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A Generalized and Efficient Control-Oriented
Modeling Approach for Vibration-Prone Delta
3D Printers Using Receptance Coupling
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Abstract— Delta 3D printers can significantly increase through-
put in additive manufacturing by enabling faster and more
precise motion compared to conventional serial-axis 3D print-
ers. Further improvements in motion speed and part quality
can be realized through model-based feedforward vibration
control, as demonstrated on serial-axis 3D printers. However,
delta machines have not benefited from model-based con-
trollers because of the difficulty in accurately modeling their
position-dependent, coupled nonlinear dynamics. In this paper,
we propose an efficient framework to obtain accurate linear
parameter-varying models of delta 3D printers at any position
within their workspace from a few frequency response mea-
surements. We decompose the dynamics into two sub-models–
(1) an experimentally-identified sub-model containing decoupled
vibration dynamics; and (2) an analytically-derived sub-model
containing coupled dynamics–which are combined into one
using receptance coupling. We generalize the framework by
extending the analytical model of (2) to account for differing
mass profiles and dynamic models of the printer’s end-effector.
Experiments demonstrate reasonably accurate predictions of
the position-dependent dynamics of a commercial delta printer,
augmented with a direct drive extruder, at various positions in
its workspace.

Note to Practitioners—This work aims to equip high-speed 3D
printers, like delta machines, with model-based controllers to
complement their speed with high-accuracy. Due to the coupled
kinematic chains of the delta, complex control methodologies,
some of which require real-time state measurements, are often
used to achieve satisfactory control performance. Our model-
ing approach provides an efficient methodology for obtaining
accurate linear models without the need for real-time measure-
ments, thus enabling practitioners to design linear model-based
feedforward controllers to achieve the high throughput and
accuracy desired in additive manufacturing (AM). The models
we develop in this paper are intended for use with feedforward
vibration compensation methods, which can be beneficial for
both industrial-scale AM machines that have high-powered servo
motors and feedback controllers, as well as consumer-grade AM
machines which use stepper motors in feedforward control.

Manuscript received 8 June 2022; accepted 1 August 2022. This article
was recommended for publication by Editor X. Xie upon evaluation of the
reviewers’ comments. This work was supported in part by the National Science
Foundation under Grant 2054715 and Grant DGE 1256260 and in part by
the Michigan Space Grant Consortium, which is awarded by the National
Aeronautics and Space Administration under Award 80NSSC20M0124.
(Corresponding author: Chinedum E. Okwudire.)
The authors are with the Department of Mechanical Engineering, University

of Michigan, Ann Arbor, MI 48104 USA (e-mail: okwudire@umich.edu).
Color versions of one or more figures in this article are available at

https://doi.org/10.1109/TASE.2022.3197057.
Digital Object Identifier 10.1109/TASE.2022.3197057

Index Terms— Receptance coupling, FDM 3D printing, delta
robot, linear parameter-varying, position-dependent dynamics.

I. INTRODUCTION

THE delta robot [1], [2] is a parallel-axis manipulator
that has been used in a variety of research and indus-

trial applications [3]. Three-dimensional printers with a delta
kinematic configuration are primarily used with fused filament
fabrication (FFF) additive manufacturing (AM) technology.
These printers use three actuators to move three prismatic
joints, which are all connected to the end-effector in parallel
via forearm links (see Fig. 1). Vertical motion of the joints
results in lateral and vertical motion of the nozzle as it extrudes
and deposits material on a heated, stationary bed. As a result
of the parallel-axis construction, the delta 3D printer boasts
higher speeds and accelerations than conventional 3D printers
with serial kinematics [4]. Furthermore, delta 3D printers can
command identical speeds in all three Cartesian axes, whereas
the axis speed of serial 3D printers vary–with the vertical
(z) axis typically having much lower speeds than the lateral
(x, y) axes [5]. Accordingly, delta printers have expanded the
capabilities of FFF and, for example, have been shown to
improve the quality of Curved Layer FFF [6], which varies
the z-axis position within layers. Examples of commercial
delta 3D printers (at the time of this writing) include the
Monoprice (MP) Delta Pro [7], the FLSUN QQ-S Pro [8],
the Delta WASP 2040 [9], and the Tractus T3500 [10].
Much like serial machines, delta 3D printers experience

undesirable vibration when they travel at high speeds due
to structural flexibilities in their kinematic chain [5]. Feed-
forward (FF) model-based control techniques have been used
to compensate vibration in serial 3D printers resulting in an
order of magnitude increase in achievable accelerations and
up to 2x reduction in print time without sacrificing quality
[11]–[14]. Accurate models of most serial 3D printers are
efficiently measured by treating them as linear time-invariant
(LTI) single-input, single-output (SISO) systems [11]–[14].
In contrast, parallel-axis 3D printers are more likely to
be position-dependent multiple-input, multiple-output sys-
tems [15], [16]. Thus, identifying their dynamics can be
time-consuming because one must measure the models at
several different positions. Analytical models can be derived
but they may be: (a) too complex to be suitable for real-time
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control [17]–[19] or (b) contain a large number of parameters
that are difficult to measure and identify accurately [16].
Simplifications of analytical models of delta manipulators

have been proposed and used in model-based controllers [16],
[20]–[24]. However, most of the previous work considers
delta robots with rotary joints (instead of the prismatic joints
used in delta 3D printers), which typically use servo motors
with encoders. As a result, these control schemes are usu-
ally aided by feedback regulators to compensate measured
(and estimated) errors [16], [21]–[29]. For example, recent
work has focused on improving measurement accuracy of
real-time servo errors using various techniques such as sophis-
ticated observers [23], [24] and artificial neural networks
(ANNs) [25]. The position-dependent dynamic variations of
delta robots are treated as unmodeled disturbances which
are suppressed using feedback control [26]–[29]. However,
most commercial delta 3D printers cannot benefit from such
approaches because they utilize stepper motors for actuation,
which have no feedback sensors. Therefore, they must rely
on models that accurately capture their dynamics without the
need for real-time measurement of state variables.
Another control approach is to tune trajectory-dependent

PID controller gains offline to minimize errors along a desired
path of the robot [21], [22]. The PID gains are optimized for
the path such that they provide reasonably good tracking per-
formance without the need to have a general controller for the
entire workspace. However, this method requires knowing the
trajectory information a priori, which is not always possible.
Sparse offline measurements have also been combined

with other techniques, like interpolation [30] and machine
learning [31], to predict position-dependent dynamics of
manufacturing machines. Voorhoeve et al. [30] measured LTI
models of a flexible wafer stage at several frozen positions
and then interpolated the mode shapes to obtain a model
with continuous position dependence. However, their approach
requires a large number of measurements which could be
prohibitive. Additionally, the approach was implemented on a
single flexible moving body and it is not clear how it translates
to systems with multiple (and coupled) moving bodies like the
delta manipulator. To eliminate the need for time-consuming
measurements, Liu and Altintas [31] trained a transfer learning
model using two ANNs: the first using abundant data from
the simulated dynamics of a machine, and the second with
significantly less measurements from the machine. The models
were combined to fine-tune the simulation model with the
“real-world” model. Despite the success of this technique,
it requires the laborious process of tuning hyperparame-
ters during training. Additionally, since these models often
lack physical interpretation, designing stable controllers for
them can be challenging. Fortunately, receptance coupling
(RC) [32] provides an avenue to efficiently and accurately
model manufacturing machines offline while retaining physical
understanding. It allows one to combine analytical models
and sparse measurements of sub-assemblies of a system to
form the full assembly’s frequency response function (FRF)
[33], [34]. RC simplifies modeling by providing flexibility
in circumstances where it is difficult or impossible to obtain
either: (a) measurements that describe the full assembly

