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ABSTRACT  7 

Speech and language development are early indicators of overall analytical and learning ability in 8 

children. The preschool classroom is a rich language environment for monitoring and ensuring 9 

growth in young children by measuring their vocal interactions with teachers and classmates. 10 

Early childhood researchers are naturally interested in analyzing naturalistic vs. controlled lab 11 

recordings to measure both quality and quantity of such interactions. Unfortunately, present-day 12 

speech technologies are not capable of addressing the wide dynamic scenario of early childhood 13 

classroom settings. Due to the diversity of acoustic events/conditions in such daylong audio 14 

streams, automated speaker diarization technology would need to be advanced to address this 15 

challenging domain for segmenting audio as well as information extraction. This study 16 

investigates an alternate Deep Learning-based diarization solution for segmenting classroom 17 

interactions of 3-5 year old children with teachers. In this context, the focus on speech-type 18 

diarization which classifies speech segments as being either from adults or children partitioned 19 

across multiple classrooms. Our proposed ResNet model achieves a best F1-score of ∼71.0% 20 

on data from two classrooms, based on dev and test sets of each classroom. Additionally, F1-21 

scores are obtained for individual segments with corresponding speaker tags (e.g., adult vs. 22 

child), which provide knowledge for educators on child engagement through naturalistic 23 

communications. The study demonstrates the prospects of addressing educational assessment 24 

needs through communication audio stream analysis, while maintaining both security and privacy 25 

of all children and adults. The resulting child communication metrics have been used for broad-26 

based feedback for teachers with the help of visualizations. 27 

KEYWORDS: Child-Adult Speech, Speech-type Diarization, End-to-end Diarization, ResNet-18, 28 

Multiclass classification, location-independent modeling. 29 

PACS:  30 

43.72.-p Speech processing and communication systems  31 
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I. Introduction 33 

The diversity of language background, socio-economic conditions, development level, or 34 

potential communication disorders represents a challenge in assessment of child speech and 35 

language skills (Rosenbaum and Simon, 2016). The language environment of young children 36 

plays an important role in development of speech, language, vocabulary and thus, 37 

knowledge/learning ability. Taken collectively, these impact life prospects of the child. The quality 38 

and quantity of interaction in a rich language environment helps to meet essential language 39 

development outcomes in early childhood (Hart and Risley, 1995). Thus, early childhood 40 

researchers are interested in analyzing classroom interactions of preschool children to monitor 41 

and provide proactive support. As daylong recordings are collected on a regular basis, the amount 42 

of data to be analyzed keeps increasing at much a faster pace than what is practically feasible to 43 

review manually. Automated speech processing would be of great value for understanding and 44 

assessing the vast amounts of data in this early childhood domain. The preliminary task of 45 

analyzing such data environments involve Speaker Diarization (i.e., segmenting and tagging ’who 46 

spoke when’) followed by Speech Recognition, Keyword Spotting, etc. In this study, Speaker 47 

group (or type) Diarization is performed on child-adult and child-child interactions of preschool 48 

children in naturalistic active learning environments. The audio data in this study was collected 49 

using LENA devices (LENA; Ziaei et al., 2013) worn by children in different classrooms at 50 

different days and times. The recordings continue while subjects move around during a typical 51 

school day and are paused only during nap time. 52 

The contributions of this study are stated as follows. Firstly, we introduce the child-adult 53 

speech/speaker-type classification framework explained later for designing the scope of the 54 

speech-segment classification task. Next, standard Deep Neural Network (DNN) architectures 55 

are explored for this challenging task of distinguishing children’s speech from adult speech and 56 

non-speech in an end-to-end fashion. Additionally, we analyze classifications of speech segments 57 

into alternate speech types in terms of F1-score and Diarization Error Rate (DER), which help in 58 
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understanding the performance achieved by the different modeling techniques. This study would 59 

be one of the first efforts for End-to-End Diarization on a large North American English dataset of 60 

child-adult naturalistic recordings in diverse classroom conditions. Previous studies have 61 

considered the application of alternate Deep Neural Network architecture embeddings for Child 62 

vs. Adult speech-type classification. Deep Neural Network multi-label classification (Lavechin et 63 

al., 2020) has achieved segment-level classification of child or adult speech detection for 64 

diarization which included fine-grained labels like ’key child’, ’other child’ and generic labels like 65 

