
Proof Blocks: Autogradable Scaffolding Activities for Learning
to Write Proofs

Seth Poulsen
sethp3@illinois.edu

University of Illinois at Urbana-Champaign
USA

Mahesh Viswanathan
vmahesh@illinois.edu

University of Illinois at Urbana-Champaign
USA

Geoffrey L. Herman
glherman@illinois.edu

University of Illinois at Urbana-Champaign
USA

Matthew West
mwest@illinois.edu

University of Illinois at Urbana-Champaign
USA

Abstract
In this software tool paper we present Proof Blocks, a tool which

enables students to construct mathematical proofs by dragging and

dropping prewritten proof lines into the correct order. We present

both implementation details of the tool, as well as a rich reflec-

tion on our experiences using the tool in courses with hundreds of

students. Proof Blocks problems can be graded completely automat-

ically, enabling students to receive rapid feedback. When writing

a problem, the instructor specifies the dependency graph of the

lines of the proof, so that any correct arrangement of the lines can

receive full credit. This innovation can improve assessment tools

by increasing the types of questions we can ask students about

proofs, and potentially give greater access to proof knowledge by

increasing the amount that students can learn on their own with

the help of a computer.

CCS Concepts

· Mathematics of computing → Discrete mathematics; · So-

cial and professional topics → Computing education; · Ap-

plied computing → Computer-assisted instruction.

Keywords
discrete mathematics, CS education, automatic grading, proofs

ACM Reference Format:

Seth Poulsen, Mahesh Viswanathan, Geoffrey L. Herman, and Matthew

West. 2022. Proof Blocks: Autogradable Scaffolding Activities for Learning

to Write Proofs. In Proceedings of the 27th ACM Conference on Innovation

and Technology in Computer Science Education Vol 1 (ITiCSE 2022), July 8ś13,

2022, Dublin, Ireland. ACM, New York, NY, USA, 7 pages. https://doi.org/10.

1145/3502718.3524774

1 Introduction
Constructing mathematical proofs is one of the critical, yet diffi-

cult skills that students must learn as a part of the discrete math-

ematics curriculum. A panel of 21 experts using a Delphi process

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ITiCSE 2022, July 8ś13, 2022, Dublin, Ireland

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9201-3/22/07. . . $15.00
https://doi.org/10.1145/3502718.3524774

agreed that 6 of the 11 most difficult topics in a typical discrete

mathematics course are related to proofs and logic [10]. Proofs and

proof techniques are included by the ACM curricular guidelines as

a core knowledge area that should be understood by any student

obtaining a degree in computer engineering, computer science, or

software engineering [11, 20, 27].

One problem discrete math instructors face is being able to pro-

vide students with rapid feedback on their proof writing skills, since

proofs must be graded by hand by instructors or teaching assis-

tants. With the exception of students who are able to sit down with

instructors during office hours to receive immediate feedback, most

students receive significantly delayed feedback on the correctness

of the proofs which they have constructed while completing their

homework or exams.

What if students were able to receive in-flow automated feedback

on their proofs, just as they are able to with code they write? Pro-

viding students a way to write proofs in such a way that a computer

can give automated feedback can be a huge advantage. For many

students, this will simply be a convenience factor, but for others,

gaining automated feedback can be a huge step in increasing equity

and access in discrete mathematics education. For example, con-

sider students who are unable to make it to office hours to receive

help due to family commitments, or whose university courses are

understaffed. For these and other populations, automated feedback

has the potential to make a huge difference by giving them access

to feedback they wouldn’t have otherwise received.

Another difficulty for instructors is scaffolding students as they

try to make the jump from seeing their instructor write a proof to

writing proofs themselves. To combat this same issue in code writ-

ing, researchers have created new types of learning environments

and problems including Parson’s Problems [21] and block program-

ming languages like Scratch [17] and Blockly [9]. The scaffolding

provided by both Parson’s Problems and block programming lan-

guages have been shown to help students learn more quickly at

the beginning of the learning process [8, 29]. Transitioning from

seeing others write proofs to writing them on their own requires

students to use multiple skills, including writing logical statements

and analyzing sequences of logical statements to make sure that

each statement is supported by previous ones. Due to the complex-

ity of the task, we believe that students should be given scaffolding

for learning to write mathematical proofs, as with writing code,

and they will receive similar benefits.