or (b) an analytical model that is computationally efficient
for real-time control and whose parameters can be easily
identified.
In a preliminary version of this paper [35], we introduced

the idea of modeling delta 3D printers using RC. However,
the approach was narrow because it assumed the end-effector
distributes mass equally (i.e., symmetrically) to each carriage
and could be modeled as a rigid body. While these assumptions
may be reasonable for a specific delta printer, they do not gen-
erally hold true. For example, delta printers may use a direct
drive filament extruder rather than the Bowden-style extruder
used in [35]. Depending on the size, shape, design, and fabrica-
tion of the extruder, the end-effector may have an asymmetric
mass distribution and flexible dynamics. To account for such
circumstances, this paper builds on the preliminary work to
make the following contributions:
1) It generalizes the RC framework for modeling the
position-dependent and coupled dynamics of delta 3D
printers to include different mass distributions and
dynamic models of the end-effector;

2) It proposes an efficient methodology for identifying the
generalized model with only a few measurements at one
location; and

3) It demonstrates, through experiments on a commercial
delta 3D printer, that the generalized model yields
reasonably accurate predictions of the dynamics of the
machine in arbitrary configurations.

The rest of the paper is as follows: Section II
briefly describes the construction of the delta 3D printer;
Section III describes the RC framework and generalized
model; Section IV uses data from a commercial 3D printer
to identify the parameters of the model and validates it
by comparing the predicted model with measured data; and
Sections V and VI present a discussion and our conclusions,
respectively.

II. DESCRIPTION OF THE DELTA 3D PRINTER

The three pairs of forearms on the delta 3D printer are
connected to a carriage on one end and an end-effector on
the other end; the forearms are allowed to rotate freely about
universal joints. In the case of the MP Delta Pro 3D printer
shown in Fig. 1 (as well as several commercial printers), the
universal joints are iron balls which allow the magnetized ends
of the forearms to be detached and reattached by the user.
On the carriage end, each carriage is mounted to a timing
belt, which is, in turn, connected to a base-mounted stepper
motor via a pulley. The vertical positions of each carriage (the
joint space) determine the Cartesian position of the 3-DOF
end-effector (the task space). The parallelogram formed by
each pair of forearms guarantees that the end-effector and bed
remain co-planar for layer-by-layer printing.
The kinematics of the delta manipulator are characterized

by a set of nonlinear, holonomic spherical constraint equations
that relate the task and joint spaces, such that the motion of one
carriage may have an effect on other carriages and vice versa.
As a result, the dynamics of the printer vary from position to
position [16], [35].
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Fig. 1. From left to right: A commercial delta 3D printer (Monoprice Delta
Pro) with labeled components, a schematic of the belt-driven carriage system,
and the delta manipulator configuration showing the connections between
joints and links. The print volume dimensions are 270 × 270 × 300 mm.

III. GENERALIZED DELTA MODEL

To derive the model of the delta printer using RC, we begin
by decomposing the model of the full assembly into two sub-
models. Sub-model 1 describes the carriage output position qi

as a function of two inputs: (a) the desired position of the
carriage qdi and (b) the forces Fqi imposed on the carriage
due to the dynamics of the forearms and end-effector, where
i ∈ {A, B, C} denotes the carriages labeled A, B , and C (see
Fig. 2). Sub-model 2 models the relationship between the end-
effector’s position X = [x y z]T and Fqi .
Sub-model 1 decouples each carriage as though they are

disconnected from the end-effector. Accordingly, the model is
assumed to be linear since each carriage consists of the car-
riage mass and timing belt, which can be modeled as a mass-
spring-damper system [11]–[14]. The relationship between the
inputs and qi are given by continuous-time LTI SISO systems
Gqdi

(s), the carriage position to position FRF, and G Fqi (s), the
external force to carriage position FRF. Both SISO systems
are measured (or modeled analytically) from experiments as a
summation of vibration modes, such that

qi(s) = Gqdi
(s)qdi (s) + G Fqi (s)Fqi (X, s) (1)

where s is the Laplace variable and Fqi is a function of X.
Since each carriage is identical, we assume the SISO FRFs
are identical for each carriage, i.e., Gqdi

(s) = Gqd (s) and
G Fqi (s) = G Fq(s) for all i .
Sub-model 2 connects the end-effector to the carriages

through Fqi in Eq. 1. Therefore, it incorporates the flexible
dynamics of the forearms and the end-effector (henceforth sim-
ply referred to as the end-effector dynamics). The expression
of Fqi (X, s) is characterized by the Jacobian matrix, which
relates the joint space and task space velocities [16] as

Ẋ = Jq̇ (2)

where q = [qA qB qC]T is the joint space coordinate vector
(i.e., carriage coordinates) and J ∈ R

3×3 is the Jacobian
matrix. Accordingly, we begin by deriving the Jacobian matrix
in sub-section III-A. Then, in sub-section III-B, we use
the Jacobian to derive the analytical relationship between
X and Fqi .

Fig. 2. Overhead view of the delta 3D printer showing the (x, y)-coordinate
locations of carriages A, B , and C , the end-effector’s position in task space
X, and the length of the forearms L . End-effector motion along a carriage’s
line-of-action, referred to in Section IV, results in significant change to the
carriage dynamics.

A. Sub-Model 2: The Jacobian Matrix

The Jacobian is derived based on work from [16]. Without
loss of generality, we locate the origin of the task space
coordinate system at the center of the bed and align the x-axis
with the center of carriage A. Carriages B and C are spaced
120◦ apart from A and from each other (Fig. 2). All forearms
are identical and have length L and position X is at the center
of the end-effector platform–on the xy-plane intersecting the
forearm/end-effector connection points. The vertical distance
from this plane down to the tip of the hot-end is given by Hez

(see Fig. 3(a)). The spherical constraint equations that govern
the kinematics are given by

(x − Ax)
2 + (y − Ay)

2 + (z + Hez − qA)2 = L2 (3)

(x − Bx)
2 + (y − By)

2 + (z + Hez − qB)2 = L2 (4)

(x − Cx)
2 + (y − Cy)

2 + (z + Hez − qC)2 = L2 (5)

where (Ax , Ay) are the x- and y-axis coordinates of carriage
A and similarly for carriages B and C . We can write Eqs. 3-5
in vector form as

sT
i si − L2 = 0 (6)

where

si =
⎡
⎣ x − ix

y − i y

z + Hez − qi

⎤
⎦ =

⎡
⎣x

y
z

⎤
⎦ −

(⎡
⎣ ix

i y

−Hez

⎤
⎦ +

⎡
⎣00
1

⎤
⎦qi

)
(7)

Taking the time derivative of Eq. 6 yields

sT
i ṡi + ṡT

i si = 0 (8)

which, from the commutative property of the vector product,
can be rewritten as

sT
i ṡi = 0 (9)

where

ṡi =
⎡
⎣ẋ

ẏ
ż

⎤
⎦ +

⎡
⎣ 0
0

−1

⎤
⎦q̇i = Ẋ + pq̇i . (10)
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Fig. 3. (a) Modeling schematic for delta 3D printer showing the belt-carriage
system modeled as a mass-spring-damper system and, as done in Section IV,
the forearm modeled as a massless entity with its mass split between the
carriage and end-effector; (b) the forearm transmits reaction forces between
the end-effector and the carriage.

