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construct a finite-state Markov chain reduction of a given stochastic hybrid system and prove that this re-
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1 INTRODUCTION

Modern control systems achieve high-level autonomy by controlling complex physical processes
with powerful embedded computers [46]. These integrated systems typically have hybrid dynamics
due to interaction between continuous-state physical dynamics, discrete-state cyber dynamics, and
random system/environment noise. Common dynamic models for these cyber-physical systems
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are discrete-time or continuous-time stochastic hybrid systems [13, 35, 45, 68]. Such models are
widely used in various applications such as automobile powertrains [38, 58], smart grids [63],
and chemical [34] or biological systems [36, 60]. To assure functionality in these applications, a
foundational problem is the verification of general specifications [3, 20, 27, 42, 65].

For automated system verification, a common approach is model checking [18]. The idea is
to use temporal logics (e.g., computation tree logic (PCTL) [33] and continuous stochastic

logic (CSL) [10] to formally express the specifications of interest and develop computer algorithms
to verify these formal specifications. This article focuses on verifying specifications in inequal-

ity linear temporal logic (iLTL) [43] or inequality metric interval temporal logic (iMITL)
on discrete- or continuous-time stochastic hybrid systems, respectively. These logics can express
many important specifications for distributed systems and networks [44]. In them, the atomic
propositions are functional inequalities over the distributions on the system state space, and the
temporal operators are the same as the standard linear temporal logic (LTL) [52] or metric

interval temporal logic (MITL) [9]. The logics iLTL and iMITL are incomparable to PCTL and
CSL. The latter reasons about properties of a random system path, e.g., whether the probability
of never reaching an unsafe state is >0.5. Whereas iLTL and iMITL view the random path of the
stochastic hybrid system as a time-evolving distribution and reason about properties about this
distribution, e.g., whether the probability of the (current) state being safe is always >0.5. Such a
specification is not expressible in PCTL and CSL (nor is the example specification of PCTL and
CSL expressible in iLTL and iMITL).
For model checking temporal logic specifications, there are two approaches: analytic and statis-

tical. Analytic model checking computes the probabilities of the properties of interest using the
system dynamics [10]. Previously, iLTL specifications are checkable on finite-state Markov chains
by this approach [44]. But such a method is not scalable to stochastic hybrid systems due to their
hybrid state space and stochasticity. On the other hand, statistical model checking infers the prob-
abilities by sampling with provable probabilistic guarantees such as the confidence/significance
level of the verification results [6, 47, 48]. Such probabilistic guarantees cannot be attained by
Bayesian statistical model checking [37, 82]. Previously, it has been shown how PCTL and CSL
specifications are checkable on finite-state Markov chains by this approach [20, 58, 81]. However,
statistical model checking is not directly applicable to iLTL and iMITL, since these logics reason
about properties of distributions. Checking them on stochastic hybrid systems requires approx-
imating time-evolving hybrid distributions (particularly in continuous time) with finite samples.
Although direct simulation of single executions of stochastic hybrid systems with bounded er-
ror is possible [62], using finite samples to approximate these hybrid distributions with provable
probabilistic guarantees remains challenging.
Our main contribution is to propose a statistical model checking method for iMITL/iLTL

specifications on continuous-/discrete-time stochastic hybrid systems with provable probabilistic
guarantees. Using the Mori–Zwanzig model reduction method [12, 15], we build an approximate
equivalence relation between continuous-/discrete-time stochastic hybrid systems and finite-state
continuous-/discrete-time Markov chains (DTMC)for iMITL/iLTL specifications. To verify
whether such a specification is satisfied (or violated) on the stochastic hybrid system, it suffices to
verify whether a slightly strengthened (or weakened) specification is satisfied (or violated) on the
Markov chain. (We also prove the converse, although this is not our major purpose.) Then, con-
sidering that the Markov chain can be large and unscalable for previous analytic model checking
methods [44], we propose a new statistical model checking method that can verify iMITL/iLTL on
continuous-/DTMCs. Since the Markov chains have finite states, we can use statistical inference
methods from [16] to provide provable probabilistic guarantees on the verification results.
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The approximate equivalence relation via the Mori–Zwanzig method is similar in spirit to
the simulation/bisimulation relation [19, 31], where a complex system model is abstracted by
a simple one while exactly or approximately preserving the truth value of the specifications
of interest. This approach is applicable to both non-stochastic [7, 17, 41, 51, 56, 66, 76] and
stochastic [14, 30, 49, 50, 70, 71] system models. Previous studies have shown that approximate
simulation can be built between finite-state Markov chains, Markov processes, and discrete-time
stochastic hybrid systems for PCTL specifications [2–4, 22, 39, 70, 71, 79, 80]. However, building
simulation relation between continuous-time stochastic hybrid systems and finite-state Markov
chains is still challenging in general for CSL specifications [30] because PCTL and CSL reason
about properties over paths. The paths of stochastic hybrid systems (particularly continuous-time
ones) can exhibit many more complex behaviors than finite-state models (e.g., Markov chains),
thus building (approximate) simulations between them is difficult. On the other hand, since iLTL
and iMITL only care about properties on distributions, building simulation relations between
stochastic hybrid systems and finite-state Markov chains is possible using the Mori–Zwanzig
method, even though the systems are very different on the paths.
Similar to previous methods [2, 3], the Mori–Zwanzig model reduction is performed via parti-

tioning the state space, although the metric used for defining equivalence is different. Our model
reduction method can be viewed as a generalization of [5, 26] to continuous-time and to tem-
poral logic specifications in iLTL and iMITL. The approximate equivalence by Mori–Zwanzig re-
duction is similar in spirit to the results first established for non-stochastic, stable, hybrid sys-
tems [29, 53, 66], and later extended to stochastic dynamical systems [79, 80]. When compared
to [79, 80], we consider a more general class of stochastic hybrid systems that have multiple
modes and jumps with guards and resets. Second, our reduced system is a Markov chain, whereas
in [79, 80] the stochastic system is approximated by a non-stochastic model. Accordingly, our no-
tion of distance between the stochastic hybrid system and the reduced system is different. Finally,
our Mori–Zwanzig reduction method is different from the model order reduction in classic con-
trol theory [23]. The former directly reduces the continuous part of the state space to finite states,
while the latter only reduces the state dimension.

Since the reduced system, even though finite-state, is likely to have a large number of states,
we use a statistical approach to verification [78] as opposed to a symbolic one. In statistical model
checking, the model is simulated multiple times, and the drawn simulations are analyzed to see
if they constitute statistical evidence for the correctness of the model. Statistical model check-
ing algorithms have been developed for logic that reasons about the probability of path proper-
ties [6, 47, 48]. However, since our logic iLTL/iMITL reasons about the properties of time-evolving
distributions, we cannot leverage these algorithms. Thus, we develop new statistical model check-
ing algorithms for temporal logics (over discrete and continuous time) that reason about sequences
of distributions.
For the scalability of our approach, the main complexity is to perform the integrations of the

system dynamic function on the partitions during the Mori–Zwanzig reduction. For common non-
linear dynamics (e.g., polynomial, sinusoidal, and exponential), the integrations typically have
closed-form solutions, and so are easy to compute. Also, due to the density of polynomial dynam-
ics on any compact domain, we can use them to approximate general non-linear dynamics with
error bounds. Alternatively, general non-linear dynamics can also be computed byMonte-Carlo in-
tegrations with bounded statistical errors [55]. Our approach successfully verified [58] the Toyota
powertrain system with 10 variables [38]; furthermore, the case study of this work demonstrates
that our approach can handle general iMITL specifications on stochastic hybrid systems with up
to 40 variables.
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Our approach combines the Mori–Zwanzig model reduction method with statistical model
checking and applies to both continuous-/discrete-time stochastic hybrid systems. It unifies
our previous papers [73–75], where discrete-time stochastic hybrid systems are studied in [74];
continuous-time non-hybrid systems are studied in [73]; and continuous-time stochastic hybrid
systems are studied in [75] without numerical evaluations. This work also provides a case study
to demonstrate the scalability of our statistical verification algorithms.
The rest of the article is organized as follows. In Section 2, we introduce the problem setup.

In Section 3, we introduce the Mori–Zwanzig method to reduce continuous-time stochastic hy-
brid systems into Markov chains. In Section 4, we propose a statistical model checking algorithm
for iMITL specifications on the continuous-time Markov chains (CTMC). Then, we apply the
same procedure of Sections 3 and 4 to verify iLTL specification on discrete-time stochastic hybrid
systems in Section 5. The scalability of the proposed algorithms is demonstrated by a case study
in Section 6. Finally, we conclude in Section 7.

