𝑖𝑖 = 1,2, … ,𝑑𝑑; 𝑗𝑗 = 1,2, … ,𝑚𝑚 (5) 

To satisfy the physical equations in Eq. (4), we define a loss function 

𝐿𝐿(𝒘𝒘) = ��ℎ𝑗𝑗2 �𝒙𝒙(𝑖𝑖); 𝑓𝑓𝑗𝑗𝑁𝑁𝑁𝑁�𝒙𝒙(𝑖𝑖);𝒘𝒘��
𝑚𝑚

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

(6) 

If 𝐿𝐿(𝒘𝒘) = 0, all the physical equations will be satisfied. Minimizing the loss function while training the neural 
network, we obtain the estimated model parameters 𝒘𝒘; namely 

𝒘𝒘∗ = arg min 𝐿𝐿(𝒘𝒘) (7) 
Then surrogate models 𝑦𝑦𝑖𝑖 = 𝑓𝑓𝑗𝑗𝑁𝑁𝑁𝑁(𝒙𝒙), 𝑖𝑖 = 1,2, … ,𝑚𝑚, are available. 
Step 2 performs UQ based on 𝑦𝑦𝑖𝑖 = 𝑔𝑔�𝑖𝑖(𝒙𝒙). Many existing UQ methods can be used. Since the surrogate models are 

inexpensive, we may use Monte Carlo simulation (MCS) to find the distribution of a response. 
The architecture of the neural network and procedure is illustrated in Fig. 2. 
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Fig. 2 Architecture of a neural network. 

 

V.Examples 
Two examples are used to demonstrate the label-free UQ method. The first example is an analysis problem where 

the probability distributions of responses are produced. The second example is a design problem where the design 
requirement is satisfied at a given probability level.   
V.A. Example 1: UQ of a relative motion analysis 

As shown in Fig. 3, a person rows a boat to cross a river from points A to B with a constant velocity 𝑣𝑣𝑀𝑀. If the river 
flows with a velocity 𝑣𝑣𝑅𝑅, the task is to determine 𝑣𝑣𝑀𝑀 and the angle 𝜃𝜃 that the boat should direct. It is the angle between 
the relative velocity of the boat 𝑣𝑣𝑀𝑀/𝑅𝑅 with respect to the river and the horizonal direction.   

 

 
 

Fig. 3 Relative motion example. 

 
 Using the relative motion analysis, we have 

 

A 

B 

𝜃𝜃 

β 

𝑣𝑣𝑅𝑅 

𝑣𝑣𝑀𝑀 𝑣𝑣𝑀𝑀/𝑅𝑅 
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𝒗𝒗𝑴𝑴 = 𝒗𝒗𝑹𝑹 +  𝒗𝒗𝑴𝑴/𝑹𝑹 (8) 
 The angle between line AB and the horizontal direction is denoted by 𝛽𝛽. The two component equations from Eq. 
(8) are given by  

                                                                                     �
𝑣𝑣𝑀𝑀𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =   𝑣𝑣𝑀𝑀/𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑣𝑣𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =  𝑣𝑣𝑅𝑅 + 𝑣𝑣𝑀𝑀/𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃
                                                                   (9)  

 The two physical equations are therefore  

                                                                         �
ℎ1 =  𝑣𝑣𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 −  𝑣𝑣𝑀𝑀/𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 0

ℎ2 = 𝑣𝑣𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − �𝑣𝑣𝑅𝑅 + 𝑣𝑣𝑀𝑀/𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠� = 0
                                                      (10) 

The random input variables are 𝒙𝒙 = (𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3)T =  (𝑣𝑣𝑀𝑀/𝑅𝑅, 𝑣𝑣𝑅𝑅 ,𝛽𝛽)T, and their distributions are given in Table 1.   

Table 1 Distributions associated with input random variables 

The first step is to generate models 𝑣𝑣𝑀𝑀 = 𝑓𝑓1𝑁𝑁𝑁𝑁�𝑣𝑣𝑀𝑀/𝑅𝑅, 𝑣𝑣𝑅𝑅 ,𝛽𝛽�, and 𝜃𝜃 = 𝑓𝑓2𝑁𝑁𝑁𝑁�𝑣𝑣𝑀𝑀/𝑅𝑅, 𝑣𝑣𝑅𝑅 ,𝛽𝛽�. 𝑑𝑑 = 200 training points 
are used. The neural network includes six layers with four hidden layers, one input layer, and one customer regression 
output layer. Each hidden layer has 20 neutrons. The activation function is a hyperbolic tangent function. The learning 
rate is 0.01, and the optimizer is Adam. 

A scatter plot of the predictions and true labels of the two responses at the training points is given in Fig. 4. The 
true labels are obtained by solved the two physical equations in Eq. (10). Note that in real applications, the true labels 
are not available. The scatter plot is for only a demonstration purpose. The scatter plot indicates good accuracy of the 
surrogate models.  

 
 

Fig. 4 Scatter plot of predictions and true labels. 