Rearranging Eq. 9 with the definition of p, we have⎡
⎣sT

A
sT

B
sT

C

⎤
⎦Ẋ +

⎡
⎣sT

Ap 0 0
0 sT

Bp 0
0 0 sT

C p

⎤
⎦q̇ =

⎡
⎣00
0

⎤
⎦. (11)

From Eq. 11, we can obtain the relation in Eq. 2 where

J = −
⎡
⎣sT

A
sT

B
sT

C

⎤
⎦

−1⎡
⎣sT

Ap 0 0
0 sT

Bp 0
0 0 sT

C p

⎤
⎦. (12)

After another time derivative of Eq. 11 and some transforma-
tions, we find the task space acceleration Ẍ as

Ẍ =
⎡
⎣sT

A
sT

B
sT

C

⎤
⎦

−1(⎡
⎣ṡT

A
ṡT

B

ṡT
C

⎤
⎦J + T

)
q̇ + Jq̈ = Jq̈ + J̇q̇ (13)

where

T =
⎡
⎣ṡT

Ap 0 0
0 ṡT

Bp 0
0 0 ṡT

C p

⎤
⎦.

B. Sub-Model 2: End-Effector Position to Carriage Forces

To find the exogenous force Fqi imposed on each carriage,
we first write the force and moment (torque) balance equa-
tions about the end-effector’s center of mass in task space
coordinates. Then, we transform the resulting reaction forces
to joint space coordinates using the Jacobian matrix. From the
free body diagram in Fig. 4, the forces on the end-effector (in
the Laplace domain) are given by

FAx (s) + FBx(s) + FCx (s) = wx(s)x(s) (14)

FAy(s) + FBy(s) + FCy(s) = wy(s)y(s) (15)

FAz(s) + FBz(s) + FCz (s) = wz(s)z(s) (16)

where FA = [FAx FAy FAz]T are the respective x-, y-, and
z-axis components of the force on the end-effector associated
with carriage A, similarly for FB = [FBx FBy FCz ]T and
FC = [FCx FCy FCz ]T , and wx , wy, and wz are the flexible
inertial dynamics of the end-effector in the x-, y-, and z-axis
directions. (Note that we will, henceforth, omit the Laplace

variable s in the paragraph text for simplicity when it is
understood in context.)

Remark III(a): Here, we assume that the inertial dynamics
are decoupled in the task space coordinates since the machine
is designed to produce independent motion in each direction.
However, the approach can be easily generalized for coupled
dynamics in the task space coordinates.
We can compactly express the force equations as

FA(s) + FB(s) + FC(s) = W(s)X(s) (17)

where

W(s) =
⎡
⎣wx(s) 0 0

0 wy(s) 0
0 0 wz(s)

⎤
⎦. (18)

Since the end-effector does not rotate during motion, the
moment equations about the center of mass are given by

rA × FA(s) + rB × FB(s) + rC × FC(s) = 03×1 (19)

where

ri =
⎡
⎣De cos (φi) − δx

De sin (φi ) − δy

−δz

⎤
⎦, (20)

δx , δy , and δz are the x- y- and z-coordinate distance from
the centroid to the center of mass, De is the distance from
the centroid to the forearm reaction force, and φi is the angle
where carriage i is located with respect to the global x-axis
on the horizontal plane (see Fig. 4). For simplicity, we neglect
rotational effects of forearms, which have been found to be
negligible [16], [36].
We can compute the reaction forces FA, FB , FC as a func-

tion of the end-effector’s motion by writing the six equations
of motion in matrix form as[

I I I
S(rA) S(rB) S(rC)

]
︸ ︷︷ ︸

L

⎡
⎣FA(s)

FB(s)
FC(s)

⎤
⎦

︸ ︷︷ ︸
f(s)

=
[

W(s)X(s)
03×1

]
︸ ︷︷ ︸

u(s)

, (21)

where I ∈ R
3×3 is the identity matrix and S(·) ∈ R

3×3 is
the skew symmetric matrix defined on the input vector. The
minimum norm solution for f is given by

f(s) = LT (LLT )−1u(s) = L†u(s) (22)

where L† is the Moore-Penrose pseudoinverse of L. Note
that since the bottom-half rows of u contain zeros, the last
3 columns of L† ∈ R

9×6 do not contribute to the reaction
forces. Thus, we can use a reduced matrix L̃† ∈ R

9×3
and the reaction forces (i.e., each row of f) can be written
independently as

Fi(s) = Pi W(s)X(s) (23)

where Pi ∈ R
3×3 is the matrix of constants representing the

distribution of task space forces associated with carriage i ,
which is extracted from respective portions of L̃†. Each force
can be transformed to the joint space using J̄i ∈ R

3×1, the
column vector extracted from the linearized Jacobian, denoted
by J̄. The transpose of J̄i transforms the task space coordinates
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Fig. 4. (a) Top view and (b) side view free body diagrams of the end-effector
with reaction force vectors from each forearm. Note that the center of mass
is not located at the centroid of the end-effector, which leads to an uneven
distribution of reaction forces. The vector difference between the centroid and
the center of mass is given by � = [δx δy δz]T .

of the reaction joint associated with carriage i , denoted by
(xi , yi , zi ), to the joint space coordinate qi (see Fig. 4(a)).

Remark III(b) [35]: The linearized Jacobian is obtained
by linearizing Eqs. 2 and 13 about an equilibrium position
denoted by

X̄ =
⎡
⎣x̄

ȳ
z̄

⎤
⎦ and q̄ =

⎡
⎣q̄A

q̄B

q̄C

⎤
⎦. (24)

The transformed (and linearized) force is given by

Fqi = J̄T
i Fi(s) = J̄T

i Pi W(s)X(s). (25)

Furthermore, we can substitute the Jacobian relationship
from Eq. 2 such that Eq. 25 becomes

Fqi = J̄T
i Pi W(s)J̄q(s) (26)

Finally, we can write the full model in the form of Eq. 1:

q(s) = Gqd (s)qd(s) + GFq(s)

⎡
⎢⎣

J̄T
APA

J̄T
BPB

J̄T
C PC

⎤
⎥⎦W(s)J̄q(s) (27)

where Gqd (s) and GFq(s) are 3 × 3 diagonal matrices that
contain Gqd (s) and G Fq(s), respectively, as the diagonal
entries. The model can be expressed simply as

q(s) = G(s)qd(s) (28)

where

G(s) =
[
I − GFq(s)

⎡
⎢⎣

J̄T
APA

J̄T
BPB

J̄T
CPC

⎤
⎥⎦W(s)J̄

]−1
Gqd (s), (29)

yielding a linear parameter-varying (LPV) model of the
delta 3D printer that can be used for model-based control.
In Section IV, we present an example where Gqd (s), GFq(s),
W(s), and other parameters are identified for a delta printer
with a flexible, two-mass end-effector. The parameters of the
model are efficiently identified using data measured at one
position, and used to predict FRFs at other positions.