2 PROBLEM FORMULATION

We denote the set of natural, rational, non-negative rational, real, positive real, and non-negative
real numbers by N, Q, Q≥0, R, R>0 and R≥0, respectively. We denote the essential supremum by
ess sup. For n ∈ N, let [n] = {1, 2, . . . ,n}. For any set S, let Sωωω be the set of infinite sequences in S.
For s ∈ Sωωω , let si be the ith element in the sequence. For a finite setA, we denote the cardinality by
|A| and its power set by 2A. The empty set is denoted by ∅. For X ⊆ Rd , we denote the boundary
of X by ∂X . The symbols P and E are used for the probability and expected value, respectively.

2.1 Stochastic Hybrid System

We follow the formal definitions of continuous-time stochastic hybrid systems in [45, 64, 67–69]
as shown in Figure 1 with a Fokker–Planck formulation and interpretation of the model.

2.1.1 Continuous-time Stochastic Hybrid System. We denote the continuous and discrete states
by x ∈ Rd and q ∈ Q, respectively, where Q = {q1, . . . ,qm } is a finite set. We call the combination
(q,x ) the state of the system, and the product set X ⊆ Q × Rd the state space. For each q ∈ Q,
the state of the system flows in Aq ⊆ Rd and jumps forcedly on hitting the boundary Aq . We
assume that each Aq is open and bounded, and the boundaries ∂Aq are second-order continuously
differentiable. On the flow set, the state x of the system evolves by a stochastic differential equation

dx = f (q, x)dt + д(q, x)dBt , (1)

where q and x are random processes describing the stochastic evolution of the discrete and contin-
uous states, and Bt is the standard n-dimensional Brownian motion. The vector-valued function f

specifies the drift of the state, and the matrix-valued function д describes the intensity of the diffu-
sion [40, 54]. In (1), we assume that f (q, ·) and д(q, ·) are locally Lipschitz continuous. Meanwhile,
the system jumps spontaneously by a non-negative integrable rate function r (q,x ) inside Aq . The
probability distribution of the target of both spontaneous and forced jumps (as they happened
on different domains) is given by a non-negative integrable target distribution h(q′,x ′,q,x ),
satisfying

∑

q∈Q

∫

Aq

h(q′,x ′,q,x )dx ′ = 1. (2)

2.1.2 Fokker–Planck Equation. The probability distribution F (t ,q,x ) of the state of the system
in the flow set is determined by the Fokker–Planck equation, which can be derived in the same
way as that for jump-diffusion processes [32],
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Fig. 1. A continuous-time stochastic hybrid system with two discrete states at time 0 and T .

∂F (t ,q,x )

∂t
= L(F (t ,q,x )) = −

∑d

a=1

∂

∂xa
( fa (q,x )F (t ,q,x ))

︸������������������������������������︷︷������������������������������������︸
drift

+

∑d

a=1

∑d

b=1

∂2

∂xa∂xb

∑d

c=1

дac (q,x )дcb (q,x )F (t ,q,x )

2
︸�������������������������������������������������������������������������︷︷�������������������������������������������������������������������������︸

diffusion

−r (q,x )F (t ,q,x )
︸���������������︷︷���������������︸

jump out

+

∑

q∈Q

∫

x ∈Aq
h(q,x ,q′,x ′)r (q′,x ′)F (t ,q′,x ′)dx ′

︸��������������������������������������������������������������︷︷��������������������������������������������������������������︸
spontaneous jump in

,

+

∑

q∈Q

∫

x ∈∂Aq
h(q,x ,q′,x ′) (n · F)dx ′

︸�����������������������������������������������︷︷�����������������������������������������������︸
forced jump in

,

(3)

where fa is the ath element of f from (1), n is the unit vector pointing out of the flow set and
the inner product n · F is the corresponding outgoing flow. Here, F is a matrix (more precisely a
second-order tensor) whose components are given by

Fab =
∂

∂xb

d∑

c=1

дac (q,x )дcb (q,x )F (t ,q,x )

2
, (4)

where a,b ∈ [d]. In (3), L is the Fokker–Planck operator for the system, and we write symbolically
that F (t ,q,x ) = etLF (0,q,x ). On the boundary, we have

F (t ,q′,x ′) = 0, (5)

as it is absorbing (paths jump away immediately after hitting the boundary). In the rest of the
article, we assume that the stochastic hybrid system given in this section is well defined in the
sense that it gives a Fokker–Planck equation with a unique solution [40, 54].

2.1.3 Invariant Distribution. An invariant distribution of the continuous-time stochastic hybrid
system Finv (q,x ) is defined by

L(Finv (q,x )) = 0. (6)
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In this work, when handling temporal logic specifications of an infinite time horizon, we assume
that F (t ,q,x ) converges to the invariant distribution function Finv (q,x ) to ensure that the truth
value of the specifications will not change after a finite time.

2.1.4 System Observables. The state of the system is only partially observable. Here, we are
interested in observables of the system given by

y (t ) = E[y (q(t ),x (t ))] =
∑

q∈Q

∫

Aq

γ (q,x )F (t ,q,x )dx , (7)

where γ (q,x ) is a weight function on X, which is integrable in x for each q ∈ Q.

Example 2.1. Throughout the article, we use the following example to illustrate the theorems.
Consider a continuous-time stochastic hybrid system with two discrete states onX = {1} × [0, 1]∪
{2} × [2, 4]. It jumps uniformly to [2, 4] when hitting x = 0 or x = 1, and jumps uniformly to
[0, 1] when hitting x = 2 or x = 4. It can jump spontaneously at any x ∈ X with the rate h(x ) =
IX (x )/3, where IX (·) is the indicator function of the set X. In each location, the state of the system
is governed by the stochastic differential equation

dx = dt + dBt ,

The probability distribution F (t ,q,x ) of the state evolves by the Fokker–Planck equation

∂F (t ,q,x )

∂t
= −∂F (t ,q,x )

∂x
+

1

2

∂2F (t ,q,x )

∂x2
+

∂F (t ,q, 0)

∂x
− ∂F (t ,q, 1)

∂x
+

1

2

∂F (t ,q, 2)

∂x
− 1

2

∂F (t ,q, 4)

∂x

with the boundary conditions

F (t ,q, 0) = F (t ,q, 1) = F (t ,q, 2) = F (t ,q, 4) = 0.

Initially, the state of the system is uniformly distributed on [0, 1/2].

2.2 Inequality Metric Interval Temporal Logic

We are interested in verifying specifications in iMITL of the continuous-time stochastic hybrid
systems. In iMITL, the atomic propositions are inequalities of the form y ∼ c (c ∈ Q, ∼∈ {<, ≤,
≥, >}), where y is an observable of the system given by (7); and these atomic propositions are
concatenated by the syntax of MITL [9].

Definition 2.2 (iMITL Syntax). An iMITL formula is defined using the following BNF form:

φ � ⊥ | � | y ∼ c | φ ∧ φ | φ ∨ φ | φUIφ | φRIφ,

where c ∈ Q, ∼∈ {<, ≤, ≥, >} and I is a non-singleton interval on R≥0.

We note that the syntax does not contain negation (¬), since {<, ≤, ≥, >} is closed under nega-
tion. For a standard iMITL formula, negation on non-atomic formulas can always be pushed inside
as part of the atomic propositions. For example, ¬(y > 0) is defined as y ≤ 0, ¬(φ1 ∨φ2) is defined
as (¬φ1) ∧ (¬φ2), and ¬(φUIψ ) is defined as (¬φ)RI (¬ψ ).
The continuous-time stochastic hybrid system induces a signal f (t ) : R≥0 → 2AP by (y ∼ c ) ∈

f (t ) iff y ∼ c holds at time t . The semantics of iMITL are defined with respect to the signal f (t )
as follows.
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Definition 2.3 (iMITL Semantics). Let φ be an iMITL formula and f be a signal f : R≥0 → 2AP.
The satisfaction relation |= between f and φ is defined according to the following inductive rules:

f |= ⊥ iff false
f |= � iff true
f |= y ∼ c iff (y ∼ c ) ∈ f 0

f |= φ ∧ψ iff ( f |= φ) ∧ ( f |= ψ )
f |= φ ∨ψ iff ( f |= φ) ∨ ( f |= ψ )
f |= φUIψ iff ∃t ∈ I , ( f t |= ψ ) ∧ ∀t ′ ∈ (0, t ), f t

′ |= φ

f |= φRIψ iff ∀t ∈ I , ( f t |= ψ ) or ∃t ∈ R>0, ( f t |= φ ∧ ∀t ′ ∈ [0, t] ∩ I , f t ′ |= ψ ) or
∃t ∈ I ′, t ′ ∈ I ∩ (t ,∞),∀t ′′ ∈ I , (t ′′ ≤ t → f t

′′ |= ψ ) ∧ (t < t ′′ ≤ t ′ → f t
′′ |= φ),

where f r (·) = f (r + ·) and I ′ = I ∪ {I } in the semantics of φRIψ with I being the lower bound of
I . We define �φ� to be the set of signals that satisfy φ.