Session: Scaffolding and feedback ITiCSE 2022, July 8–13, 2022, Dublin, Ireland

428

• Insights from experiences using this tool with hundreds of

students

2 Related Work

Work in intelligent tutors for mathematical proofs goes back

to work by John Anderson and his colleagues on The Geometry

Tutor [1, 2, 12]. More recently, researchers have created tutors for

propositional logic, most notably Deep Thought [18, 19] and Lo-

gEx [14ś16]. A number of other tools have been created to help

students learn to construct mathematical proofs with the aid of a

computer. Polymorphic Blocks [13] is a novel user interface which

presents propositions as colorful blocks with uniquely shaped con-

nectors. The Incredible Proof Machine [5] guides students through

constructing proofs as graphs. Jape [4] is a łProof calculator,ž which

guides students through the process of constructing formal proofs

in mathematical notation with the help of the computer, but re-

quires the instructor to implement the logics in a custom language.

MathsTiles [3] is a block-based programming interface for con-

structing proofs for the Isabelle/HOL proof assistant. Having an

open-ended environment where students could construct arbitrarily

complex proofs seems like an advantage, but user studies showed

that students were only successful if they were provided a small

instructor-procured subset of blocks.

In reviewing the design of existing tools for computerized proofs

it is clear that there is a tension between two desirable properties:

ease of use for beginners, and ability to handle complex proofs. The

tools which have an elegant, easy to understand interface (Polymor-

phic Blocks, The Incredible Proof Machine) only cover formal (and

in some cases, simple) logics, limiting their usability for discrete

mathematics courses where students write informal proofs on a va-

riety of topics from graph theory to number theory. The tools which

can handle an arbitrary complexity of proofs are very complex and

thus difficult and time consuming for students and instructors to

use, especially at the same time as trying to learn to write proofs.

Proof Blocks solves this problem by allowing informally written

proofs to be automatically graded, making the tool both easy to

use, and able to cover topics of all level of complexity, including but

not limited to number theory, properties of functions, cardinality,

graph theory, Big-O, and combinatorics.

Anecdotally, we have heard of instructors using scrambled proofs

to assess student knowledge both in Euclidean geometry and in

higher-level mathematics. In theory, instructors may have offered

such questions on paper even before the advent of computers,

though we can find no explicit record of this. Ensley and Winston

offer some scrambled proofs in a JavaScript applet as supplementary

material to their discrete mathematics textbook [6]. Such questions

could also be written using generic drag-and-drop task widgets that

are present in many learning management systems. However, the

ability use directed acyclic-graph based grading and to demarcate

subproofs are features unique to Proof Blocks that we have not

seen in any other system, and enable assessing proofs which are

more complex and use a greater variety of writing styles.

3 Development Context

Proof Blocks was originally designed for and pilot tested in the

discrete mathematics course in the computer science department

at the University of Illinois at Urbana-Champaign during the Fall

2020 semester. across multiple sections. Most students are freshmen,

and take the course as part of their computer science major, com-

puter science minor, or computer engineering major. The course

is designed to prepare students for the theory track in the depart-

ment and usually covers logic, proofs, functions, cardinality, graphs

and trees, induction, recursion, number theory, probability, basic

algorithm analysis, and sometimes additional topics as time per-

mits. In Fall 2020, the course was held completely online due to

the COVID-19 pandemic. The course was split into 3 sections, each

with a different instructor, for a total of over 400 students. The

first author of this paper was one of the teaching assistants for the

course, and the second author was one of the instructors. For more

details of the course, and for the results of the statistical analyses

we performed on data collected from the course, see [23].

