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 Abstract  

         The switching performance of vertical geometry NiO/β-Ga2O3 rectifiers with a reverse 

breakdown voltage of 1.76 kV  (0.1 cm diameter, 7.85 x10-3 cm2 area) and an absolute forward 

current of 1.9 A fabricated on 20 µm thick epitaxial β-Ga2O3 drift layers and a double layer of 

NiO to optimize breakdown and contact resistance was measured with an inductive load test 

circuit. The Baliga figure-of-merit of the devices was 175 MW.cm-2, with on-state resistance of 

17.8 mΩ.cm2
. The recovery characteristics for these rectifiers switching from forward current of 

1 A to reverse off-state voltage of -550 V showed a recovery time (trr) of 101 ns, with a peak 

current value of 1.4A for switching from 640V. There was no significant dependence of trr on 

switching voltage or forward current.  
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Introduction 

          Wide and ultra-wide bandgap semiconductors are attracting a lot of interest for next 

generation power electronics applications because of their advantages in terms of lower on-state 

resistances and higher power levels (1-6). More robust power electronics that withstand higher 

operating temperatures, a smaller form factor, and higher efficiency will significantly improve 

the reliability and security of power grids (1-5), especially with all the switching needed to 

incorporate generation from renewable sources. In addition, they are more radiation-hard than 

conventional Si, so with the increasing number of satellites in low Earth orbit (LEO), there is a 

high demand for space-based radiation-hardened components capable of withstanding high 

radiation effects caused due to solar flares (2-6). The growth in global radiation-hardened 

electronics for space applications market is expected to be driven by increasing demand for 

communication and Earth observation satellites (2-6). In addition, there is an evolution from 

hydro-pneumatic to more electrical disposition of power in aircraft (5), leading to the need for 

reliable power electronic components in current and future aerospace applications.  

           While SiC and GaN are already commercialized for power switching systems with 

improved power density and efficiency (1-7), there is interest in the ultra-wide bandgap 

semiconductor Ga2O3 (7-13), especially the stable polytype, monoclinic β-Ga2O3 (7,8,10), both as 

unipolar Schottky rectifiers and with p-n heterojunctions with other oxides (14-47). Recently, 

lateral β-Ga2O3 transistors with breakdown voltage 8 kV have been reported (14). There is even 

more potential in vertical geometry devices, with a recent report of 6kV breakdown in a device 

with SiO2 edge termination (48). One drawback of β-Ga2O3 is the absence of a practical p-type 

doping capability. This has spurred interest in use of p-type NiO for vertical p–n heterojunction 

power diodes with Ga2O3 (17-46, 49, 50, 51), although there are few reports of switching 
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characteristics of such devices (52).  Sputtered NiOx is a well-developed system, producing 

polycrystalline layers (bandgap ~ 3.7–4.0 eV, mobility < 1 cm2V-1 s-1 and hole concentrations in 

the 1018-1019 cm-3 range) (49). There have been a range of impressive device demonstrations with 

NiO/β-Ga2O3 rectifiers, including a Baliga's figure of merit of 5.18 GW.cm -2 
(50) and a static VB 

of 4.7 kV (53). For large area devices, a NiO/Ga2O3 rectifier of 1 mm 2 area showed a forward 

current of 5A and breakdown voltage 700 V  (24), while Gong et al.(38) reported a 1.37 kV/12 A 

NiO/β-Ga2O3 heterojunction diode with ns reverse recovery and rugged surge-current capability. 

Hu et al.(54) reported small area 1.2 kV/2.9 mΩ·cm2 vertical NiO/β-Ga2O3 diodes with a reverse 

recovery time (trr) of ~ 60 ns and reverse recovery charge (Qrr) of ~ 1.97 nC, which is superior to 

a reference commercial Si fast-recovery diode.  