Our semantics of R in iMITL is different from standard MITL [9]. This is because it has re-
cently been shown that the common semantics of MITL cannot ensure that the formulas ¬(φUIψ )

and (¬φ)RI (¬ψ ) are equivalent for the continuous-time domain (see [57] for details). The satis-
fiability/model checking problems for iMITL with abstract atomic propositions are known to be
EXPSPACE-complete [9, 57]. The corresponding decision procedure has a close connection with
timed automata.

Definition 2.4 (Timed Automata [8]). Timed automaton A is a tuple (Q, X, Σ, L, I, E, Qinit, Qfinal)

where
— Q is a finite non-empty set of locations.
— X is a finite set of clocks.
— Σ is a finite alphabet.
— L : Q→ Σ maps each location to the label of that location.
— I : Q → (X → I≥0) maps each location to its invariant which is the set of possible values of

variables in that location, where I≥0 is the set of intervals on R≥0.
— E ⊆ Q × Q × 2X is a finite set of edges of the form e = (s,d, j ), where s = Se is source of the

edge; d = De is destination of the edge; and j = Je is the set of clocks that are reset by the
edge.

— Qinit ⊆ Q is the set of initial locations.
— Qfinal ⊆ Q is the set of final locations.

A run of the timed automaton A is a sequence of tuples (ρ,τ , ζ ) ∈ Qω × Iω≥0 × Eω in which the

following conditions holds: (i) ρ0 ∈ Qinit, i.e., ρ starts from an initial location Qinit; (ii) (Sζn = ρn ) ∧
(Dζn = ρn+1), i.e., the source and destination of edge ζn is ρn and ρn+1, respectively; (iii) τ0,τ1, . . .
is an ordered and disjoint partition of the time horizon R≥0; and (iv) ∀t ∈ τn ,x ∈ X, we have
ϱn (x ) + t − τn ∈ I(ρn ,x ), where ϱ0 (x ) = 0 and ϱn+1 (x ) is inductively defined by

ϱn+1 (x ) =
⎧⎪⎨⎪⎩
0, if x ∈ Jζn
ϱn (x ) + τn − τn , otherwise

i.e., clocks must satisfy the invariant of the current location. Here, τ and τ are the lower and upper
bound of the interval.
A run satisfying the condition inf(ρ) ∩ Qfinal � ∅, i.e., some location from Qfinal has been

visited infinitely many times by ρ, is called an accepting run ofA. Note that every run ofA induces
a function f of typeR≥0 → Σ that maps t to L(ρn ), wheren is uniquely determined by the condition
t ∈ τn . We define the language of A, denoted by Lang(A), to be the set of all functions that are
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induced by accepting runs of A. The language of timed automata is closely related to MITL as
follows.

Lemma 2.5 (MITL to Timed Automata [9]). For any MITL formula φ, a timed automaton Aφ

can be constructed such that Lang(Aφ ) = �φ�, i.e., the set of functions that satisfy φ is exactly those

that are induced by accepting runs of Aφ .

Example 2.6. Following Example 2.1, we want to check the following iMITL formula

φ1 = � U[0,∞]

(

y2 (t ) >
1

4

)

, φ2 =

(

y1 (t ) >
1

2

)

U[0,∞]

(

y2 (t ) >
1

4

)

,

where

y1 (t ) =
∑

q∈Q

∫

Aq

I[0,1]F (t ,q,x )dx , y2 (t ) =
∑

q∈Q

∫

Aq

I[2,4]F (t ,q,x )dx .

3 MODEL REDUCTION OF CONTINUOUS-TIME HYBRID SYSTEMS

The model reduction procedure for a continuous-time stochastic hybrid system follows the three
steps: (i) reduce the dynamics by partitioning the state space; (ii) reduce the temporal logic speci-
fications accordingly; and (iii) estimate the model reduction error.

3.1 Reducing the Dynamics

The Mori–Zwanzig model reduction method reduces a continuous-time stochastic hybrid system
to a CTMC.

Definition 3.1. A CTMC is a tuple (S,p0,A, S
init, F) where S is a finite set of states, p0 ∈ S is an

initial distribution on S, and A is a transition rate matrix with Aii = −
∑

j�i Ai j . At the state si ∈ S,
the probability of jumping to any other state sj follows an (independent) exponential distribution
with the rate Ai j .

To implement the Mori–Zwanzig model reduction method [15] for continuous-time stochas-
tic hybrid systems, we partition the continuous state space into finitely many partitions S =
{s1, . . . , sn }, and treat each of them as a discrete state. The idea of partitioning is similar to [2, 3]
for the discrete-time stochastic hybrid systems. The partition is called an equipartition if they
are hypercubes with the same size η. We assume that for each si , there exists q ∈ Q such that
si ⊆ {q} × Aq , and denote its measure by μ (si ). Letm(X) andm(S) be sets of probability distribu-
tion functions on X and S, respectively. Then we can define a projection P :m(X) →m(S) and an
injection R :m(S) →m(X) betweenm(X) andm(S) by

pj = (PF (q,x ))j =

∫

sj

F (q,x )dx , (8)

where pj is the jth element of p, and

Rp =

n∑

j=1

pjUsj , (9)

where Usj is the uniform distribution on sj :

Usj (x ) =
⎧⎪⎨⎪⎩

1
μ (sj )
, if x ∈ sj

0, otherwise.
(10)

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 6, Article 113. Publication date: November 2021.



Verifying Stochastic Hybrid Systems with Temporal Logic Specifications 113:9

Here the projection P and the injection R are defined for probability distributions. But they
extend naturally to L1 functions on X and S, respectively. The projection P is the left inverse of
the injection R but not vice versa, namely PR = I but RP � I .

This projection P and injection R can reduce the Fokker–Planck operator to a transition rate
matrix on S, and hence reduce the continuous-time stochastic hybrid system into a CTMC. Fol-
lowing [15], the Fokker–Planck operator given in (3) reduces to the transition rate matrix A by

A = PLR. (11)

In practice, we are usually interested in a continuous state space X that is partitioned into hyper-
cubes of edge length η. In this case, the transition rate matrix A is explicitly expressed as follows.

Theorem 3.2. Let S = {s1, s2, . . . , sn } be a partition1 of the d-dimensional continuous state space

X into hypercubes of edge length η, and P and R be the corresponding projection and injection given

by (8)–(10), the transition rate from the state si to the state sj (i � j) at time t is given by

Ai j = n ·
(

N +
M · n(pi − pj )

η

)

+ R, (12)

for a,b ∈ [n], where n is (if exists) the unit vector of the boundary si ∩ sj pointing from si to sj , N is

a d dimensional vector with components

Na =

∫

∂si∩∂sj
fa (q,x )dx , (13)

M is a d × d matrix with components

Mab =

∫

∂si∩∂sj

d∑

c=1

дac (q,x )дcb (q,x )

2
dx , (14)

and for an inner cell si ,

O =

∫

si×sj

Isj (q,x )h(q,x ,q
′,x ′)r (q′,x ′)Isi (q

′,x ′)

ηd
dx ′dx , (15)

for a boundary cell sj ,

O =

∫

si×sj

Isj (q,x )h(q,x ,q
′,x ′)n′ ·M · n′pi

η/2;
dx ′dx , (16)

with Isi being the indicator function of si and n
′ being the vector pointing out of the boundary of the

flow set.

Proof. For simplicity, we first show the proof for the 1D case. Specifically, for fixed q, we inte-
grate both sides of (3) on the cell I = [p,p + Δp], and apply the Stokes theorem for the first two
terms, we derive
∫

I

∂F (t ,q,x )

∂t
dx = −f (q,x )F (t ,q,x )

����
p+Δp

p
+

∂

∂x

д2 (q,x )F (t ,q,x )

2

����
p+Δp

p
−
∫

I
r (q,x )F (t ,q,x )dx

+

∑

q∈Q

∫

x ∈A�

∫

I
h(q,x ,q′,x ′)r (q′,x ′)F (t ,q′,x ′)dxdx ′ +

∑

q∈Q

∫

x ∈∂A�

∫

I
h(q,x ,q′,x ′) (n · F)dxdx ′.

(17)

The left-hand side of (17) is the rate of probability change in the cell I . On the right-hand side of (17),

(i) the combination of the first two terms f (q,x )F (t ,q,x ) − ∂
∂x

д2 (q,x )F (t,q,x )

2 is the probability flow

1The partitions can be labeled by S arbitrarily.