After the semester, we made some small changes based on feed-

back that we recieved, and then the features of Proof Blocks were

integrated into the core PrairieLearn codebase so that they would

be open source and could be used more broadly. PrairieLearn is in

use regularly at about 10 universities, with more universities pilot

testing. Proof Blocks is being used by courses in three different

departments at the University of Illinois, as well as at the University

of British Columbia and the University of Chicago, and we expect

these numbers to continue to grow.

4 User Interface

Proof Blocks is built in to PrairieLearn. Both the student and

teacher user interfaces for creating and using Proof Blocks prob-

lems are user friendly, and can be used with almost no training.

In an anonymous survey given to our students, 46 out of 51 stu-

dents responded positively to the statement łThe proof blocks user

interface was easy to use,ž with the remaining 5 responding neu-

trally. Additionally, over two thirds of respondents agreed with the

statements łProof Blocks accurately represent my understanding

of how to write proofs,ž and łProof Blocks would be a good tool

for practicing writing proofs.ž For more detailed survey results,

see [23].

4.1 Student Interface

Figure 1 shows an example of the Proof Blocks user interface seen

by students as they work through Proof Blocks problems. Individual

lines of the proof start out shuffled in the starting zone, and students

attempt to drag and drop them into the correct order in the target

zone. Studentswere able to successfully complete proofs using Proof

Blocks after completing a lecture, worksheet, and homework about

proofs, with no training specifically in how to use the interface.

Figure 2 shows an example of feedback given to students working

on Proof Blocks problems. This is the feedback that a student would

receive if they were to select łSave & Gradež after having put their

Proof Blocks into the state shown in Figure 1. To avoid giving

students so much information that we are not actually testing their

knowledge, they are only told at which line their proof fails and

some possible reasons why, not the exact reason why or what the

solution is. One area of future research is to iterate on what kind of

feedback is best for students to receive when using Proof Blocks as

a tool for learning to write proofs.

Session: Scaffolding and feedback ITiCSE 2022, July 8–13, 2022, Dublin, Ireland

430

Figure 2: Example of feedback given to students working on Proof Blocks problems. To avoid giving students so much infor-

mation that we are not actually testing their knowledge, they are only told at which line their proof fails, not the reason why

or what the solution is. One area of future research is to investigate what kind of feedback is best for students to recieve when

using Proof Blocks as a tool for learning to write proofs.

4.2 Instructor Interface

In PrairieLearn, each question written by the instructor will include

(1) an HTML file defining what the students will see, and (2) a

JSON file containing metadata such as the question topic, type,

grading options, and author. The HTML file may use custom HTML

elements defined by PrairieLearn for writing homework and exam

questions. The HTML is then processed on the backend into HTML,

CSS, and JavaScript before being delivered to the student’s browser.

Figure 3 shows the instructor-written HTML code that generates

the Proof Blocks exercise shown in Figure 1. The HTML elements

that are prefixed with łplž have special meaning to PrairieLearn,

which processes them on the backend before sending the HTML to

the client. The pl-question-panel element notifies PrairieLearn of

the beginning of a new question. The pl-order-blocks signals to

PrairieLearn to create the actual Proof Blocks user interface, and

each pl-answer element inside of it defines a draggable line of proof.

Critically, the instructor writing the problem must specify which

lines of the proof must precede each other line. Though seemingly

a small detail, it is what makes Proof Blocks such a powerful tool,

since it allows instructors to write proofs with arbitrary English

language statements. This overcomes the proof complexity con-

straints of earlier student computer proof systems, and makes it so

that students can construct proofs that a computer can grade at any

level of complexity. The proof dependencies are declared using the

łdependsž attribute. For example, the proof graph for the problem

shown in Figure 3 is given in Figure 1b.

The instructors of the course were able to create new Proof

Blocks questions without any special training by simply looking at

those already created by the authors, only asking a few questions

for clarification about the configuration options, which could now

be answered by looking at the documentation. An instructor can

choose for all of the given lines to be required, or can add in distrac-

tor lines which are not part of the proof. In our discrete mathematics

course, we used test questions both with and without distractor

lines. Whether or not having distractor lines in the problem leads to

better assessment or learning outcomes is an open question which

we leave for future work.