Fig. 5. Image of a prototype of the direct drive extruder mounted on the
MP Delta Pro 3D printer with the nozzle holder, extruder motor and housing
labeled. The assembly is designed to fit within the existing end-effector plat-
form without obstructing the forearm motion during printing. The ADXL335
accelerometers (pictured) were used to measure frequency response functions.

IV. EXPERIMENTAL VALIDATION

To study the framework described above, we identify the
model of the MP Delta Pro 3D printer in this section. The
printer is sold with a Bowden-style extruder [15] but we
augmented it with a direct-drive extruder (shown in Fig. 5)
to enhance extrusion performance [37]. Source files of the
extruder design can be found on Thingiverse.1

A. Decoupled Carriage Model Identification (Sub-Model 1)

The modular nature of commercial delta 3D printers is an
advantage in determining the FRFs because we can detach the
forearms and the end-effector to measure the carriage position
to position FRF, Gqd . As in [16], the mass of the forearms is
assumed to be split equally between the carriage and the end-
effector (see Fig. 3(a)). Then, Gqd can be represented (mechan-
ically) as a mass-spring-damper system with stiffness k, belt
damping coefficient c, guideway friction b, and mass

m = mc + 1

2
m f (30)

where mc is the lumped mass of the carriage assembly and
m f is the mass of a pair of forearms (Fig. 3).
The carriage FRF is identified from acceleration data mea-

sured using ADXL335 accelerometers on the carriage, with the
end-effector detached but one of two forearms still attached
(as in Eq. 30). We used a dSPACE MicroLabBox and Pololu
stepper motor drivers (DRV8825) to command sine sweep
perturbations around carriage positions corresponding to the
task space positions (x, y, z) = (0, 0, 30), (0, 0, 50), (0, 0, 70)
mm. As expected, our measurements indicated that Gqd was
similar at the three locations, independent of the z-axis posi-
tion, so we used the data from (0, 0, 30) mm, shown in Fig. 6,
to fit a 4th-order FRF of the form

Gqd (s) = Gqd,m (s)Gqd,e (s), (31)

1Extruder design source files can be found at the following Thingi-
verse directory: https://www.thingiverse.com/ahasib/collections/direct-drive-
extruder-mount-for-delta-printer

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: University of Michigan Library. Downloaded on October 07,2022 at 14:34:24 UTC from IEEE Xplore.  Restrictions apply.



6 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

where Gqd,m (s) and Gqd,e (s) represent the mechanical and
electrical dynamics, respectively. (The electrical dynamics are
created by the electrical circuitry that generates the stepper
motor commands.) Hence, we have

Gqd,m (s) = cs + k

ms2 + (c + b)s + k
(32)

=
c
m s + ω2n

s2 + 2ζωns + ω2n
(33)

and

Gqd,e (s) = d1s + d0
s2 + d2s + d0

(34)

where ωn is the natural frequency, ζ is the damping ratio,

2ζωn = (c + b)/m, (35)

ω2n = k/m, (36)

and d0, d1, and d2 are the coefficients of the electrical
FRF. To determine the m, and therefore mc (since m f can
be measured directly), we conducted the same sine sweep
experiment with an additional mass madd = 200 g mounted to
the carriage. This experiment also generates mechanical FRFs
that are identical for each carriage, one of which is shown in
Fig. 7 and given by

G ′
qd,m

(s) = cs + k

m ′s2 + (c + b)s + k
(37)

=
c

m′ s + ω′2
n

s2 + 2ζ ′ω′
ns + ω′2

n

(38)

where m ′ = m + madd ,

2ζ ′ω′
n = (c + b)/m ′, (39)

and

ω′2
n = k/m ′. (40)

From Eqs. 36 and 40, m can be computed as

m = ω′2
n

(ω2n − ω′2
n )

madd (41)

and Eqs. 35 and 39 can be used to determine c and b. Similarly,
Eq. 36 can be used to determine k. Additionally, the fitted 4th-
order FRF of Eq. 31 can also be represented as

Gqd (s) = g2s2 + g1s + g0
s4 + h3s3 + h2s2 + h1s + h0

(42)

where g(·) and h(·) are the coefficients of the fit. From the
coefficients of Eqs. 31 and 42, we can write the set of
equations

g2 = c

m
d1, g1 = c

m
d0 + ω2nd1, g0 = ω2nd0,

h3 = d2 + 2ζωn, h2 = d0 + ω2n + 2ζωnd2,

h1 = ω2nd2 + 2ζωnd0, and h0 = ω2nd0. (43)

Using the fitted coefficients and computed parameters above,
we can solve a least-squares problem to find d0, d1, and d2.

Fig. 6. Position-to-position frequency response functions of the carriage
without the end-effector dynamics, Gqd . The data was measured for each
carriage at the carriage locations (qA, qB , qC ) corresponding to (x, y, z) =
(0, 0, 30) mm, and a linear fit of one of the of the frequency response functions
shown as the black dashed line.

Fig. 7. Position-to-position frequency response function of the carriage
without the end-effector dynamics but with an additional 200 g mass attached
to the carriage, G ′

qd
. The linear fit (shown as the black dashed line) is used

to identify the mass of the carriage m. Note that only one carriage FRF is
shown since the carriage FRFs are similar as shown in Fig. 6.

Finally, the force to position FRF is given by the (mechan-
ical) characteristic polynomial

G Fq(s) = − 1

ms2 + (c + b)s + k
(44)

where the negative sign indicates that the forces involved are
disturbance forces. The parameters for Gqd and, therefore, G Fq

are reported in Table I.

B. End-Effector Model Identification (Sub-Model 2)

To identify the inertial forces from the end-effector motion
(Eq. 25), we assume the end-effector can be modeled as a
two-mass system–the nozzle holder mass and the extruder
motor mass–with a spring and damper between the masses.
We validate this assumption by isolating the end-effector and
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Fig. 8. Schematic of the two-mass model of the direct drive extruder (end-
effector) with the flexible components between the extruder motor and the
nozzle holder modeled as a spring-damper system. The damping and spring
coefficient, b j and k j , respectively, are defined on each axis of the task space
(i.e., j ∈ {x, y, z}). The relative positions of the nozzle holder and the extruder
motor are indicated by X = [x y z]T and X2 = [x2 y2 z2]T , respectively.
The reaction forces on the nozzle holder are indicated by f .

