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Abstract

In this software tool paper we present Proof Blocks, a tool which
enables students to construct mathematical proofs by dragging and
dropping prewritten proof lines into the correct order. We present
both implementation details of the tool, as well as a rich reflec-
tion on our experiences using the tool in courses with hundreds of
students. Proof Blocks problems can be graded completely automat-
ically, enabling students to receive rapid feedback. When writing
a problem, the instructor specifies the dependency graph of the
lines of the proof, so that any correct arrangement of the lines can
receive full credit. This innovation can improve assessment tools
by increasing the types of questions we can ask students about
proofs, and potentially give greater access to proof knowledge by
increasing the amount that students can learn on their own with
the help of a computer.

CCS Concepts

« Mathematics of computing — Discrete mathematics; « So-
cial and professional topics — Computing education; « Ap-
plied computing — Computer-assisted instruction.
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1 Introduction

Constructing mathematical proofs is one of the critical, yet diffi-
cult skills that students must learn as a part of the discrete math-
ematics curriculum. A panel of 21 experts using a Delphi process
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agreed that 6 of the 11 most difficult topics in a typical discrete
mathematics course are related to proofs and logic [10]. Proofs and
proof techniques are included by the ACM curricular guidelines as
a core knowledge area that should be understood by any student
obtaining a degree in computer engineering, computer science, or
software engineering [11, 20, 27].

One problem discrete math instructors face is being able to pro-
vide students with rapid feedback on their proof writing skills, since
proofs must be graded by hand by instructors or teaching assis-
tants. With the exception of students who are able to sit down with
instructors during office hours to receive immediate feedback, most
students receive significantly delayed feedback on the correctness
of the proofs which they have constructed while completing their
homework or exams.

What if students were able to receive in-flow automated feedback
on their proofs, just as they are able to with code they write? Pro-
viding students a way to write proofs in such a way that a computer
can give automated feedback can be a huge advantage. For many
students, this will simply be a convenience factor, but for others,
gaining automated feedback can be a huge step in increasing equity
and access in discrete mathematics education. For example, con-
sider students who are unable to make it to office hours to receive
help due to family commitments, or whose university courses are
understaffed. For these and other populations, automated feedback
has the potential to make a huge difference by giving them access
to feedback they wouldn’t have otherwise received.

Another difficulty for instructors is scaffolding students as they
try to make the jump from seeing their instructor write a proof to
writing proofs themselves. To combat this same issue in code writ-
ing, researchers have created new types of learning environments
and problems including Parson’s Problems [21] and block program-
ming languages like Scratch [17] and Blockly [9]. The scaffolding
provided by both Parson’s Problems and block programming lan-
guages have been shown to help students learn more quickly at
the beginning of the learning process [8, 29]. Transitioning from
seeing others write proofs to writing them on their own requires
students to use multiple skills, including writing logical statements
and analyzing sequences of logical statements to make sure that
each statement is supported by previous ones. Due to the complex-
ity of the task, we believe that students should be given scaffolding
for learning to write mathematical proofs, as with writing code,
and they will receive similar benefits.
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CSB Proof

Recall that the interval (0,1) = {r e R|0 <r < 1}and[0,1] = {r € R| 0 < r < 1}. Drag and drop
a subset of the blocks below to create a proof of the following statement. Note, not all blocks are needed

in the proof.

1(0, 1) = [[0, 1]]

We will prove this result by showing | (0, 1)| < |[0,1]| and |[0, 1]| < |(0,1)| and using the Cantor-

Schroeder-Bernstein theorem.

Drag from here:

Since fis injective, |[0, 1]| < |(0,1)].

. . e
Consider the function f : [0,1] — (0, 1) where forany r € [0,1], f(r) = T

fisinjective because if f(r) =7 = s = f(s) thenr = s.

L = #4l = f(s) thenr = s.

OOMO0,

Result follows from the Cantor-Schroeder-Bernstein theorem. (End of Proof)

’ fisinjective because if f(r) =
‘ [ is surjective because for any r € (0,1), f(r) = r.

Construct your solution here: @

Consider the function id : (0,1) — [0, 1] where forany 7 € (0,1),id(r) = .

id is injective because if id(r) = r = s = id(s) thenr = s.

000

|
|
‘ Since id is injective, | (0, 1)| < |[0, 1]].
|

Consider the function f : [0,1] — (0, 1) where forany r € [0,1], f(r) = 7.

