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Uncertainty quantification (UQ) is essential in scientific computation since it can provide
the estimate of the uncertainty in the model prediction. Intensive computation is required for
UQ as it calls the deterministic simulation repeatedly. This study discusses a physics-based
label-free deep learning UQ method that does not need predictions at training points or labels.
It satisfies the physical equations from which labels could be generated without solving the
equations during the training process. Then inexpensive surrogate models are built with
respect to model inputs. The surrogate models are used for UQ with a much lower
computational cost. Two examples demonstrate that the label-free method can efficiently
produce probability distributions of model outputs for given distributions of random input
variables.

I. Nomenclature

d = number of training points

function whose surrogate model is built
surrogate model built from neural network
physical equation

loss function

number of output variables

number of input variables

vector of weights and biases in a neural network
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II. Introduction

Scientiﬁc computation and simulation have increasingly used in engineering analysis and design. The primary role
of computational models is to make predictions for both analysis and design. Given a set of conditions or a design,
we can predict how a component or system behaves. The computational model, however, is never perfect and exact,
and uncertainty is always present. For example, the model input may have random variables, and as a result, the model
prediction, the model output, or the response, is also uncertain. It is therefore important to quantify the uncertainty
associated with the response predicted, and this is the major task of uncertainty quantification (UQ) [1-3].

Since uncertainty always exists in model parameters and model predictions, UQ is performed to quantify the effect
of uncertainty in model input and model error on the model output (prediction). UQ needs to call computational models
repeatedly to obtain probability distributions of responses given distributions of model input variables. In general, UQ
is computationally expensive, especially when the dimension of model input is high [4, 5]. To this end, regression is
commonly used to build a surrogate model to replace the original computational model. Regression can be performed
by many methods, such as response surface modeling, Gaussian Process (GP) method, support vector machines
(SVM), and neural network [6-8]. Regression starts from generating a set of input samples, getting labels (outputs) by
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calling the computational model at the input samples, and then fitting a surrogate model with the input samples and
their labels.

As indicated by many studies, including our own, machine learning is particularly useful for UQ problems
encountered in engineering design. Machine learning techniques can significantly reduce the computational burden in
the following aspects: Reduce the dimension of uncertain input variables [9] and create accurate but inexpensive
surrogate models [10-13], both for higher computational efficiency. Specific machine learning techniques have
increasingly used. For example, the GP method for quantifying model structure uncertainty [ 14, 15]; the SVM method
for estimating rare event probabilities [16], and other methods for predicting component and system reliability [17].
Many studies show that add physical constraints can significantly improve prediction accuracy [18, 19]. For instance,
the constraints from physics can be added to the loss function of artificial neural networks [18], used as a priori
information for deep learning [20], and incorporated into GP [21].

Getting labels is usually costly since it runs the computational model many times. Physics-informed neural network
(PINN) is proposed [22, 23] to obtain the solution of partial differential equations (PDEs) without solving the PDEs
by classical numerical methods (e.g. the Finite Element Method). The PDEs are served as the so-called physical
constraints during the training process of the neural network. This method has gained much attention because it makes
the regression task feasible without solving the true label. Besides, the physical constraints prevent the regression from
severe overfitting in conventional neural network, especially when labeled data are limited.

Motivated by the label-free deep learning, this study investigates a label-free UQ method so that the computational
efficiency can be enhanced. The method works for problems where responses are solved out from a system of
equations derived from physical principles, and solving the system of equations is expensive while evaluating them is
inexpensive. We call these equations physical equations. The strategy is to use only the input samples to build a
surrogate model that satisfies the physical equations without solving them. As a result, there is no need to generate
labels. Neural network is used to build the surrogate model.

III. Problem Statement
Computational models are given by
yi=filx),i=12,..,m €Y

where x is a vector of input variables, and y; is a response. In many applications. The relationship between the input
and output is not explicit, and it is derived from the following system of physical equations:

hi(x,y1) =0
ha(%,y2) = 0 @
hm(x: Ym) =0

where ¥y = (1, V2, -, )T = (i (x))l,T:1 ., 18 the solution of the system of physical equations. Solving the system of
physical equations is usually computationally expensive.
The task of UQ in this study is illustrated in Fig. 1 and is stated as follows:
e  Given: Distributions of x and the system of physical equations h;(x,y;) = 0,i = 1,2.. m
e Find: Distributions of y
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Fig. 1 Task of UQ.



After the joint distribution of y is available, it can be used for reliability analysis, robustness assessment, and many
other analysis tasks, as demonstrated in Example 1. It can also be used for design under uncertainty, such as reliability-
based design, robust design, and design decision making, as demonstrated in Example 2.

IV. Methodology

Traditional UQ needs to evaluate computational models y; = f(x), where y;,i = 1,2, ..., m, must be solved out
from the system of physical equations in Eq. (2). Solving for y; may be computationally expensive but evaluating the
system of physical equations is much cheaper. The label-free UQ method does not solve the system of physical
equations and only evaluates them because no labels are needed. The deep learning neural network method is used.
The label-free UQ method consists of two steps.