         In this paper, we report the voltage and current dependence of reverse recovery times of 1.9 

A /1.76 kV NiO/Ga2O3 rectifiers fabricated on 20 µm epitaxial layers on bulk conducting 

substrates using an inductive load test circuit. These devices were switched from 1 A to -550 V 

with trr of 101 ns and no significant voltage or current dependence in the ranges investigated. 

Experimental 

             The drift region of the material used to make the rectifiers consisted of a 20 µm thick, Si 

doped halide vapor phase epitaxy (HVPE) layer with carrier concentration 2x1016 cm-3, grown on 

a (001) surface orientation Sn-doped β-Ga2O3 single crystal (Novel Crystal Technology, Japan). 

A full area Ti/Au backside Ohmic contact was formed by e-beam evaporation and annealed at 

550֯C for 1minute under N2 ambient (9,10,53). NiO was deposited by magnetron sputtering at 

3mTorr and 150W of 13.56 MHz power using two separate targets operated at the same time to 

double the deposition rate to around 0.2 Å.sec-1. The Ar/O2 ratio was used to control the doping 

in the NiO in the range 2x1018- 3 x1019 cm-3
, with mobility < 1 cm2 ·V-1 s-1. A double NiO layer 
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structure was used to optimize both breakdown voltage and contact resistance. A schematic of 

the final device structure is shown in Figure 1. A two-layer NiO structure with respective 

thicknesses of 10/10 nm and doping of 2.6 x1019/3.5x1018 cm-3 was used. The Ni/Au contact 

metal (1mm diameter) was deposited by electron beam evaporation onto the NiO layer after 

annealing at 300℃ under O2 ambient.  

          For dc characterization, the current-voltage (I-V) characteristics were recorded with a 

Tektronix 370-A curve tracer, 371-B curve tracer and Agilent 4156C was used for forward and 

reverse current measurements. The reverse breakdown voltage was defined as the bias for a 

reverse current reaching 0.1 A.cm2, which has been standard for previous studies (42,51).  To 

measure the response of the diode’s recovery time, a clamped inductive load test circuit was 

designed and fabricated for the switching measurement (13). 

Results and Discussion 

            Figure 2 shows the single sweep forward I-V characteristics in log (a) and linear (b) form, 

along with the extracted on-state resistance of 17.8 mΩcm2. The turn-on voltage was 1.7 V, 

consistent with literature values and higher than is typically obtained with conventional Ga2O3 

Schottky rectifiers. The maximum forward current achieved was 1.9 A. The forward direction 

characteristic was dominated by the thermionic emission (TE) current (8). 

        The reverse I-V characteristics are shown in Figure 3(a) for the low-voltage range. In this 

region, the current is dominated by thermionic field emission (TFE), while at higher reverse 

voltages tunneling currents are also present (8). Figure 3(b) shows that a maximum breakdown 

voltage value of ~1.76 kV was obtained, a record for large area NiO/Ga2O3 devices. This leads to 

a power figure-of-merit of 175 MW.cm-2.  By sharp contrast, a conventional Ni/Au/Ga2O3 

Schottky rectifier of the same dimensions without edge termination fabricated on the same wafer 
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but without the NiO had a reverse breakdown of only 498V, as also shown in Figure 3 (b). This 

demonstrates the effectiveness of the extension of the NiO in the structure in providing edge 

termination. 

        Figure 4 shows the diode on-off ratio for the NiO/ Ga2O3 devices when switching from -1V 

forward voltage to reverse voltages in the range was in the range 2.7x1010-2.2x108 over our 

measurement range up to 100V.  