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 6, Article 113. Publication date: November 2021.
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on the boundary; (ii) the other terms correspond to average probability jumps inside the cell I . The
same is true for multidimensional cases.
By applying (11), it is easy to check the probability flow between adjacent cells sharing a

boundary is (14) and (13). The probability of jumping from one inner cell to another cell has the
rate (15). Finally, the probability of jumping from one boundary cell to another cell has the rate (16).
Thus, (12) holds. �

Roughly speaking, the transition rate between two partitions in the same location is the flux of
f (q,x ) across the boundary and the transition rate between two different locations is the flux of
r (q,x ).

3.2 Reducing iMITL Formulas

The observables on the continuous-time stochastic hybrid system reduce to the corresponding
CTMC using the projection P . Let y be an observable on the continuous-time stochastic hybrid
system with weight function γ (q,x ). To facilitate further discussion, we assume that γ (q,x ) is
invariant under the projection P ,

γ (q,x ) = RPγ (q,x ), (18)

which means that the functionγ (q,x ) can be written as a linear combination of indicator functions
of the partitions of P (sometimes called a simple function). This assumption can be lifted by approx-
imating a general function γ (q,x ) with a simple function and considering the approximation error.
As we refine the partition, the approximation error converges to 0.

We define a corresponding observable y ′ on the CTMC that derives from the model reduction
procedure by

y ′(0) =
∑

q∈Q

∫

Aq

γ (q,x )PF (0,q,x )dx =

n∑

i=1

(∫

si

γ (q,x )dx

) (∫

si

F (0,q,x )dx

)

=

n∑

i=1

rip (i ). (19)

From now on, we will always denote the corresponding observable on the CTMC by y ′ for any
observable y on the continuous-time stochastic hybrid system.

3.3 Reduction Error Estimation

For a given observable y with weight function γ (q,x ), the error of the projection P with respect
to the observable y is defined by the maximal possible difference between y and y ′,

Δy =

�������

∑

q∈Q

∫

Aq

γ (q,x ) (F (0,q,x ) − RPF (0,q,x ))dx
�������
. (20)

Remark 1. When refining the partition of X, RP → I ; that is, any distribution function F (q,x )

on the state space, |∑q∈Q
∫

Aq
γ (q,x ) (F (q,x ) − RPF (q,x )) | → 0 holds for any measurable weight

function γ (q,x ). Accordingly for (20), Δy → 0 for any given y.

By the definition of Δy , we know that, at the initial time, the atomic propositions on the
continuous-time stochastic hybrid system and the CTMC have the relations

y (0) > c =⇒ y ′(0) > c − Δy , y (0) < c =⇒ y ′(0) < c + Δy ,

and similarly,

y ′(0) > c + Δy =⇒ y (0) > c, y ′(0) < c − Δy =⇒ y (0) < c .
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Fig. 2. Diagram for reduction error. It is non-commutative due to the errors in the projection P .

To derive the relations of the observables between the continuous-time stochastic hybrid system
and the CTMC at any time, we define the reduction error of the observable y at time t due to the
model reduction process by

Θy (t ) = |y (t ) − y ′(t ) | =
�������

∑

q∈Q

∫

Aq

γ (q,x ) (eLt − ReAtP )F (0,q,x )dx
�������
, (21)

where F (0,q,x ) is an initial distribution of the continuous-time stochastic hybrid system and y ′(t )
is the corresponding observable ofy (t ) on the CTMC. This reduction error is illustrated in Figure 2.
Note that the diagram is not commutative; the difference between going along the two paths is
related to the reduction error.
For a finite time horizon T , the supremum supt ≤T Θ(t ) provides a uniform bound of the re-

duction error. For an infinite time horizon T → ∞, the supremum may go unbounded. Below, we
provide a sufficient condition for boundedness.We define the reduction error of the Fokker–Planck
operator L by

δ (t ,q,x ) = (L − RPL)etRPLF (0,q,x ). (22)

Accordingly, we define the integration of δ (t ,q,x ) with respect to the weight function γ (q,x ) by

Λy = sup
t ≥0

�������

∑

q∈Q

∫

Aq

γ (q,x ) (L − RPL)etRPLF (0,q,x )dx
�������
, (23)

which captures the maximal change of the time derivative of observable y. When the reduction
error δ (t ,q,x ) converges exponentially in time, an upper bound of the reduction error Θ(t ) can be
obtained.

Definition 3.3. For α > 0, β ≥ 1 and a given observabley, the continuous-time stochastic hybrid
system is α-contractive with respect to y, if for any initial distribution function F (0,q,x ) on the
state space, we have

�������

∑

q∈Q

∫

Aq

γ (q,x )etLδ (t ,q,x )dx

�������
≤ βe−αt

�������

∑

q∈Q

∫

Aq

γ (q,x )δ (t ,q,x )dx

�������
. (24)

where δ (t ,q,x ) is given by (22).

This contractivity condition is to ensure that the model reduction error is bounded for all time,
which is required for approximately keeping the truth value of temporal logic specifications of an
infinite time horizon. Although the condition seems restrictive, it is valid for a relativelywide range
of systems including asymptotically stable systems. It is a commonly-used sufficient condition to
guarantee the existence and uniqueness of an invariant measure for general dynamical systems,
and the contractivity factor α is usually derived case-by-case. Using Definition 3.3, we obtain the
following theorem.
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Theorem 3.4. If the continuous-time stochastic hybrid system from Section 2.1.1 is α-contractive,

then for any t ≥ 0, the reduction error Θy (t ) for an observable y satisfies

Θy (t ) ≤
βΛy

α
+ Δy . (25)

Proof. The discrepancy in evolving the system by the original dynamics L and the reduced
dynamics RPL can be captured by Dyson’s formula [15]

etL = etRPL +

∫

[0,t ]

e (t−τ )L (L − RPL)eτ RPLdτ . (26)

This formula can be verified by taking time derivatives on both sides. Substituting (26) into (21)
gives

Θy (t ) ≤
�������

∑

q∈Q

∫

Aq

γ (q,x ) (etRPL − RetAP )F (0,q,x )dx
�������

+

�������

∑

q∈Q

∫

Rd×[0,t ]
γ (q,x )e (t−τ )L (L − RPL)eτ RPLF (0,q,x )dτdx

�������
.

(27)

Since the projection P and the injection R preserve the L1 norm, RPL is also a Fokker–Planck
operator. Noting RetAPF (0,q,x ) = etRPLPF (0,q,x ), by (20), we see that the first term on the right-
hand side of (27) is less than Δy .

For the second term on the right-hand side of (27), by (23)–(24), we have

Θy (t ) ≤ Δy +

�������

∑

q∈Q

∫

Aq

∫

[0,t ]

γ (q,x )e (t−τ )Lδ (τ ,q,x )dτdx

�������

≤ Δy +

�������

∑

q∈Q

∫

Aq

∫

[0,t ]

βe−α (t−τ )γ (q,x )δ (τ ,q,x )dτdx

�������
≤

βΛy

α
+ Δy .

(28)

�

Theorem 3.4 implies the following relations between the atomic propositions on the continuous-
time stochastic hybrid system and the CTMC.

Theorem 3.5. If the continuous-time stochastic hybrid system given in Section 2.1.1 is α-

contractive, then we have

y (t ) > c =⇒ y ′(t ) > c −
(
βΛy

α
+ Δy

)

, (29)

y (t ) < c =⇒ y ′(t ) < c +

(
βΛy

α
+ Δy

)

, (30)

and similarly,

y ′(t ) > c +

(
βΛy

α
+ Δy

)

=⇒ y (t ) > c, (31)

y ′(t ) < c −
(
βΛy

α
+ Δy

)

=⇒ y (t ) < c . (32)

In Theorem 3.5, the term Δy bounds the initial model reduction error and the term
βΛy
α

bounds the model reduction error accumulated over time. Following Theorem 3.5, to verify an
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iMITL formula φ for an α-contractive continuous-time stochastic hybrid system introduced in
Section 2.1.1, we can strengthen φ toψ by replacing the atomic propositions according to (31)–(32).
If ψ holds for the CTMC derived from the continuous-time stochastic hybrid system following
the model reduction procedure of Sections 3.1 and 3.2, then φ holds for the continuous-time
stochastic hybrid system.
The main complexity of the Mori–Zwanzig reduction method is in performing integration of

the system dynamic function on the partitions. This process can be significantly simplified if the
integration has a closed-form solution, e.g., linear, polynomial, exponential, and so on. For more
general dynamics, we may use Monte-Carlo integrations with considerations on extra statistical
errors.