’speech’ for multitask learning as a general audio-tagging task. A single label for an audio segment 66 

can be useful for downstream speech tasks. Moreover, as we testing on the segment-level audio, 67 

the output speech-type can be classified in an online fashion (Xue et al., 2021) (i.e. every segment 68 

can be processed as it is recorded). This has advantages in classroom settings where immediate 69 

feedback for teachers/adults can be provided. For offline processing, the entire recording would 70 

need to be provided to generate any final output estimated knowledge of the speech segment 71 

type. 72 

Additionally, we also divide the dataset in a classroom-independent scenario, such that 73 

models trained on one classroom condition are available for testing on audio from another 74 

classroom condition. This will be the first effort on this dataset to look at data splits with audio 75 

data from alternate classrooms, thus allowing for a statement on model generalization capability. 76 

Finally, we introduce a novel visualization diagram referred to as donut diagram which provides 77 

speech segment classifications over a period of time, as a feedback mechanism and practical 78 

evaluation of our proposed classification models.    79 
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II. Outline  80 

The following is an overview of this paper which starts with Sec III mentions the 81 

Background including speaker characteristics and child-adult speech diarization. Sec IV 82 

introduces our framework for end-to-end child-adult speech/speaker-type classification which 83 

includes the assumptions and scope of our problem formulation. Sec V provides details of the 84 

dataset. Sec VI explains the procedure for producing the classification from raw audio including 85 

steps displayed in Fig 2. Within Sec VI of the method, Sec VI. A provides details on the system 86 

diagram based on Fig 2, Sec VI. B introduces data preprocessing which includes segment 87 

generation and labeling, Sec VI. C provides details about the Deep Learning architectures of 88 

Emphasized Channel Attention and Propagation -Time Delay Neural Network (ECAPA-TDNN 89 

(Desplanques et al., 2020)) and ResNet18 (He et al., 2016) used for segment classification. Sec 90 

VII talks about the experimental design and the metrics used for evaluating the experiments, while 91 

we look and discuss the results in Sec VIII, followed by conclusions and future work in Sec IX.  92 

III. Background 93 

A. Modeling speaker characteristics  94 

For speaker modeling and recognition, i-Vectors (Dehak et al., 2010; Hansen and Hasan, 95 

2015) are fixed length vectors that characterize speaker identity from arbitrary length sequential 96 

data (i.e. speech samples) and are traditional features for speaker recognition (Dehak et al., 97 

2010). They have also been used for language recognition (Dehak et al., 2011), accent 98 

recognition (Bahari et al., 2013), emotion recognition (Xia and Liu, 2012), etc. Alternatively, 99 

DNNs (McLaren et al., 2015; Snyder et al., 2018b, 2016) can be used to directly capture 100 

language or speaker characteristics. They achieve improved results over i-Vectors using Mel-101 

Frequency Cepstral Coefficients or Filterbank Coefficients as features. 102 

The current standard framework consists of a discriminatively trained DNN that maps 103 

variable-length speech segments to embeddings called x-Vectors (Snyder et al., 2018b). x-104 

Vectors are deep speaker embeddings based on a Time-Delay Neural Network (TDNN) 105 



6 
 

architecture. This approach has achieved excellent results for speaker recognition (Snyder et al., 106 

2018b), diarization (Sell et al., 2018) and language recognition (Snyder et al., 2018a) with further 107 

advancements being actively researched. ECAPA-TDNN (Dawalatabad et al., 2021) were 108 

recently introduced and provide enhancements over TDNN (Snyder et al., 2018b) by introducing 109 

channel and context-dependent attention mechanism.    110 

B. Child-Adult Speech Diarization  111 

Previous work on child speech have utilized i-Vectors (Kothalkar et al., 2019; Najafian 112 

et al., 2016) and x-Vectors (Xie et al., 2019a) as features for speaker classification. The SincNet-113 

based speaker identification model have been used in university classroom setting (Dubey et al., 114 

2019) with effective results. Previous work on this dataset (Najafian et al., 2016) used much 115 

lesser data and fixed segments of length 1.5 seconds with a Support Vector Machine (SVM) 116 

backend for classification. A recent study (Kothalkar et al., 2019) with more data transcribed for 117 

the dataset, used DNN modeling with i-Vectors as features, and provided promising results. 118 

Since, we aim to perform classification for real-time application in an end-to-end diarization 119 

scenario, multiple DNN architectures are considered for their strong performance in related 120 

studies and possible End-to-End classification approach. 121 

 122 

C. End-to-end Child-Adult Speech Diarization 123 

Recently studies have considered neural network-based classification systems trained for 124 

classifying child or adult speech/speaker-type. These utilize some form of fixed length embedding 125 

as input for another neural network for final classification of child or adult based on class posterior 126 

values (Kolluguri et al., 2021; Kumar et al., 2020) or traditional speaker clustering 127 