(a) Proof Blocks screenshot

(b) Dependency graph of proof lines

Figure 1: Example of the Proof Blocks user interface used by students. Individual lines of the proof start out shuffled in the
starting zone, and students attempt to drag and drop them into the correct order in the target zone. The instructor wrote the
problem with 1, 2, 3, 4, 5, 6, 7 as the intended solution, but the Proof Blocks autograder will also accept any other correct
solution as determined by the dependency graph shown in (b) For example, both 4, 5,6, 1,2,3,7 and 1,4, 2, 3, 5, 6, 7 would also

be accepted as correct solutions.

In this paper, we present Proof Blocks, a novel user interface
for students to construct mathematical proofs by dragging and
dropping prewritten statements into the correct order (see Figure 1).

Proof Blocks allows students to receive instant feedback on the
proofs they have constructed to accelerate the learning process.
It also provides the necessary scaffolding to help students bridge
the gap between seeing others write proofs and writing proofs
themselves—reminding students to use good practices such as defin-
ing variables before using them and being explicit about the proof
techniques being employed. Proof Blocks also provide an opportu-
nity for better student assessment, by providing questions which
are, on average, more difficult than multiple choice questions given
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to students in a typical discrete mathematics course, but easier than
free response proof writing questions [23].

The rest of the paper is organized as follows: we will first discuss
related work, then proceed by explaining the user interface of
Proof Blocks from both the student and instructor perspective. We
will also discuss our experience using Proof Blocks in a discrete
mathematics course with over 400 students, and then explain the
architecture of the autograder and implications for future work.

The specific contributions of this work are:

e Anovel grading algorithm for drag-and-drop problems based
on a directed acyclic graph
o Application of this algorithm to grading mathematical proofs
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o Insights from experiences using this tool with hundreds of
students

2 Related Work

Work in intelligent tutors for mathematical proofs goes back
to work by John Anderson and his colleagues on The Geometry
Tutor [1, 2, 12]. More recently, researchers have created tutors for
propositional logic, most notably Deep Thought [18, 19] and Lo-
gEx [14-16]. A number of other tools have been created to help
students learn to construct mathematical proofs with the aid of a
computer. Polymorphic Blocks [13] is a novel user interface which
presents propositions as colorful blocks with uniquely shaped con-
nectors. The Incredible Proof Machine [5] guides students through
constructing proofs as graphs. Jape [4] is a “Proof calculator,” which
guides students through the process of constructing formal proofs
in mathematical notation with the help of the computer, but re-
quires the instructor to implement the logics in a custom language.
MathsTiles [3] is a block-based programming interface for con-
structing proofs for the Isabelle/HOL proof assistant. Having an
open-ended environment where students could construct arbitrarily
complex proofs seems like an advantage, but user studies showed
that students were only successful if they were provided a small
instructor-procured subset of blocks.

In reviewing the design of existing tools for computerized proofs
it is clear that there is a tension between two desirable properties:
ease of use for beginners, and ability to handle complex proofs. The
tools which have an elegant, easy to understand interface (Polymor-
phic Blocks, The Incredible Proof Machine) only cover formal (and
in some cases, simple) logics, limiting their usability for discrete
mathematics courses where students write informal proofs on a va-
riety of topics from graph theory to number theory. The tools which
can handle an arbitrary complexity of proofs are very complex and
thus difficult and time consuming for students and instructors to
use, especially at the same time as trying to learn to write proofs.
Proof Blocks solves this problem by allowing informally written
proofs to be automatically graded, making the tool both easy to
use, and able to cover topics of all level of complexity, including but
not limited to number theory, properties of functions, cardinality,
graph theory, Big-O, and combinatorics.

Anecdotally, we have heard of instructors using scrambled proofs
to assess student knowledge both in Euclidean geometry and in
higher-level mathematics. In theory, instructors may have offered
such questions on paper even before the advent of computers,
though we can find no explicit record of this. Ensley and Winston
offer some scrambled proofs in a JavaScript applet as supplementary
material to their discrete mathematics textbook [6]. Such questions
could also be written using generic drag-and-drop task widgets that
are present in many learning management systems. However, the
ability use directed acyclic-graph based grading and to demarcate
subproofs are features unique to Proof Blocks that we have not
seen in any other system, and enable assessing proofs which are
more complex and use a greater variety of writing styles.

