
1

Uncertainty Quantification by Convolutional
Neural Network Gaussian Process Regression

with Image and Numerical Data

Jianhua Yin* and Xiaoping Du†

Indiana University - Purdue University Indianapolis, IN, 46202, United States

Uncertainty Quantification (UQ) plays a critical role in engineering analysis and design.
Regression is commonly employed to construct surrogate models to replace expensive
simulation models for UQ. Classical regression methods suffer from the curse of
dimensionality, especially when image data and numerical data coexist, which makes UQ
computationally unaffordable. In this work, we propose a Convolutional Neural Network
(CNN) based framework, which accommodates both image and numerical data. We first
transform numerical data into images and then combine them with existing image data. The
combined images are fed to CNN for regression. To obtain the model uncertainty, we integrate
CNN with Gaussian Process (GP), which results in the mixed network CNN-GP. The
simulation results show that CNN-GP can build accurate surrogate models for UQ with mixed
data and that CNN-GP can also provide the uncertainty associated with the model prediction.

I. Nomenclature
𝐴𝐴𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = function for dimension reduction
𝐺𝐺 = Gaussian Process model
𝑔𝑔,𝑔𝑔� = generic functions
𝐻𝐻 = random field
ℎ = the width of converted image
ℎ𝑐𝑐 = convection coefficient
𝐼𝐼 = moment of inertia
𝐈𝐈𝐈𝐈 = combined image
𝐢𝐢𝐢𝐢 = image data
𝐢𝐢𝐦𝐦𝑥𝑥 = image data converted from numerical data
𝑘𝑘 = thermal conductivity
𝑀𝑀 = external moment
𝑇𝑇 = temperature
𝑇𝑇𝑎𝑎 = ambient temperature
𝑇𝑇𝑟𝑟 = transfer function of numerical data to image data
𝑡𝑡𝑧𝑧 = plate thickness
𝒖𝒖 = normalized numerical data
𝑤𝑤 = the width of image
𝑿𝑿 = spatial coordinate
𝒙𝒙 = numerical data
𝑦𝑦 = model response or label
𝒛𝒛 = latent space output of convolutional neural network
𝛽𝛽 = width of a single bar
𝛾𝛾 = width of a gap between bars

* Graduate Research Assistant, Department of Mechanical and Energy Engineering.
† Professor, Department of Mechanical and Energy Engineering.

2

𝜖𝜖 = emissivity coefficient of plate surface
𝜃𝜃 = angular displacement
𝜃𝜃ℎ = hyperparameter of convolutional neural network
𝜆𝜆 = eigenvalue
𝜇𝜇 = mean function of a random field
𝜇𝜇𝐺𝐺 = mean prediction of Gaussian Process
𝜉𝜉 = standard normal random variable
𝜌𝜌 = correlation
𝜎𝜎 = Stefan-Boltzmann constant
𝜎𝜎𝐺𝐺 = prediction uncertainty of Gaussian Process
𝜑𝜑 = eigen-function
𝜔𝜔 = angular velocity

II. Introduction
OMPUTER simulation models, derived from physical laws, play a key role in engineering analysis and design.
Their typical applications include prediction, sensitivity analysis, uncertainty quantification (UQ), what-if

analysis, optimization, design exploration, and systems design, all of which need to run the simulation many times.
The models represent sophisticated physical details across wide spatial and time domains and are usually
computationally demanding.

Regression, also known as metamodeling, is increasingly used to replace computationally expensive simulation
models with cheaper surrogate models or metamodels for UQ [1-5]. A simulation model is run a limited number of
times, producing a set of labeled training points, based on which a surrogate model is built. Surrogate models can be
built using traditional response surface modeling (RSM) and can also be built with machine learning (ML) methods,
such as Gaussian process (GP), support vector machines (SVM), and neural network. However, the computational
cost is high when the dimension of the problems is high [6, 7].

In many applications, such as medicine, computational mechanics, material design, additive manufacturing, both
image and numerical data coexist. For example, in the severity assessment of stenosis [8], in addition to the patient
image data, other numerical data, such as material properties and boundary conditions, are also inputted to
computational fluid dynamics (CFD) simulation. Another example is the multidisciplinary optimization design of
aircraft wings [9]. The structure or the geometry of the wings can be considered as image data; loading, material
properties, and boundary conditions are numerical data. It is impossible or inconvenient to use typical surrogate
modeling methods (RSM, GP, and SVM) to accommodate image data. Although the multi-input problem with both
image and numerical data can be handled by a multi-input network [10], the implementation is complicated, and the
efficiency may not be satisfactory.

Convolutional Neural Network (CNN) is a deep learning method that can deal with the high dimensionality in
image input data. It is specifically designed to handle image data. CNN can recognize build-in features directly through
different convolution layers without relying on manual feature selection. It has achieved extraordinary successes in
computer vision, image recognition, speech recognition, and engineering applications. Although CNN is designed to
deal with only image-like data, recent studies [11] have shed light on the new use of CNN with numerical data. These
studies convert numerical data into image data and enable a new capability of treating pure numerical data. Inspired
by the findings, we develop a new concept to explore possible ways of using CNN for both image and numerical data.
We also quantify the uncertainty in the prediction made by CNN.