Example 3.6. Following Example 2.1 and 2.6, the invariant distribution of this process is Finv =
UX/3. We partition X into intervals of length 1/N . By the above model reduction procedure it
reduces to a CTMC with transition rate matrixM given by

Mi j =
δi j

4
+

1

4N

where i ∈ [3N ] and j ∈ [3N ]. The invariant distribution Finv remains unchanged, and the iMITL
formula to check is

φ ′1 = � U[0,∞]

(

y ′2 (t ) >
1

4
+ Θy (t )

)

φ ′2 =
(

y ′1 (t ) >
1

2
+ Θy (t )

)

U[0,∞]

(

y ′2 (t ) >
1

4
+ Θy (t )

)

,

where Θy (t ) is the model reduction error and

y ′1 (t ) =
N∑

i=1

pi (t ), y ′2 (t ) =
3N∑

i=2N+1

pi (t ).

When N = 30, we have Θy (t ) ≤ 0.02 from (8) and (23).

4 STATISTICAL MODEL CHECKING OF IMITL

We now propose a statistical model checking method to verify the reduced iMITL formulaφ on the
CTMC C derived from the model reduction (Section 3). We denote the set of atomic propositions
in φ by APφ . The pairC,φ can generate a signal by evaluating the truth value of the atomic propo-
sitions in APφ on C for each time; the singleton set containing this signal is denoted by �C, APφ�.
LetTC,φ be the timed automaton such that �C, APφ� ⊆ Lang(TC,φ ). Using Lemma 2.5, we construct
two timed automata Tφ and T¬φ such that their languages are signals accepted and rejected by φ,
respectively. If the intersection of Lang(TC,φ ) and Lang(Tφ ) is empty thenC violates φ. Similarly, if
the intersection of Lang(TC,φ ) and Lang(T¬φ ) is empty thenC satisfies φ. This emptiness problem
for the intersection of timed automata is known to be PSPACE-complete [8]. However, none of the
two intersections may be empty. To avoid this situation, we assume that each signal of Lang(TC,φ )
remains close to the signal in �C, APφ�. That is, if the signal in �C, APφ� satisfies/violates φ, then
there is a close signal that violates/satisfies φ.
We use a statistical method to construct the timed automaton TC,φ . Let p (t ) be the state distri-

bution of the CTMC C at the time t . For each atomic proposition (y ∼ c ) from APφ , where y is of
the form r · p (t ), we assume wlog. that
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ALGORITHM 1: Truncating Time Horizon

Data: CTMC (C,p0), estimation of invariant distribution p∗, Atomic formula (y ∼ c ), parameters α ′, and δ ′

Function DurationOfSimulation
t ← 1

while Close
(

p (t ),p∗, 12α
′, δ

′
3

)

= failed do
t ← 2 × t
α ′ ← 1

2α
′

end

return t+1

— r is not identical to 0 (otherwise, (y ∼ c ) can be replaced with � or ⊥); and
— the maximum absolute value in r is exactly 1 (by scaling the parameters in (y ∼ c )).

Since the CTMC converges to a unique invariant distribution pinv, there exists a known constant
δ ′ ∈ R and a known estimation p∗ of pinv such that

— ∀(r · p (t ) ∼ c ) ∈ APφ , |r · pinv − c | > δ ′, and

— ‖pinv − p∗‖1 < δ ′

3 , where ‖·‖1 is the �1 norm.

Furthermore, let T be a time such that ‖p (T ) − p∗‖1 < δ ′

3 holds (we will show how to find T later

in this section). For any t ≥ T , we have ‖p (t ) − pinv‖1 < 2δ ′

3 . Also, we assume that r · pinv − c > δ ′

holds (the discussion for r ·pinv−c < −δ ′ is similar). By |r ·p (t )−r ·pinv | ≤ ‖p (t )−pinv‖1 < 2δ ′

3 , we

know r · p (t ) − c > δ ′

3 . Then by |r · p (t ) − r · p∗ | ≤ ‖p (t ) −p∗‖1 < δ ′

3 , we have r · p∗ > c . Therefore,
the truth value of (y ∼ c ) is fixed for any t > T and can be determined by looking at p∗.

We use Algorithm 1 to find a timeT such that p (T ) is δ ′

3 -close to p
∗ (the estimation of the invari-

ant distribution). Our statistical algorithm compares p (T ) and p∗ for successively larger values ofT
until ‖p (T )−p∗‖1 < δ ′

3 holds. To check if two distributions are close, we employ Lemma 4.1. When

‖p (t ) − p∗‖1 > δ ′

3 , starting from the iteration i = 1, the probability of Lemma 4.1 not rejecting t is

at most α ′ × 2−i . Thus, the probability of returning a wrong time T is at most α ′.

Lemma 4.1 ([11]). For any α ,δ > 0, and any two distributions p and p ′ on n discrete values, there

is a test Close(p,p ′,α ,δ ) which runs in time O (n2/3δ−8/3 log(n/α )) such that (i) if ‖p − p ′‖1 ≤
max( δ

4/3

32 3√n ,
α

4
√
n
), then the test accepts with probability at least 1 − α ; and (ii) if ‖p − p ′‖1 > δ , then

the test rejects with probability at least 1 − α .
Before constructing the timed automaton for times within [0,T ], we first explain how to statis-

tically verify if p (t ) satisfies an atomic proposition (y ∼ c ). For now, assume that elements of r
are from {0, 1}. Then, p (t ) satisfies (y ∼ c ) iff the probability of drawing a state s from p (t ) with
r (s ) = 1 is great than c . This can be statistically checked by drawing samples from p (t ) and using
the sequential probability ratio test (SPRT) [59, 72, 77]. It requires as input an indifference
parameter δ ∈ (0, 1), and the error bounds α ,γ ∈ (0, 1). The output of this test, called A0, is yes,
no, or unknown with the following guarantees:

P
[

res = no | r · p (t ) > c
] ≤ α , (33a)

P
[

res = yes | r · p (t ) ≯ c
] ≤ α , (33b)

P
[

res = unknown | ��r · p (t ) − c �� > δ
] ≤ γ . (33c)

The parameters α ,γ ,δ can be made arbitrarily small at the cost of requiring more samples. For the
general case that the elements of r are real numbers, the SPRT is not applicable. Instead, we can
use a method from Chow and Robbins [16] to estimate unknown distributions on finite states from
finite samples with bounded error as follows.
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Given that T is known, we construct the timed automaton for the time interval [0,T ]. For sim-
plicity, we focus on constructingTC, {AP } for an atomic propositionAP : y =

∑n
i=1 ripi > c , denoted

by the pair (r , c ). Then, at every time t , f (t ) is either the emptyset or {(r , c )}. LetTC, {AP } (t ) be the
set of reachable locations of TC, {AP } at time t . Given the parameters δ > 0, let Δ > 0 be a value

at most δ
3 max{| d

dt
(r · p) (t ) | | t ∈ [0,T ]}−1 (Δ can be set to δ

3 ‖r ‖∞‖M ‖1, where ‖·‖∞ and ‖·‖1 are,
respectively, �∞ and �1 induced norms). For any t ∈ [0,T ] and t ′ ∈ [t − Δ, t + Δ] ∩ [0,T ], we have
(1) if r · p (t ) − c > δ

3 then r · p (t ′) > c ,

(2) if r · p (t ) − c < − δ
3 then r · p (t ′) < c ,

(3) if |r · p (t ) − c | ≤ 2δ
3 then |r · p (t ′) − c | ≤ δ .

We partition [0,T ) into
⌊
T
2Δ

⌋
+ 1 intervals, each of size strictly less than 2Δ. Let [t1, t2) be one of

these intervals and define t = 1
2 (t1 + t2). We then run A0 twice as follows, where α

′ and γ ′ are

obtained by dividing input parameters α and γ over � T2Δ �.

res1 = A0

(

r · p (t ), c + δ

3
,

1

|APφ |
α ′,

1

|APφ |
γ ′,

δ

3

)

,

res2 = A0

(

r · p (t ), c − δ

3
,

1

|APφ |
α ′,

1

|APφ |
γ ′,

δ

3

)

,

If res1 = yes, then∀t ′ ∈ [t1, t2), (r ·p (t ′) > c ) holds with a bounded error α ′, so we setTC, {AP } (t ) =
{AP }. If res2 = no, then ∀t ′ ∈ [t1, t2), (r · p (t ′) < c ) holds with a bounded error α ′, so we set
TC, {AP } (t ) = {∅}. Otherwise, for any time t ′ in the interval, |r · p (t ′) − c | ≤ δ with a bounded error
γ ′, so we set

— TC, {AP } (t ) = {q,q′},
— L(q) = {AP } and L(q′) = ∅,
—entry to q or q′, and
— switches between q and q′ when their common invariant permits.

