

ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland Umang Mathur, Andreas Pavlogiannis, Hünkar Can Tunç, and Mahesh Viswanathan

techniques, and have been thoroughly exploited to explore trade-

offs between soundness, completeness, and running time of the un-

derlying analysis. Prominent examples include the widespread use

of HB [19, 24, 30, 49, 60], schedulably-happens-before (SHB) [37],

causally-precedes (CP) [63], weak-causally-precedes (WCP) [31],

doesn’t-commute (DC) [53], and strong/weak-dependently-pre-

cedes (SDP/WDP) [28], M2 [48] and SyncP [41]. Beyond race de-

tection, partial orders are often employed to detect and reproduce

other concurrency bugs such as atomicity violations [9, 26, 42],

deadlocks [57, 65], and other concurrency vulnerabilities [70].

Vector clocks in dynamic analyses. Often, the computational task of

determining the partial ordering between events of an execution is

achieved using a simple data structure called vector clock. Informally,

a vector clockC is an integer array indexed by the processes/threads

in the execution, and succinctly encodes the knowledge of a process

about the whole system. For vector clockC𝑡1 associated with thread

𝑡1, if C𝑡1 (𝑡2) = 𝑖 then it means that the latest event of 𝑡1 is ordered

after the first 𝑖 events of thread 𝑡2 in the partial order. Vector clocks,

thus seamlessly capture a partial order, with the point-wise ordering

of the vector timestamps of two events capturing the ordering

between the events with respect to the partial order of interest.

For this reason, vector clocks are instrumental in computing the

HB parial order efficiently [22, 23, 43], and are ubiquitous in the

efficient implementation of analyses based on partial orders even

beyond HB [24, 31, 32, 37, 42, 53, 57, 65].

The fundamental operation on vector clocks is the pointwise join

C𝑡1 ← C𝑡1 ⊔ C𝑡2 . This occurs whenever there is a causal ordering

from thread 𝑡2 to 𝑡1. Operationally, a join is performed by updating

C𝑡1 (𝑡) ← max(C𝑡1 (𝑡),C𝑡2 (𝑡)) for every thread 𝑡 , and captures the

transitivity of causal orderings: as 𝑡1 learns about 𝑡2, it also learns

about other threads 𝑡 that 𝑡2 knows about. Note that if 𝑡1 is aware

of a later event of 𝑡 , this operation is vacuous. With 𝑘 threads,

a vector clock join takes Θ(𝑘) time, and can quickly become a

bottleneck even in systems with moderate 𝑘 . This motivates the

following question: is it possible to speed up join operations by

proactively avoiding vacuous updates? The challenge in such a task

comes from the efficiency of the join operation itselfÐsince it only

requires linear time in the size of the vector, any improvement must

operate in sub-linear time, i.e., not even touch certain entries of

the vector clock. We illustrate this idea on a concrete example, and

present the key insight in this work.

Motivating example. Consider the example in Figure 1. It shows

a partial trace from a concurrent system with 6 threads, along with

the vector timestmamps at each event. When event 𝑒2 is ordered

before event 𝑒3 due to synchronization, the vector clock C𝑡2 of 𝑡2
is joined with that of C𝑡1 , i.e., the 𝑡 𝑗 -th entry of C𝑡1 is updated

to the maximum of C𝑡1 (𝑡 𝑗) and C𝑡2 (𝑡 𝑗)
1. Now assume that thread

𝑡2 has learned of the current times of threads 𝑡3, 𝑡4, 𝑡5 and 𝑡6 via

thread 𝑡3. Since the 𝑡3-th component of the vector timestamp of

event 𝑒1 is larger than the corresponding component of event 𝑒2,

𝑡1 cannot possibly learn any new information about threads 𝑡4, 𝑡5,

and 𝑡6 through the join performed at event 𝑒3. Hence the naive

pointwise updates will be redundant for the indices 𝑗 = {3, 4, 5, 6}.

1As with many presentations of dynamic analyses using vector clocks [30], we assume
that the local entry of a thread’s clock increments by 1 after each event it performs.
Hence, in Figure 1, the 𝑡1-th entry of C𝑡1 increases from 27 to 28 after 𝑒1 is performed.

Unfortunately, the flat structure of vector clocks is not amenable to

such reasoning and cannot avoid these redundant operations.

To alleviate this problem, we introduce a new hierarchical tree-

like data structure for maintaining vector times called a tree clock.