Our strategy is to convert numerical data into image data, merge the converted image with other image data, and
train a surrogate model with CNN. The concept is illustrated by a dynamic MNIST dataset. Taking the advantage of
the GP method, which can conveniently provide not only the prediction but also the uncertainty associated with the
prediction, we integrate CNN and GP so that the method can deal with high dimensional problems with quantified
model (epistemic) uncertainty in the prediction. The method can also potentially account for aleatory uncertainty
associated with random model input variables, thereby quantifying the effect of both types of uncertainty.

The rest of the paper is organized as follows. Section III provides the procedure of converting numerical data into
image data and merging converted images with existing images. Section IV shows how to integrate GP and CNN to
quantify the prediction uncertainty, or epistemic uncertainty. In Section V, we present two examples followed by
conclusions Section VI.

C

3

III. Convolutional Neural Network with Both Image and Numerical Data

III.A. Overview
A model with both numerical and image inputs is given by

𝑦𝑦 = 𝑔𝑔(𝒙𝒙, 𝐢𝐢𝐢𝐢) (1)

where 𝒙𝒙 is a vector of numerical input variables or a 1D array, and 𝒙𝒙 ∈ ℝ𝑛𝑛𝑥𝑥×1 with 𝑛𝑛𝑥𝑥 rows and 1 column; 𝐢𝐢𝐢𝐢 is the
input image, and 𝐢𝐢𝐢𝐢 ∈ ℝ𝑛𝑛𝑖𝑖×𝑚𝑚𝑖𝑖×𝑐𝑐𝑖𝑖 with 𝑛𝑛𝑖𝑖 rows, 𝑚𝑚𝑖𝑖 columns, and 𝑐𝑐𝑖𝑖 channels. The model in Eq. (1) is usually
computationally expensive, and we build its surrogate model by

𝑦𝑦 = 𝑔𝑔�(𝒙𝒙, 𝐢𝐢𝐢𝐢) (2)

The strategy is to convert the numerical data 𝒙𝒙 into images. Mathematically, it is a task to transform a 1D array
into a 3D array. Suppose after the transformation, numerical data in 𝒙𝒙 becomes an image 𝐢𝐢𝐦𝐦𝑥𝑥 in a 3D array. Denote
the transformation by 𝑇𝑇(⋅); namely

𝒙𝒙 = 𝑇𝑇(𝐢𝐢𝐦𝐦𝑥𝑥) (3)

Then the new image 𝐢𝐢𝐦𝐦𝑥𝑥 is merged with image 𝐢𝐢𝐢𝐢. Denote the aggregated image by 𝐈𝐈𝐈𝐈 = (𝐢𝐢𝐦𝐦𝑥𝑥 , 𝐢𝐢𝐢𝐢). The input is
now 𝐈𝐈𝐈𝐈. The surrogate model in Eq. (2) is usually built by CNN, which is a specialized neural network designed for
learning images features automatically. It is mostly used for classifications, but it can also be used for regression. A
typical CNN consists of three types of layers, convolution, pooling, and fully connected layer.
 After the conversion in Eq. (3), CNN can be used without any modifications, producing a surrogate or regression
model

𝑦𝑦 = 𝑔𝑔�𝐶𝐶𝐶𝐶𝑁𝑁(𝐈𝐈𝐈𝐈) (4)

Once the surrogate model is built, a prediction can be made for a new input (𝒙𝒙new, 𝐢𝐢𝐦𝐦new), called a test point, as
follows

𝑦𝑦 = 𝑔𝑔�(𝒙𝒙𝑛𝑛𝑛𝑛𝑛𝑛 , 𝐢𝐢𝐢𝐢𝑛𝑛𝑛𝑛𝑛𝑛) = 𝑔𝑔��𝑇𝑇�𝐢𝐢𝐢𝐢𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛�, 𝐢𝐢𝐦𝐦𝑛𝑛𝑛𝑛𝑛𝑛� = 𝑔𝑔�𝐶𝐶𝐶𝐶𝐶𝐶(𝐈𝐈𝐦𝐦𝑛𝑛𝑛𝑛𝑛𝑛) (5)

where 𝐈𝐈𝐦𝐦new = (𝐢𝐢𝐦𝐦𝑥𝑥new , 𝐢𝐢𝐦𝐦new) and 𝐢𝐢𝐦𝐦𝑥𝑥new = 𝑇𝑇−1(𝒙𝒙new).

III.B. Conversion of Numerical Data into Image Data
There are many ways to convert a 1D array of numerical data into a 3D array (an image). Herein we discuss two

of them. One is the bar graph, and the other is the grayscale graph. Both ways can represent the measurable features
of the numerical data. The dataset of 𝒙𝒙 is first normalized to [0, 1].