5 Best Practices For Question Writing

Our experience using Proof Blocks with hundreds of students

led us to a few best practices in having Proof Blocks problems work

well for students.

The principal cause for an erroneous Proof Blocks question is

because the instructor failed to recognize a possible rearrangement

of the proof lines that is logically consistent. This results in a cor-

rect student response being incorrectly marked as faulty by the

autograder. Unfortunately, it is easy to make such mistakes when

designing a Proof Blocks question. These can be avoided if the in-

structor is aware of the main reasons this arises, which we outline

below. In addition, we recommend that the instructor ask another

member of the course staff who did not design the question, to

solve the problem in different ways without looking at the source

code. In our experience, these steps help catch all such mistakes.

One example of this is when the instructor identifies more de-

pendencies between the proof lines than actually exist. For example

an instructor may code up a problem in a manner which specifies

to the autograder that each line in the proof depends on the line

before it. Such strong dependencies are rarely demanded in any

proof. While this is a simple scenario where additional dependen-

cies have been identified, other cases are more subtle. They often

arise because experienced mathematicians follow stylistic norms

in addition to logical dependencies when structuring their proofs.

These are so ingrained in a practicing mathematician, that stylistic

norms inadvertently seep in as logical dependencies when coding

up a problem. For example, one often structures proof with sub-

goals, with the proof of a new subgoal begun only after the proof

of the previous subgoal has been finished. A classical example in a

discrete mathematics class is where students are asked to prove a

statement using induction where the proof of the induction step

follows a complete proof of the base case. However, often there

is no logical dependence between the statements in the subproof

of each case. From a logical perspective, the proof statements for

Session: Scaffolding and feedback ITiCSE 2022, July 8–13, 2022, Dublin, Ireland

431

<pl-question-panel>

<p>Recall that the interval

$(0,1) = \{r \in \mathbb{R}\: |\: 0 \lt r \lt 1\}$ and $[0,1] = \{r \in \mathbb{R}\: |\: 0 \leq r \leq 1\}$.

Drag and drop a subset of the blocks below to create a proof of the following

statement. <strong style="color:blue;">Note, not all blocks are needed in the proof.</p>

<p style="color:red;text-align:center;">$|(0,1)| = |[0,1]|$</p>

<p>We will prove this result by showing $|(0,1)| \leq |[0,1]|$ and $|[0,1]| \leq |(0,1)|$ and using the

Cantor-Schroeder-Bernstein theorem.</p>

</pl-question-panel>

<pl-order-blocks feedback="first-wrong" answers-name="csb-v1" grading-method="dag">

<pl-answer correct="true" tag="1" depends="">Consider the function $id: (0,1) \to [0,1]$ where for any $r \in (0,1)$,

$id(r) = r$.</pl-answer>

<pl-answer correct="true" tag="2" depends="1">id is injective because if $id(r) = r = s = id(s)$ then $r=s$.</pl-answer>

<pl-answer correct="true" tag="3" depends="2">Since id is injective, $|(0,1)| \leq |[0,1]|$.</pl-answer>

<pl-answer correct="true" tag="4" depends="" >Consider the function $f: [0,1] \to (0,1)$ where for any $r \in [0,1]$,

$f(r) = \frac{r+1}{4}$.</pl-answer>

<pl-answer correct="true" tag="5" depends="4">f is injective because if $f(r) = \frac{r+1}{4} = \frac{s+1}{4} = f(s)$

then $r=s$.</pl-answer>

<pl-answer correct="true" tag="6" depends="5">Since f is injective, $|[0,1]| \leq |(0,1)|$.</pl-answer>

<pl-answer correct="true" tag="7" depends="3,6">Result follows from the Cantor-Schroeder-Bernstein theorem.