(Krishnamachari et al., 2020). Alternately, such embeddings have also been utilized for child-128 

adult speech/speaker-type diarization, where neural network training is formulated as a sequence 129 

classification problem with output belonging to one of three classes: child speech, adult speech 130 
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or silence. These solutions are effective in moderate noise conditions such as home environments 131 

with limited number of children and/or adults. 132 

(Lavechin et al., 2020) formulated the Child-Adult Diarization task as a multi-label 133 

classification task using SincNet followed by Long-Short-Term-Memory (LSTM) layers for 134 

activating multiple voice types present in 2s audio segments. This implied each segment could 135 

be reported as multiple voice-types resulting in multiple classes for downstream processing tasks 136 

like Automatic Speech Recognition (ASR) or Keyword Spotting (KWS). Speech-type specific ASR 137 

models could be utilized for downstream recognition and analysis tasks, if such specific 138 

information can be extracted. Thus, multiple segment labels may not be optimal for extremely 139 

noisy data/scenarios with audible/intelligible speech from single unique speech/speaker-type. 140 

Speech activity detection (SAD) and audio classification are similarly aligned tasks as our 141 

speech/speaker-type diarization and have achieved effective performance using single DNN 142 

multitask classification. A single DNN with multi-class classification has performed effectively for 143 

short duration audio on tasks such as SAD or audio classification. (Hebbar et al., 2019) utilized 144 

standard deep learning architectures for image classification tasks with ResNet for segment-145 

based robust speech activity detection (clean, music, noise classes) with impressive performance. 146 

Apart from Convolutional Recurrent Neural Networks, Time Delay Neural Networks (TDNNs) 147 

(Snyder et al., 2018b) have been utilized to model long-term dependencies while performing 148 

SAD with advantage of overall lower computational costs. 149 

IV. FRAMEWORK FOR END-TO-END CHILD-ADULT SPEECH/SPEAKER TYPE 150 

CLASSIFICATION 151 

The TDNN (Snyder et al., 2018b) architecture embeddings have been utilized for 152 

detection of speech (Bai et al., 2019b; Ogura and Haynes, 2021), language (Garcia-Romero 153 

and McCree, 2016), acousitc scene (Bai et al., 2019a), Parkinsons (Wodzinski et al., 2019), 154 

audio Session (Raj et al., 2019), gender (Raj et al., 2019), speaking rate (Raj et al., 2019), words 155 

(Raj et al., 2019), phoneme (Raj et al., 2019), utterance length (Raj et al., 2019) etc. Recently, 156 
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ECAPA-TDNN (Dawalatabad et al., 2021) embeddings have provided state-of-the-art results for 157 

speaker recognition (Chung et al., 2018) and speaker diarization (Dawalatabad et al., 2021) 158 

tasks in noisy audio. 159 

The posterior probabilities from the TDNN (Snyder et al., 2018b) and/or ResNet (He 160 

et al., 2016) architectures have also been utilized for detection of speech (Bai et al., 2019b; 161 

Horiguchi et al., 2021; Kwon et al., 2021; Lin et al., 2020a; Villalba et al., 2019), speaker (Xie 162 

et al., 2019b), music (Lee et al., 2006), stuttering (Sheikh et al., 2021, 2022), Parkinsons 163 

(Wodzinski et al., 2019), spoken term (Ram et al., 2019), dysarthria (Gupta et al., 2021), 164 

intoxication (Wang et al., 2019) etc. 165 

Based on the effectiveness in these studies, we pose the child-adult speech/speaker-type 166 

detection problem as a multi-class classification task using modern DNN architectures. Thus, we 167 

propose to experimentally verify the detection of child and adult speech from non-speech in 168 

naturalistic audio using a single deep neural network like ECAPA-TDNN (Desplanques et al., 169 

2020) for 1D input raw audio feature and a deep neural network like ResNet for 2D input feature. 170 

Here, non-speech comprises silence, inaudible speech within crowd noise by adults or children, 171 

background music including vocals or electronic devices. Child-specific non-speech comprises 172 

laughs, cries, screams, breathing, burping, babbling, growling, squealing etc. Due to the 173 

pervasiveness of such noisy non-speech along with speech, for long periods of interaction in the 174 

preschool classroom, we prioritize capturing speech-types in clean as well as extremely noisy 175 

conditions, by training a single model for distinguishing clean/noisy child-adult speech from non-176 

speech. 177 

To capture the minor variation in perceptual differences between intelligible speech from 178 

children and adults, in the presence of near-identical unintelligible adult noise or child non-speech 179 

sounds, we formulate it as a multiclass classification task, for a single neural network with 180 

logMelSpectrogram input features. The hypothesis is that regions of child/adult speech in the mel-181 
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spectrograms would be distinguishable by a DNN compared to regions of non-speech in both 182 

clean and noisy conditions. 183 

V. DATA SPECIFICS 184 

A. Data collection 185 

The dataset in this study consists of spontaneous conversational speech recorded with 186 

the help of LENA units attached to subjects in a high quality childcare learning center in the United 187 

