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ABSTRACT

With the recent societal impact of COVID-19, companies and gov-
ernment agencies alike have turned to thermal camera based skin
temperature sensing technology to help screen for fever. However,
the cost and deployment restrictions limit the wide use of these
thermal sensing technologies. In this work, we present SIFTER, a
low-cost system based on a RGB-thermal camera for continuous
fever screening of multiple people. This system detects and tracks
heads in the RGB and thermal domains and constructs thermal
heat map models for each tracked person, and classifies people as
having or not having fever. SIFTER can obtain key temperature
features of heads in-situ at a distance and produce fever screening
predictions in real-time, significantly improving screening through-
put while minimizing disruption to normal activities. In our clinic
deployment, SIFTER measurement error is within 0.4°F at 2 meters
and around 0.6°F at 3.5 meters. In comparison, most infrared ther-
mal scanners on the market costing several thousand dollars have
around 1°F measurement error measured within 0.5 meters.SIFTER
can achieve 100% true positive rate with 22.5% false positive rate
without requiring any human interaction, greatly outperforming
our baseline [1], which sees a false positive rate of 78.5%.

1 INTRODUCTION

Thermal cameras have recently gained exposure as a novel sen-
sor capable of sensing temperature in a variety of applications.
Originally developed for military applications, thermal cameras
have been commercialized to impact a wider field of applications.
Typically, these applications for thermal cameras do not require
extremely precise measurements, such as for detecting gas and ther-
mal leaks in buildings [2]. However, with the recent disruption of
society due to COVID-19 [3], companies and government agencies
have tried to leverage thermal cameras to measure accurate skin
temperature for fever screening. While fever is not always a symp-
tom of COVID-19, the ability to screen a subset of carriers from a
large population is still extremely valuable. It can help prevent the
spread of diseases such as COVID-19, or even seasonal flu. It is a
valuable tool to help prevent future pandemics.

In a pandemic, fever screening systems are needed in a wide vari-
ety of public applications. Some applications require fever screening
systems to handle high throughput, often with multiple entrances,
including hospitals, universities, transportation hubs, and commer-
cial buildings. Some applications requires a low cost system. In all
of these applications, cost, accurate and high throughput as well as
convenience are important considerations. Current fever screening
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Figure 1: ColumbiaDoctors - Midtown deployment — Left:
nurse measuring a patient’s temperature using infrared
thermometer (used as ground truth); Right: SIFTER system
running in the reception entrance (next to the nurse).

systems that are designed for high throughput are not low cost,
while a low cost system are not capable of high throughput.

There are two major types of fever detection systems: non-
contact infrared thermometry devices (NCIT), and infrared ther-
mography (IRT) systems. Studies such as [4, 5] have shown the
potential of NCIT systems for fever screening. However, NCIT de-
vices have certain drawbacks, most notably that an employee is
required to be in close proximity to the patient. This increases risk
of exposure to the employee and can require significant human ef-
fort. On the other hand, current IRT systems require specific criteria
to be met for accurate temperature measurements, such as distance
to camera and acclimation to indoor temperature. Furthermore,
employees with specialized training are needed to operate and/or
interpret results of the temperature measurements. More recently,
research studies seeking to automate the screening of febrile hu-
mans [6-8] have encountered a number of challenges that limit full
automation. These systems require the face to be fully shown and
close to the camera no farther away than 10 to 50 cm [9].

The first challenge to better enable automatic screening of febrile
humans is that the measurements should be robust to conditions
that are not in the system’s control. First, skin temperature is largely
dependent on the ambient environment. For people who have not
yet been acclimated to the indoor environment, temperature mea-
surements will not be consistent [10]. Second, distance from thermal
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camera can can cause differences in thermal measurements. Third,
measurements of a single person may change in the presence of
multiple people. Although these conditions can sometimes be con-
trolled through protocols, improving measurement robustness to
these conditions brings advantages to the screening efficiency and
enforcement of protocol.

Another significant challenge preventing automatic measure-
ments is the accurate selection of temperature features. There are
variations in skin temperature for different regions of the face,
meaning that aggregate statistics will change depending on which
regions of the face are visible to the thermal camera. Many current
IRT systems utilize mean or maximum facial temperature, which
can vary even for the same person depending on facial perspective
or facial coverings (such as face masks, glasses, or hats). Other sys-
tems which detect facial landmarks may also have difficulties when
certain facial features are covered. Furthermore, certain regions of
the face are more predictive of actual body temperature, and thus
accurate temperature feature extraction is critical.

In this work, we present SIFTER, a low-cost system based on a
RGB-thermal camera for autonomous continuous fever screening of
multiple people. SIFTER handles the above challenges in its design,
and achieves the following key contributions:

(1) Robustand in-situ temperature measurements: We per-
form studies to reduce the effects of distance on tempera-
ture measurements, thus drastically increasing the operating
distance range of the fever screening system. In addition to
improving measurement accuracy at different ranges, SIFTER
increases measurement throughput by removing the require-
ments for the subject to stand directly in front of the in-situ
thermal camera for a prolonged period. This also reduces
the disruption to people’s normal activities, and helps to
bring their lives back to normal. Furthermore, we studied
the effects of cold outdoor temperatures on temperature
measurements, and offer a method to flag these people for
additional screening after acclimating to the indoor environ-
ment. In addition to protocols for enforcing acclimation, this
allows systems to detect people who have not yet acclimated
to indoor temperatures. Finally, we investigate the effects
of multiple measurements in a single frame on temperature
estimation accuracy.

(2) Accurate Thermal Feature Selection: Rather than rely

on aggregate statistics to estimate temperature, we model

thermal features by mapping temperatures onto a 3D head
model. This enables two important ideas: first, detected ther-
mal features are robust to changes in facial perspective, and
second, facial temperature features can be selected directly
from the 3D head model, without needing to train a network
to specifically target regions of the face. We demonstrate
improved accuracy over pre-trained models and advantages

in precision and recall over baseline model [1].

Design for Ease of Deployment: We designed the system

to be low cost, easily deployable, and usable in both low and

high throughput settings. SIFTER uses the 399 USD FLIR One

Pro with a Jetson Nano, to keep the hardware cost less than

500 USD per unit. We developed a software library to deploy

on the Jetson Nano, which enables automatic interfacing

®)
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with the FLIR One Pro, encryption and transmission of RGB
and thermal images, and configuration for cloud services.
The cloud server is designed to provide temperature esti-
mation and fever screening as a service for multiple clients,
thus reducing direct cost of the system to the client.