(End of Proof)</pl-answer>

<!-- Distractors -->

<pl-answer correct="false" tag="" depends="">Consider the function $f: [0,1] \to (0,1)$ where for any $r \in [0,1]$,

$f(r) = r$.</pl-answer>

<pl-answer correct="false" tag="" depends="">f is injective because if $f(r) = r = s = f(s)$ then $r=s$.</pl-answer>

<pl-answer correct="false" tag="" depends="">f is surjective because for any $r \in (0,1)$, $f(r) = r$.</pl-answer>

</pl-order-blocks>

Figure 3: The instructor-written HTML code that generates the Proof Blocks exercise shown in 1. The HTML elements that

are prefixed with łplž have special meaning to PrairieLearn, which processes them on the backend before sending the HTML

to the client. The łdependsž property on each łpl-answerž element is used to declare the dependency between statements in the

proof structure.

each case can be interleaved in any manner. Of course, emphasizing

stylistic norms is just as important a learning objective, but in that

case instructors should be encouraged to spell this goal out in the

problem statement. To avoid such mistakes, after coding a Proof

Blocks question, we encourage instructors to examine the depen-

dencies of each line in the coded problem in isolation, without the

large proof context.

Another common cause for errors arises in proofs that contain

many algebraic manipulation steps. In informal proof writing, it

is often acceptable to skip intermediate steps of algebraic manipu-

lation. Coding a question in a manner that demands all the steps

leads to student complaints about the autograder. There are two

ways to address this problem. One is to write multiple algebraic

simplification steps in a single proof statement in the problem. The

second, and probably the best, is to avoid having any distractors in

the problem, and notify the student that all blocks should be used

to construct a correct proof.

The last cause for an error could be distractors. When designing

a question, it is useful to remember that none of the distractors

should be part of any correct proof. A common mistake is to have

distractors that are superfluous to the correct proof; this is a problem

because we can write logically correct proofs that have additional

statements that do not contribute to the end goal. Thus, it is impor-

tant to ensure that adding any distractor would result in a logically

inconsistent argument. One simple way to ensure this is to have

each distractor (on its own) be a logically inconsistent statement.

Even though this might seem like an easy distractor for a student

to avoid, in practice we have found that students are nonetheless

confounded by such distractors. In the future, we hope to extend the

Proof Blocks grader so that it can also handle having lines which

can optionally be part of a correct proof.

6 Autograder

The autograder is currently built in to PrairieLearn, but the core

algorithm is about 100 lines of Python code that could be made to

work with an alternative frontend, or reimplemented in any other

language.

While creating the tool, we recognized that it would be a poor

student experience if the student was expected to place the lines of

the proof in the exact order which the instructor first wrote them,

because inmanymathematical proofs, certain lines can be permuted

without affecting the correctness of the proof. It would also be a

poor user experience for the instructor if they had to explicitly

declare every possible correct answer to each question. This led us

to our current grading scheme, which is based on the dependency

Session: Scaffolding and feedback ITiCSE 2022, July 8–13, 2022, Dublin, Ireland

432

graph of the lines in the proof, which is a directed acyclic graph

(DAG). The instructor simply declares the dependency graph of

statements in the proof, and then the grader will accept any correct

permutation of the lines.

In the basic case, where a proof has no subproofs like the example

in Figure 1, checking if a proof is correct is equivalent to checking if

the student ordering of the lines is a topological sort of the DAG. A

more rigorous treatment of the grading algorithm, and the details of

our edit-distance based partial credit algorithm can be seen in [22].

6.1 Subproofs

Even in an introductory discrete mathematics course, an instructor

may want to use proofs that have cases. For example, using cases to

prove an łorž statement, or proof by induction. Here each subproof

is a connected subgraph of the entire proof graph. In such cases,

checking for topological sorting of the proof DAG is insufficient, be-

cause this would allow for intermixing of statements from separate

subproofs in a nonsensical fashion. A correct proof is a topological

sort of the lines of the proof with the added condition that the lines

of each subproof must be listed contiguously. Therefore, there is

an extra check which ensures that once a given subproof is started,

it is finished before any lines from outside the subproof appear.

To write a question with a subproof, the instructor wraps each

subproof in a pl-block-group element. The pl-block-group element

may then be given its own tag, so that lines that logically depend

on the entire subproof can refer to them in their depends attribute.