States. Daylong audio recordings consist of 54 preschool daylong audio files across 3 days in 7 188 

sessions in 2 classrooms (A or B). 189 

B. Classroom details 190 

Data collected using LENA recorders in two classrooms have multiple working stations. 191 

These learning station activities such as reading, blocks, play, singing, science etc. (see Fig 1). 192 

The dimensions of the two classrooms are different which may affect the recorded audio in terms 193 

of reverberation. Classroom A is 24 ft. by 24 ft. in dimension. Classroom B is much larger with 194 

dimensions of 24 ft. by 40 ft. An illustration of floor plan in a preschool classroom is shown in Fig 195 

1. Thus, to understand the performance of our algorithms in diverse environmental conditions, it 196 

would be useful to have data from these classrooms in different sets for model training and test. 197 

C. Dataset distributions 198 

Audio for this study have children who are 3 to 5 years along with one or more adults 199 

(e.g. typically teachers). Most children wear LENA devices as well as accompanying 1-3 adults 200 

are also wearing them. For this dataset, an organized set of 26.5 hrs of child speech are 201 

established. Out of this 9.5 hrs of speech is from classroom A and 17 hrs of child speech is from 202 

classroom B. The dataset also has 28.5 hrs of adult speech with 11 hours of adult speech from 203 

classroom A and 17.5 hrs of adult speech from classroom B. 204 

 The total audio from classroom A is of duration 61 hours and 18 minutes and from 205 

classroom B is 63 hours and 57 minutes. Thus, around 60 hours of audio or approximately 206 

230,000 segments of 1 second duration are used for training the classroom-specific models. 207 
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The audio segment files are divided into training, development and test sets following the 208 

classroom-based division such that there is no overlap of data between the sets. The audio data 209 

corresponding to classrooms A and B are used for training alternate models. Data from the other 210 

classroom is used for model development and test. During model development, a separate hold-211 

out set known as development data, is used in order to find the best performing model (based on 212 

training epoch) during neural network training. 213 

For example, a model trained on data from classroom A, is used for model development 214 

on data from a given timepoint in classroom B, and tested on remaining timepoints from the same 215 

classroom B. Similarly, a model trained on classroom B, is used for model development on data 216 

from given timepoint in classroom A and tested on data from remaining timepoints in classroom 217 

A. Thus, training set is from alternate classroom compared to development and test sets. This 218 

provides opportunity for model developed on data from one classroom, to be evaluated on two 219 

subsets of data from other classrooms. Also, such a data split have practical application for new 220 

classroom scenarios where smaller, transcribed pilot data from new classroom can be used for 221 

model epoch selection and rest of the untranscribed data for testing. Even if transcription for new 222 

classroom data is not feasible, the current data split provides generalized models for testing based 223 

on train-development split. 224 

VI. METHOD 225 

A. System pipeline 226 

Fig 2 explains the high-level system diagram for child-adult speech diarization task. It 227 

starts with data collection using our LENA device in preschool classroom. This data is transcribed 228 

by the CRSS transcription team for recognizing the speech in this naturalistic audio. After data 229 

preprocessing steps, the modified data is used to train Deep Learning models using the training 230 

set. The best model on the training set is evaluated on the development set for model selection. 231 

The best performing model on the development set is finally evaluated on the test set for final 232 

speech/speaker-type classification. 233 
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B. Data Preprocessing 234 

Audio recordings from both classroom A and B are divided into audio segments using a 235 

sliding window of 1000ms duration with no overlap. Based on text transcripts from the data, 236 

ground-truth speaker-types are assigned as “adult” or “child” speech on the basis of greater talk 237 

time by either the adult or child speaker over each 1000ms audio segment respectively. This 238 

approach was motivated by an earlier study that also considered a different challenging 239 

diarization scenario (Lin et al., 2020b). For segments with speech tags that occupy less than 240 