This ensures that within [t1, t2), both states q,q′ can be reached and they can switch arbitrary
many times. Intuitively, this means the atomic propositions within this interval are unknown and
not fixed. The algorithm to construct TC,φ is given by Algorithm 2.
Based on Algorithms 1 and 2, the complete algorithmA to statistically verify the iMITL formula

φ for the CTMC C with the parameters δ ,δ ′,α ,γ . The parameters δ ′ and 1
2 min{α ,γ } are given

to Algorithm 1, and the parameters δ , 1
2α ,

1
2γ are given to Algorithm 2. We have the following

guarantee on the return res of the complete algorithm A:

P
[

res = no | C |= φ
] ≤ α , (34)

P
[

res = yes | C � |= φ
] ≤ α . (35)

As for the unknown output, let Bδ (r · p) be the tube of functions that are point-wise δ -close to
r · p (formally, a function f : R≥0 −→ R is in Bδ (r · p) iff for any t ∈ R≥0, | f (t ) − r · p (t ) | ≤ δ ). The
algorithm guarantees that

(

∀σ ∈ Bδ (r · p), σ |= φ
)

=⇒ P[res=unknown] ≤ α + γ , (36)
(

∀σ ∈ Bδ (r · p), σ � |= φ
)

=⇒ P[res=unknown] ≤ α + γ . (37)

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 6, Article 113. Publication date: November 2021.



113:16 Y. Wang et al.

ALGORITHM 2: Constructing the timed automaton TC,φ

h ← max{| d
dt

(r · p) (t ) | | t ∈ [0,T ]}
Δ← δ

3h

n ← |APφ | � T2Δ �
TC, {AP } ← an empty automaton

X← {t }, qlast ← ⊥
forall the i ← 0 to � T2Δ � do

res1 ← A0 (r · p ((i + 1
2 )2Δ), c +

δ
3 ,

α
2n ,

β
2n ,

δ
3 )

res2 ← A0 (r · p ((i + 1
2 )2Δ), c −

δ
3 ,

α
2n ,

β
2n ,

δ
3 )

add a new location q to Q

if res1 = yes then
L(q) ← {AP }

else if res2 = no then
L(q) ← ∅

else
L(q) ← unknown

I(q) ← 2iΔ ≤ t < 2(i + 1)Δ

if qlast � ⊥ then
E← E ∪ {(qlast,q, ∅)}

else

Qinit ← {q}
qlast = q

end

add a new location q to Q

I(q) ← true, Qfinal ← {q}
E← E ∪ {(qlast,q, ∅), (q,q, ∅)}
if r · pinv > c then

L(q) ← {AP }
else

L(q) ← ∅
TC, {AP } ← replace any unknown location in Q with q and q′ labeled {AP } and ∅. Duplicate edges from/to q

and q′ accordingly
Add (q,q′, ∅) and (q′,q, ∅) to E for every split locations in the previous step.

return TC, {AP }

Intuitively, if all the functions that are close to r · p satisfy φ or none of them does then the proba-
bility of returning unknown is at most α + γ .2

Example 4.2. Following Example 3.6, we run our algorithm on the CTMC and derive that both
φ ′1 and φ

′
2 are true. This implies that the formulas φ1 and φ2 given in Example 2.6 are true on the

system given in Example 2.1.

5 DISCRETE HYBRID SYSTEMS

In this section, we study the verification of temporal properties for discrete-time stochastic hybrid
systems. We follow the formulation of the discrete-time stochastic hybrid systems from [2, 3] and
use the iLTL [43] to capture the temporal properties of interest. The iLTL specifications are verified

2There is a slight abuse of notation in (36) and (37). They use a function of type R≥0 −→ R. However, |= requires a signal

(function of type R≥0 −→ 2AP). The signal contains atomic proposition y ∼ c at time t iff y (t ) ∼ c holds.
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on the discrete-time stochastic hybrid systems by model reduction and statistical model checking
in a similar way as Sections 3 and 4.

Discrete-time stochastic hybrid systems. Following the formulation of [3], we focus on a Fokker–
Planck formulation and interpretation of the model. Using the notations from Section 2.1.1, the
dynamics of the system is captured by the initial distribution F (0,q,x ) on the state space X ⊆
Q × Rd and the transition function T (q′,x ′,q,x ), which satisfies

∑

q∈Q

∫

Aq

T (q′,x ′,q,x )dx ′ = 1, (38)

for any (q,x ) ∈ X. The transition function T (q′,x ′,q,x ) can be derived from the dynamics of the
continuous-time stochastic hybrid systems given in Section 2.1.1 by time discretization [2, 3]. The
observable y of the system is defined in the same way as in the continuous-time case.
We call the transition function T (q′,x ′,q,x ) α-contractive, if for any two distributions F (q,x )

and G (q,x ), it holds that










∑

q∈Q

∫

Aq

T (q′,x ′,q,x ) (F (q,x ) −G (q,x )) dx









≤ α ‖F (q,x ) −G (q,x )‖, (39)

where ‖ · ‖ is the L1-norm. This α-contractive condition is different from its continuous-time coun-
terpart (Definition 3.3) in two aspects. First, the parameter α of (39) is the contractive factor for
one discrete time step, while the parameter α of (24) is the contractive rate for the continuous
time. Second, the contractivity of (24) is defined with respect to the given observable, while the
contractivity of (39) is independent of the observables. For the discrete time, the contractivity
of (39) generally holds for many common stochastic dynamics, such as (discrete-time) diffusion
processes.

Inequality linear temporal logic (iLTL). We use the iLTL [43] to capture the temporal properties
of interest for the discrete-time stochastic hybrid systems. The iLTL can be viewed as the discrete-
time version of the iMITL introduced in Section 2.2. It is a variation of the common LTL [28] by
setting the atomic propositions AP to be inequalities of the form y ∼ c , where c ∈ Q, ∼∈ {<, ≤,
≥, >}, and y is an observable of the system given by (7). (This is similar to the case of iMITL in
Definition 2.2.) Again in the syntax of iLTL, we drop the negation operator ¬ by pushing it inside
and using completeness of {<, ≤, ≥, >}.

Definition 5.1 (iLTL Syntax). The syntax of iLTL formulas is defined using the BNF rule:

φ = ⊥ | � | y ∼ c | φ ∧ φ | φ ∨ φ | Xφ | φUφ | φRφ,

where c ∈ Q and ∼∈ {<, ≤, ≥, >}.

The discrete-time stochastic hybrid system induces a signal f : N → 2AP by (y ∼ c ) ∈ f (t ) iff
y ∼ c holds at time t . According, we define the semantics of iLTL on the system by Definition 5.2.
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Definition 5.2 (iLTL Semantics). Let φ be an iLTL formula and f be a discrete-time signal. The
satisfaction relation |= between f and φ is inductively defined according to the rules:

f |= ⊥ iff false
f |= � iff true
f |= y ∼ c iff (y ∼ c ) ∈ f (0)
f |= φ ∨ψ iff ( f |= φ) ∨ ( f |= ψ )
f |= φ ∧ψ iff ( f |= φ) ∧ ( f |= ψ )
f |= Xφ iff f 1 |= φ

f |= φUψ iff ∃i ∈ N, ( f i |= ψ ∧ ∀j ∈ [i], f j |= φ)

f |= φRψ iff ∀i ∈ N, f i |= ψ or ∃i ∈ N, ( f i |= φ ∧ ∀j ∈ [i], f j |= ψ ),

where f i (·) = f (· + i ). Let �φ� be the set of signals that satisfy φ.

Verifying the signals can be done by transforming them to Büchi automata [28], which is the
discrete-time version of timed automata in Definition 2.4.

Definition 5.3. A Büchi automaton B is a tuple (S, Σ, Γ, Sinit, F) where S is a finite non-empty set
of states, Σ is a finite alphabet, Γ ⊆ S× Σ× S is a transition relation, Sinit ⊆ S is a set of initial states,

F ⊆ S is a set of final states. We write s1
a−→ s2 instead of (s1,a, s2) ∈ Γ.

The Büchi automaton B takes an infinite sequence w ∈ Σωωω as an input and accepts it, iff there

exists an infinite sequence of states ρ ∈ Sωωω such that (1) ρ0 ∈ Sinit, (2) ∀n ∈ N, ρn
wn−−→ ρn+1,

and (3) inf(ρ) ∩ F � ∅, where inf(ρ) is the set of states that appear infinitely often in {ρn }∞n=1.
An infinite sequence of states is called a run of B if it satisfies 1 and 2, and an accepting run if it
satisfies 1, 2, and 3. We define the language of B, denoted by Lang(B), to be the set of all infinite
sequences in Σωωω that are accepted by B.
Similar to the relation between MITL and timed automata (Lemma 2.5), we introduce the fol-

lowing result on the conversion between LTL and Büchi automata.