For more details and examples of problems with subproofs, see

the Proof Blocks documentation [25]. As noted in Section 5, it is

important to note that subproofs declared only for stylistic, and

not logical, reasons can be misleading for student unless they are

explicitly notified of the style which they are to follow.

7 Evaluation

Using data from hundreds of student exams from the discrete

math course in Fall 2020, we have shown that Proof Blocks prob-

lems provide about as much information about student knowledge

as written proof problems do. We have also shown that as test ques-

tions, Proof Blocks problems are in fact easier than written proofs,

which are often very difficult. An anonymous survey given to these

students showed that students felt that Proof Blocks problems ac-

curately represented their ability to write proofs, and that the user

interface was easy to use. Full details of this evaluation can be seen

in [23]. Ongoing evaluation work seeks to explore the possibility

that Proof Blocks can help students learn more efficiently than

writing proofs from scratch, just as Parson’s Problems can help

students learn more efficiently than writing code from scratch [8].

8 Adopting Proof Blocks

To use Proof Blocks with your students, start by following the

onboarding instructions for PrairieLearn [26]. Once familiar with

the basic workings of PrairieLearn, follow the documentation for

writing Proof Blocks questions [25]. More example problems can be

found in the documentation and example courses. PrairieLearn is in

the process of integrating with Learning Tools Interoperability [24]

to enable easier sharing of student data across learning platforms.

Feel free to reach out to the authors with any questions, or about

the possibility of adding Proof Blocks support on other platforms.

9 Limitations
The key limitation of Proof Blocks is that it restricts what stu-

dents can do, only allowing them to place prewritten lines into their

proof rather than allowing them to write whatever they want. As

with Parson’s Problems and block based programming languages,

we expect that there is a certain skill level at which Proof Blocks will

become a hindrance rather than a help to students, but this is of

course expected for all forms of education scaffolding. Similarly,

we believe that Proof Blocks will can be a huge help for students

who are just getting started in learning to write proofs. Another

limitation is that proofs will be graded correctly only as long as the

instructor correctly codes the questionÐbut this is really no worse

than most other types of exam questions given to students. Finally,

Proof Blocks is currently only usable within the PrairieLearn. On-

going efforts to improve interoperability between PrairieLearn and

other learning platforms will help ease adoption.

10 Future Work and implications
The versatility of the Proof Blocks platform makes it ideally

suited for many future avenues of research. Next, we would like to

enable automatic generation of Proof Blocks problems so that stu-

dents can have essentially unlimited practice. We will also want to

research a way to predict the difficulty of a given generated problem,

so students can be guided through questions of varying difficulty

as the learn, and for fairness on assessments. Beyond discrete math-

ematics, there are great possibilities in using Proof Blocks problems

for other courses involving proofs such as algorithms courses, or

even high school geometry.

As noted, Proof Blocks are a good way to bridge the gap between

students learning to read and write proofs. To give further support

to students as they learn to write proofs, we can try variations on

Proof Blocks. For example, we could have students drag and drop

lines of a proof which are mostly prewritten, but have some blanks

for the students to fill in, much as Weinman et al. have done with

their łFaded Parson’s Problemsž [28]

Proof Blocks can increase access to proof knowledge by helping

students gain more rapid feedback on the proofs they write. Ad-

ditionaly, it can improve assessment tools by increasing the types

and difficulty levels of questions we can ask students about proofs,

and save many hours of instructor grading time which can be real-

located to office hours or other effective means of helping students

[23]. There has been some evidence that mathematics is acting as a

gatekeeper to learning programming, and that it doesn’t actually

predict performance in software developers [7]. Furthermore, many

people going into software development study curricula that in-

volve less math than a standard computer science curricula. Proof

Blocks can also provide a solution in this case: rather than teaching

less mathematics, Proof Blocks provides a middle ground. Students

can be introduced to logical thinking and proof writing in a gentler

way, potentially reducing the gatekeeping of mathematics while

helping students learn the content.