The nodes of the tree encode local clocks, just like entries in a vector

clock. In addition, the structure of the tree naturally captures which

clocks have been learned transitively via intermediate threads. Fig-

ure 1 (right) depicts a (simplified) tree clock encoding the vector

times of C𝑡2 . The subtree rooted at thread 𝑡3 encodes the fact that 𝑡2
has learned about the current times of 𝑡4, 𝑡5 and 𝑡6 transitively, via

𝑡3. To perform the join operation C𝑡1 ← C𝑡1 ⊔ C𝑡2 , we start from

the root of C𝑡2 , and traverse the tree as follows. Given a current

node 𝑢, we proceed to the children of 𝑢 if and only if 𝑢 represents

the time of a thread that is not known to 𝑡1. Hence, in the example,

the join operation will now access only the light-gray area of the

tree, and thus compute the join without accessing the whole tree,

resulting in a sublinear running time of the join operation.

The above principle, which we call direct monotonicity is one

of two key ideas exploited by tree clocks; the other being indirect

monotonicity. The key technical challenge in developing the tree

clock data structure lies in (i) using direct and indirect monotonicity

to perform efficient updates, and (ii) perform these updates such that

direct and indirect monotonicity are preserved for future operations.

Section 3.1 illustrates the intuition behind these two principles in

depth.

Contributions. Our contributions are as follows.

1. We introduce tree clock, a new data structure for maintaining

logical times in concurrent executions. In contrast to the flat

structure of the traditional vector clocks, the dynamic hierar-

chical structure of tree clocks naturally captures ad-hoc com-

munication patterns between processes. In turn, this allows for

join and copy operations that run in sublinear time. As a data

structure, tree clocks offer high versatility as they can be used

in computing many different ordering relations.

2. We prove that tree clocks are an optimal data structure for com-

puting HB, in the sense that, for every input trace, the total com-

putation time cannot be improved (asymptotically) by replacing

tree clocks with any other data structure. On the other hand,

vector clocks do not enjoy this property.

3. We illustrate the versatility of tree clocks by presenting tree

clock-based algorithms for theMAZ and SHB partial orders.

4. We perform a large-scale experimental evaluation of the tree

clock data structure for computing theMAZ, SHB andHB partial

orders, and compare its performance against the standard vector

clock data structure. Our results show that just by replacing

vector clocks with tree clocks, the computation becomes up

to 2.97× faster on average. Given our experimental results, we

believe that replacing vector clocks by tree clocks in partial

order-based algorithms can lead to significant improvements on

many applications. We provide the proofs for the theorems and

lemmas presented in the paper in our technical report [39].

2 PRELIMINARIES

In this section we develop relevant notation and present standard

concepts regarding concurrent executions, partial orders and vector

clocks.

711

A Tree Clock Data Structure for Causal Orderings in Concurrent Executions ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland

𝑡1 𝑡2

𝑒1

𝑒3

𝑒2
join

C𝑡1 = [27, 5, 9, 45, 17, 26]

C𝑡1 = [28, 6, 9, 45, 17, 26]

C𝑡2 = [11, 6, 5, 32, 14, 20]

𝑡2, 6

𝑡1, 11𝑡3, 5

𝑡4, 32𝑡5, 14

𝑡6, 20

C𝑡2

Figure 1: (Left) Illustration of the effect of a join operation C𝑡1 ← C𝑡1 ⊔ C𝑡2 on the clocks of the two threads. The 𝑗-th entry

in timestamps correspond to thread 𝑡 𝑗 . Red entries remain unchanged, as 𝑡1 already knows of a later time. (Right) A tree

representation of the clocks C𝑡2 that encodes transitivity. Dark gray marks the threads whose clock has processed in C𝑡2
compared to C𝑡1 (i.e., just 𝑡2). Light gray marks the nodes that we need to examine when performing the join operation.

2.1 Concurrent Model and Traces

We start with our main notation on traces. The exposition is stan-

dard and follows related work (e.g., [24, 31, 63]).

Events and traces. We consider execution traces of concurrent

programs represented as a sequence of events performed by differ-

ent threads. Each event is a tuple 𝑒 = ⟨𝑖, 𝑡, op⟩, where 𝑖 is the unique

event identifier of 𝑒 , 𝑡 is the identifier of the thread that performs 𝑒 ,

and op is the operation performed by 𝑒 , which can be one of the

following types 2.

1. op = r(𝑥), denoting that 𝑒 reads global variable 𝑥 .

2. op = w(𝑥), denoting that 𝑒 writes to global variable 𝑥 .

3. op = acq(ℓ), denoting that 𝑒 acquires the lock ℓ .

4. op = rel(ℓ), denoting that 𝑒 releases the lock ℓ .