Fever Screening Optimization: We present variant gradi-
ent boosting method using asymmetric loss functions to tar-
get high temperature measurements in this fever screening
application. We compared these variations against a number
of other models and baseline methods, and demonstrate im-
provements in temperature estimation and fever screening.
On a six month dataset collected from a multi-speciality med-
ical practice, we achieved errors within 0.4°F at a distance
of 2 meters and 0.6°F at a distance of 3.5 meters.

2 RELATED WORKS

Non-contact skin temperature sensing methods with thermal cam-
eras are becoming more common for detecting diseases such as
COVID-19. Researchers [1, 11, 12] have presented pipelines for
autonomously measuring thermal features using thermal cameras.
Further, many commercial companies have also developed thermal
camera based solutions for fever detection, which is traditionally
accomplished by thermometer, clinical records or genetic methods.
However, there are a number of challenges which inhibit adoption
of these temperature sensing systems, including the overall cost of
the system and deployment restrictions.

Deployment cost is critical in many situations. Existing systems
typically rely on higher end thermal sensors, to ensure some level
of measurement quality. For example, thermal camera companies
such as FLIR and Thermoteknix have begun developing systems for
detecting fever in populations to combat the spread of COVID-19.
These systems have been deployed in public places by government
agencies, such as airports, as well as in workplaces by big companies
such as Amazon. Wuhan Guide Infrared Co. sold out thousands of
skin temperature screening systems in two weeks for deployment
in airports, railway stations, etc, with price ranges from $5,000
to $30,000 1. However, for many scenarios such as workspaces,
classrooms, and shared residences, it may be infeasible to deploy
such expensive systems. In these cases, it is imperative that low-cost
versions be able to perform quality measurements.

Minimizing the number of sensors is one method for reducing
overall cost, and can be achieved by deploying the thermal camera
at a distance to increase field of view. With a larger field of view,
a thermal sensor is able to capture measurements from more peo-
ple [13], thus reducing the need for additional sensors. However,
the downside is the decrease in resolution; thus, it is important to
have a system which can recover quality measurements at longer
distances. Prior works have additional challenges in deployment
restrictions: spatial camera restrictions and restrictions of subject
behavior. For spatial restrictions, prior works typically require the
camera to be placed in a location where people can easily be de-
tected, such as in front of a desk [1] or at standing eye level for fever

Uhttps://www.forbes.com/sites/jeremybogaisky/2020/02/10/we-are-running-as-
fast-as-we-can-coronavirus-sparks-surge-in-demand-for-infrared-fever-detection-
equipment/
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Figure 2: Block diagram of the fever screening pipeline.

detection systems 2. For many scenarios such as mass transit and
classrooms, it may be infeasible to deploy such a setup; thus, a better
system should have the flexibility of various spatial deployments.

As required by many prior systems, subject behavior is also
controlled. In [1, 11], users are required to face forward to allow
the thermal camera to easily detect facial features. In various skin
temperature screening systems, users are required to stand in front
of the thermal camera. Controlling subject behavior is unnatural,
and will not only increase the time and labor costs but also limit
the application of the system. Thus, a better system should be able
to continuously screen multiple people in view and in-situ, without
active participation from human subjects.

To address these issues, we developed a system which utilizes
smaller numbers of low cost sensors, can run continuously and in
different environmental conditions, and can screen multiple people
simultaneously without requiring active participation. This system
detects and tracks multi-person heads, estimates head orientation,
reduces thermal measurement errors, and maps facial thermal fea-
tures at-scale to 3D point-cloud head model to enable fever screen-
ing. Because SIFTER is low-cost, easily installed, non-intrusive, and
robust in a variety of conditions, SIFTER is a critical step towards
realizing systems and applications to create healthier city [14-27]
and building environments [28-35].

3 FEVER SCREENING PIPELINE

The goal of this fever screening pipeline is to estimate skin tem-
perature features for multiple occupants, given a stream of RGB
and thermal images that are noisy, low-resolution, uncalibrated
and without opportunistic observations of partial facial features, to
classify febrile humans. SIFTER’s fever screening pipeline consists
of six blocks, including: head detection, orientation regression, dis-
tance estimation, emissivity correction, matching and tracking, and
model mapping. Initially, the RGB and thermal images are passed
through an object detection pipeline trained to detect heads of all
people in view. From the detected RGB and thermal heads, we es-
timate orientation, correct for emissivity, and estimate distance
from the sensor. The thermal and RGB heads are then matched
and tracked with previous frames. Orientation and thermal data is
used to map skin temperature features onto a 3D point-cloud head
model. An illustration of the different components of SIFTER’s fever
screening pipeline is shown in Figure 2. The hardware used in this

https://www.reuters.com/article/us-health-coronavirus-amazon-com-
cameras/exclusive-amazon-deploys-thermal-cameras-at-warehouses-to-scan-
for-fevers-faster-idUSKBN2200HT
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Figure 3: RGB and thermal datasets used for training the
head detection network.

system to capture RGB and thermal images is a common low-cost
RGB-thermal camera, FLIR ONE Pro.

3.1 Head Detection

To our knowledge, there are no open source networks trained specif-
ically to detect faces or heads in thermal images. For SIFTER, one
requirement is the detection of heads in both the thermal and RGB
images. To verify that existing networks [36-38] are unable to de-
tect faces or heads in RGB and thermal images, we performed an
empirical study using YOLOv3 [39], a popular detection network.
Our study showed that the pre-trained network does not perform
well on RGB or thermal images. For RGB images, networks are
trained on a large number of classes, to improve versatility. How-
ever, there is no class which includes the front and back of heads;
thus, YOLO is not pre-trained to detect heads from the back. Fur-
ther, standard datasets [40] do not include thermal images, which
not only removes color information, but also removes landmarks
or features important for identifying faces. Finally, due to the cur-
rent pandemic, most people are wearing face masks, which is not
included in popular image datasets, reducing the accuracy of pre-
trained models even further.

To address this issue, we explored two options: pre-existing
datasets, and a custom labeled dataset. For pre-existing datasets, we
utilize the head dataset from the South China University of Tech-
nology (SCUT) [41], consisting of over 100,000 labeled bounding
boxes of heads from different directions. This dataset was chosen
over another head dataset [42] due to similarities in environmen-
tal conditions. The SCUT dataset is taken inside classrooms in a
university, which is similar to the indoor settings in our application.