For the bar graph [11], there are many possibilities for a given dataset. An example is shown in Fig. 1 with a
datapoint 𝒖𝒖 = (0.2, 0.5, 0.3, 0.5, 0.8). The height of the image in pixels is ℎ = 𝛽𝛽𝑛𝑛𝑥𝑥 + 𝛾𝛾(𝑛𝑛𝑥𝑥 + 1), where 𝛽𝛽 is the width
of a single bar, 𝛾𝛾 is the width of a gap between bars. Denote the maximum length of the bar, which is the width of
transformed image, by 𝑤𝑤 , the actual heights of the bars are 𝒖𝒖𝑤𝑤 , where 𝒖𝒖 = �𝑢𝑢1,𝑢𝑢2, … ,𝑢𝑢𝑛𝑛𝑥𝑥� are the normalized
numerical data.

Fig. 1 A converted bar graph.

4

The width of the image 𝑤𝑤 influences the resolution of numerical features since the number of pixels is an integer.
A continuous variable 𝑢𝑢 is discretized into 𝑤𝑤 intervals. The larger is 𝑤𝑤, the higher is the resolution of numerical
features, but the longer time is needed to process the image. Practically we set 𝑤𝑤 to be the maximum value of (𝑛𝑛𝑖𝑖,𝑚𝑚𝑖𝑖).

𝑤𝑤 = max(𝑛𝑛𝑖𝑖 ,𝑚𝑚𝑖𝑖) (6)

If we have higher-dimensional numerical features, it is possible to merge the converged image using the height ℎ.
Then, we can set 𝑤𝑤 to be a large value for a highest resolution.

The grayscale method is to transform the normalized data to grayscale images. The normalized value decides how
dark or bright the pixels are. The pixels are black when the normalized value is 0 and white when the normalized value
is 1. There are several ways to transform the normalized data to images. An example is shown in Fig. 2 using the same
datapoint 𝒖𝒖 = (0.2, 0.5, 0.3, 0.5, 0.8). The image height is ℎ = 𝛽𝛽𝑛𝑛𝑥𝑥 and the width still is 𝑤𝑤. We convert the numerical
data as a band image, where 𝛽𝛽 is band width.

Fig. 2 A converted grayscale image.

The grayscale transformation is insensitive to the width of the image since the numerical feature are embedded in
the gray levels but are not impacted by the dimension parameters. However, this transformation method is limited by
the gray level. For the commonly used 8-bit color format of grayscale images, the color from black to white is
discretized to 256 different shades of color whose range is 0-255. Black is 0 and white is 255. The numerical features
are, therefore, discretized to 256 intervals, which means the resolution is fixed. Also, the numerical features are not
influenced by the orientation of the image for both transformation methods.

The width of bars or bands for the two conversion methods used in Figs. 1 and 2 are large for a demonstration
purpose. Based on our experience, the accuracy of CNN is insensitive to the value of the width, and a smaller value is
preferred for a shorter computational cost.

III.C. Combination of Images
After numerical features 𝒙𝒙 are converted into image 𝐢𝐢𝐦𝐦𝑥𝑥, where 𝐢𝐢𝐦𝐦𝑥𝑥 ∈ ℝℎ×𝑤𝑤×𝑐𝑐𝑖𝑖 , we merge it into the existing

image 𝐢𝐢𝐢𝐢, where 𝐢𝐢𝐢𝐢 ∈ ℝ𝑛𝑛𝑖𝑖×𝑚𝑚𝑖𝑖×𝑐𝑐𝑖𝑖. Assuming the 𝑤𝑤 = max(𝑛𝑛𝑖𝑖 ,𝑚𝑚𝑖𝑖) = 𝑚𝑚𝑖𝑖, we merge the two images vertically, which
results in an aggregated image 𝐈𝐈𝐈𝐈 = (𝐢𝐢𝐦𝐦𝑥𝑥; 𝐢𝐢𝐢𝐢) , where 𝐈𝐈𝐈𝐈 ∈ ℝ(𝑛𝑛𝑖𝑖+𝑤𝑤)×𝑚𝑚𝑖𝑖×𝑐𝑐𝑖𝑖 . For example, we can merge the
transformed images in Figs. 1 and 2 to an existing image as shown in Fig. 3. Fig. 3(a) indicates that the converted
image 𝐢𝐢𝐦𝐦𝑥𝑥 ∈ ℝ22×28×1 is merged to the existing image 𝐢𝐢𝐢𝐢 ∈ ℝ28×28×1 vertically, which results in the aggregated
image 𝐈𝐈𝐈𝐈 ∈ ℝ50×28×1. Similarly, as shown in Fig. 3(b), we combine 𝐢𝐢𝐦𝐦𝑥𝑥 ∈ ℝ15×28×1 and 𝐢𝐢𝐢𝐢 ∈ ℝ28×28×1, resulting
in 𝐈𝐈𝐈𝐈 ∈ ℝ43×28×1.

Fig. 3 An example of aggregated images.

5

Alternatively, the transformed images can also be merged to other sides of the existing image if they are rotated to
suitable orientations. The orientations of the transformed images will not have a strong influence on the result of the
CNN training.

After the transformed images are merged to the existing images, the aggregated images are loaded to CNN for
regression.