 After the two models are built, MCS is used for UQ. The sample size is 106. The PDFs of the two responses are 
provided in Figs. 5 and 6. The distribution parameters, means and standard deviations, of the two responses, are given 
in Tables 2 and 3. For a verification purpose, we also provide the accurate results from true responses and MCS with 
a sample size 106. The results show the good accuracy of the label-free UQ. 

 
Table 2 Statistics of 𝑣𝑣𝑀𝑀 
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Random Variable Distribution Mean Standard Deviation 

𝑣𝑣𝑀𝑀/𝑅𝑅 (m/s) Normal 5.0 0.5 

𝑣𝑣𝑅𝑅  (m/s) Normal 2.0 0.2 

𝛽𝛽 (deg) Normal 45.0 4.5 

Method Mean of 𝑣𝑣𝑀𝑀 (m/s) Standard deviation of 𝑣𝑣𝑀𝑀 (m/s) 

Label free method 6.1988 0.5505 

True function 6.2011 0.5519 
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Fig. 5 PDF of 𝒗𝒗𝒎𝒎. 
 
 

 
Fig. 6 PDF of 𝜽𝜽. 

 
Table 3 Statistics of 𝜽𝜽 

 
 
 
 
  
 
V.B. Example 2: Cantilever shaft design under uncertainty 

The design task is to design a cantilever shaft [24, 25] as shown in Fig. 7 so that it can withstand random forces 𝐹𝐹 
and 𝑃𝑃; and a random torque 𝑇𝑇, with the reliability greater than or equal to [𝑅𝑅] = 0.999. The random variables are 𝒙𝒙 =
�𝑆𝑆𝑦𝑦 ,𝑃𝑃,𝐹𝐹,𝑇𝑇�T, where 𝑆𝑆𝑦𝑦  is the yield strength of the material. All the random variables are independent, and their 
distributions are given in Table 5. 𝐿𝐿 is the length of the tube, and 𝐿𝐿 = 0.15 m, The design variables are 𝒅𝒅 = (𝑑𝑑0, 𝑡𝑡)T, 
which should be chosen from the following list of preferred sizes for 𝑑𝑑0 × 𝑡𝑡 (mm): 12×2, 16×2, 16×3, 20×4, 24×4, 
25×5, 30×4, 30×5, 42×4, 42×5, 50×4, 50×5. The distributions of random variables are given in Table 4.  
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Method Mean of 𝜃𝜃 (dge) Standard deviation  𝜃𝜃 (deg) 

Label free method 28.4511 6.2185 

True function 28.4329 6.3401 
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Fig. 7 A cantilever tube. 

Table 4 Distributions of random variables in Example 2 

The design requirement is that the maximum stress should be less than the yield strength, and the design margin 
equation is derived from the strength theory, which provides a physical equation at the limit state. 

ℎ(𝒙𝒙) = 𝑆𝑆𝑦𝑦 − �𝜎𝜎𝑥𝑥2 + 3𝜏𝜏𝑧𝑧𝑧𝑧2 (11) 

where 𝒙𝒙 = �𝑆𝑆𝑦𝑦 ,𝑃𝑃,𝐹𝐹,𝑇𝑇, 𝑡𝑡�T. 

𝜎𝜎𝑥𝑥 =
𝑃𝑃

𝜋𝜋(𝑑𝑑02 − (𝑑𝑑0 − 2𝑡𝑡)2)
4

+
𝐹𝐹𝐹𝐹 �𝑑𝑑02 �

𝜋𝜋(𝑑𝑑04 − (𝑑𝑑0 − 2𝑡𝑡)4)
64

(12) 

𝜏𝜏𝑧𝑧𝑧𝑧 =
𝑇𝑇 �𝑑𝑑02 �

𝜋𝜋(𝑑𝑑04 − (𝑑𝑑0 − 2𝑡𝑡)4)
32

(13) 

The diameter 𝑑𝑑0  is the response; namely, 𝑦𝑦 = 𝑑𝑑0 . The input variables are 𝒙𝒙 = (𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, 𝑥𝑥4, 𝑥𝑥5)T =
�𝑆𝑆𝑦𝑦 ,𝑃𝑃,𝐹𝐹,𝑇𝑇, 𝑡𝑡�T. Equation 11 is rewritten as 

ℎ(𝒙𝒙) = 𝑥𝑥1 − �𝜎𝜎𝑥𝑥2 + 3𝜏𝜏𝑧𝑧𝑧𝑧2 (14) 

where 

𝜎𝜎𝑥𝑥 =
𝑥𝑥2

𝜋𝜋(𝑦𝑦2 − (𝑦𝑦 − 2𝑥𝑥5)2)
4

+
𝑥𝑥3𝐿𝐿 �

𝑦𝑦
2�

𝜋𝜋(𝑦𝑦4 − (𝑦𝑦 − 2𝑥𝑥5)4)
64

(15) 