Acknowledgments
We would like to thank Benjamin Cosman, Patrick Lin, and Yael

Gertner for being willing to test early versions of Proof Blocks with

their students, and the Computers & Education research group at

the University of Illinois for feedback on earlier versions of this

paper.

Session: Scaffolding and feedback ITiCSE 2022, July 8–13, 2022, Dublin, Ireland

433

References
[1] JR Anderson, CF Boyle, and G Yost. 1985. The Geometry Tutor, proc. of 9th

Internation Joint Conference on Artificial Intelligence.
[2] John R Anderson, Albert T Corbett, Kenneth R Koedinger, and Ray Pelletier. 1995.

Cognitive tutors: Lessons learned. The journal of the learning sciences 4, 2 (1995),
167ś207.

[3] William Billingsley and Peter Robinson. 2007. Student proof exercises usingMath-
sTiles and Isabelle/HOL in an intelligent book. Journal of Automated Reasoning
39, 2 (2007), 181ś218.

[4] Richard Bornat and Bernard Sufrin. 1997. Jape: A calculator for animating proof-
on-paper. In International Conference on Automated Deduction. Springer, 412ś415.

[5] JoachimBreitner. 2016. Visual theorem provingwith the Incredible ProofMachine.
In International Conference on Interactive Theorem Proving. Springer, 123ś139.

[6] Douglas E Ensley and J Winston Crawley. 2005. Discrete mathematics: math-
ematical reasoning and proof with puzzles, patterns, and games. John Wiley &
Sons.

[7] Nathan L Ensmenger. 2012. The computer boys take over: Computers, programmers,
and the politics of technical expertise. Mit Press.

[8] Barbara J Ericson, Lauren E Margulieux, and Jochen Rick. 2017. Solving parsons
problems versus fixing and writing code. In Proceedings of the 17th Koli Calling
International Conference on Computing Education Research. 20ś29.

[9] N. Fraser. 2015. Ten things we’ve learned from Blockly. In 2015 IEEE Blocks and
Beyond Workshop (Blocks and Beyond). 49ś50. https://doi.org/10.1109/BLOCKS.
2015.7369000

[10] Ken Goldman, Paul Gross, Cinda Heeren, Geoffrey Herman, Lisa Kaczmarczyk,
Michael C Loui, and Craig Zilles. 2008. Identifying important and difficult
concepts in introductory computing courses using a delphi process. In Proceedings
of the 39th SIGCSE technical symposium on Computer science education. 256ś260.

[11] Association for Computing Machinery (ACM) Joint Task Force on Comput-
ing Curricula and IEEE Computer Society. 2013. Computer Science Curricula 2013:
Curriculum Guidelines for Undergraduate Degree Programs in Computer Science.
Association for Computing Machinery, New York, NY, USA.

[12] Kenneth R Koedinger and John R Anderson. 1990. Abstract planning and percep-
tual chunks: Elements of expertise in geometry. Cognitive Science 14, 4 (1990),
511ś550.

[13] Sorin Lerner, Stephen R Foster, and William G Griswold. 2015. Polymorphic
blocks: Formalism-inspired UI for structured connectors. In Proceedings of the 33rd
Annual ACM Conference on Human Factors in Computing Systems. 3063ś3072.

[14] Josje Lodder, Bastiaan Heeren, and Johan Jeuring. 2015. A pilot study of the use
of LogEx, lessons learned. arXiv:1507.03671 [cs] (July 2015). http://arxiv.org/abs/
1507.03671 arXiv: 1507.03671.

[15] Josje Lodder, Bastiaan Heeren, and Johan Jeuring. 2019. A compari-
son of elaborated and restricted feedback in LogEx, a tool for teach-
ing rewriting logical formulae. Journal of Computer Assisted Learn-
ing 35, 5 (2019), 620ś632. https://doi.org/10.1111/jcal.12365 _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1111/jcal.12365.

[16] Josje Lodder, Bastiaan Heeren, and Johan Jeuring. 2020. Providing Hints, Next
Steps and Feedback in a Tutoring System for Structural Induction. Electronic
Proceedings in Theoretical Computer Science 313 (Feb. 2020), 17ś34. https://doi.
org/10.4204/EPTCS.313.2 arXiv: 2002.12552.