Step 1 creates surrogate models. The surrogate models are given by

yi = "), i=12,...,m 3)
The regression method we use is neural network, which builds surrogate models based on data. In regular neural
network regression, a dataset with labels is given by {(x(®, y(i))}i=1, > Where d is the size of the dataset. The model
parameters of a neural network, which are to be learned, include weights and biases in all layers. They are denoted by
w.
The to-be-determined parameters w will be obtained during the model training process. In this work, we do not
have labels, and our dataset is {(x("))}iﬂ, o To this end, we will use the system of physical equations directly as
proposed in other physics-based informed deep learning [22]. The strategy is to satisfy the physical equations at the

training points {(x®)} _ .

hy (29, y¥N) =0
hy (22, y3N) = 0 @)

(2, 73) = 0
where
yiV =V w),  i=12,..,dj=12..m (5)
To satisfy the physical equations in Eq. (4), we define a loss function

n m
L(w) = Z Z hjZ (x(i);ijN(x(i); W)) (6)
i=1j=1
If L(w) = 0, all the physical equations will be satisfied. Minimizing the loss function while training the neural
network, we obtain the estimated model parameters w; namely
w* = arg min L(w) @)
Then surrogate models y; = ij N(x),i = 1,2, ..., m, are available.
Step 2 performs UQ based on y; = §;(x). Many existing UQ methods can be used. Since the surrogate models are
inexpensive, we may use Monte Carlo simulation (MCS) to find the distribution of a response.

The architecture of the neural network and procedure is illustrated in Fig. 2.



Unlabeled dataset

(D}

Model y; = f*V (x) Probabilistic

prediction
— ve ——

Input Layer Hidden Layers  Output Layer
Loss Function

Fig. 2 Architecture of a neural network.

V.Examples

Two examples are used to demonstrate the label-free UQ method. The first example is an analysis problem where
the probability distributions of responses are produced. The second example is a design problem where the design
requirement is satisfied at a given probability level.

V.A. Example 1: UQ of a relative motion analysis

As shown in Fig. 3, a person rows a boat to cross a river from points 4 to B with a constant velocity v,,. If the river
flows with a velocity vg, the task is to determine v,, and the angle 6 that the boat should direct. It is the angle between
the relative velocity of the boat v,/ with respect to the river and the horizonal direction.

Fig. 3 Relative motion example.

Using the relative motion analysis, we have



Uy = Vp + VUyyr (8)
The angle between line 4B and the horizontal direction is denoted by . The two component equations from Eq.
(8) are given by

Uy COSB = vy rCc0SO 9
UySINB = Vg + vy psing ©)
The two physical equations are therefore
h, = ?mcosﬁ - UM/RCOS.H =0 (10)
h, = vy sinf — (UR + vM/Rsan) =0

The random input variables are x = (x,%,,%3)T = (vy /R VR, B )T, and their distributions are given in Table 1.

Table 1 Distributions associated with input random variables

Random Variable Distribution Mean Standard Deviation
Vm/R (m/s) Normal 5.0 0.5
Vg (m/s) Normal 2.0 0.2
B (deg) Normal 45.0 4.5

The first step is to generate models vy = f{" (vy/p, Vg, B), and 6 = £ (vy g, Vg, B). d = 200 training points
are used. The neural network includes six layers with four hidden layers, one input layer, and one customer regression
output layer. Each hidden layer has 20 neutrons. The activation function is a hyperbolic tangent function. The learning
rate is 0.01, and the optimizer is Adam.

A scatter plot of the predictions and true labels of the two responses at the training points is given in Fig. 4. The
true labels are obtained by solved the two physical equations in Eq. (10). Note that in real applications, the true labels
are not available. The scatter plot is for only a demonstration purpose. The scatter plot indicates good accuracy of the
surrogate models.

Fig. 4 Scatter plot of predictions and true labels.

After the two models are built, MCS is used for UQ. The sample size is 10°. The PDFs of the two responses are
provided in Figs. 5 and 6. The distribution parameters, means and standard deviations, of the two responses, are given
in Tables 2 and 3. For a verification purpose, we also provide the accurate results from true responses and MCS with
a sample size 10°. The results show the good accuracy of the label-free UQ.

Table 2 Statistics of vy,

Method Mean of vy, (m/s) Standard deviation of v, (m/s)
Label free method 6.1988 0.5505
True function 6.2011 0.5519
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Table 3 Statistics of 0

Method Mean of 0 (dge) Standard deviation 6 (deg)
Label free method 28.4511 6.2185
True function 28.4329 6.3401

V.B. Example 2: Cantilever shaft design under uncertainty
The design task is to design a cantilever shaft [24, 25] as shown in Fig. 7 so that it can withstand random forces F
and P; and a random torque T, with the reliability greater than or equal to [R] = 0.999. The random variables are x =

(Sy,P, F, T)T, where Sy is the yield strength of the material. All the random variables are independent, and their
distributions are given in Table 5. L is the length of the tube, and L = 0.15 m, The design variables are d = (d,, t)7,
which should be chosen from the following list of preferred sizes for dy X t (mm): 12x2, 16x2, 16x3, 20x4, 24x4,
25x5, 30x4, 305, 42x4, 42x5, 50x4, 50x5. The distributions of random variables are given in Table 4.
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Fig. 7 A cantilever tube.