12.5% of the total segment duration, these are marked as non-speech. The ability to set a 241 

speech/silence threshold balance, achieving overall effective diarization robustness, has also 242 

been explored in other studies (Hebbar et al., 2019). 243 

C. Deep Learning Model Architectures 244 

End-to-end deep learning systems for speech classification tasks consist of following 245 

steps: i) frame-level feature extraction using DNNs, ii) temporal aggregation of frame-level 246 

features, and iii) optimization of classification loss. Most speaker verification/recognition systems 247 

have a base DNN architecture such as a 2D CNN with convolutions in both time and frequency 248 

domains such as ResNet (He et al., 2016) or a 1D CNN with convolutions only in the time domain 249 

such as ECAPA-TDNN (Desplanques et al., 2020). Here the focus is to evaluate these for 250 

speaker/speech-type classification. Thus, looking at both 1D and 2D CNN architectures will help 251 

to evaluate features and architectures for systems that can perform well on child or adult 252 

speaker/speech-type detection from non-speech. The ECAPA-TDNN (Desplanques et al., 2020) 253 

performs better than the ResNet architecture for speaker recognition tasks, due to its ability to 254 

learn complex patterns that occur in any frequency region since 1D convolutions cover the 255 

complete frequency range of the input features. However, this leads to hardcoding (Thienpondt 256 

et al., 2020) of absolute frequency position of each input feature. Our hypothesis is that this may 257 

not translate to appropriate generic speech/speaker-type classifications due to differences in 258 

frequency variability within adult/child speakers. ResNet models are expected to benefit due to 259 
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2D convolutions with small receptive fields by exploiting the local speech-type frequency patterns 260 

that repeat for small frequency shifts, thus providing generality for modeling speakers within 261 

child/adult groups.  262 

1. ECAPA-TDNN model  263 

TDNN (Snyder et al., 2018b) model differs from a conventional DNN by introducing a 264 

multi-splicing concept that enables an efficient way of modelling the large temporal context. Multi-265 

splicing implies that feature frames and intermediate DNN-layer outputs are time delayed and 266 

stacked to form an input to an upstream neural network layer.  267 

ECAPA-TDNN (Desplanques et al., 2020) is an enhanced version of the TDNN (Snyder 268 

et al., 2018b) model using novel blocks and modules for robust speaker embeddings. The pooling 269 

layer uses channel and a context-dependent attention mechanism, which allows the network to 270 

’attend’ to different frames per channel. Here, the 1-dimensional Squeeze-Excitation (SE) blocks 271 

rescale the channels of intermediate frame-level feature maps to insert a global context 272 

information into the locally operating convolutional blocks. Also, 1-D Res2 blocks and Multi-layer 273 

Feature Aggregation (MFA) improves performance by using grouped convolutions and merging 274 

the complementary information respectively. MFA provides complementary information for 275 

statistics pooling by concatenating the final frame-level features with intermediate features of 276 

previous layers. 277 

2. Input representation for ECAPA-TDNN 278 

Here, 80-dim. log-Mel-Spectrograms are extracted over 25ms window lengths with 10ms 279 

skip rate from 1000ms audio segments as input features. Stacked frame blocks of 1000ms 280 

duration (100 frames) are used to generate the serialized input 2D features for the task of 281 

speech/speaker-type classification. 282 

 283 

3. ResNet18 model 284 



13 
 

The ResNet model is used for training very deep networks with the help of residual 285 

learning which involves skip connections to help overcome the problem of vanishing  gradient due 286 

to increase in depth. Configuration details for the ResNet18 (He et al., 2016) model is presented 287 

in Table I. ResNet is a block-based model which includes identity block and convolution block. 288 

Here identity block passes the original input to the output of the convolution block by skipping 289 

intermediate convolutional layers within the block. For convolutional block, the original input is 290 

passed through another convolutional layer to match the output dimensions of the convolutional 291 

block during summation. This creates an alternate path for the vanishing gradient to pass through 292 

from deeper layers. This approach will allow the model to learn an identity function, which allows 293 

the higher layer in the model to perform as effectively as the lower layer. After initial convolution 294 

(Layer 0) and batch normalization and ReLU operations, there are always 4 blocks (Layer 1-Layer 295 

4) with each block containing multiple convolutions, batch normalization and ReLU operations. 296 

Layer 0 represents the input layer and layers 1-4 are the residual blocks in the ResNet architecture 297 

with skip connections as summarized in Table I. The architecture finishes with a convolutional 298 

layer, flatten operation, average pool operation and output layers. 299 

 300 

 301 

 302 

 303 

 304 

 305 

 306 

 307 

 308 

 309 



14 
 

Name 

Output 

size 

I.C. size, 

O.C. size 

Kernel size, 

Stride size 

Layer0 

99 × 

80 3,64 7, 2 

Layer1 

50 × 

40 

64,64 3, 1 

  64,64 3, 1 

Layer2 

25 × 

20 

64,128 3, 2 

  128,128 3, 1 

Layer3 

13 × 

10 

128,256 3, 2 

  256,256 3, 1 

Layer4 7 × 5 

256,512 3, 2 

  512,512 3, 1 

Avg. Pool 4 × 3 512,3 1, 1 

Embedding 1 × 1 - 1, 1 

Softmax 1 × 1 
  

TABLE I. Configurations of all operators in ResNet-18 where I.C. represents Input Channel and 310 