3 Development Context

Proof Blocks was originally designed for and pilot tested in the
discrete mathematics course in the computer science department
at the University of Illinois at Urbana-Champaign during the Fall
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2020 semester. across multiple sections. Most students are freshmen,
and take the course as part of their computer science major, com-
puter science minor, or computer engineering major. The course
is designed to prepare students for the theory track in the depart-
ment and usually covers logic, proofs, functions, cardinality, graphs
and trees, induction, recursion, number theory, probability, basic
algorithm analysis, and sometimes additional topics as time per-
mits. In Fall 2020, the course was held completely online due to
the COVID-19 pandemic. The course was split into 3 sections, each
with a different instructor, for a total of over 400 students. The
first author of this paper was one of the teaching assistants for the
course, and the second author was one of the instructors. For more
details of the course, and for the results of the statistical analyses
we performed on data collected from the course, see [23].

After the semester, we made some small changes based on feed-
back that we recieved, and then the features of Proof Blocks were
integrated into the core PrairieLearn codebase so that they would
be open source and could be used more broadly. PrairieLearn is in
use regularly at about 10 universities, with more universities pilot
testing. Proof Blocks is being used by courses in three different
departments at the University of Illinois, as well as at the University
of British Columbia and the University of Chicago, and we expect
these numbers to continue to grow.

4 User Interface

Proof Blocks is built in to PrairieLearn. Both the student and
teacher user interfaces for creating and using Proof Blocks prob-
lems are user friendly, and can be used with almost no training.
In an anonymous survey given to our students, 46 out of 51 stu-
dents responded positively to the statement “The proof blocks user
interface was easy to use,” with the remaining 5 responding neu-
trally. Additionally, over two thirds of respondents agreed with the
statements “Proof Blocks accurately represent my understanding
of how to write proofs,” and “Proof Blocks would be a good tool
for practicing writing proofs” For more detailed survey results,
see [23].

4.1 Student Interface

Figure 1 shows an example of the Proof Blocks user interface seen
by students as they work through Proof Blocks problems. Individual
lines of the proof start out shuffled in the starting zone, and students
attempt to drag and drop them into the correct order in the target
zone. Students were able to successfully complete proofs using Proof
Blocks after completing a lecture, worksheet, and homework about
proofs, with no training specifically in how to use the interface.

Figure 2 shows an example of feedback given to students working
on Proof Blocks problems. This is the feedback that a student would
receive if they were to select “Save & Grade” after having put their
Proof Blocks into the state shown in Figure 1. To avoid giving
students so much information that we are not actually testing their
knowledge, they are only told at which line their proof fails and
some possible reasons why, not the exact reason why or what the
solution is. One area of future research is to iterate on what kind of
feedback is best for students to receive when using Proof Blocks as
a tool for learning to write proofs.
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Your answer: |x28%

Consider the function id : (0,1) — [0, 1] where forany r € (0, 1), id(r) = r.

Since 4d is injective, |(0, 1)| < [0, 1]|.

‘ id is injective because if id(r) = r = s = id(s) thenr = s. ‘
‘ Consider the function f : [0,1] — (0, 1) where forany r € [0, 1], f(r) = ». ‘

Your answer is incorrect starting at block number 4. The problem is most likely one of the following:
= This block is not a part of the correct solution
« This block needs to come after a block that did not appear before it

Figure 2: Example of feedback given to students working on Proof Blocks problems. To avoid giving students so much infor-
mation that we are not actually testing their knowledge, they are only told at which line their proof fails, not the reason why
or what the solution is. One area of future research is to investigate what kind of feedback is best for students to recieve when

using Proof Blocks as a tool for learning to write proofs.

4.2 Instructor Interface

In PrairieLearn, each question written by the instructor will include
(1) an HTML file defining what the students will see, and (2) a
JSON file containing metadata such as the question topic, type,
grading options, and author. The HTML file may use custom HTML
elements defined by PrairieLearn for writing homework and exam
questions. The HTML is then processed on the backend into HTML,
CSS, and JavaScript before being delivered to the student’s browser.

Figure 3 shows the instructor-written HTML code that generates
the Proof Blocks exercise shown in Figure 1. The HTML elements
that are prefixed with “p1” have special meaning to PrairieLearn,
which processes them on the backend before sending the HTML to
the client. The pl-question-panel element notifies PrairieLearn of
the beginning of a new question. The pl-order-blocks signals to
PrairieLearn to create the actual Proof Blocks user interface, and
each pl-answer element inside of it defines a draggable line of proof.