Secondly, we considered a custom labeled dataset, which carries
two advantages. For RGB images, we can provide examples which
are similar to our anticipated conditions, such as image quality
and facial coverings. In addition to RGB images, we also chose to
incorporate labeled thermal images, as this would help a network
recognize heads in the thermal domain. We deployed SIFTER in a
local restaurant to collect over 100 hours of images, and hand labeled
1000 images each of RGB and thermal images. More information
about this deployment is described in Section 5.1.

As a baseline for head detection, we explored image process-
ing methods for identifying heads, especially in the thermal do-
main. One possibility for identifying heads in the thermal domain
is by identifying bodies with high temperatures compared to the
background. However, there are possibilities for high temperature
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Figure 4: Model of thermal radiation captured by the sensor.

sources which are part of the environment, which may result in a
high false positive rate.

From our own tests, we determined that YOLO meets the require-
ments for accuracy and has low latency. We trained YOLO using
the SCUT head dataset as well as the custom RGB and thermal
image dataset in different strategies, Figure 3. After training, the
detection network outputs bounding boxes of heads in the RGB and
thermal images, which are further processed for head orientation
and thermal calibration.

3.2 True Temperature Estimation

The main sensor in common thermal cameras, as well as in the FLIR
ONE Pro, is a microbolometer focal plane array, consisting of a
number of pixels which sense radiation. Each pixel, similar to visible
light camera pixels, senses radiation in a conical area visible through
the lens of the camera. Typically, the sensor is calibrated after
manufacturing to eliminate sources of error due to pixel variance.
However, the sensors are calibrated against a blackbody with known
radiance; most surfaces in the real world are not close to blackbody
radiators. These sensors are prone to multiple sources of error due
to the differences between real world environments and laboratory
settings. For our system, there are two primary sources of error
that we seek to minimize: surface emissivity, and spot-size effect.
Reducing the effects of these phenomena is critical to robustly
estimating the true temperature.

3.2.1 Emissivity. The radiation energy measured by the sensor
is not equivalent to the radiation energy given off by the measured
surface. The first reason is the emissivity of the surface; most sur-
faces do not emit 100% of the radiation energy, but instead also
reflect energy from the surrounding environment. The second rea-
son is due to transmittance; the medium which the radiation travels
through can lead to attenuation, while introducing radiation en-
ergy from the atmosphere. Thus, it is critical to correct for these
phenomena to recover a more accurate measurement.

Figure 4 illustrates the transmission of radiation energy from a
surface to the sensor. Radiation energy emitted from the surface
consists of a linear combination of the energy of the body Wy, ;, and
the energy of the reflection W, s (typically surrounding surfaces).
The critical parameter is emissivity of the surface e, which for
human skin is between 0.95 and 0.98.

After the radiation energy leaves the surface, atmospheric energy
Warm is introduced as a linear combination with parameter 7. This
parameter is the atmospheric transmittance, which is dependent
on a number of factors including the distance between the surface
and the sensor, and environmental conditions such as the humidity.

Hou et al.
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Figure 5: Distance estimation method using the size of the
bounding box to estimate distance.

The total radiation energy received by the sensor is thus:
Weor = €tWopj + (1= €)Wy + (1 — 1) Warm

Temperature can be related to radiation energy by the Stefan-
Boltzmann law: W = oT*, where o is the Stefan-Boltzmann con-
stant. Previous works [43] have shown that humidity and temper-
ature change atmospheric transmittance heavily only when the
distance between the body and sensor is on orders of hundreds of
meters. However, our system is intended for distances of less than
5 meters, where distance has a much larger impact than humidity
and temperature. After measuring the ambient temperature and
estimating the atmospheric transmittance according to [43], we can
recover the original temperature Ty, ; of the surface:

o Weot — (1
Tobj =

3.2.2 Distance Estimation. A thermographic camera measures
the temperature of objects by sensing infrared radiation. The spot-
size effect influences the measured radiation; the measured temper-
ature of human skin changes with distance from the thermographic
camera. Because the FLIR One Pro camera doesn’t measure depth,
we require a method to estimate distance from captured RGB and
thermal images.

Our method to estimate the distance from the FLIR camera is
primarily based on perspective projection (the observation that the
further away the object is from the camera, the smaller the object
area is in the image). Figure 5 shows the area-based estimation
method, assuming that the lens is a small hole. The definition of
horizontal field of view (HFOV) and vertical field of view (VFOV) for
an RGB lens is HFOV = 2 arctan(w/f) and VFOV = 2 arctan(w/f),
where w refers to the dimension and f is the focal length. The two
large rectangles are the view plane of the camera at different dis-
tances, and the small rectangle in the view plane is the bounding
box of one detected head. According to the proportional relation-
ship between the actual distance and the pixel distance, and the
definition of HFOV and VFOV:

H/2 = wg = D X tan(HFOV/2), Hy, = 2wy X hy /h
V/2 = wy = D X tan(VFOV/2), V}, = 2wy X v /v

atm

- e)raneﬂ -(1-1)oT?

€ETO

The actual area size of object is constant: S, = V;,H, = constant.
Then we can derive the following formula, and roughly estimate D,
the distance from camera to view plane, once the average constant
is trained through multiple ground truth measurements:

ophpD? = constant
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The distance R, distance from camera to object, is calculated through
Pythagorean Theorem, where x3, yj, are the central coordinates of
bounding box:

RZ:X£+Yb2+D2:(%b x H)2 + (£ x V)2 + D?
]

To minimize bias in the RGB domain, we also compute the distance
R from the thermal domain and apply stereo vision [44] to calculate
the final distance.

3.3 Head Orientation

The RGB and thermal images capture only a certain perspective of
each head, which can cause issues for landmark detection networks,
and cascaded CNNs [45]. Since the ultimate goal is to use thermal
values of specific areas of the face to perform fever detection, a
correspondence between the pixel values and parts of the face
is required. This correspondence can be determined by utilizing
the head orientation. Specifically, the pitch, roll, and yaw of each
head is sufficient to determine the correspondence. We start with
a neural network implementation FSA-Net [46]. FSA-Net takes a
single image as input, predicts head poses based on regression and
feature aggregation, and output pitch, roll and yaw of each head in
the image.