O.C. represents Output Channel. 311 

 312 

 313 
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4. Input representation for ResNet18 314 

For this system, 80-dimensional log-Mel-Spectrograms are extracted over 25ms windows 315 

with 10ms skip rate as input features. Stacked frame blocks of 1000ms duration (100 frames) are 316 

used to generate serialized input 2D features for the task of speaker/speech-type classification. 317 

VII. EXPERIMENTAL DESIGN AND METRICS 318 

A. Experimental Design 319 

For uniformity in system evaluation, both ECAPA-TDNN (Desplanques et al., 2020) and 320 

ResNet18 (He et al., 2016) models are trained with an Additive Margin-Softmax loss with 321 

margin=0.15 on input features for 40 epochs using the RMSprop algorithm with a learning rate 322 

of 0.001, α = 0.95 and 𝜀 = 1 ⨉ 10−8. Each epoch consists of 800 batches of randomly selected 323 

segments of batch size 32. Figs. 3 and 4 highlight the block diagram for ECAPA-TDNN 324 

(Desplanques et al., 2020) model and ResNet18 (He et al., 2016) models respectively. Results 325 

are reported for both development and test sets for both models as explained in Sec V. C.  326 

B. Diarization Error Rate 327 

Diarization error rate (DER) can be defined as the sum of errors due to an incorrect 328 

speaker (𝐸𝑠𝑝𝑘𝑟), missed speech (𝐸𝑚𝑖𝑠𝑠), false alarm speech (𝐸𝐹𝐴) and overlapping speakers 329 

(𝐸𝑜𝑣𝑙) based on the predictions of the Diarization system. 𝐸𝑜𝑣𝑙 and 𝐸𝐹𝐴 are not considered in this 330 

evaluation. 331 

𝐷𝐸𝑅 = 𝐸𝑠𝑝𝑘𝑟 + 𝐸𝑚𝑖𝑠𝑠   (1) 332 

In the literature, Speaker Confusion Error for audio streams is mostly reported as DER. 333 

However, we have reported DER comprised of speaker confusion error and missed speech 334 

error (Kumar et al., 2020), as these are most important for follow-on downstream tasks of both 335 

speech analysis and ASR. 336 

 337 

 338 
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C. F1-score for speech type detection by model on testing dataset 339 

To understand the child-adult speaker/speech-type detection, we test our models on 340 

classroom specific test data. Different metrics can assess model performance in terms of their 341 

ability to recall as well as precision of detection. ’Accuracy’ is defined as the total number of 342 

samples that are predicted correctly. ’Precision’ is the fraction of relevant instances among all 343 

the detected instances. These would be the fraction of actual segments of speech/speaker type 344 

or non-speech type, among all such detected segments. 345 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
   (2) 346 

where TP represents True Positives and FP represents False Positives. 347 

’Recall’ is defined as the fraction of the relevant instances that were actually detected. In 348 

our case, these would be the fraction of segments of particular speech/speaker or non-speech 349 

type that were predicted correctly. 350 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
   (3) 351 

 352 

where TP represents True Positives and FN represents False Negatives. 353 

F1-score is defined as harmonic mean of the precision and recall, and takes both precision 354 

and recall into account for providing an overall balanced assessment. 355 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2 𝑋 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑋 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
   (4) 356 

VIII. RESULTS AND DISCUSSIONS 357 

A. DER and F1-score 358 

Table II reports diarization error rate for the development subsets for the classrooms A and 359 

B. Table IV reports corresponding F1-scores for each of the speaker/speech types and non-360 

sp. audio where non-sp. represents non-speech. Table III reports diarization error rate for the 361 

test subsets for the classrooms A and B. Table V reports corresponding F1-scores for each 362 

of the speaker/speech types and non-sp. audio where non-sp. represents non-speech. 363 
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Train on Train 
set of: 

Test on Dev 
set of: Model Espkr (%) 

EMISS 

(%) 
DER 
(%) 

Room A Room B 

ECAPA-TDNN 13.7 34.6 48.3 

  ResNet18 9.1 35.2 44.3 

Room B Room A 

ECAPA-TDNN 10.3 33.6 43.9 

  ResNet18 7.5 29.5 37.0 

TABLE II. Diarization Error Rate results on development subset recordings of classroom A and 364 

classroom B audio. 365 

Train on Train 
set of: 