Lemma 5.4 (LTL to Büchi Automata [24, 25, 28]). For any LTL formula φ, a Büchi automaton

Bφ can be constructed such that Lang(Bφ ) = �φ�, i.e., the set of infinite words that satisfy φ is exactly

those that are accepted by Bφ .

5.1 Model Reduction

The model reduction for the discrete-time stochastic hybrid systems is similar to that for the
continuous-time ones discussed in Sections 3.1 to 3.3, following the three steps of (i) reducing
the dynamics by partitioning the state space, (ii) reducing the temporal logic specifications accord-
ingly, and (iii) estimating the model reduction error.

5.1.1 Reducing the Dynamics. For a discrete-time stochastic hybrid system, we can reduce it to
a finite-state DTMC by the set-oriented method [21] which can be viewed as a discrete-time vari-
ation of the Mori–Zwanzig method [15]. Similar to Section 3, let S = {s1, s2, . . . , sn } be a partition
of the continuous state space X, and P ,R be the corresponding projection and injection operators
as given by (8)–(10). As shown in Figure 3 and Theorem 5.5, they induce a projection from the
Markov kernel T :m(X) →m(X) to a Markov kernel Tr :m(S ) →m(S ) by

Tr = PTR. (40)

For multiple steps, the diagram for projection is shown by the non-commutative diagram in
Figure 4.
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Fig. 3. Diagram for single-step reduction.

Fig. 4. Diagram for multiple-step reduction.

Theorem 5.5. Let S = {s1, . . . , sn } be a measurable partition of the state spaceX. Then the discrete-

time stochastic hybrid system reduces to a DTMC (Tr ,p0) by

p0 (i ) =

∫

si

F (0,q,x )dx , Tr (i, j ) =

∫

si

∫

sj

T (q′,x ′,q,x )dx ′dx .

5.1.2 Reduced iLTL. Similar to Section 3.2, an observable y (t ) from (7) can be reduced approx-
imately to an observable y ′(t ) on the DTMC by (19). Initially, the discrepancy between y (0) and
y ′(0) and is given by (5.6).

Lemma 5.6. For any F (q,x ) ∈m(X) and projection operator P , we have

y (0) > b + δP ‖F ‖∞ =⇒ y ′(0) > b, y ′(0) > b + δP ‖F ‖∞ =⇒ y (0) > b,

y (0) < b − δP ‖F ‖∞ =⇒ y ′(0) < b, y ′(0) < b − δP ‖F ‖∞ =⇒ y (0) < b,

where

δP = ‖F (0,q,x ) − RPF (0,q,x )‖TV, (41)

is the error of projection operator P in total variance, where ‖ · ‖TV is the total variation distance.

5.1.3 Reduction Error Estimation. To compute the discrepancy between y (t ) and y ′(t ) for any
t ∈ N, we first note that the projection operator P is contractive.

Lemma 5.7. Let S = {s1, . . . , sn } be a measurable partition of X and P be the projection operator

associated with S. For any F (q,x ), F ′(q,x ) ∈m(X),

‖PF (q,x ) − PF ′(q,x )‖TV ≤ ‖F (q,x ) − F ′(q,x )‖TV.

As shown in the non-commutative diagram in Figure 4, the discrepancy for any t ∈ N can be
written as

Δt = ‖PT (t )F (0,q,x ) −T (t )
r PF (0,q,x )‖TV = ‖PT (t )F (0,q,x ) − P (TRP ) (t )F (0,q,x )‖TV.

So, its error bound can be derived as follows.
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Theorem 5.8. Given a discrete-time stochastic hybrid system and a projection operator P , the t-step

(t ≥ 1) error of projection

Δt ≤
t−1∑

i=0

δP ((TRP )
(i )F (0,q,x )), (42)

where δP is given in (41).

Proof. For t = 1, we have,

Δ1 = ‖PTF (0,q,x ) − P (TRP )F (0,q,x )‖TV ≤ ‖TF (0,q,x ) −TRPF (0,q,x )‖TV
≤ ‖F (0,q,x ) − RPF (0,q,x )‖TV = δP (F (0,q,x )).

For t > 1, with F denoting F (0,q,x ), we have

Δt = ‖PT (t )F − P (TRP ) (t )F ‖TV ≤ ‖T (t )F − (TRP ) (t )F ‖TV ≤ ‖T (t )F −T (t−1) (TRP )F ‖TV

+ ‖T (t−1) (TRP )F −T (t−2) (TRP ) (2)F ‖TV . . . + ‖T (TRP ) (t−1)F − (TRP ) (t )F ‖TV ≤
t−1∑

i=0

δP ((TRP )
(i )F ).

�

For a finite time horizon T , the supremum supt ≤T Δ(t ) provides a uniform bound of the reduc-
tion error. For an infinite time horizon T → ∞, when T is strictly contractive (39), we can derive
a uniform error bound for Δt as we did for the continuous-time case.

Theorem 5.9. Given a discrete-time stochastic hybrid system, a projection operator P and the cor-

responding injection R, if the Markov kernel T is strictly contractive by factor α ∈ (0, 1), then the

t-step (t ≥ 1) error of projection

Δt ≤
δP

1 − α , (43)

where

δP = sup
i ∈N

δP ((TRP )
(i )F (0,q,x )). (44)

Proof. For t = 1, clearly Δt = δP . For t ≥ 2, by (5.1.3) and with F denoting F (0,q,x ), we have

Δt ≤ ‖T (t )F −T (t−1) (TRP )F ‖TV + ‖T (t−1) (TRP )F −T (t−2) (TRP ) (2)F ‖TV

+ . . . + ‖T (TRP ) (t−1)F − (TRP ) (t )F ‖TV ≤ (1 + α + . . . + α t )δP ≤
δP

1 − α .
(45)

�

By combining Lemma 5.6 and Theorem 5.9, we can derive the following theorem on the rela-
tionship between linear inequalities on the original Markov process and linear inequalities on the
reduced Markov process.

Theorem 5.10. Given a measurable partition S = {s1, . . . , sn } and the corresponding projection

operator P , a discrete-time stochastic hybrid system and its reduction (Tr ,p0) satisfies the equations:

y (t ) > b +
δP ‖F ‖∞
1 − α =⇒ y ′(t ) > b, y ′(t ) > b +

δP ‖F ‖∞
1 − α =⇒ y (t ) > b, (46)

y (t ) < b − δP ‖F ‖∞
1 − α =⇒ y ′(t ) < b, y ′(t ) < b − δP ‖F ‖∞

1 − α =⇒ y (t ) < b, (47)

for any t ≥ 0, where δp is given by (44), respectively.
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Theorem 5.10 can be viewed as the discrete-time counterpart of Theorem 3.5. In Theorem 3.5,
the model reduction error is bounded by two term: one for the initial error, and the other for the
error accumulated over time. In Theorem 5.10, these two terms are combined into one, due to the
difference between the contractivity condition (39) and (24).

Following Theorem 5.10, to verify an iLTL formula φ for an α-contractive discrete-time stochas-
tic hybrid system introduced in Section 2.1.1, we can strengthen φ to ψ by replacing the atomic
propositions according to Theorem 5.10. If ψ holds for the DTMC derived from the discrete-time
stochastic hybrid system following the aforementioned model reduction procedure, then φ holds
for the discrete-time stochastic hybrid system.

5.2 Statistical Model Checking of iLTL

Similar to Section 4, we introduce a statistical model checking procedure for iLTL specifications
on the reduced systems. Again, we denote the atomic proposition p =

∑n
i=1 ripi = r ·p > c by a pair

(r , c ). For an iLTL formula φ and a DTMC generating a sequence of distributions w = p0p1p2 . . .,
define u = u0u1u2 . . . where ut = {(r , c ) ∈ APφ | r · pt > c} is the set of atomic propositions that
are true at time t . Similar to Section 4, our algorithm in this section has four steps:

— Construct the Büchi automata Bφ and B¬φ .
— Find a time stepT at which p (T ) is very close to our estimation of the invariant distribution.
— Construct BM,φ ,
— If Lang(BM,φ ) ∩ �Bφ� = ∅ then return no, if Lang(BM,φ ) ∩ �B¬φ� = ∅ then return yes,

otherwise, return unknown.