Fig. 9. Open loop force to acceleration (left) and force to position (right)
FRFs of the end-effector from impact hammer experiments. The force to
position FRF is estimated at the discrete integral of the measured force to
acceleration FRF to show the rigid body and flexible modes indicating a
two-mass model of the end-effector. The labels ωz and ωp indicate the zero
and pole location of the two-mass model, respectively.

measuring the open loop force to acceleration FRF of the
nozzle holder mass, m1, using a PCB Piezotronics® impact
hammer (model #086C03); the impact hammer was used to
apply a force to m1–similar to what is shown in Fig. 8. Figure 9
shows the measured force to acceleration FRF as well as the
computed force to position FRF, which has the characteristic
rigid body and flexible modes of a two-mass model. We can
derive the force to acceleration FRF of m1 model and fit the
measurement in Fig. 9 with a second-order model to identify
the masses. The two FRFs are represented by

s2Xact (s)

Fh(s)
= m2s2 + bact s + kact

m1m2s2 + (m1 + m2)bact s + (m1 + m2)kact

(45)

= u2s2 + u1s + u0
s2 + v1s + v0

(46)

where m2 is the extruder motor mass, bact and kact are the
damping and stiffness constants in the direction activated by
the impact hammer, u(·) and v(·) are the coefficients of the

fitted FRF, and Xact and Fh are the position of m1 and impact
hammer force on m1, respectively. Let ωz and ωp be the
magnitude of the zero and pole location of the fitted FRF
in Eq. 46, respectively. Then, it can be shown that

ω2z = kact

m2
(47)

ω2p = (m1 + m2)kact

m1m2
(48)

Solving Eqs. 47 and 48 simultaneously, we have
ω2z
ω2p

= m1

m1 + m2
⇒ m1 = ω2z

ω2p
(m1 + m2) (49)

The mass of the nozzle holder, extruder motor, and housing
elements can be measured with a scale to obtain the total mass,
mtot = m1 + m2. Therefore, m1 and m2 = mtot − m1 can be
identified. Importantly, note that the values of bact or kact do
not need to be known to identify m1 and m2. The measurement
direction of the accelerometer simply needs to be parallel to
the impact hammer force vector.
Using the two-mass model, we can write the set of force

equations from Eqs. 14-16 for the nozzle holder and the
extruder motor mass, which will be used to determine W(s)
in Eq. 25. The equations for the nozzle holder are given by

FAx + FBx + FCx = m1 ẍ + bx ẋ + kx x − bx ẋ2 − kx x2 (50)

FAy + FBy + FCy = m1 ÿ + by ẏ + ky y − by ẏ2 − ky y2 (51)

FAz + FBz + FCz = m1 z̈ + bz ż + kzz − bz ż2 − kzz2 (52)

where the reaction forces are as described in Section III, bx ,
by, and bz are the damping coefficients in the x-, y- and
z-axis directions, respectively, kx , ky, and kz are the stiffness
coefficients in the respective directions, and the subscript “2”
denotes the coordinate system for the extruder motor. Note
that in Eqs. 50-52, we assume that the effect of cross stiffness
and damping terms (e.g., x-to-y terms bxy , kxy) are negligible
since the motion that each axis induces on the other two axes
is negligible. For the extruder motor, the force equations are
given by

bx ẋ + kx x = m2 ẍ2 + bx ẋ2 + kx x2 (53)

bx ẏ + kx y = m2 ÿ2 + bx ẏ2 + kx y2 (54)

bx ż + kx z = m2 z̈2 + bx ż2 + kx z2. (55)

Let X2 = [x2 y2 z2]T be m2’s position. Then we can write
Eqs. 53-55 in Laplace form as[

(M2s
2 + Bs + K)−1(Bs + K)

]
X(s) = X2(s) (56)

where

M2 =
⎡
⎣m2 0 0
0 m2 0
0 0 m2

⎤
⎦, (57)

B =
⎡
⎣bx 0 0
0 by 0
0 0 bz

⎤
⎦, (58)

and

K =
⎡
⎣kx 0 0
0 ky 0
0 0 kz

⎤
⎦. (59)
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After computing the Laplace transform of Eqs. 50-52 and
substituting X2 into Eqs. 50-52, we obtain a vector equation
of the end-effector assembly in the form of Eq. 17:

FA(s) + FB(s) + FC(s) = W(s)X(s) (60)

where

W(s) = M1s
2 + Bs + K

− (Bs + K)(M2s
2 + Bs + K)−1(Bs + K) (61)

and

M1 =
⎡
⎣m1 0 0
0 m1 0
0 0 m1

⎤
⎦. (62)

Note that once all parameters are identified, we can add the
moment equations to write the complete set of equations,
as done in Eq. 21, and follow the procedure outlined in
Section III to determine the full assembly FRF (Eq. 28).
Finally, we can estimate b j and k j for j ∈ {x, y, z} by

(a) measuring the full assembly FRFs during pure x-, y-,
and z-axis translational sine sweep perturbations with the
end-effector attached (and positioned at (x, y, z) = (0, 0, 30)
mm) and (b) using the measurements in the following least
squares procedure. First, let

Pi =
⎡
⎣pi,xx pi,yx pi,zx

pi,xy pi,yy pi,zy

pi,xz pi,yz pi,zz

⎤
⎦ (63)

from Eq. 23. Then, from Eq. 18,

Pi W =
⎡
⎣pi,xxwx pi,yxwy pi,zxwz

pi,xywx pi,yywy pi,zywz

pi,xzwx pi,yzwy pi,zzwz

⎤
⎦. (64)

Therefore, if we command only one axis (take the z-axis, for
example) without moving the other two, we will get three
FRF expressions representing the z-to-qA, z-to-qB , and z-to-qC

transfer functions. To demonstrate this effect, examine Eq. 27
when X(s) is substituted for J̄q(s):

q(s) = Gqd (s)qd(s) + GFq(s)

⎡
⎢⎣

J̄T
APA

J̄T
BPB

J̄T
CPC

⎤
⎥⎦W(s)X(s) (65)

where the input is X(s) = [0 0 z(s)]T . Following
this procedure, we obtain nine FRFs for the task space
coordinates (three FRFs for each axis) and use them to
identify the end-effector’s stiffness and damping parameters
as follows:

First, the full assembly FRFs are fit to a 4th-order mechanical
system (6th-order with electrical dynamics)

G ′′
q j i,m

(s) = b3s3 + b2s2 + b1s + b0
s4 + a3s3 + a2s2 + a1s + a0

. (66)

As an example, the measured and fitted FRFs for the z-axis
are shown in Fig. 10. It can also be shown that

w j (s) = s2(m1m2s2 + (m1 + m2)b j s + (m1 + m2)k j)

m2s2 + b j s + k j
, (67)

Fig. 10. Position-to-position frequency response functions of the carriage
with the end-effector attached, G ′′

q,zi . The data was measured for the same
carriage location as Fig. 6.

which can be substituted into Eq. 28 to obtain an expression
for the characteristic polynomial of the full assembly carriage
mechanical FRFs as

D ji(s) = (m + α j i m1)m2s
4

+ [(m + α j i(m1 + m2))b j + m2(c + b)]s3
+ [(m + α j i(m1 + m2))k j + m2k + α j i(c + b)b j]s2
+ ((c + b)k j + b j k)s + k j k, (68)

where α j i is the multiplicative factor that transforms force
from the j -axis motion to the force on carriage i , and is
computed as ⎡