Test on Test 
set of: Model 

Espkr 

(%) 
EMISS 

(%) 
DER 
(%) 

Room A Room B 

ECAPA-TDNN 13.1 30.5 43.6 

  ResNet18 9.4 23.4 32.8 

Room B Room A 

ECAPA-TDNN 12.6 31.8 44.4 

  ResNet18 9.4 27.5 36.9 

TABLE III. Diarization Error Rate results on testing subset recordings of classroom A and 366 

classroom B audio. 367 

 368 
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Train on 
Train set 
of: 

Test on 
Dev set 
of: 

Model F1child 

(%) 
F1adult 

(%) 
F1non-sp. 
(%) 

F1overall 

(%) 

Room A 

Room 

B 

ECAPA-

TDNN 
61.8% 59.4% 71.3% 65.5% 

  ResNet18 63.7% 61.1% 78.8% 71.0% 

Room B 

Room 

A 

ECAPA-

TDNN 
55.7% 53.2% 73.5% 64.4% 

  ResNet18 66.6% 68.6% 75.0% 71.0% 

TABLE IV. F1-score results on development subset recordings of classroom A and classroom B 369 

audio where non-sp. represents non-speech. 370 

Train on 
Train set 
of: 

Test on 
Test set 
of: 

Model F1child 

(%) 

F1adult 

(%) 

F1non-sp. 

(%) 

F1overall 

(%) 

Room A Room B 

ECAPA-

TDNN 
59.9% 60.1% 72.3% 65.5% 

  ResNet18 67.4% 70.4% 74.8% 71.5% 

Room B Room A 

ECAPA-

TDNN 
58.8% 62.8% 71.9% 65.6% 

  ResNet18 64.1% 71.4% 75.1% 71.0% 

TABLE V. F1-score results on testing subset recordings of classroom A and classroom B audio 371 

where non-sp. represents non-speech. 372 

 373 
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As can be seen from Table III, ResNet18 (He et al., 2016) outperforms ECAPA-TDNN 374 

(Desplanques et al., 2020) significantly for Speaker Confusion error, Missed Speech, and overall 375 

DER on the test set for both classroom A and B test sets. This is similar to performance observed 376 

for ResNet and ECAPA-TDNN on the development set, where except for missed speech in 377 

classroom B, ResNet18 outperforms ECAPA-TDNN on all other metrics. Relative improvements 378 

by ResNet18 model on classroom A test audio data are +25.4% for speaker confusion, +13.5% 379 

for missed speech, and +16.9% for overall DER. The relative improvements by ResNet model on 380 

classroom B audio data are +28.2% for speaker confusion, +23.3% for missed speech and 381 

+24.8% for overall DER.   382 

      The largest improvement by ResNet model is for segments containing adult speech in 383 

terms of the F1-score as seen in Table V for test subset. Specifically, F1-score for adult speech 384 

provides absolute improvement of +8.6% for test data from classroom A, and absolute 385 

improvement of +10.3% for test data from classroom B. This does follow from largest absolute 386 

improvement for F1-score for development set from classroom A as seen in Table IV which is 387 

+15.4%. However, the largest absolute improvement for F1-score from classroom B of 388 

development set is for non-speech label segments which is +7.5%. For all results in Table V, the 389 

best F1-scores are for non-speech segments, followed by adult speech and lastly child speech 390 

segments. We hypothesize the lower F1-scores for child speech to be due to the smaller 391 

difference in child speech from child vocalizations (which are mostly in non-speech type), unlike 392 

adult speech which has more distinguishable pronunciations. The highest F1-scores across all 393 

models, dataset type (dev, test) and classrooms for non-speech type audio can be attributed to 394 

the disproportionate amount of non-speech present in these audio files, and therefore the 395 

distribution in the test segments. 396 

Although ECAPA-TDNN model performs better than a ResNet variant for speaker 397 

recognition (Desplanques et al., 2020) and diarization (Dawalatabad et al., 2021) tasks, certain 398 
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ResNet variants perform better than ECAPA-TDNN for short-duration utterance speaker 399 

verification (Thienpondt et al., 2020). Also, some ResNet variants perform better than TDNN 400 

variants for far-field speaker recognition (Gusev et al., 2020) using short duration test utterances. 401 

Thus, our results presented here, are along the line of results (of ResNet variant being better than 402 