IV. Uncertainty Quantification by CNN-GP with Both Image and Numerical Data
The CNN training process is straightforward. Once the CNN structure is determined, the CNN model (𝑔𝑔�𝐶𝐶𝐶𝐶𝐶𝐶) is

obtained using a group of training data [(𝐈𝐈𝐦𝐦1,𝑦𝑦1); … ; (𝐈𝐈𝐦𝐦𝑛𝑛 ,𝑦𝑦𝑛𝑛)]. Given a new untried image (𝐈𝐈𝐦𝐦∗), we have the
predicted response (𝑦𝑦�∗). However, we do not know how accurate the prediction is unless we run the original
computational model or a physical experiment, which is expensive. The discrepancy between the predicted response
and real response can be estimated by epistemic uncertainty or model uncertainty.

When we run the original simulation model, we assume that the response from such simulation model is the ground
truth without epistemic uncertainty. The model inputs, in most applications, however, are random, such as stochastic
loading, material properties, and other random parameters. This kind of uncertainty is called aleatory uncertainty or
data uncertainty. The purpose of this study to quantify epistemic uncertainty of surrogate models, and we do not
consider epistemic uncertainty of simulation models whose surrogate models are to be built. It is possible to
accommodate both types of uncertainty if the model uncertainty can be quantified.

To understand the accuracy of CNN, we need to quantify the epistemic uncertainty of the CNN prediction. The
central idea is to combine CNN with GP regression. The GP regression is increasingly used in UQ for engineering
applications [12-15] due to its ability to quantify epistemic uncertainty. A prediction of the GP model 𝐺𝐺(𝒙𝒙) consists
of two parts, the prediction mean and the prediction variance, which are denoted by 𝜇𝜇𝐺𝐺(𝒙𝒙) and 𝜎𝜎𝐺𝐺2(𝒙𝒙), respectively
The prediction of the GP model follows a normal distribution 𝐺𝐺(𝒙𝒙)~𝑁𝑁�𝜇𝜇𝐺𝐺(𝒙𝒙),𝜎𝜎𝐺𝐺2(𝒙𝒙)�. Therefore, we know the
uncertainty of the prediction for a given input point using the GP model. A detailed review of GP can be found in [16].

However, GP regression suffers from the curse of dimensionality. It is very hard or impossible to train a GP model
when images exit. Inspired by the existing model uncertainty quantification using GP [17, 18] and the mixed CNN
[19], we propose to quantify the uncertainty of the CNN model by combining CNN with GP. As illustrated in Fig. 4,
CNN is treated as a supervised dimension reduction process by several folds of convolution, pooling, and other layers.
The high dimensional image is reduced to 𝑛𝑛𝑧𝑧 hidden units, which are denoted by 𝒛𝒛 from one of the fully connected
layers (FC layer). Once the CNN model is built, we obtain the relationship between 𝒛𝒛 and input variables. Then we
use GP to obtain the relationship between response 𝑦𝑦 and 𝒛𝒛. Thus, the combination of CNN and GP yields the estimate
of the prediction error by quantifying the epistemic uncertainty at an untried point.

Fig. 4 Illustration of the uncertainty quantification method.

 Recall that we use the training data [(𝐈𝐈𝐦𝐦1,𝑦𝑦1); … ; (𝐈𝐈𝐦𝐦𝑛𝑛,𝑦𝑦𝑛𝑛)] to construct the CNN model (𝑔𝑔�𝐶𝐶𝐶𝐶𝐶𝐶). Once the model
is obtained, we can easily project the image from high dimensional space to a latent space (𝒛𝒛) by retrieving the
hyperparameters of CNN. The projection function is given by

𝒛𝒛 = 𝐴𝐴𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑰𝑰𝑰𝑰,𝜃𝜃ℎ) (8)

where 𝜃𝜃ℎ denotes the hyperparameters of the CNN model. Therefore, the original high dimensional images
[𝐈𝐈𝐦𝐦1; … ; 𝐈𝐈𝐦𝐦𝑛𝑛] is projected to the 𝒛𝒛 latent space (𝒛𝒛1, … , 𝒛𝒛𝑛𝑛).

6

 Using the latent variables (𝒛𝒛1, … , 𝒛𝒛𝑛𝑛) and their corresponding labels (𝑦𝑦1, … ,𝑦𝑦𝑛𝑛) as the training data, we construct
a GP model, which is denoted by

𝑦𝑦𝐺𝐺𝐺𝐺 = 𝐺𝐺(𝒛𝒛) = 𝐺𝐺�𝐴𝐴𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑰𝑰𝑰𝑰, 𝜃𝜃ℎ)� (9)

where 𝑦𝑦𝐺𝐺𝐺𝐺~𝑁𝑁�𝜇𝜇𝐺𝐺(𝒛𝒛),𝜎𝜎𝐺𝐺2(𝒛𝒛)�.
 Given a new image 𝐈𝐈𝐦𝐦∗, we obtain 𝒛𝒛∗ and 𝑦𝑦𝐺𝐺𝐺𝐺∗ at this untried point using Eqs. (8) and (9), respectively, where 𝑦𝑦𝐺𝐺𝐺𝐺∗
is a random variable following 𝑦𝑦𝐺𝐺𝐺𝐺∗ ~𝑁𝑁�𝜇𝜇𝐺𝐺(𝒛𝒛∗),𝜎𝜎𝐺𝐺2(𝒛𝒛∗)�. We then obtain the epistemic uncertainty at the test point.