These steps are similar to their corresponding step in Section 4. For example, the first step is
carried out using Lemma 5.4. Simulation of discrete and continuous Markov chains are different
procedures, but they both can be performed efficiently, and that is what we need for the second and
third steps. Similarly, checking emptiness of intersection of timed automata and Büchi automata
are different procedures, but they are both known to be decidable [61]. The main difference with
Algorithm 2 is that since in Lemma 5.4 time is discrete, to find labels of BM,φ , we only run one
instance of A0 at each step. Algorithm 3 shows the pseudocode for different steps. Again, similar
to Algorithm 2, unknown labels are modeled using two locations; one labeled by {(y ∼ c )} and the
other labeled by ∅. However, since the time is discrete for Büchi automata, there will be no extra
transition between these two locations.
Similar to our previous algorithm, in addition to a Markov chainM , iLTL formula φ, and p∗, an

estimation of the invariant distribution pinv, Algorithm 3 takes two error parameters α ,γ ∈ (0, 1)
and two indifference parameters δ ,δ ′ ∈ (0, 1). The parameters δ ′ and 1

2 min{α ,γ } are used to find

the time boundT , and the parameters δ , 12α , and
1
2γ are used to construct labels of Büchi automaton

BM,φ before reaching step T . We have the following guarantee about the algorithm:

P
[

res = no | M |= φ
] ≤ α , P

[

res = yes | M � |= φ
] ≤ α ,

(

∀σ ∈ Bδ (r · p), σ |= φ
)

=⇒ P[res=unknown] ≤ α + γ ,
(

∀σ ∈ Bδ (r · p), σ � |= φ
)

=⇒ P[res=unknown] ≤ α + γ ,

where Bδ (r · p) is the tube of discrete functions that are δ -close to r · p.

6 CASE STUDY

We provide an example to illustrate the application of our approach as well as its scalability. We
consider a non-linear jump system with the continuous state x (t ) ∈ Rn and the discrete state
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ALGORITHM 3: Model Checking Markov Chains Against iLTL Formulas

Data: Markov chain (M,p0), estimation of invariant distribution p∗, iLTL formula φ, parameters α , γ , δ , δ ′

Result: yes, no, or unknown

Function NumberOfSamplingSteps()
t ← 1

α ′ ← 1
2 min{α ,γ }

while Close(p (t ),p∗, 12α
′, δ

′
3 ) = failed do

t ← 2 × t
α ′ ← 1

2α
′

end

return t+1
Function LabelFiniteNumberOfSteps(m ∈ N)

forall the t ∈ {0, 1, . . . ,m − 1}, (r , c ) ∈ AP do

asд(t , (r , c )) ← A0 (r · p (t ), c, α
2m |AP | ,

γ
2m |AP | ,

δ
3 )

end

return asд

Function AddLabelsOfInvariantDistribution(m ∈ N,asд ∈ N × AP→ {yes, no, unknown})
forall the t ∈ {m,m + 1, . . .}, (r , c ) ∈ AP do

if r · p∗ > c then
asд(t , (r , c )) ← yes

else
asд(t , (r , c )) ← no

end

end

return asд

Function ModelCheck

T ← NumberOfSamplingSteps();

asд ← LabelFiniteNumberOfSteps(T );

asд ← AddLabelsOfInvariantDistribution(T ,asд);

�asд� ← the Büchi automaton that accepts exactly the set of infinite paths induced by asд

if Lang(Bφ ) ∩ Lang(�asд�) = ∅ then
return no

if Lang(B¬φ ) ∩ Lang(�asд�) = ∅ then
return yes

return unknown

q(t ) ∈ [m] withm ∈ N. The continuous dynamics is

dx

dt
= (Aq (t ) + cq (t ) ‖x (t )‖∞)x (t ), (48)

where Ai ∈ Rn×n is Hurwitz and ci > 0 for i ∈ [m]. The discrete state jumps sponta-
neously with the rate λ1 from j to j − 1 for j = 2, . . . ,m and with the rate λ2 from j to j + 1
for j = 1, . . . ,m − 1. Initially, the continuous state is distributed uniformly on the hypercube
C = {x (0) ∈ Rn | ‖x (t )‖∞ ≤ K }; and the discrete state q(0) uniformly on [m]. The form of the
dynamics (48) is chosen for a simplified demonstration to high-dimensional non-linear dynamics.
Below, the dimension n can be as high as 40, while the well-known challenging Toyota powertrain
model is only 10. The same procedure directly applies to dynamics with diffusion terms.
Assume that the elements of the dynamical matrices Ai are non-positive, then x (t ) ∈ C for

all t ∈ R. Therefore, we can partition the state space into (2η)n × m, each of length 1/η. The
hypercubes are indexed by (i1, . . . , in , j ) with |ik | ∈ {−η, . . . ,−1, 1, . . . ,η}, j ∈ [m], and k ∈ [n].
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Fig. 5. Bounded time.

Fig. 6. Unbounded time.

The transition probability rates are zero except

λ((i1, . . . , in , j ) → (i1, . . . , in , j − 1)) = λ1, λ((i1, . . . , in , j ) → (i1, . . . , in , j + 1)) = λ2,

λ((i1, . . . , ik + 1, . . . , in , j ) → (i1, . . . , ik , . . . , in , j )) = c jK max
k

|ik |
η3
+

∫

S

(Ajx )k

η2
dx1 . . . dxk−1dxk+1 . . . dxn .

The desired property is

�U[0,T ] (w (F (t ,q,x )) > p),

whereT is a time bound (could be∞),p is a probability threshold, andw (·) is the indicator function
on a non-convex predicate stating exactly two elements of the continuous state are more than
�K/2� away from the origin (formally, the predicate holds for a continuous state x iff |{i ∈ [n] |
|xi | ≥ �K/2�}| = 2). It asserts that before time T , a probability distribution will be reached such
that the probability of a state x in that distribution satisfying the aforementioned predicate is larger
than p.
We ran Algorithm 2 on multiple instances of this problem. In all of our experiments, λ1 = 0.03,

λ2 = 0.02, K = 1, η = 10, and α = β = δ1 = 0.1. We also fixed the number of discrete states (m)
to be 4. The dimension of the continuous state is chosen from {5, 10, 15, 20, 30, 40}. These settings
result in CTMCs with a large number of states: the smallest example has 1.28× 107 states, and the
largest example has more than 4.39 × 1052 states. In all the experiments, we set c1 = 0.1, c2 = 0.2,
c3 = 0.3, and c4 = 0.4 in (48). Each instance of our simulation uses 4 Hurwitz matrices that are
generated randomly beforehand. To simplify computaion, we generate the dynamic matrices Ai

such that the contractive factor from (24) is < 0.99 and the reduction error from (25) is < 0.01
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when each dimension is partitioned into 10 interval. The convergence to invariant distribution is
also validated by numerical simulation. Finally, we used the maximum eigenvalue of the random
matrices as the maximum rate of changes (max{ẏi (t ) | t ∈ [0,T ]}) in our algorithm.

Our implementation is in Scala. We used the Apache Commons Mathematics Library [1] to find
eigenvalues of a matrix. Our simulations are performed on Ubuntu 18.04 with i7-8700 CPU 3.2GHz
and 16GB memory. We ran each test 50 times and report the average running time as well as the
95% confidence intervals. Figure 5 shows the results for the case that T is bounded (1, 000 and
10, 000), and Figure 6 shows the results for the case that T is set to ∞. ‘Threshold’ is the value of
p in our desired property. “#states” is the number of states in CTMC. “#checks” is the number of
checkpoints the algorithm uses to discretize the time. This number does not tell how many steps
the algorithm takes to simulate the system for T units of time (or until it reaches the invariant
distribution). When the time is unbounded (i.e.,T = ∞ in Figure 6), the algorithm first finds a time
when the system sufficiently convergences to the invariant distribution. It is easy to see that in the
invariant distribution, our example is reduced to a birth-death process, for which we can compute
the invariant distribution analytically.
Figure 6(a) shows the average amount of time our algorithm spent to find a time in which the

distribution is known to be invariant. Figure 6(b) shows the average amount of time the algorithm
uses to verify the property after a time horizon is fixed (note that our property of interest does not
hold at the invariant distribution). Figure 6(c) shows the sum of previous averages. As expected,
the time consumption of our algorithm increases logarithmically with the number of states. This
is because in statistical model checking, the number of required samples is independent of the
number of the states, and the time to draw samples grows logarithmically with the number of the
states.

7 CONCLUSION

In this work, we proposed a method of verifying temporal logic formulas on stochastic hybrid
systems via model reduction in both continuous-time and discrete-time. Specifically, we reduce
stochastic hybrid systems to Markov chains by partitioning the state space. We present an upper
bound on the error introduced due to this reduction. In addition, we present stochastic algorithms
that verify temporal logic formulas on Markov chains with arbitrarily high confidence.
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