ECAPA-TDNN) achieved for similar short-duration, noisy and near as well as far-field audio for 403 

speaker recognition/ verification. 404 

B. Visualization of speech-type density and turn-taking using donut diagrams 405 

Also, we present the speaker/speech-type density and turn-taking with a visualization tool 406 

known as ”donut diagram” that reflects the speech density per speaker over different times of a 407 

session. It begins in the east-most section of the donut and displays times along an anti-clockwise 408 

direction until time is complete, reaching the same point 360 degrees later. 409 

Figs 5 and 6 represent the actual and predicted (using ResNet (He et al., 2016) model) 410 

talktimes for a session in classroom A with a child wearing the LENA device. We see the 411 

percentage difference between predicted and actual talktimes differ between 2.6% (child) and 412 

3.1% (adult). Although child and adult speech is predicted more than in reality, the density of 413 

speech-type and change in speech-types in alternate sections are captured well and offers an 414 

excellent high-level assessment of child-adult conversational engagement. For example, the left 415 

half of the diagram with multiple interactions between children and adults is useful for further 416 

analysis. The mapping between dense regions of child speech (thick segments of pink) and adult 417 

speech (thick segments of green) are also matched closely between Figs. 5 and 6, where thick 418 

segments would have speech for a single type for significant duration. 419 

For example, certain thick green segments are matched at 85 degrees and between 150 420 

and 210 degrees. Similar, thick pink segments are between 180 and 210 degrees. Figs. 7 and 8 421 

represent the actual and predicted (using ResNet model) talktimes for a session in classroom B 422 

with a child wearing the LENA, resulting in much more recorded adult speech. Approximately, 423 

10% of child speech is missed in this predicted donut diagram, and approximately a similar 424 
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amount of non-speech is misclassified. However, regions with significant child or adult 425 

communication-as represented by thick segment of single color (green or pink) - interspersed with 426 

the speech type are present and well matched in both figures. For example, presence of thick 427 

green segments between approximately 260-300 degrees-representing significant adult talk 428 

during that time of the session, along with child speech in between in classroom A with a child 429 

wearing the LENA device. 430 

 431 

IX. CONCLUSIONS AND FUTURE WORK 432 

In this study, an end-to-end child-adult speech-type diarization system for recognizing 433 

speech/speaker type from day long audio recordings was developed. State-of-the-art session in 434 

classroom A with a child wearing the LENA device. Deep Learning models renowned for speaker 435 

recognition were utilized for predicting speech-type activity. Specifically, ECAPA-TDNN models 436 

provided good and consistent results in terms of F1-scores for all speech activity types recognized 437 

based on the posterior probabilities. However, ResNet model with 80-dim. Log-Mel-spectrogram 438 

inputs have outperformed ECAPA-TDNN model in terms of F1-scores of all speech activity types 439 

as well as DER. These models were trained on audio data from one classroom and tested on 440 

audio data from a separate classroom, which proves the generalization of our models for alternate 441 

classroom conditions. The predicted segments were visualized with novel visualizations referred 442 

to here as donut diagrams. These were shown to be an effective method for detecting continuous 443 

child and/or adult speech segments over a period of time, providing visual feedback of child-adult 444 

interactions. Thus, the diagrams can provide feedback to teachers/adults on their communication 445 

metrics with children during different times of the session. For future work, we suggest to train 446 

and test multi-class classification tasks for attention-based ResNet models for smaller duration 447 

segments. Since the scope of this work involved classroom-independent diarization evaluation, 448 

future work could also include performance evaluation of the proposed diarization system for 449 
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downstream speech technology tasks including ASR and Keyword Spotting, along with segment-450 

level speaker/speech-type based tagging. 451 
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FIGURE CAPTIONS 618 

Figure 1: Illustrative example of floor plan for child learning spaces within preschool classrooms. 619 

(i.e. learning stations: Books/Reading, Science etc.) 620 

Figure 2: System diagram for end-to-end child-adult speech diarization system. 621 

Figure 3: Block diagram for End-to-End ECAPA-TDNN model. 622 

Figure 4: Block diagram for End-to-End ResNet18 model. 623 

Figure 5: Actual talktime for child and adult speech as represented by a donut diagram for a 624 

session in classroom A with a child wearing the LENA device. 625 

Figure 6: Predicted talktime for child and adult speech as represented by a donut diagram for a 626 

session in classroom A with a child wearing the LENA device. 627 

Figure 7: Actual talktime for child and adult speech as represented by a donut diagram for a 628 

session in classroom B with a child wearing the LENA device. 629 

Figure 8: Predicted talktime for child and adult speech as represented by a donut diagram for a 630 

session in classroom B with a child wearing the LENA device.  631 