Critically, the instructor writing the problem must specify which
lines of the proof must precede each other line. Though seemingly
a small detail, it is what makes Proof Blocks such a powerful tool,
since it allows instructors to write proofs with arbitrary English
language statements. This overcomes the proof complexity con-
straints of earlier student computer proof systems, and makes it so
that students can construct proofs that a computer can grade at any
level of complexity. The proof dependencies are declared using the
“depends” attribute. For example, the proof graph for the problem
shown in Figure 3 is given in Figure 1b.

The instructors of the course were able to create new Proof
Blocks questions without any special training by simply looking at
those already created by the authors, only asking a few questions
for clarification about the configuration options, which could now
be answered by looking at the documentation. An instructor can
choose for all of the given lines to be required, or can add in distrac-
tor lines which are not part of the proof. In our discrete mathematics
course, we used test questions both with and without distractor
lines. Whether or not having distractor lines in the problem leads to
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better assessment or learning outcomes is an open question which
we leave for future work.

5 Best Practices For Question Writing

Our experience using Proof Blocks with hundreds of students
led us to a few best practices in having Proof Blocks problems work
well for students.

The principal cause for an erroneous Proof Blocks question is
because the instructor failed to recognize a possible rearrangement
of the proof lines that is logically consistent. This results in a cor-
rect student response being incorrectly marked as faulty by the
autograder. Unfortunately, it is easy to make such mistakes when
designing a Proof Blocks question. These can be avoided if the in-
structor is aware of the main reasons this arises, which we outline
below. In addition, we recommend that the instructor ask another
member of the course staff who did not design the question, to
solve the problem in different ways without looking at the source
code. In our experience, these steps help catch all such mistakes.

One example of this is when the instructor identifies more de-
pendencies between the proof lines than actually exist. For example
an instructor may code up a problem in a manner which specifies
to the autograder that each line in the proof depends on the line
before it. Such strong dependencies are rarely demanded in any
proof. While this is a simple scenario where additional dependen-
cies have been identified, other cases are more subtle. They often
arise because experienced mathematicians follow stylistic norms
in addition to logical dependencies when structuring their proofs.
These are so ingrained in a practicing mathematician, that stylistic
norms inadvertently seep in as logical dependencies when coding
up a problem. For example, one often structures proof with sub-
goals, with the proof of a new subgoal begun only after the proof
of the previous subgoal has been finished. A classical example in a
discrete mathematics class is where students are asked to prove a
statement using induction where the proof of the induction step
follows a complete proof of the base case. However, often there
is no logical dependence between the statements in the subproof
of each case. From a logical perspective, the proof statements for
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<pl-question-panel>
<p>Recall that the interval
$(0,1) = \{r \in \mathbb{R}\:

[\: @ \1t r \1t 1\}$ and $[0,1] =
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\{r \in \mathbb{R}\: [\: @ \leq r \leq 1\}$.

Drag and drop a subset of the blocks below to create a proof of the following
statement. <strong style="color:blue;">Note, not all blocks are needed in the proof.</strong></p>

<p style="color:red;text-align:center;">$|(0,1)| = |[0,1]]|$</p>

<p>We will prove this result by showing $|(0,1)| \leq |[0,1]1|$ and $|[0,1]1] \leq |(@,1)|$ and using the

Cantor-Schroeder-Bernstein theorem.</p>
</pl-question-panel>

<pl-order-blocks feedback="first-wrong" answers-name="csb-v1" grading-method="dag">

<pl-answer

$id(r) = r$.</pl-answer>
<pl-answer
<pl-answer

<pl-answer
$f(r) = \frac{r+1}{4}$.</pl-answer>

correct="true" tag="2" depends="1">$id$ is injective because if $id(r) = r =s =
correct="true" tag="3" depends="2">Since $id$ is injective, $[(@,1)| \leq |[0,1]|$.</pl-answer>
correct="true" tag="4" depends="" >Consider the function $f: [0,1] \to (0,1)$ where for any $r \in [0,1]$,

correct="true" tag="1" depends="">Consider the function $id: (0,1) \to [0,1]$ where for any $r \in (0,1)$,

id(s)$ then $r=s$.</pl-answer>

<pl-answer correct="true" tag="5" depends="4">$f$ is injective because if $f(r) = \frac{r+13}{4} = \frac{s+1}{4} = f(s)$

then $r=s$.</pl-answer>
<pl-answer correct="true" tag="6"
<pl-answer correct="true" tag="7"