The main challenge with integrating this network into this sys-
tem is three-fold. First, many of the detected heads are not directly
facing the camera. The original FSA-Net trained on the 300W-LP
dataset [47] only estimates orientations within 100 degrees (refer-
ence is straight forward), meaning that some images of the side head
and most of the back head will not produce an estimate. However,
side views of a face can still provide important thermal information.
Second, due to current circumstances, many people are wearing
masks, which are not included in the original training sets for FSA-
Net. Lastly, there are differences in the image quality between the
original training sets and the FLIR One camera, which can cause a
loss in orientation accuracy.

To increase the orientation estimation capability of the FSA-
Net, we hand labeled a custom dataset of head images at various
pitch and yaw angles. Similar to the head detection network, we
hand labeled 1000 images of heads with orientation taken from
the restaurant deployment of SIFTER, which gives a variety of
orientation angles, many examples of people wearing facemasks,
and similar image quality. After retraining FSA-Net with this new
dataset, we noted an increase in orientation accuracy especially
for people wearing masks, and for angles outside the original 100
degree field. We also noted that accuracy suffers for angles where
the majority of the face is covered by hair; this is potentially due
to the fact that key identifying features for estimating orientation
(such as the nose, eyes) are not present for angles towards the back
of the head.

3.4 Matching and Tracking

Once head orientation has been extracted from RGB images, and
thermal correction has been done on thermal images, it is important
to match temperatures from the thermal images onto the corre-
sponding location on the face in the RGB image. Furthermore, this
information should be tracked across successive frames to construct
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time dependent information, which may be important for reducing
error and potential future applications.

The difficulty in matching is that due to perspective changes
between the thermal and RGB cameras, the same person will not
appear in the same location in both images. Further, in the case of
the FLIR ONE Pro camera, the field of view and image resolution
are different between the two cameras. To successfully match heads
in the RGB and thermal images, we first calibrate the images in both
domains to correct the distortion. After calibration, we compare
the number of detected heads in two images. If the numbers are
equal, RGB heads and thermal heads are corresponded in order
from left to right on the image. Because the lenses are facing the
same direction and the relative positional relationships of people
are same. However, if the numbers are not equal, there is a missed
or wrongly detected head. We use Euclidean distance from the
bounding box centroids to determine the closest match and remove
the unmatched heads. Although there is significant potential to
improve this matching algorithm, this is out of the scope of this
work. In practice, this matching method achieves 94% accuracy rate.

The current framerate of our system is limited due to the transfer
of images to the cloud for analysis. Due to this limitation, popular
tracking algorithms that rely on low object displacement such as
optical flow are not reliable. For our application, we implemented a
Kalman filter based on the centroids of the bounding boxes in each
frame. This method allows tracking of heads in the RGB domain
across multiple frames. Although there are more complex methods
for tracking that do not rely on high framerate and may be more
reliable (such as particle filtering), in practice, the Kalman filter
provides enough accuracy in tracking for our application.

Lastly, we combine matching and tracking. For each pair of RGB
and thermal images, the bounding boxes of heads are matched. In
consecutive frames, a Kalman filter is used to track the centroids of
bounding boxes in the RGB domain only. The one set of matched
and tracked bounding boxes corresponds to a single person in
multiple frames, and is passed on to model mapping to produce a
3D thermal model.

3.5 Mapping Features to 3D Head Model

Before thermal features can be extracted for skin temperature esti-
mation, we need to determine a mapping of the thermal image to a
facial model. For instance, if we want to use the left cheek region
in the fever classification model, we need to track the pixels that
correspond to the left cheek in the thermal image.

We can utilize the thermal image with the orientation informa-
tion to project values onto a head model. For the head model, we
chose a standard 3D point cloud model, which we will project our
thermal values onto. The computation for keeping track of the
thermal values is done in the C++ Point Cloud Library.

To map the thermal values from the thermal image to the point
cloud model, we first need to determine the points on the head
model which are visible from the camera. The orientation predicted
by the orientation network in Section 3.3 provides the angle dif-
ference between the orientation of the head with respect to the
camera. This angle difference can be converted to a normal vector
of the form 7 = (ny, ny, n3).
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Figure 6: Mapping thermal features onto a 3D point cloud.

To increase speed, the point cloud is bisected along a plane
intersecting the center of the point cloud. The equation of the plane
can be defined as:

ni(x —x9) +n2(y —yo) +n3(z—2z9) +D =0

where D = 0 assuming the point cloud is centered at the origin.
Only the points above the plane are considered to be visible by
the camera. A more refined selection of points can be done by
raytracing from the camera location; however, this increases the
computation time significantly. Once the points have been selected,
the mapping between the 2D thermal image and the 3D points can
be done in two ways. We first project the 3D points onto the prior
defined 2D plane. Let the point we want to project be defined as:
p = (x,y,2), then the projected point can be computed as follows:

Pproj =p—nixi-p
A change of basis changes this plane into the Cartesian coordinate

space by using the transformation matrix M:

1 2 3
Ny Ny Nx

M=|nt n?2 nd
{ g

nZ z

n n

z

After the change of basis, the points will be aligned along one of
the Cartesian axes (x); thus, the thermal image can be fit onto the
projected points by first finding the minimum and maximum of the
other two axes, Ymin, Zmin> Ymax> Zmax- Each point corresponds to
a pixel in the thermal image (px, py) as in the equation:

(y — miny) * width
v maxy — miny

_ (z = ming) = height
2 max,; — ming

In addition, to help reduce noise in the pixel values, we combine ob-
servations with previous measurements. The temperature estimates
for each point on the head model is saved, and new measurements
are averaged to produce new temperature estimates. The overview
of thermal feature mapping is shown in Figure 6.

3.6 Fever Detection

With constructed 3D head models, we can choose which regions
of the face to use as features for estimating temperature and fever
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Figure 7: Block diagram of SIFTER architecture.

screening. The area around the temples and the forehead can be
measured to estimate body temperature and detect fever [48, 49].
Furthermore, we utilize a temporal thermometer to collect ground
truth which measures forehead and temple skin temperature. For
these reasons, we extract temperature statistics from three regions:
left temple, right temple, and forehead. We calculate average, me-
dian and maximum temperature values for these three regions as
the thermal features for temperature estimation and fever screen-

ing.