                To measure the reverse recovery time of the rectifiers, τrr, defined as the time that 

taken for rectifiers recover to the current level of 25% of the reverse recovery current, Irr. a 

clamped inductive load test circuit was designed and fabricated for the switching measurement, 

as shown schematically in Figure 5 (10,13). During the rectifier switching (top of Figure 5), a 

double pulse was employed to drive the Si transistor (STMicroelectronics STW9N150, 1.5 kV, 

8A n-channel MOSFET), and the duration of the duty cycle used to adjust the Ga2O3 Schottky 

diode forward current (13). The inductor (J.W. Miller 1140–153K-RC, 15 mH), was initially 

charged from the DC power supply by turning on the transistor. Once this was turned off, the 

pre-charged inductor released charge through the forward-biased diode. Upon turning the 

transistor back on, the rectifier was switched from the on-state to the off- state, leading to charge 

depletion. Figure 5 also shows the operational waveforms of the switching circuit. Photographs 

of the measurement setup and the circuit board are shown in Figure 6. More details on this circuit 

design and operation have been published previously (13). 

           Figure 7 shows the switching node performance of a NiO/Ga2O3 rectifier. This device was 

switched from 1 A of forward current to a reverse off-stage voltage of -550 V. The circuit was 

operated with a period of 50µsec, duty cycle of 0.75 µsec (1.5%). The MOSFET pulse was 10V 

and the power supply for the rectifier was 800V. The recovery time was 101 ns with Irr of 0.62 
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A, and the dI/dt was calculated as 27.8 A/μs for IF of 1A. The diode achieved 1A/550V 

switching, with a peak value of 1.4A/640V. The reverse recovery time was defined as the time 

that taken for rectifiers recover to the current level of 25% of Irr. Since the rectifier itself has a 

recovery time of ~11 ns, we believe the additional recovery time measured from this system 

results from parasitics on the PCB board. The reverse recovery time did not show any significant 

dependence on either off state voltage or on-state current. This is a result of the short minority 

carrier lifetime of β-Ga2O3 
(7,8,11). These results on large area rectifiers with high total current and 

an ability to operate in the > 1200V class range are another step in the advance of Ga2O3 for 

power rectification applications.  

Summary and Conclusions 

        NiO/ β-Ga2O3 vertical Schottky rectifiers with an absolute forward current of 1.9 A and 1.76 

kV breakdown voltage were demonstrated with large area (7.85x10-3 cm2) on 20 µm thick drift 

layers. Conventional NiAu/Ga2O3 Schottky rectifiers of the same size fabricated on the same 

wafers had breakdown voltages of 498V. These devices were switched from 1 A to -550 V with 

trr of 101 ns and no significant voltage or current dependence in the ranges investigated. These 

results show the potential of p-n heterojunction NiO/Ga2O3 vertical Schottky rectifiers in high 

power device and high-speed switching technologies.         
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Figure Captions 

Figure 1. Schematic cross-section view of the double layer NiO/Ga2O3 heterojunction rectifier 

structure. 

Figure 2. (a) Forward current-voltage characteristic and RON values (b) Linear plot of forward I-

V characteristic.  

Figure 3. (a) Reverse I-V characteristic in low voltage range (b). Reverse I-V characteristics 

showing comparison of breakdown voltages of NiO/Ga2O3 heterojunction rectifier to that of a 

standard Schottky rectifier of the same size fabricated on the same wafer. The arrows mark 

where breakdown occurs, to guide the eye. This is slightly different than the definition used to 

standardize VB. 

Figure 4. On-off ratio of double NiO layer NiO/Ga2O3 heterojunction rectifiers in which the bais 

was switched from -5V forward to the voltage shown on the x-axis. 

Figure 5. Schematic of switching circuitry and voltage/current waveforms of the circuit 

operations. 

Figure 6. (a) Measurement set-up and (b) circuit board of the switching circuitry for measuring 

the dynamic switching characteristics of the NiO/Ga2O3 rectifiers. 

Figure 7. Switching waveform for NiO/Ga2O3 rectifiers for voltage period of 50 uS, duty cycle 

of 0.75 uS (1.5%), power Supply voltage of 800 V. The extracted switching results were trr = 101 

nS, Irr = -0.62 Aa and dI/dt = 27.8 A/μs for IF = 1 A.  The diode achieved 1A/550V switching, 

with a peak value of 1.4A/640V.  
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