(End of Proof)</pl-answer>

<!-- Distractors -->
<pl-answer correct="false" tag=
$f(r) = r$.</pl-answer>
<pl-answer correct="false" tag=
<pl-answer correct="false" tag=
</pl-order-blocks>

depends="5">Since $f$ is injective, $|[0,1]1] \leq |(0,1)|$.</pl-answer>
depends="3,6">Result follows from the Cantor-Schroeder-Bernstein theorem.

depends="">Consider the function $f: [0,1] \to (@,1)$ where for any $r \in [0,1]$,

depends="">$f$ is injective because if $f(r) = r = s = f(s)$ then $r=s$.</pl-answer>
depends="">$f$ is surjective because for any $r \in (0,1)$, $f(r) = r$.</pl-answer>

Figure 3: The instructor-written HTML code that generates the Proof Blocks exercise shown in 1. The HTML elements that
are prefixed with “pl” have special meaning to PrairieLearn, which processes them on the backend before sending the HTML
to the client. The “depends” property on each “pl-answer” element is used to declare the dependency between statements in the

proof structure.

each case can be interleaved in any manner. Of course, emphasizing
stylistic norms is just as important a learning objective, but in that
case instructors should be encouraged to spell this goal out in the
problem statement. To avoid such mistakes, after coding a Proof
Blocks question, we encourage instructors to examine the depen-
dencies of each line in the coded problem in isolation, without the
large proof context.

Another common cause for errors arises in proofs that contain
many algebraic manipulation steps. In informal proof writing, it
is often acceptable to skip intermediate steps of algebraic manipu-
lation. Coding a question in a manner that demands all the steps
leads to student complaints about the autograder. There are two
ways to address this problem. One is to write multiple algebraic
simplification steps in a single proof statement in the problem. The
second, and probably the best, is to avoid having any distractors in
the problem, and notify the student that all blocks should be used
to construct a correct proof.

The last cause for an error could be distractors. When designing
a question, it is useful to remember that none of the distractors
should be part of any correct proof. A common mistake is to have
distractors that are superfluous to the correct proof; this is a problem
because we can write logically correct proofs that have additional
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statements that do not contribute to the end goal. Thus, it is impor-
tant to ensure that adding any distractor would result in a logically
inconsistent argument. One simple way to ensure this is to have
each distractor (on its own) be a logically inconsistent statement.
Even though this might seem like an easy distractor for a student
to avoid, in practice we have found that students are nonetheless
confounded by such distractors. In the future, we hope to extend the
Proof Blocks grader so that it can also handle having lines which
can optionally be part of a correct proof.

6 Autograder

The autograder is currently built in to PrairieLearn, but the core
algorithm is about 100 lines of Python code that could be made to
work with an alternative frontend, or reimplemented in any other
language.

While creating the tool, we recognized that it would be a poor
student experience if the student was expected to place the lines of
the proof in the exact order which the instructor first wrote them,
because in many mathematical proofs, certain lines can be permuted
without affecting the correctness of the proof. It would also be a
poor user experience for the instructor if they had to explicitly
declare every possible correct answer to each question. This led us
to our current grading scheme, which is based on the dependency
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graph of the lines in the proof, which is a directed acyclic graph
(DAG). The instructor simply declares the dependency graph of
statements in the proof, and then the grader will accept any correct
permutation of the lines.

In the basic case, where a proof has no subproofs like the example
in Figure 1, checking if a proof is correct is equivalent to checking if
the student ordering of the lines is a topological sort of the DAG. A
more rigorous treatment of the grading algorithm, and the details of
our edit-distance based partial credit algorithm can be seen in [22].

6.1 Subproofs

Even in an introductory discrete mathematics course, an instructor
may want to use proofs that have cases. For example, using cases to
prove an “or” statement, or proof by induction. Here each subproof
is a connected subgraph of the entire proof graph. In such cases,
checking for topological sorting of the proof DAG is insufficient, be-
cause this would allow for intermixing of statements from separate
subproofs in a nonsensical fashion. A correct proof is a topological
sort of the lines of the proof with the added condition that the lines
of each subproof must be listed contiguously. Therefore, there is
an extra check which ensures that once a given subproof is started,
it is finished before any lines from outside the subproof appear.