[17] John Maloney, Mitchel Resnick, Natalie Rusk, Brian Silverman, and Evelyn East-
mond. 2010. The scratch programming language and environment. ACM Trans-
actions on Computing Education (TOCE) 10, 4 (2010), 1ś15.

[18] BehroozMostafavi and Tiffany Barnes. 2017. Evolution of an Intelligent Deductive
Logic Tutor Using Data-Driven Elements. International Journal of Artificial
Intelligence in Education 27, 1 (March 2017), 5ś36. https://doi.org/10.1007/s40593-
016-0112-1

[19] Behrooz Mostafavi, Guojing Zhou, Collin Lynch, Min Chi, and Tiffany Barnes.
2015. Data-Driven Worked Examples Improve Retention and Completion in a
Logic Tutor. In Artificial Intelligence in Education, Cristina Conati, Neil Heffernan,
Antonija Mitrovic, and M. Felisa Verdejo (Eds.). Vol. 9112. Springer International
Publishing, Cham, 726ś729. http://link.springer.com/10.1007/978-3-319-19773-
9_102 Series Title: Lecture Notes in Computer Science.

[20] The Joint Task Force on Computing Curricula. 2014. Curriculum Guidelines for
Undergraduate Degree Programs in Software Engineering. Technical Report. New
York, NY, USA.

[21] Dale Parsons and Patricia Haden. 2006. Parson’s Programming Puzzles: A Fun
and Effective Learning Tool for First Programming Courses. In Proceedings of
the 8th Australasian Conference on Computing Education - Volume 52 (Hobart,
Australia) (ACE ’06). Australian Computer Society, Inc., AUS, 157ś163.

[22] Seth Poulsen, Shubhang Kulkarni, Geoffrey Herman, and Matthew West. 2022.
Efficient Partial Credit Grading of Proof Blocks Problems. https://doi.org/10.
48550/ARXIV.2204.04196

[23] Seth Poulsen, Mahesh Viswanathan, Geoffrey L. Herman, and Matthew West.
2021. Evaluating Proof Blocks Problems as Exam Questions. In Proceedings of the
2021 ACM Conference on International Computing Education Research.

[24] Charles Severance, Ted Hanss, and Josepth Hardin. 2010. Ims learning tools
interoperability: Enabling a mash-up approach to teaching and learning tools.
Technology, Instruction, Cognition and Learning 7, 3-4 (2010), 245ś262.

[25] PrairieLearn Team. 2021. pl-order-blocks Documentation. https://prairielearn.
readthedocs.io/en/latest/elements/#pl-order-blocks-element

[26] PrairieLearn Team. 2021. PrairieLearn Documentation. https://prairielearn.
readthedocs.io/en/latest/

[27] Association for Computing Machinery (ACM) The Joint Task Force on Com-
puting Curricula and IEEE Computer Society. 2016. Curriculum Guidelines for
Undergraduate Degree Programs in Computer Engineering. Technical Report. New
York, NY, USA.

[28] Nathaniel Weinman, Armando Fox, and Marti Hearst. 2020. Exploring challeng-
ing variations of parsons problems. In Proceedings of the 51st ACM Technical
Symposium on Computer Science Education. 1349ś1349.

[29] David Weintrop and Uri Wilensky. 2015. To block or not to block, that is the
question: students’ perceptions of blocks-based programming. In Proceedings of
the 14th international conference on interaction design and children. 199ś208.

Session: Scaffolding and feedback ITiCSE 2022, July 8–13, 2022, Dublin, Ireland

434

	Abstract
	1 Introduction
	2 Related Work
	3 Development Context
	4 User Interface
	4.1 Student Interface
	4.2 Instructor Interface

	5 Best Practices For Question Writing
	6 Autograder
	6.1 Subproofs

	7 Evaluation
	8 Adopting Proof Blocks
	9 Limitations
	10 Future Work and implications
	Acknowledgments
	References