4 SYSTEM ARCHITECTURE

We designed the SIFTER with three components: a sensor node, a
cloud server, and a client, as shown in Figure 7.

4.1 Sensor Node

The sensor node is responsible for capturing RGB-thermal images,
encrypting the images, and transmitting the images to the cloud
server for processing. Once the system has been deployed, the
sensor node is able to run continuously without human intervention
to prevent any potential exchange of bacteria or viruses. There are
two criteria which are emphasized to improve deployability in
different environments: cost and configuration.

To minimize cost of deployment, the sensor node is composed
of two main components: a FLIR One Pro thermal camera, and an
NVIDIA Jetson Nano board. The FLIR One Pro thermal camera is
significantly lower cost than most commercial thermal cameras,
which often cost upwards of $1, 000. In addition, the Jetson Nano
board replaces the typical mobile device interface for the FLIR One
Pro to further reduce the cost of each individual sensor node.

To reduce the overhead of deployment, a software library was
developed for the Jetson Nano to continuously receive thermal and
RGB images from the FLIR One Pro, encrypt the images, and trans-
mit the images securely to a cloud server for processing. Features
of this library include parsing of raw data from the FLIR One Pro,
encryption of the thermal and RGB images, and configuration files
for quick setup for communicating with the server.
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4.2 Cloud Server

After image data is transmitted from the sensor node to the cloud
server, the cloud server is responsible for decrypting and decoding
the image, running the processing pipeline, saving results in the file
system or database, and serving the web client. One major benefit
of the cloud server is the ability to provide temperature estimation
and fever screening from RGB and thermal images as a service,
which can reduce the cost to the client significantly.

The cloud server consists of a Flask back-end server, a Redis
in-memory database and a Node.js web server. Flask is a python
library that can handle image data sent from sensor node. This
flask back-end server handles the image data and calls the image
processing pipeline. The Node.js web server serves the web client.
Image data and detection results are shared between the flask back-
end server and web client using the Redis in-memory database. Our
cloud infrastructure can be deployed on a typical server or through
common hosting services, like Amazon AWS. In the restaurant
deployment, we deployed a cloud server in a desktop computer,
with an Intel i5 CPU, 8G RAM and Nvidia TitanX GPU. In the
medical practice deployment, a cloud server is deployed in a Google
Cloud Platform (GCP) Compute Engine instance, with 4 virtual CPU
cores, 32G RAM and an Nvidia P100 GPU.

4.3 Web Client

The web client is a website opened on another device that enables
clients, such as hospital employees, to monitor images collected
from the sensor node and the fever screening results from the
system pipeline in real-time. The web client consists of a Node.js
web server and a client side. The Node.js web server is part of the
cloud server and is hosted in the GCP Compute Engine instance, in
which the Node.js is a open source javascript run-time environment.
On the client side a web page is served giving clients the capability
to monitor real-time RGB-thermal images, and historical images.
Hospital employees can also delete both raw images and detection
results through the interface if requested by a patient, in accordance
to the terms of the IRB for this project.

5 MICRO-BENCHMARKS

We first evaluate the individual components of the fever screening
pipeline to demonstrate the system’s ability to accurately select
and extract thermal features. An early prototype of SIFTER was
deployed in a local restaurant to gather images for training the
various models in the fever screening pipeline.

5.1 Local Restaurant

To gather preliminary images for training, an early prototype was
deployed in a local restaurant. The system ran continuously for
3 weeks, more than 30 000 images have been gathered. A portion
of these images were labeled to train and evaluate early pipeline
models in SIFTER, including the YOLO head detection model and
FSA-Net head orientation detection model.

5.2\s débendeDietéetiionm 3.1, we primarily focus on detecting
heads by training YOLO [39] on different datasets, namely the
SCUT head dataset [41] and a custom labeled RGB and thermal
dataset taken from images at the local restaurant deployment. By
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Figure 8: Average yaw and pitch angle prediction error at
different yaw and pitch angle displacements.

incorporating both RGB and thermal images in the training data,
we allow YOLO to learn head features from both image domains.
Datasets were balanced to not provide bias towards either domain.

We compared YOLO trained with different datasets. The network
was first trained with the SCUT head dataset only, to determine
precision, recall, and intersection over union (IOU) for RGB im-
ages. Next, we trained YOLO with interleaved RGB and thermal
images to improve performance on detecting heads in the thermal
domain. When trained with both types of images, YOLO was found
to perform better on both RGB and thermal images in precision,
recall, and IOU, as shown in Table 1. Note that all models trained
and tested in Table 1 include images from the SCUT dataset and
the restaurant dataset. We see that there is relatively little change
in performance in the RGB domain. However, there is a significant
improvement in recall in the thermal domain, due to the addition
of thermal images in the training set.

5.3 Head Orientation

As described in Section 3.3, the pre-trained FSA-Net implementa-
tion did not meet accuracy requirements. One major change is the
inclusion of face masks, which greatly affects features that are used
by FSA-Net to estimate orientation. We hand labeled orientation for
over 500 head bounding boxes from the restaurant dataset, and re-
trained and evaluated FSA-Net. As shown in Figure 8, the retrained
FSA-Net significantly reduces error in yaw and pitch angles. Note
that the last axis, roll, is not shown as this angle varies the least,
and the pre-trained version already achieves a low prediction error.

5.4 Distance Estimation

As described in Section 3.2.2, we estimate distance from the area of
the bounding boxes in the RGB and thermal images. For training

l Test on RGB Set [ Precision [ Recall [ 10U ‘

YOLO with RGB 97.0% 92.1% | 72.8%
YOLO with RGB-Thermal 99.0% 98.0% | 80.3%

l Test on Thermal Set l Precision l Recall l 10U ‘
YOLO with RGB 99.8% 8.7% | 18.8%
YOLO with RGB-Thermal 98.0% 99.0% | 83.9%

Table 1: Precision, recall, and IOU on RGB and thermal test
sets when training on different training sets.
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Figure 9: Absolute distance estimation error of the described
area method on the dataset at different distances.

data, we labeled over 500 heads with ground truth distances. After
training, we evaluated the method on 25% of the dataset, as shown
in Figure 9. With bounding boxes up to 3.5 meters away, our method
achieves an average accuracy of 0.064 meters. Intuitively, the error
and variance increases at larger distances. More advanced methods
can be utilized in future works to further reduce distance error.