V. Numerical Simulation
We now use two examples to show the detailed procedures and performance of the proposed method. In the first

example, we use the well-known MNIST dataset [20] to test the concept. MNIST is a database containing grayscale
images of handwritten digits, which are commonly used for training and testing image processing systems. We change
the problem to a dynamics problem so that we relate it with potential engineering applications. The second example
is a real engineering example, which involves nonlinear heat transfer. The regression accuracy is evaluated by the
relative error. The accuracy of UQ is illustrated by comparing with the result of Monte Carlo Simulation (MCS).

V.A. Example 1: A dynamics problem using MNIST
The size of each image in MNIST is 28 × 28 pixels, and each digit has an associated label, which is the angle 𝜃𝜃

that the digit has rotated. We convert the original problem into a dynamics problem. Since the original MNIST dataset
contains only image input, we modify it by adding numerical input variables. We assume that each digit is a rigid
body and that the position in MNIST is the initial position of the rigid body. We use a digit 6 as an example for
demonstration. As shown in Fig. 5, initially the rigid body rotates about its center of mass G at an initial angular
velocity of 𝜔𝜔0 (rad/s), and the initial angular displacement of the body with respect to the vertical axis is 𝜃𝜃 (rad). To
rotate the body back to the vertical axis, we apply a moment 𝑀𝑀 (N⋅m) in the opposite direction of 𝜔𝜔0. The body reaches
an angular velocity 𝜔𝜔 (rad/s) in its final position when 𝜃𝜃 = 0.

The task is as follows: Given the geometry of the rigid body, its initial position 𝜃𝜃, its initial angular velocity 𝜔𝜔0,
and the external moment 𝑀𝑀, we find its final angular velocity 𝜔𝜔. The input therefore includes 𝐢𝐢𝐢𝐢 ∈ ℝ28×28×1 in
MNIST and numerical variables 𝒙𝒙 = (𝜔𝜔0,𝑀𝑀)𝑇𝑇 , and the output is 𝑦𝑦 = 𝜔𝜔. We therefore have both image and numerical
data in the input. The data of 𝜔𝜔0 and 𝑀𝑀 are generated randomly with a uniform distribution in the range of [0, 1].

Fig. 5 A dynamics problem.

We now discuss how to generate labels for 𝑦𝑦. At first, we need to extract a rigid body from an image to calculate
the inertia properties of the body. This is the task of segmentation. We define a threshold value for the segmentation.
After testing with different threshold values, we found that a threshold of 0.2 is the best to keep the shapes of the
extracted bodies smooth. One example of the extracted bodies is shown in Fig. 5.

Assume the rigid body is placed on a smooth horizontal surface. From the law of conservation of energy, we
have

1
2
𝐼𝐼𝜔𝜔0

2 + 𝑀𝑀𝑀𝑀 = 1
2
𝐼𝐼𝜔𝜔2 (10)

7

where 𝐼𝐼 is the moment of inertia about the center of mass, 1
2
𝐼𝐼𝜔𝜔0

2 and 1
2
𝐼𝐼𝜔𝜔2 are the initial and final kinetic energy,

respectively, and 𝑀𝑀𝑀𝑀 is the work done by the moment. The final angular velocity is obtained by solving Eq. (10).
We next follow the proposed strategy to transform the numerical vector 𝒙𝒙 = (𝜔𝜔0,𝑀𝑀)𝑇𝑇 into image 𝐢𝐢𝐦𝐦𝑥𝑥 and then

merge 𝐢𝐢𝐦𝐦𝑥𝑥 into the extracted rigid body 𝐢𝐢𝐢𝐢. For the bar graph, we set 𝛽𝛽 = 1 and 𝛾𝛾 = 0, and 𝑤𝑤 = 28; thereby we have
𝐢𝐢𝐦𝐦𝑥𝑥 ∈ ℝ2×28×1 and 𝐈𝐈𝐈𝐈 ∈ ℝ30×28×1.

We also use the grayscale method. The band width (𝛽𝛽) is 1 and the image width is 28 in pixels. We therefore have
𝐢𝐢𝐦𝐦𝑥𝑥 ∈ ℝ2×28×1 and 𝐈𝐈𝐈𝐈 ∈ ℝ30×28×1.

The merged image data (𝐈𝐈𝐈𝐈) is fed to CNN to perform the regression task. There are 10,000 samples of which half
of them are for training and the rest are for validation. We employ a four-fold convolution layers. The CNN structure
and parameters are listed in Table 1.