To write a question with a subproof, the instructor wraps each
subproof in a pl-block-group element. The pl-block-group element
may then be given its own tag, so that lines that logically depend
on the entire subproof can refer to them in their depends attribute.
For more details and examples of problems with subproofs, see
the Proof Blocks documentation [25]. As noted in Section 5, it is
important to note that subproofs declared only for stylistic, and
not logical, reasons can be misleading for student unless they are
explicitly notified of the style which they are to follow.

7 Evaluation

Using data from hundreds of student exams from the discrete
math course in Fall 2020, we have shown that Proof Blocks prob-
lems provide about as much information about student knowledge
as written proof problems do. We have also shown that as test ques-
tions, Proof Blocks problems are in fact easier than written proofs,
which are often very difficult. An anonymous survey given to these
students showed that students felt that Proof Blocks problems ac-
curately represented their ability to write proofs, and that the user
interface was easy to use. Full details of this evaluation can be seen
in [23]. Ongoing evaluation work seeks to explore the possibility
that Proof Blocks can help students learn more efficiently than
writing proofs from scratch, just as Parson’s Problems can help
students learn more efficiently than writing code from scratch [8].

8 Adopting Proof Blocks

To use Proof Blocks with your students, start by following the
onboarding instructions for PrairieLearn [26]. Once familiar with
the basic workings of PrairieLearn, follow the documentation for
writing Proof Blocks questions [25]. More example problems can be
found in the documentation and example courses. PrairieLearn is in
the process of integrating with Learning Tools Interoperability [24]
to enable easier sharing of student data across learning platforms.
Feel free to reach out to the authors with any questions, or about
the possibility of adding Proof Blocks support on other platforms.
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9 Limitations

The key limitation of Proof Blocks is that it restricts what stu-
dents can do, only allowing them to place prewritten lines into their
proof rather than allowing them to write whatever they want. As
with Parson’s Problems and block based programming languages,
we expect that there is a certain skill level at which Proof Blocks will
become a hindrance rather than a help to students, but this is of
course expected for all forms of education scaffolding. Similarly,
we believe that Proof Blocks will can be a huge help for students
who are just getting started in learning to write proofs. Another
limitation is that proofs will be graded correctly only as long as the
instructor correctly codes the question—but this is really no worse
than most other types of exam questions given to students. Finally,
Proof Blocks is currently only usable within the PrairieLearn. On-
going efforts to improve interoperability between PrairieLearn and
other learning platforms will help ease adoption.

10 Future Work and implications

The versatility of the Proof Blocks platform makes it ideally
suited for many future avenues of research. Next, we would like to
enable automatic generation of Proof Blocks problems so that stu-
dents can have essentially unlimited practice. We will also want to
research a way to predict the difficulty of a given generated problem,
so students can be guided through questions of varying difficulty
as the learn, and for fairness on assessments. Beyond discrete math-
ematics, there are great possibilities in using Proof Blocks problems
for other courses involving proofs such as algorithms courses, or
even high school geometry.

As noted, Proof Blocks are a good way to bridge the gap between
students learning to read and write proofs. To give further support
to students as they learn to write proofs, we can try variations on
Proof Blocks. For example, we could have students drag and drop
lines of a proof which are mostly prewritten, but have some blanks
for the students to fill in, much as Weinman et al. have done with
their “Faded Parson’s Problems” [28]

Proof Blocks can increase access to proof knowledge by helping
students gain more rapid feedback on the proofs they write. Ad-
ditionaly, it can improve assessment tools by increasing the types
and difficulty levels of questions we can ask students about proofs,
and save many hours of instructor grading time which can be real-
located to office hours or other effective means of helping students
[23]. There has been some evidence that mathematics is acting as a
gatekeeper to learning programming, and that it doesn’t actually
predict performance in software developers [7]. Furthermore, many
people going into software development study curricula that in-
volve less math than a standard computer science curricula. Proof
Blocks can also provide a solution in this case: rather than teaching
less mathematics, Proof Blocks provides a middle ground. Students
can be introduced to logical thinking and proof writing in a gentler
way, potentially reducing the gatekeeping of mathematics while
helping students learn the content.
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