5.5 Matching and Tracking

To evaluate matching and tracking accuracy, we selected 500 frames
from the restaurant dataset and labeled bounding boxes with a
unique ID, which associates bounding boxes across successive RGB
and thermal frames. This simple methods can achieve a 94.4% accu-
racy in mathcing and 91.3% accuracy in tracking, respectively. Al-
though these methods are acceptable for the restaurant and medical
practice deployments (with few people in each frame), we recognize
that more complex environments (especially greater numbers of
people in frame) will require more complex methods to improve
both matching and tracking accuracy.

6 REAL-WORLD EVALUATION

To evaluate the temperature estimation and fever screening capa-
bilities of SIFTER, we conducted a real world user study to com-
pare SIFTER with the clinically validated Withings Thermo NCIT3.
We received IRB approval to deploy SIFTER on the ground floor
at ColumbiaDoctors - Midtown. Over the course of six months,
we collected a dataset consisting of measurements from over 4000
people with SIFTER and the Withings Thermo NCIT.

6.1 Medical Practice Deployment Dataset

In the medical practice deployment at ColumbiaDoctors - Midtown,
patients enter through a single entrance either from the outside,
or from a different floor in the medical practice. The patients ap-
proach the reception desk, which enables SIFTER to record multiple
measurements at different distances, as shown in Figure 10. An on-
site nurse records the ground truth temperature with the Withings
Thermo NCIT shown in Figure 1, which is not in view of SIFTER.
Our dataset consists of the following features:

3Withings Thermo: https://www.withings.com/us/en/thermo
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(1) SIFTER Temperature Features. Average, median and max-
imum temperatures are recorded for the forehead, left temple,
and right temple regions for each detected person. These
features are extracted from the 3D head model described in
Section 3.5.
Baseline Temperature Features. For comparison, we also
collected baseline temperature features commonly used by
other fever screening systems, including maximum and av-
erage temperature of the entire face.
(3) Distance. As described in Section 3.2.2, distance for each
detected person is estimated and stored as a feature.
(4) Acclimation. Whether a person is acclimated to the indoor
environment also affects skin temperature. In this deploy-
ment, a person can enter the ground floor practice from
either the outside or from a different floor. Both of these
routes are visible to SIFTER, so an acclimation feature can
be assigned to each person.
Delay. For people who are not yet acclimated to the indoor
environment, the skin temperature may change between
successive measurements. To adjust for this temporal change,
we add a delay feature, which is the time between the SIFTER
measurements and the ground truth measurement.
Outside Temperature. The effects of temperature acclima-
tion on skin temperature depend on both the outside and
inside environments. We also correspond each temperature
measurement with the current outside temperature to ac-
count for this effect.
Ground Truth. An onsite nurse measures ground truth tem-
perature using the Withings Thermo NCIT. This measure-
ment is saved along with a timestamp, which is associated
with the SIFTER measurements. This measurement acts as
the label for machine learning regression.

—
=)
=

6.2

To evaluate the potential screening capabilities of SIFTER, we imple-
mented and trained a number of different models to measure fever
screening performance. We explored two categories of models:

(1) SIFTER Regression Models: We implement and train lin-
ear regression, random forest and gradient boosting models
using SIFTER temperature features to predict ground truth
temperature.

Baseline Models: We also implement baseline models, aver-
age, maximum, and Li et al. [1] to compare against the SIFTER
models. These models use the baseline features, such as av-
erage and maximum facial temperature, rather than the fea-
tures extracted from the 3D head models. For Li et al., we
train a linear regression model on the average and maximum
facial temperatures. Li et al. is an important baseline as it
represents prior works that utilize statistics on the entire
facial region, rather than on specific facial features.

Fever Screening Study

In addition to the standard regression models, we also explored
the performance of a few custom gradient boosting models. While
training regression models such as random forest with depth 10, we
noticed through inspection a general underestimation of predicted
temperature for higher ground truth temperature values. While this
is an undesirable characteristic, it also provides an opportunity to

Authorized licensed use limited to: Columbia University Libraries. Downloaded on October 07,2022 at 14:06:56 UTC from IEEE Xplore. Restrictions apply.



A Low-Cost In-situ System for Continuous Multi-Person Fever Screening

person 207 0 o]
PN

IPSN ’22, May, 2022, Milan, Italy

Figure 10: Real-time images available to hospital staff displaying detected people and fever screening estimates.
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Figure 11: ROC curves for different regression models.

potentially improve febrile human detection. The intuition is that
measurements with higher ground truth temperatures are closer to
the decision boundary, and thus having more accurate estimations
for these temperatures will improve the decision boundary.

To improve estimation of the high ground truth temperature
measurements, we designed asymmetric loss functions to give a
greater penalty for underestimation of predicted temperature. We
found empirically that asymmetric L2 loss improved ability to dis-
criminate febrile humans. To implement asymmetric loss, we utilize
LightGBM, a gradient boosting library which allows definition of
loss. We define the asymmetric L2 loss, where f(x) is the ground
truth and f (x) is the prediction as follows:

{a(f(x) —fG)? flx) - fx) <0

- f@)? @)= >0
a is a tunable parameter that defines what factor we asymmet-
rically penalize temperature underestimation. We found that the

mean temperature estimates are closer to ground truth for high

23

. 60 - 232
€ o 2
o £ 3=
L] © S
= =z
@ ]
o 3
wo 12 100 e 0 112
s 3
ljlf u
Normal Fever Normal Fever

Predicted label

. . (b) Light GBM 5x asymmetric
(a) ng'ht GBM 5x a'symmetnc loss with 100% true positive rate
l(;fis with balance point thresh- (recall) threshold.
old.

Predicted label

Figure 12: Fever prediction confusion matrices.

ground truth temperatures for Light GBM with 2x and 5x penalty
than with Random Forest with Depth 10.

To evaluate fever screening, we modified the label of the med-
ical practice deployment dataset. The Center for Disease Control
and Prevention (CDC) threshold for fever is 100.4°F. However, we
choose a more conservative threshold: 98.6°F to minimize the false
negative rate to ensure that close to all people who actually have
fevers are detected. We labelled the ground truth measurements
above 98.6°F with a 1 to indicate fever, and measurements at or
below 98.6°F with a 0 (indicating normal temperature). For overall
evaluation, we remove occupants who are not acclimated to the in-
door environment, as this has a substantial impact on the accuracy
of the fever screening system. We present and discuss possibilities
for detecting non-acclimated occupants in Section 6.2.3.