Table 1 CNN model structure and parameters
Layer Filter size Filter number Stride
Convolution layer 1 3 × 3 8 -
Average pooling 2 × 2 - 2
Convolution layer 2 3 × 3 16 -
Average pooling 2 × 2 - 2
Convolution layer 3 3 × 3 32 -
Convolution layer 4 3 × 3 32 -
Fully connected layer 1 8 neurons - -
Fully connected layer 2 1 neuron - -

The accuracy of the CNN regression with the bar graph transformation are shown in Fig. 6. The scatter plot shows

that the predictions against the true values are distributed around the 45° line, which indicates that the proposed
method can well handle the mixed data with both numerical and image data. The root-mean-square-error (RMSE) of
the validation is 0.67 rad/s.

If a new point is given to the CNN, we do not know how confident we are to the prediction at this point unless we
run the original expensive simulation model. In other words, we do not have epistemic uncertainty. It is, therefore,
desirable to estimate the model or epistemic uncertainty using the proposed method CNN-GP, where we can obtain
the standard deviation of the prediction.

 Fig. 6 CNN regression accuracy with the bar transformation.

 Following the procedure in Section VI, we retrieve the variables in a latent space (𝒛𝒛), so the dimensionality of
original high-dimension images is reduced. According to the CNN structure in Table 1, there are 8 neurons in the first
fully connected layer. We reduce the dimensionality of the images (30 × 28) to 8 variables. Then, a GP model is
constructed between 𝒛𝒛 and model response 𝑦𝑦. Once we have the CNN-GP model, we can easily obtain the mean
response and its standard deviation at a new point. Recall that we have 5,000 points for testing, among which we
randomly chose 20 points. We use the CNN-GP model and obtain the mean responses and standard deviations of the
20 test points. The results are shown in Fig. 7. A circles represents a mean responses. The length of an error bar gives
a 95% confidence interval (CI). Therefore, we know the confidence of the predictions with the epistemic uncertainty
at the untried points. The true responses or labels from MNIST are also plotted in Fig. 7.

8

Fig. 7 CNN-GP regression with epistemic uncertainty.

 As mentioned previously, we assume that the original computational model is exact without epistemic uncertainty.
This implies that the labels from MNIST are exact. As what we have observed, the labels themselves may have some
degree of uncertainty, and this uncertainty in labels is neglected in our UQ analysis since there is no way to quantify
it. If the distribution of the uncertainty labels was known, we could include it in the UQ analysis.

V.B. Example 2: A nonlinear heat transfer problem
 This example is a heat transfer analysis of a thin rectangle plate. The spatial domain is shown in Fig. 8. The
temperature is fixed along the left boundary 𝑏𝑏1 and is a random variable following a uniform distribution. The other
three boundaries are thermal isolation without heat transfer along the boundaries. The temperature at point 𝑝𝑝1 is the
quantity of interest or the output.

Fig. 8 The spatial domain of the heat transfer problem.

 The nonlinear heat transfer is governed by a partial differential equation (PDE) given by

−𝑘𝑘𝑡𝑡𝑧𝑧𝛻𝛻2𝑇𝑇 + 2ℎ𝑐𝑐𝑇𝑇 + 2𝜖𝜖𝜖𝜖𝑇𝑇4 = 2ℎ𝑐𝑐𝑇𝑇𝑎𝑎 + 2𝜖𝜖𝜖𝜖𝑇𝑇𝑎𝑎4 (11)

where 𝑘𝑘 is the thermal conductivity and is an uncertain parameter; 𝑡𝑡𝑧𝑧 is the plate thickness; ℎ𝑐𝑐 is the convection
coefficient; 𝜖𝜖 is the emissivity of the plate surface; 𝜎𝜎 is the Stefan-Boltzmann constant; 𝑇𝑇𝑎𝑎 is the ambient temperature.
Except for 𝑘𝑘, the other parameters are all constant. The randomness of 𝑘𝑘 is characterized by a Gaussian random field,
which is modeled by the truncated Karhunen-Loeve (K-L) expansion. The K-L expansion is given by

𝐻𝐻(𝑿𝑿) = 𝜇𝜇(𝑿𝑿) + ��𝜆𝜆𝑖𝑖𝜑𝜑𝑖𝑖(𝑿𝑿)𝜉𝜉𝑖𝑖

𝑚𝑚

𝑖𝑖=1

(12)

where 𝜇𝜇(∙) is the mean function of the random field; 𝑿𝑿 is a 2D vector to represent the spatial location; 𝜆𝜆𝑖𝑖 and 𝜑𝜑𝑖𝑖 are
the eigenvalues and eigenfunctions of the auto-correlation function; 𝜉𝜉𝑖𝑖 is a set of independent standard normal random
variables; 𝑚𝑚 is the truncation number. In this work, we use the squared exponential kernel as the auto-correlation
function. The correlation between two arbitrary points is given by

9

𝜌𝜌𝑖𝑖,𝑗𝑗 = exp �−�
�𝑿𝑿𝑖𝑖 − 𝑿𝑿𝑗𝑗�

𝜃𝜃
�
2

� (13)

where 𝜃𝜃 is the correlation length; 𝑖𝑖 and 𝑗𝑗 are two arbitrary points; and ‖∙‖ represents the norm operation.
 Once the mesh and random variables are known, we can generate realizations of the random field, which are
represented by images. And the boundary condition is given as numerical data. We only include the left boundary into
the image since the other boundaries are the same for all realizations of the random field.
 We generate 10,000 samples in total, in which 2,000 samples are used for training and the rest are for testing. Four
examples are shown in Fig. 9. The dark bars represent different boundary conditions with different gray scale and the
other parts are different realizations of the random field. All the labels (the temperature at 𝑝𝑝1) are solved by the
Stochastic Finite Element Method (SFEM). The CNN structure is given in Table 2.