⎢⎣
J̄T

APA

J̄T
BPB

J̄T
CPC

⎤
⎥⎦ =

⎡
⎣αx A αy A αz A

αxB αyB αzB

αxC αyC αzC

⎤
⎦ (69)

with J̄i computed for the configuration at (x, y, z) = (0, 0, 30)
mm. To find Pi , we designed a CAD model of the end-effector
in SolidWorks® using the measured mass and dimensions of
each component of the end-effector. From the CAD model, the
center of mass of the end-effector can be automatically com-
puted by SolidWorks® to obtain δx , δy, and δz and, therefore, ri

in Eq. 20. From Eq. 21, ri is used to compute L and, therefore,
L̃† from which PA, PB , and PC are extracted. Finally, using
the fitted coefficients of the characteristic polynomial in Eq. 66
(one fit for each of the nine measured FRFs), we approximate
b j and k j in Eq. 68 via least squares using a similar process
to the one outlined for Eq. 43.
Table I reports the identified parameters of the delta printer

model. In the following subsection, we validate the model by
comparing its predictions to measurements from the machine.

C. Validation

Since we actuate the delta printer by its carriages, predicting
how the carriage dynamics vary as a function of position
is paramount. By studying the dynamic variation at a few
positions, we observed that the dynamics of each carriage
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TABLE I

SYSTEM IDENTIFICATION PARAMETERS

varied significantly along the carriage line-of-action: the line
in the xy-plane that extends from the position of the carriage
through the origin (see Fig. 2). Accordingly, we measured the
full assembly carriage FRFs at (x, y) = (−80, 0), (40,−69)
and (40, 69) mm, corresponding to a distance of 80 mm
from the origin along the line-of-action for carriages A, B ,
and C , respectively. Then, we used the identified model in
Sections IV-A and IV-B to predict the same FRFs. Figures 11-
13 show the predicted and measured FRF comparisons for
carriages A, B , and C , respectively. In the plots, we compare
the measurements to each other as well as the dynamics
at (x, y) = (0, 0). The major trends across the observed
frequency range of the predicted and measured FRFs are
similar across the sampled positions. Note that the dynamics
of each carriage are different because of the asymmetric mass
distribution of the end-effector. From Table I and Figure 2,
note that δy is negative, meaning that the center of mass favors
the side of carriages A and C causing them to hold a larger
proportion of the end-effector’s mass than carriage B . This
phenomenon is borne out in Figs. 11-13 as carriages A and
C show higher magnitude in the lower frequency mode at
(0, 0), while carriage B shows higher magnitude in the higher
frequency mode.
Notably, the variance of the FRF at the position furthest

along each carriage’s line-of-action is captured by the pre-
dictions, highlighting the model’s ability to capture position
dependence. To quantify the similarity between the predicted
and measured data, we use an error based metric. Since
our FRFs are not linear with respect to frequency, common
methods to quantify the goodness of fit, such as correlation
coefficients, may be misleading. Table II reports the mean
absolute percentage accuracy (μacc) of the predicted model,

Fig. 11. Frequency response functions of the A-to-A position at (x, y) =
(0, 0), (−80, 0), (40,−69), and (40, 69) (z = 30 mm for all) predicted with
the linearized joint space FRFs from Eq. 28 (left) and measured at carriage
A of the Monoprice Delta Pro 3D printer (right).

which can be thought of as how close the predicted model is
to the actual measurement at each frequency. It is defined as
the complement of the mean absolute percentage error (μerr ):

μacc = 100− μerr (70)

μacc = 100−
{ 1

n

f = fn∑
f = f1

|M f − Pf |
|M f | · 100

}
(71)

where f is the frequency, M f are the measured data, Pf are
the data from the predicted model, and n = 247 is the number
of measured frequency points from f1 = 2 Hz to f247 =
125 Hz, spaced in 0.5 Hz intervals. Note that when the pre-
diction is perfect (i.e., Pf = M f ), μerr = 0 and μacc = 100%.
As seen in Figs. 11-13 and Table II, our prediction model
often has different magnitudes than the measured data at the
same frequency. This indicates that there are disturbances not
captured by the model. However, the average mean absolute
percentage accuracy (magnitude and phase, respectively) for
carriages A (67.7% and 80.0%), B (78.1% and 82.3%), and C
(68.7% and 84.4%), indicate reasonable prediction accuracy of
the model. Further discussion of unmodeled disturbances and
potential sources of error is provided in the following section.

V. DISCUSSION

Although our magnitude predictions are inaccurate for some
positions, especially positions that are not along the respective
carriage’s line-of-action, the frequencies at which the modes
occur for each position are predicted with reasonable accu-
racy, which suggests that our estimates of mass and stiffness
parameters are close to the true values. Sources of error in
the model include: (1) the CAD model used to determine the
center of mass location, which is difficult to design perfectly
accurate, and (2) friction and damping, which is notoriously
difficult to model. In the CAD model, we assume that each
component of the end-effector has uniform distribution of mass
across its volume. However, we know that some components,
like the extruder motor, are composed of various metal parts
with different densities that affect the distribution of mass
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TABLE II

GOODNESS OF FIT BETWEEN PREDICTED AND MEASURED FRFS VIA MEAN ABSOLUTE PERCENTAGE ACCURACY (μacc )

TABLE III

PERCENT ERROR REDUCTION COMPARED TO BASELINE MODEL MEASURED AT (0, 0)

Fig. 12. Frequency response functions of the B-to-B position at (x, y) =
(0, 0), (−80, 0), (40,−69), and (40, 69) (z = 30 mm for all) predicted with
the linearized joint space FRFs from Eq. 28 (left) and measured at carriage
B of the Monoprice Delta Pro 3D printer (right).

across their volume. Accounting for such detail is cumbersome
because individual components would need to be disassembled
and reassembled. We endeavored to be as accurate as possible,
while ensuring that our methodology can be replicated without
significant difficulty. However, we found that changes of a
few millimeters in the end-effector center of mass location
(especially in the z-direction) could significantly influence the
magnitude and phase of the predicted FRFs. Secondly, the
various joint connections between the end-effector, forearms,
and carriages create friction that is difficult to capture via our
least squares identification methodology.
The proposed model is intended for use in feedforward

control of the delta 3D printer. Without this predictive model,
an alternative approach for the control designer is to choose
one baseline model with which to implement a model-based
controller for the printer across the entire workspace. A rea-
sonable choice for the baseline model is the measured FRF
when the end-effector is positioned at (x, y) = (0, 0) mm.
To compare this alternative to using the predictive model,

Fig. 13. Frequency response functions of the C-to-C position at (x, y) =
(0, 0), (−80, 0), (40,−69), and (40, 69) (z = 30 mm for all) predicted with
the linearized joint space FRFs from Eq. 28 (left) and measured at carriage
C of the Monoprice Delta Pro 3D printer (right).

we study the percentage of reduction in model error attained
by using the predictive model. Using μerr defined in Eq. 71,
the percentage error reduction can be defined as