For this evaluation, each model was trained and evaluated on a
75% : 25% train and test split on the medical practice deployment
dataset. We compared all of the described models on a receiver op-
erating characteristic curve (ROC curve) by sweeping the threshold
temperature to understand the screening capabilities of each model.
As shown in Figure 11, the best performing models are the Light
GBM models with asymmetric loss functions, followed by Light
GBM with symmetric L2 loss and Random Forest with depth 10.
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Figure 13: Temperature estimation error comparison be-
tween Random Forest (Depth 10), Light GBM with dou-
ble and 5x asymmetric loss for different measurement dis-
tances.

This suggests that by focusing on improving temperature estima-
tion accuracy for high ground truth temperature data, we are able
to improve the ability of these models to screen for febrile humans.
In Figures 12a and 12b, we show the confusion matrix for fever
screening using Light GBM with 5x asymmetric penalty and thresh-
olds at the balance point and at 100% recall. If we select the balance
point, or max TPR — FPR where TPR and FPR are the true positive
rate and false positive rate respectively, we are able to achieve an
89.3% recall with 62.5% precision for 5x asymmetric penalty. To
reduce the spread of virus, we aim to detect all febrile humans,
even if we need to sacrifice the false positive rate. We can oper-
ate SIFTER at different operating points, and can optimize for 100%
TPR. At 100% TPR, meaning we correctly classify all potentially
febrile people, our system can achieve 22.5% FPR using Light GBM
with 5x asymmetric penalty. In comparison, the baseline methods
can only achieve 100% TPR by greatly sacrificing FPR. The baseline
average, maximum and Li et al. achieve FPR of 79%, 81%, and 78.5%.
Although a 22.5% FPR may seem high, we note that people who
are detected to have a fever, will likely undergo further screening
by health professionals or more accurate systems to confirm our
measurement. Although this requires another stage of screening,
our system still has the potential to significantly reduce human
intervention for the majority of people without symptoms.

6.2.1 Distance Performance. In addition to the overall evaluation,
we also studied characteristics of the medical practice deployment
dataset. For this purpose, we created five different datasets each
consisting of a subset of the main dataset: Whole Dataset, consist-
ing of the entire dataset; Indoor Dataset, consisting of only people
acclimated to the indoor environment; Outdoor Dataset, consisting
of only people not acclimated to the indoor environment; Single
Dataset, consisting of people who are measured independently;
Multiple Dataset, consisting of people who are measured with other
people in view of the sensor. We also divided the dataset by distance
ranges to study the effects of distance on measurement accuracy.
Since the distance from the RGB-thermal camera has a signifi-
cant effect on the measured temperatures, it is critical to evaluate
the effect of distance on the predicted temperature accuracy. We
tested three of the best performing regression models on varying
distances, Random Forest with depth 10, Light GBM with double
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Figure 14: Mean Absolute Error of regression and baseline
model temperature predictions on datasets including and ex-
cluding people not acclimated to the indoor environment.

asymmetric loss and with 5x asymmetric loss. As shown in Fig-
ure 13, the two GBM models increase temperature estimation error
over the random forest model, on average by less than 0.1°F for
both models. Another important observation is that temperature
estimation error is relatively stable below 2 meters, while typical
infrared thermometers only support 10 to 50 centimeters [9].

6.2.2  Performance on Whole vs. Indoor Dataset. As recommended
by ISO 13154:2017 [50], measurements are better standardized when
people are acclimated to the indoor environment. To better study
this phenomenon, we compare model performance when including
or excluding people who are not acclimated to the indoor environ-
ment. During our deployment of SIFTER at the medical practice,
the average outdoor temperature was 38°F compared to an average
indoor temperature of 72°F, suggesting that people not acclimated
to indoor temperatures may result in biased measurements.

As shown in Figure 14, each model’s temperature MAE improves
by 14.7%, 13.3%, 18.0%, 9.6%, and 14.7%, respectively, when using
the indoor dataset vs. the whole dataset. As expected, the results
indicate that the inclusion of measurements of people who are not
acclimated to the indoor temperature reduces the ability for models
to predict temperature. Baseline and average models achieve greater
than 1 degree MAE on both datasets, and are not shown.

6.2.3 Improving Outdoor Acclimation Dataset Accuracy. One major
challenge in automated fever screening systems is enforcement of
acclimation to indoor environments. People who are screened be-
fore acclimation to the indoor environment will not be standardized
with the indoor acclimated population, and as seen in Figure 14,
results in higher errors between prediction and ground truth. Clas-
sification of acclimation can help in automated systems requir-
ing acclimation to the indoor environment. Once detected, non-
acclimated people can be flagged directly for a secondary screening,
or made to wait for a certain time duration. We first explore im-
proving the accuracy of temperature prediction by using ambient
temperature and delay features. The intuition is that by improving
temperature prediction, we can better differentiate whether people
are acclimated to the indoor environment.

As shown in Figure 15, adding ambient temperature and delay
features reduces temperature prediction error across all five regres-
sion models by 38.8%, 25.3%, 37.8%, 3.8%, and 1.6%. Random forest
and gradient boosting methods benefit the most from the additional
features. Using our best performing model, gradient boosting, we
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Figure 15: Mean Absolute Error of regression and baseline
model temperature predictions using different feature sets.

proceeded to apply a threshold to predict whether a person is accli-
mated with the addition of ambient temperature and delay features.

As shown in Table 2, the addition of outdoor ambient tempera-
ture provides an improvement in recall and F1 score for prediction
of non-acclimation, while the addition of delay reduces both recall
and F1 score. This suggests that while outdoor ambient tempera-
ture is useful for classifying acclimation, delay is only useful for
predicting temperature. One explanation for this discrepancy is
that delay does not have an effect on skin temperature of indoor
acclimated people, but can help predict skin temperature changes
as people acclimate to indoor environments.

l Features [ Precision [ Recall [ F1 ‘
No Extra Features 0.777 0.925 | 0.844
Outdoor Temperature 0.763 0.984 | 0.859
Outdoor Temperature, Delay | 0.847 0.806 | 0.826

Table 2: Comparison of precision, recall, F1 score of the
GBDT model on acclimation classification using different
feature sets (default: distance, thermal features).