Table 4 Distributions of random variables in Example 2

Random Variable Distribution Mean Standard Deviation
Sy (MPa) Normal 250 10
P (N) Normal 8000 2000
F (N) Lognormal 1500 50
T (N-m) Normal 75 4

The design requirement is that the maximum stress should be less than the yield strength, and the design margin
equation is derived from the strength theory, which provides a physical equation at the limit state.

h(x) = S, — /o + 312, (11)

where x = (Sy, P,F,T, t)T.

T
Oy = 5 + vy (12)
”(do = (dy —2t)?) n(dy — (dy — 2t)%)
4 64
d
T (=2
(3) .

T =
2 n(dg - (dy — 28)%)
32
The diameter d, is the response; namely, y =d, . The input variables are x = (xq, X, X3, %4, x5)T =
T . . .
(Sy, P,F,T, t) . Equation 11 is rewritten as

h(x) = x; —JoZ + 372, (14)

where

_ X2 " %3L (%)
TR0 —(—2x9)D) | 1O — (v — 2x5))
) 64

)

T,., =
ot - (- 2x9)Y)
32

(15)

(16)

We generate d = 200 training points {(x(i))}izl 200 We then use the label-free UQ method to build a surrogate

model y = f¥N(x), ordy = f¥N(S,,P,F,T,t). The neural network contains three hidden layer, one feature input



layer, and one custom regression output layer. Each hidden layer has 20 neutrons. The activation function is a
hyperbolic tangent function. The optimizer is Adam.

To verify the accuracy, we generate true labels at training points {(x(i))}i The scatter plot of the model

=1,200"
output is provided in Fig. 8. In the range of d, € [30, 60] mm, the model produces highly accurate predictions. The
prediction of the reliability of a design is also accurate if the design falls into this range.

‘‘‘‘‘‘‘‘‘‘‘

Fig. 8 Scatter plot of predictions and true labels.

Since the surrogate model is efficient, we use Monte Carlo simulation (MCS) to conduct several analyses, from
where we can find the best design solution. We select a value of t from the list of the preferred design variables and
perform MCS using the distributions given in Table 4. This yields a distribution of d,, which is the minimum d,,
denoted by dI*™, for the limit state. Since the limit state is determined by random variables, dJ¥" is also a random
variable.

How do we choose a deterministic design variable d,, for the required reliability [R]? We use the percentile value
to find d,.

Pr(df"™ < d,) = [R] 17)

We now obtain a pair of design variables (d,, t)T for a given value of t. We then repeat this process until all values
of t are used. The results are given in the first two columns of Table 5. Using the list of referred design variables, the
candidate designs are determined, and they are 42x5, 50x4, and 50x5. Considering a smaller size of the shaft, we
select the final design to be 42x5. To verify the reliability, we calculate the actual reliability at the calculated diameters
with the true function in Eq. (17) by MCS. The sample size of MCS is 107. The actual reliability is higher than and
close to the required one. Since the final design 42x5 is larger than the calculated design 38.36x5, the final reliability
will also be larger than the required reliability. The PDF of the required d, obtained from the label-free UQ is given
in Fig. 9. Note that in real applications, labels are not available, and MCS with real labels is not feasible, Using MCS
herein is for only a demonstration purpose.

Table 5 Candidate Designs

t (mm) d, (mm) Candidate design Verified reliability at
Calculated dy X t (mm) calculated d,
2.0 72.39 None 0.9998
3.0 52.42 None 0.9995
4.0 43.37 50x4 0.9997
5.0 38.38 42x5, 50x5 1.0




Fig. 9 PDF of required d,.

In this example, there are two responses, but with only one physical equation. This is the case where the dimension
of outputs is larger than the number of physical equations. This example indicates that this case can also be handled
by the proposed method. This example also demonstrates that the label-free UQ method can be used for design. The
model built from the label-free method may be used for other tasks, such as optimization under uncertainty and robust
design.

VL

This study demonstrates the feasibility of label-free uncertainty quantification using neural network regression. A
surrogate model is built without labels. The training points only contain a dataset of input variables at which a set of
physical equations are satisfied during the learning process. The satisfaction is achieved by employing a loss function
which is defined using a set of physical equations. The two examples demonstrate the potential applications of the
method. The future work will be the extension to more general applications, where time- and space-dependent
responses and models are involved. The other possible research direction is to integrate the regression and uncertainty
quantification so that the quantified uncertainty is part of the regression output.

Conclusions
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