% error reduction = μerr,B − μerr,P

μerr,B
· 100 (72)

where μerr,B and μerr,P are the mean absolute percentage
errors of the baseline and predicted model, respectively. The
expression for μerr,P is identical to μerr in Eq. 71, but for
μerr,B , the baseline model is substituted for the prediction
model, Pf . Table III reports the percentage error reduction
when the predictive model is used to represent the measured
FRFs at (x, y) = (−80, 0), (40,−69) and (40, 69) mm
instead of using the baseline model. From Figs. 11-13 and
Table III, note that in most instances the predictive model
predicts the magnitude and phase of the measured model more
accurately than the baseline model. The baseline model has
less magnitude or phase error compared to the predicted
model at positions where the measured model and the baseline
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model have small differences (for the respective carriage).
One expects there will be a few positions like this across
the workspace. Importantly, at the position furthest along
each carriage’s line-of-action (diagonal entries in Table III),
the predicted FRFs reduce the magnitude error by over 30%
compared to the baseline and reduce the phase error by at least
14% and up to about 60%. These results suggest that naively
choosing a baseline model to use in model-based feedforward
control would result in worse accuracy performance when
compared to using the LPV model proposed in this paper.

VI. CONCLUSION

The delta 3D printer offers the potential for higher through-
put compared to traditional serial-axis 3D printers. However,
it has not benefited from the model-based feedforward vibra-
tion compensation methods that have improved the accuracy
and speed of serial 3D printers because of the difficulty
modeling delta’s nonlinear dynamics that vary as a function
of position. In this paper, we propose an efficient framework
that uses receptance coupling to identify LPV models for
delta 3D printers using a few measurements from only one
position. We generalize the model to account for different mass
distributions and dynamic models of the end-effector, which
can have a significant impact on the model, as demonstrated
from measured data.
We presented the generalized model, described a procedure

to identify its parameters, and demonstrated its efficacy using
a commercial delta 3D printer, showing that the resulting
model captures the position-dependent dynamic variations
with reasonable accuracy. Additionally, at positions where the
dynamics of the printer differ from the center (or baseline)
model, we showed that the proposed model predicts the true
dynamics with greater accuracy than the baseline model.
In future work, we plan to implement a model-based controller
on the delta 3D printer using the LPV model derived in this
paper.

ACKNOWLEDGMENT

The authors would like to thank Abdul Hasib for helping
design and manufacture the direct-drive extruder and Keval S.
Ramani for useful feedback and discussions on modeling the
end-effector.

REFERENCES

[1] R. Clavel, “Conception d’un robot parallèle rapide à 4 degrés de liberté,”
Ph.D. thesis, Dept. Microtechn., EPFL, Lausanne, Switzerland, 1991,
doi: 10.5075/epfl-thesis-925.

[2] R. Clavel, “Device for the movement and positioning of an element in
space,” U.S. Patent 4976582, Dec. 11, 1990.

[3] J. Brinker and B. Corves, “A survey on parallel robots with delta-like
architecture,” in Proc. 14th IFToMM World Congr., 2015, pp. 407–414,
doi: 10.6567/IFToMM.14TH.WC.PS13.003.

[4] K. Miller, “Experimental verification of modeling of DELTA robot
dynamics by direct application of Hamilton’s principle,” in Proc.
IEEE Int. Conf. Robot. Autom., May 1995, pp. 532–537, doi:
10.1109/ROBOT.1995.525338.

[5] M. A. Isa and I. Lazoglu, “Five-axis additive manufacturing of freeform
models through buildup of transition layers,” J. Manuf. Syst., vol. 50,
pp. 69–80, Jan. 2019, doi: 10.1016/j.jmsy.2018.12.002.

[6] R. J. A. Allen and R. S. Trask, “An experimental demonstration of
effective curved layer fused filament fabrication utilising a parallel
deposition robot,” Additive Manuf., vol. 8, pp. 78–87, Oct. 2015, doi:
10.1016/j.addma.2015.09.001.

[7] Monoprice 3D Printers. Accessed: Apr. 25, 2022. [Online]. Available:
https://www.monoprice.com/

[8] FLSUN. Accessed: Apr. 25, 2022. [Online]. Available: https://flsun3d.
com/

[9] World Advanced Saving Project (WASP). Accessed: Apr. 25, 2022.
[Online]. Available: https://www.3dwasp.com/en/

[10] Tractus 3D. Accessed: Apr. 25, 2022. [Online]. Available: https://
amtech3d.com/tractus3d/

[11] K. S. Ramani, N. Edoimioya, and C. E. Okwudire, “A robust fil-
tered basis functions approach for feedforward tracking control—
With application to a vibration-prone 3-D printer,” IEEE/ASME
Trans. Mechatronics, vol. 25, no. 5, pp. 2556–2564, Oct. 2020, doi:
10.1109/TMECH.2020.2983680.

[12] M. Duan, D. Yoon, and C. E. Okwudire, “A limited-preview filtered
B-spline approach to tracking control—With application to vibration-
induced error compensation of a 3D printer,” Mechatronics, vol. 56,
pp. 287–296, Dec. 2018, doi: 10.1016/j.mechatronics.2017.09.002.

[13] H. Kim and C. E. Okwudire, “Simultaneous servo error pre-
compensation and feedrate optimization with tolerance constraints using
linear programming,” Int. J. Adv. Manuf. Technol., vol. 109, nos. 3–4,
pp. 809–821, Jul. 2020, doi: 10.1007/s00170-020-05651-w.

[14] C. E. Okwudire, S. Huggi, S. Supe, C. Huang, and B. Zeng, “Low-
level control of 3D printers from the cloud: A step toward 3D printer
control as a service,” Inventions, vol. 3, no. 3, p. 56, 2018, doi:
10.3390/inventions3030056.

[15] N. Edoimioya, K. S. Ramani, and C. E. Okwudire, “Software compensa-
tion of undesirable racking motion of H-frame 3D printers using filtered
B-splines,” Additive Manuf., vol. 47, Nov. 2021, Art. no. 102290, doi:
10.1016/j.addma.2021.102290.

[16] A. Codourey, “Dynamic modeling of parallel robots for computed-
torque control implementation,” Int. J. Robot. Res., vol. 17, no. 12,
pp. 1325–1336, Dec. 1998, doi: 10.1177/027836499801701205.

[17] K. Miller, “Optimal design and modeling of spatial parallel manipula-
tors,” Int. J. Robot. Res., vol. 23, no. 2, pp. 127–140, Feb. 2004, doi:
10.1177/0278364904041322.

[18] G. Lebret, K. Liu, and F. L. Lewis, “Dynamic analysis and control
of a Stewart platform manipulator,” J. Robotic Syst., vol. 10, no. 5,
pp. 629–655, 1993, doi: 10.1002/rob.4620100506.

[19] H. Pang and M. Shahinpoor, “Inverse dynamics of a parallel manip-
ulator,” J. Robotic Syst., vol. 11, no. 8, pp. 693–702, 1994, doi:
10.1002/rob.4620110803.

[20] C.-D. Zhang and S.-M. Song, “An efficient method for inverse dynamics
of manipulators based on the virtual work principle,” J. Robotic Syst.,
vol. 10, no. 5, pp. 605–627, Jul. 1993, doi: 10.1002/rob.4620100505.