6.2.4  Performance with Multiple People. Another recommendation
by ISO 13154:2017 [50] is to screen with only a single person at a
time to minimize effects of multiple heat sources on the sensor’s
measurement accuracy. To better understand this effect, we com-
pare the model performance with a single person or multiple people
in the frame. We trained and evaluated the models on a 75% : 25%
train test split on the whole dataset, and divided the evaluation re-
sults by number of people in frame. As shown in Figure 16, the MAE
on the single dataset shows an improvement of 21.4%, 19.9%, 39.5%,
3.2%, and 3.3%, respectively, over the multiple dataset. However,
with the additional error in multiple dataset, the overall error is still
one order of magnitude less than the error of infrared-thermometer
used in market which have an error of +4°F

6.3 Processing time

A low response time, i.e.,the time from the image captured by the
RGB-thermal camera to the result shown on the client, is important
to the real deployment. We measured the total image processing

“https://en.wikipedia.org/wiki/Infrared_thermometer
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Figure 16: Mean Absolute Error of regression and baseline
model temperature predictions on datasets of single person
and multiple person measurements.

time for a single frame, which includes the entire pipeline men-
tioned in Section 3.

The average processing time in our local restaurant and hospital
deployments are about 0.25 seconds and 0.231 seconds respectively,
which is on par with a typical person’s reaction time. The hospital
deployment has a lower latency because the server it connects to
utilizes a faster GPU. We note that a latency of even a few seconds
is acceptable for our application because it typically takes a few
seconds for a subject to walk across the observation window.

7 DISCUSSION

Deployment Considerations: NCITs, as well as IRT systems, are
becoming more common in non-clinical settings to help combat
the spread of COVID-19. However, they are not considered the
gold standard for detecting fever in comparison with in-ear ther-
mometers, oral thermometers, or axillary thermometers. Thus, one
important factor is how to maximize the effectiveness of SIFTER
in different environments while minimizing cost as an first-stage
screening tool.

The primary consideration is the classical precision-recall trade-
off. Reducing false negatives allows for identifying a higher per-
centage of febrile humans, at the cost of falsely detecting more
non-febrile humans. This would require more people to undergo a
second-stage screening. On the other hand, reducing false positives
reduces the number of people required to undergo a second-stage
screening, at the expense of missing the detection of more febrile
humans. Depending on the deployment, there may be a greater
need for minimizing either false positives or false negatives.

SIFTER currently utilizes Light GBM with 5x asymmetric penalty.
The threshold value that determines the boundary of febrile and
non-febrile humans is set to first minimize false negatives, and
second minimize false positives. This setting is more useful in low
throughput settings such as small business and retail, where a first
screen can reduce the number of people required to be screened
with a secondary measurement. However, the threshold value can
be raised for high throughput settings such as transportation hubs
or commercial buildings to reduce the burden on administrators for
a secondary screening. SIFTER allows the setting of this threshold
value to allow the end users to choose an appropriate value for the
deployment setting.

SIFTER requires a cloud server to process its pipeline, which
leads to potential privacy concerns. SIFTER is intended for use at
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entrances and specific parts of buildings, rather than as a general-
purpose surveillance camera throughout the building. For instance,
the hospital where we conducted our study allowed us to deploy
our system at its entrance with full knowledge of data locations.
To preserve privacy, SIFTER does not store images on the server
for more than 600 seconds and only saves bounding boxes and low
resolution thermal images. In the future, we plan to improve pri-
vacy by moving major parts of our pipeline onto the edge, thereby
removing the need to transmit raw data to a third-party server.

Procedure: As explored in Sections 6.2.2 and 6.2.4, there are four
important factors that can affect temperature measurements: indoor
environment acclimation, distance, presence of multiple people,
and skin visibility. ISO 13154:2017 [50] recommends ensuring that
people to be screened are acclimated to the indoor environment, are
at a certain distance from the sensor, are screened one at a time, and
relevant skin regions are visible to enable accurate measurements.

For automated fever screening systems, enforcement of these
protocols is an important challenge. For indoor acclimation, we of-
fer a method for helping to detect people who are not acclimated to
the indoor environment in Section 6.2.3; however, this method is not
applicable in all situations. For instance, people who have mostly
acclimated to the indoor environment may not be distinguishable
from fully acclimated people. In these situations, an extension to
SIFTER that tracks a person’s duration indoors to determine envi-
ronment acclimation will provide additional robustness.

In Section 6.2.4, we noted that the temperature estimate errors
in the presence of multiple people are not drastically different than
for single person measurements, although there is an increase in
error. One potential consequence of this study is a tradeoff between
speed and accuracy. If multiple people can be screened at once,
the throughput can be increased; however, there will likely be a
sacrifice in accuracy. SIFTER provides a signal describing whether
a single or multiple people are detected, which can be utilized by
the client depending on the appropriate setting.

Distance is another critical parameter, and is usually enforced in
modern IRT systems by placing a marker on the floor at the desired
distance. As described in Section 6.2, distance has an effect on esti-
mated temperature, although these errors can be mitigated by using
distance as a feature to temperature models. This improvement in
accuracy over distance reduces the need for occupants to directly
position themselves for the sensor, thus reducing overall screen
time and increasing throughput.

Finally, SIFTER and IRT systems in general require visibility
of skin regions to measure temperature. In certain cases where
relevant skin regions are not visible (such as due to facial coverings),
we noted that this can be easily detected when facial region statistics
fall below a definitive temperature threshold (~ 85°F). SIFTER also
provides a signal noting these cases.

8 CONCLUSION

In this work, we demonstrate SIFTER, a low-cost system for continu-
ously screening of people for fever without any human interaction.
The thermal images are calibrated with a data-driven spot-size ef-
fect model to reduce the fundamental errors of thermal camera, and
head orientation is estimated from RGB images with a retrained

FSA-Net on a hand labeled restaurant dataset. The bounding boxes
are matched between RGB and thermal images, and the calibrated
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thermal data is mapped onto a 3D point-cloud head model. We
deployed SIFTER in two locations, a local restaurant and a medical
practice. In our evaluations of this system on real patients in the
medical practice, our system is able to achieve 100% TPR with only
22.5% FPR for screening occupants. This system can be used as an
initial screening step (followed by additional screening of positive
cases) to significantly reduce human labor cost of screening and
social interaction.
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