𝜏𝜏𝑧𝑧𝑧𝑧 =
𝑥𝑥4 �

𝑦𝑦
2�

𝜋𝜋(𝑦𝑦4 − (𝑦𝑦 − 2𝑥𝑥5)4)
32

(16) 

We generate 𝑑𝑑 = 200 training points ��𝒙𝒙(𝑖𝑖)��
𝑖𝑖=1,200

. We then use the label-free UQ method to build a surrogate 
model 𝑦𝑦 = 𝑓𝑓𝑁𝑁𝑁𝑁(𝒙𝒙), or 𝑑𝑑0 = 𝑓𝑓𝑁𝑁𝑁𝑁(𝑆𝑆𝑦𝑦 ,𝑃𝑃,𝐹𝐹,𝑇𝑇, 𝑡𝑡). The neural network contains three hidden layer, one feature input 

Random Variable Distribution Mean Standard Deviation 

Sy (MPa) Normal 250 10 

P (N) Normal 8000 2000 

F (N) Lognormal 1500 50 

T (N·m) Normal 75 4 
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layer, and one custom regression output layer. Each hidden layer has 20 neutrons. The activation function is a 
hyperbolic tangent function. The optimizer is Adam. 

To verify the accuracy, we generate true labels at training points ��𝒙𝒙(𝑖𝑖)��
𝑖𝑖=1,200

. The scatter plot of the model 
output is provided in Fig. 8. In the range of 𝑑𝑑0 ∈ [30, 60] mm, the model produces highly accurate predictions. The 
prediction of the reliability of a design is also accurate if the design falls into this range.  

  
Fig. 8 Scatter plot of predictions and true labels. 

Since the surrogate model is efficient, we use Monte Carlo simulation (MCS) to conduct several analyses, from 
where we can find the best design solution. We select a value of 𝑡𝑡 from the list of the preferred design variables and 
perform MCS using the distributions given in Table 4. This yields a distribution of 𝑑𝑑0, which is the minimum 𝑑𝑑0, 
denoted by 𝑑𝑑0𝑚𝑚𝑚𝑚𝑚𝑚, for the limit state. Since the limit state is determined by random variables, 𝑑𝑑0𝑚𝑚𝑚𝑚𝑚𝑚 is also a random 
variable. 

How do we choose a deterministic design variable 𝑑𝑑0 for the required reliability [𝑅𝑅]? We use the percentile value 
to find 𝑑𝑑0. 

Pr�𝑑𝑑0𝑚𝑚𝑚𝑚𝑚𝑚 < 𝑑𝑑0� = [𝑅𝑅] (17) 

We now obtain a pair of design variables (𝑑𝑑0, 𝑡𝑡)T for a given value of 𝑡𝑡. We then repeat this process until all values 
of 𝑡𝑡 are used. The results are given in the first two columns of Table 5. Using the list of referred design variables, the 
candidate designs are determined, and they are 42×5, 50×4, and 50×5. Considering a smaller size of the shaft, we 
select the final design to be 42×5. To verify the reliability, we calculate the actual reliability at the calculated diameters 
with the true function in Eq. (17) by MCS. The sample size of MCS is 107. The actual reliability is higher than and 
close to the required one. Since the final design 42×5 is larger than the calculated design 38.36×5, the final reliability 
will also be larger than the required reliability. The PDF of the required 𝑑𝑑0 obtained from the label-free UQ is given 
in Fig. 9. Note that in real applications, labels are not available, and MCS with real labels is not feasible, Using MCS 
herein is for only a demonstration purpose. 

Table 5 Candidate Designs 

𝑡𝑡 (mm) 𝑑𝑑0 (mm) 
Calculated 

Candidate design 
𝑑𝑑0 × 𝑡𝑡 (mm) 

Verified reliability at 
calculated 𝑑𝑑0 

2.0 72.39 None 0.9998 

3.0 52.42 None 0.9995 

4.0 43.37 50×4 0.9997 

5.0 38.38 42×5, 50×5 1.0 
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Fig. 9 PDF of required 𝒅𝒅𝟎𝟎. 

In this example, there are two responses, but with only one physical equation. This is the case where the dimension 
of outputs is larger than the number of physical equations. This example indicates that this case can also be handled 
by the proposed method. This example also demonstrates that the label-free UQ method can be used for design. The 
model built from the label-free method may be used for other tasks, such as optimization under uncertainty and robust 
design. 

VI. Conclusions 
 This study demonstrates the feasibility of label-free uncertainty quantification using neural network regression. A 
surrogate model is built without labels. The training points only contain a dataset of input variables at which a set of 
physical equations are satisfied during the learning process. The satisfaction is achieved by employing a loss function 
which is defined using a set of physical equations. The two examples demonstrate the potential applications of the 
method. The future work will be the extension to more general applications, where time- and space-dependent 
responses and models are involved. The other possible research direction is to integrate the regression and uncertainty 
quantification so that the quantified uncertainty is part of the regression output.  
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