[21] Q. Zhao, P. Wang, and J. Mei, “Controller parameter tuning of delta
robot based on servo identification,” Chin. J. Mech. Eng., vol. 28, no. 2,
pp. 267–275, Mar. 2015, doi: 10.3901/CJME.2014.1117.169.

[22] Y. Zhiyong and H. Tian, “A new method for tuning PID parameters
of a 3 DoF reconfigurable parallel kinematic machine,” in Proc. IEEE
Int. Conf. Robot. Autom. (ICRA), Apr. 2004, pp. 2249–2254, doi:
10.1109/ROBOT.2004.1307396.

[23] M. Ramírez-Neria, H. Sira-Ramírez, A. Luviano-Juárez, and
A. Rodrguez-Ángeles, “Active disturbance rejection control applied to
a delta parallel robot in trajectory tracking tasks,” Asian J. Control,
vol. 17, no. 2, pp. 636–647, Mar. 2015, doi: 10.1002/asjc.912.

[24] L. A. Castañeda, A. Luviano-Juárez, and I. Chairez, “Robust tra-
jectory tracking of a delta robot through adaptive active disturbance
rejection control,” IEEE Trans. Control Syst. Technol., vol. 23, no. 4,
pp. 1387–1398, Jul. 2015, doi: 10.1109/TCST.2014.2367313.

[25] J. M. Escorcia-Hernandez, H. Aguilar-Sierra, O. Aguilar-Mejia,
A. Chemori, and J. H. Arroyo-Nunez, “An intelligent compensation
through B-spline neural network for a delta parallel robot,” in Proc.
6th Int. Conf. Control, Decis. Inf. Technol. (CoDIT), Apr. 2019,
pp. 361–366, doi: 10.1109/CoDIT.2019.8820472.

[26] P. Chiacchio, F. Pierrot, L. Sciavicco, and B. Siciliano, “Robust design
of independent joint controllers with experimentation on a high-speed
parallel robot,” IEEE Trans. Ind. Electron., vol. 40, no. 4, pp. 393–403,
Aug. 1993, doi: 10.1109/41.232228.

[27] L. Angel and J. Viola, “Fractional order PID for tracking control
of a parallel robotic manipulator type delta,” ISA Trans., vol. 79,
pp. 172–188, Aug. 2018, doi: 10.1016/j.isatra.2018.04.010.

[28] C. E. Boudjedir, D. Boukhetala, and M. Bouri, “Nonlinear PD plus
sliding mode control with application to a parallel delta robot,” J. Electr.
Eng., vol. 69, no. 5, pp. 329–336, Sep. 2018, doi: 10.2478/jee-2018-
0048.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: University of Michigan Library. Downloaded on October 07,2022 at 14:34:24 UTC from IEEE Xplore.  Restrictions apply.



12 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

[29] Y. Su, D. Sun, L. Ren, and J. Mills, “Integration of saturated PI
synchronous control and PD feedback for control of parallel manip-
ulators,” IEEE Trans. Robot., vol. 22, no. 1, pp. 202–207, Feb. 2006,
doi: 10.1109/TRO.2005.858852.

[30] R. Voorhoeve, R. de Rozario, W. Aangenent, and T. Oomen, “Identifying
position-dependent mechanical systems: A modal approach applied to a
flexible wafer stage,” IEEE Trans. Control Syst. Technol., vol. 29, no. 1,
pp. 194–206, Jan. 2021, doi: 10.1109/TCST.2020.2974140.

[31] Y.-P. Liu and Y. Altintas, “Predicting the position-dependent dynamics
of machine tools using progressive network,” Precis. Eng., vol. 73,
pp. 409–422, Jan. 2022, doi: 10.1016/j.precisioneng.2021.10.010.

[32] T. L. Schmitz and K. S. Smith, “Receptance coupling,” in Mechanical
Vibrations. Boston, MA, USA: Springer, 2012, doi: 10.1007/978-3-030-
52344-2_10.

[33] S. S. Park, Y. Altintas, and M. Movahhedy, “Receptance coupling for
end mills,” Int. J. Mach. Tools Manuf., vol. 43, no. 9, pp. 889–896, 2003,
doi: 10.1016/S0890-6955(03)00088-9.

[34] M. Law and S. Ihlenfeldt, “A frequency-based substructuring approach to
efficiently model position-dependent dynamics in machine tools,” Proc.
Inst. Mech. Eng., K, J. Multi-Body Dyn., vol. 229, no. 3, pp. 304–317,
Sep. 2015, doi: 10.1177/1464419314562264.

[35] N. Edoimioya and C. E. Okwudire, “An efficient control-oriented
modeling approach for vibration-prone delta 3D printers using recep-
tance coupling,” in Proc. IEEE 17th Int. Conf. Autom. Sci. Eng.
(CASE), Aug. 2021, pp. 165–170, doi: 10.1109/CASE49439.2021.
9551537.

[36] Z. Ji, “Study of the effect of leg inertia in Stewart plat-
forms,” in Proc. Int. Conf. Robot. Autom., 1993, pp. 121–126, doi:
10.1109/ROBOT.1993.291971.

[37] A. Moetazedian, A. S. Budisuharto, V. V. Silberschmidt, and
A. Gleadall, “CONVEX (CONtinuously Varied EXtrusion): A new
scale of design for additive manufacturing,” Additive Manuf.,
vol. 37, Jan. 2021, Art. no. 101576, doi: 10.1016/j.addma.2020.
101576.

Nosakhare Edoimioya received the B.S. degree in
mechanical engineering from Stanford University in
2017 and the M.S. degree in mechanical engineering
from the University of Michigan in 2019, where he
is currently pursuing the Ph.D. degree in mechanical
engineering. His research interests include mecha-
tronics systems design and control for improved
performance of additive manufacturing machines.
He was awarded the National Science Foundation
GRFP Award in 2018 and the Michigan Space Grant
Consortium Graduate Student Fellowship in 2019.

Chinedum E. Okwudire (Member, IEEE) received
the Ph.D. degree in mechanical engineering from
The University of British Columbia in 2009.
He joined the Mechanical Engineering Faculty, Uni-
versity of Michigan, in 2011. Prior to joining Michi-
gan, he was the Mechatronic Systems Optimization
Team Leader with DMG Mori USA, Davis, CA,
USA. His research is focused on exploiting knowl-
edge at the intersection of machine design, control
and, more-recently, computer science, to boost the
performance of manufacturing automation systems

at low cost. He has received a number of awards including the CAREER
Award from the National Science Foundation, the Young Investigator Award
from the International Symposium on Flexible Automation, the Outstanding
Young Manufacturing Engineer Award from the Society of Manufacturing
Engineers, the Ralph Teetor Educational Award from SAE International, and
the Russell Severance Springer Visiting Professorship from UC Berkeley.
He has coauthored a number of best paper award winning papers in the areas
of control and mechatronics.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: University of Michigan Library. Downloaded on October 07,2022 at 14:34:24 UTC from IEEE Xplore.  Restrictions apply.