Fig. 9 Examples of merged image data.

Table 2 CNN model structure and parameters for example 2
Layer Filter size Filter number Stride
Convolution layer 1 5 × 5 32 -
Average pooling 2 × 2 - 2
Convolution layer 2 3 × 3 28 -
Average pooling 2 × 2 - 2
Convolution layer 3 3 × 3 24 -
Convolution layer 4 3 × 3 16 -
Convolution layer 5 2 × 2 8 -
Fully connected layer 1 8 neurons - -
Fully connected layer 2 1 neuron - -

Fig. 10 True label versus the predicted label by CNN.

10

 The regression result of CNN is shown in Fig. 10. The predictions and true labels scatter around the 45° line
compactly for the test points. Recall that a mixed network CNN-GP is used to quantify the prediction uncertainty. The
GP model is constructed with respect to the output of the first fully connected layer of the CNN. Since the layer has 8
neurons, the input of the GP model is eight dimensional. In other words, the CNN model can be assumed as a
supervised dimension reduction process and the dimension of latent space is eight. After the CNN-GP model is
obtained, we have the mean prediction with uncertainty information for training points and test points. Similarly, we
randomly evaluate 20 points in the test dataset using the CNN-GP model. We obtain the epistemic uncertainty at the
untried points as shown in Fig. 11.

Fig. 11 Mean predictions and uncertainty of 20 testing points.

 We compare the accuracy of different methods using relative errors between predictions and true responses, which
are given in Table 3. In general, CNN-GP is more accurate than CNN. The average error and maximum error of CNN-
GP are reduced compared with CNN. Besides, the standard deviations of the error decrease as well for both training
and testing points. Although CNN has slightly worse accuracy than CNN-GP, its accuracy is acceptable.

Table 3 Regression accuracy of CNN and CNN-GP
Methods Samples Error (%)

Average Max Std
CNN Training points 0.66 3.45 0.53

Test points 0.70 4.67 0.54
GP- CNN Training points 0.60 2.95 0.50

Test points 0.62 4.40 0.51

 We also compare the results of uncertainty propagation due to aleatoric uncertainty (the random filed 𝑘𝑘) for
different methods using the 8,000 test points as shown in Table 4. MCS is the ground truth because we use SFEM to
obtain true labels. It is shown that CNN-GP is slightly more accurate than CNN and has a subtle difference compared
with MCS. CNN is also accurate enough with the errors of mean and standard deviation being 0.14% and 1.51%,
respectively.

Table 4 Results of uncertainty propagation
Methods Mean Error (%) Std Error (%)

MCS 543.33 - 23.24 -
CNN 542.57 0.14 23.59 1.51

CNN-GP 543.38 0.01 22.90 1.46

VI. Conclusion
This study investigates a Convolutional Neural Network Gaussian Process method for mixed numerical and image.

It also quantifies the uncertainty of the regression model generated by the method. The strategy is to first transform

11

numerical data into image data and then merge the converted images to existing images. Thus, the model input
becomes pure images that can then be fed into CNN for regression without any further modifications. The
quantification of the model uncertainty is fulfilled by the integration of CNN and Gaussian Process regression. As a
result, the output of the regression model contains the prediction and its standard deviation, which provides an estimate
of the model error. With this distinctive feature, the method can be potentially applied to engineering problems where
numerical and image data co-exist and can be employed for non-deterministic analysis and design where aleatory
uncertainty exists in the model input. Potential applications include reliability-based design, robust design, and risk-
based design. The proposed method, however, needs more computational time since it performs additional Gaussian
Process regression after CNN. The additional computational time is not significant compared to that of CNN because
the Gaussian regression is performed in a space with much fewer dimensions. The UQ results from the proposed
method are different from those from the Gaussian process regression since the two methods have different input
spaces. We will further investigate how to account for both epistemic and aleatory uncertainty.

Acknowledgments
The support from the National Science Foundation under Grant No. 1923799 is acknowledged.

References
[1] Wojtkiewicz, S., Eldred, M., Field, J., R, Urbina, A., and Red-Horse, J. "Uncertainty quantification in large

computational engineering models," 19th AIAA Applied Aerodynamics Conference. 2001, p. 1455.
[2] Roy, C., and Oberkampf, W. "A complete framework for verification, validation, and uncertainty quantification

in scientific computing," 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and
Aerospace Exposition. 2010, p. 124.

[3] Acar, P., and Sundararaghavan, V. "Uncertainty quantification of microstructural properties due to experimental
variations," AIAA Journal Vol. 55, No. 8, 2017, pp. 2824-2832.

[4] Bae, H.-R., Grandhi, R. V., and Canfield, R. A. "Uncertainty quantification of structural response using evidence
theory," AIAA journal Vol. 41, No. 10, 2003, pp. 2062-2068.

[5] Palar, P. S., Zakaria, K., Zuhal, L. R., Shimoyama, K., and Liem, R. P. "Gaussian Processes and Support Vector
Regression for Uncertainty Quantification in Aerodynamics," AIAA Scitech 2021 Forum. 2021, p. 0181.

[6] Yin, J., and Du, X. "High-Dimensional Reliability Method Accounting for Important and Unimportant Input
Variables," Journal of Mechanical Design, 2021, pp. 1-28.

[7] Yin, J., and Du, X. "Active learning with generalized sliced inverse regression for high-dimensional reliability
analysis," Structural Safety Vol. 94, 2022, p. 102151.

[8] Yu, H. W., Khan, M., Wu, H., Du, X., and Sawchuk, A. P. "Uncertainty Quantification of Outflow Boundary
Conditions on Non-Invasive Pressure Quantification in Aortorenal Artery System," Summer Biomechanics,
Bioengineering, and Biotransport Conference. Seven Springs, PA, 2019.

[9] Lambe, A. B., and Martins, J. R. "Matrix-free aerostructural optimization of aircraft wings," Structural and
Multidisciplinary Optimization Vol. 53, No. 3, 2016, pp. 589-603.

[10] Rosebrock, A. "Keras: Multiple Inputs and Mixed Data." https://www.pyimagesearch.com/2019/02/04/keras-
multiple-inputs-and-mixed-data/, last modified February 4, 2019, accessed February 16, 2021.

[11] Sharma, A., Vans, E., Shigemizu, D., Boroevich, K. A., and Tsunoda, T. "DeepInsight: A methodology to
transform a non-image data to an image for convolution neural network architecture," Scientific reports Vol. 9,
No. 1, 2019, pp. 1-7.

[12] Rajaram, D., Puranik, T. G., Renganathan, A., Sung, W. J., Pinon-Fischer, O. J., Mavris, D. N., and Ramamurthy,
A. "Deep Gaussian process enabled surrogate models for aerodynamic flows," AIAA Scitech 2020 Forum. 2020,
p. 1640.

[13] Satria Palar, P., Rizki Zuhal, L., and Shimoyama, K. "Gaussian Process Surrogate Model with Composite Kernel
Learning for Engineering Design," AIAA journal Vol. 58, No. 4, 2020, pp. 1864-1880.

[14] Wei, X., and Du, X. "Robustness Metric for Robust Design Optimization Under Time- and Space-Dependent
Uncertainty Through Metamodeling," Journal of Mechanical Design Vol. 142, No. 3, 2019.

[15] Jung, Y., Kang, K., Cho, H., and Lee, I. "Confidence-Based Design Optimization for a More Conservative
Optimum Under Surrogate Model Uncertainty Caused by Gaussian Process," Journal of Mechanical Design Vol.
143, No. 9, 2021, p. 091701.

[16] Rasmussen, C. E. "Gaussian Processes in Machine Learning," Advanced Lectures on Machine Learning: ML
Summer Schools 2003, Canberra, Australia, February 2 - 14, 2003, Tübingen, Germany, August 4 - 16, 2003,
Revised Lectures. Springer Berlin Heidelberg, Berlin, Heidelberg, 2004, pp. 63-71.

12

[17] Arendt, P. D., Apley, D. W., and Chen, W. "Quantification of model uncertainty: Calibration, model discrepancy,
and identifiability," Journal of Mechanical Design Vol. 134, No. 10, 2012.

[18] Bae, S., Park, C., and Kim, N. H. "Estimating Effect of Additional Sample on Uncertainty Reduction in Reliability
Analysis Using Gaussian Process," Journal of Mechanical Design Vol. 142, No. 11, 2020.

[19] Bradshaw, J., Matthews, A. G. d. G., and Ghahramani, Z. "Adversarial examples, uncertainty, and transfer testing
robustness in Gaussian process hybrid deep networks," arXiv preprint arXiv:1707.02476, 2017.

[20] LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. "Gradient-based learning applied to document recognition,"
Proceedings of the IEEE Vol. 86, No. 11, 1998, pp. 2278-2324.

	Uncertainty Quantification by Convolutional Neural Network Gaussian Process Regression with Image and Numerical Data
	I. Nomenclature
	II. Introduction
	III. Convolutional Neural Network with Both Image and Numerical Data
	III.A. Overview
	III.B. Conversion of Numerical Data into Image Data
	III.C. Combination of Images

	IV. Uncertainty Quantification by CNN-GP with Both Image and Numerical Data
	V. Numerical Simulation
	V.A. Example 1: A dynamics problem using MNIST
	V.B. Example 2: A nonlinear heat transfer problem

	VI. Conclusion
	Acknowledgments
	References