We write tid(𝑒) and op(𝑒) to denote the thread identifier and the

operation of 𝑒 , respectively. For a read/write event 𝑒 , we denote by

Variable(𝑒) the (unique) variable that 𝑒 accesses. We often ignore

the identifier 𝑖 and represent 𝑒 as ⟨𝑡, op⟩. In addition, we are often

not interested in the thread of 𝑒 , in which case we simply denote

𝑒 by its operation, e.g., we refer to event r(𝑥). When the variable

of 𝑒 is not relevant, it is also omitted (e.g., we may refer to a read

event r).

A (concrete) trace is a sequence of events 𝜎 = 𝑒1, . . . , 𝑒𝑛 . The

trace 𝜎 naturally defines a total order ≤𝜎tr (pronounced trace order)

over the set of events appearing in 𝜎 , i.e., we have 𝑒 ≤𝜎tr 𝑒 ′ iff

either 𝑒 = 𝑒 ′ or 𝑒 appears before 𝑒 ′ in 𝜎 ; when 𝑒 ≠ 𝑒 ′, then we say

𝑒 <
𝜎
tr 𝑒
′. We require that 𝜎 respects the semantics of locks. That

is, for every lock ℓ and every two acquire events acq1 (ℓ), acq2 (ℓ)

on the lock ℓ such that acq1 (ℓ) <
𝜎
tr acq2 (ℓ), there exists a lock

release event rel1 (ℓ) in 𝜎 with tid(acq1 (ℓ)) = tid(rel1 (ℓ)) and

acq1 (ℓ) <
𝜎
tr rel1 (ℓ) <

𝜎
tr acq2 (ℓ). Finally, we denote by Thrds𝜎 the

set of thread identifiers appearing in 𝜎 .

Thread order. Given a trace 𝜎 , the thread order ≤𝜎
TO

is the smallest

partial order such that 𝑒1 ≤
𝜎
TO

𝑒2 iff tid(𝑒1) = tid(𝑒2) and 𝑒1 ≤
𝜎
tr 𝑒2.

For an event 𝑒 in a trace 𝜎 , the local time lTime𝜎 (𝑒) of 𝑒 is the

number of events that appear before 𝑒 in the trace 𝜎 that are also

performed by tid(𝑒), i.e., lTime𝜎 (𝑒) = |{𝑒 ′ | 𝑒 ′ ≤𝜎
TO

𝑒}|. We remark

that the pair (tid(𝑒), lTime𝜎 (𝑒)) uniquely identifies the event 𝑒 in

the trace 𝜎 .

2Fork and join events are ignored for ease of presentation. Handling such events is
straightforward.

Conflicting events. Two events of 𝑒1, 𝑒2 of 𝜎 are called conflicting,

denoted by 𝑒1 ≍ 𝑒2, if (i) Variable(𝑒1) = Variable(𝑒2), (ii) tid(𝑒1) ≠

tid(𝑒2), and (iii) at least one of 𝑒1, 𝑒2 is a write event. The standard

approach in concurrent analyses is to detect conflicting events that

are causally independent, according to some pre-defined notion of

causality, and can thus be executed concurrently.

2.2 Partial Orders, Vector Times and Vector
Clocks

A partial order on a set 𝑆 is a reflexive, transitive and anti-symmetric

binary relation on the elements of 𝑆 . Partial orders are the standard

mathematical object for analyzing concurrent executions. The main

idea behind such techniques is to define a partial order ≤𝜎
P
on the

set of events of the trace 𝜎 being analyzed. The intuition is that ≤𝜎
P

captures causality Ð the relative order of two events of 𝜎 must be

maintained if they are ordered by ≤𝜎
P
. More importantly, when two

events 𝑒1 and 𝑒2 are unordered by ≤
𝜎
P
(denoted 𝑒1 ∥

𝜎
P
𝑒2), then they

can be deemed concurrent. This principle forms the backbone of all

partial-order based concurrent analyses.

A naïve approach for constructing such a partial order is to

explicitly represent it as an acyclic directed graph over the events of

𝜎 , and then perform a graph search whenever needed to determine

whether two events are ordered. Vector clocks, on the other hand,

provide a more efficient method to represent partial orders and

therefore are the key data structure in most partial order-based

algorithms. The use of vector clocks enables designing streaming

algorithms, which are also suitable formonitoring the system. These

algorithms associate vector timestamps [22, 23, 43] with events

so that the point-wise ordering between timestamps reflects the

underlying partial order. Let us formalize these notions now.

Vector Timestamps. Let us fix the set of threads Thrds in the

trace. A vector timestamp (or simply vector time) is a mapping

V: Thrds → N. It supports the following operations.
V1 ⊑ V2 iff ∀𝑡 : V1 (𝑡) ≤ V2 (𝑡) (Comparison)

V1 ⊔V2 = 𝜆𝑡 : max(V1 (𝑡),V2 (𝑡)) (Join)

V[𝑡 ′ → +𝑖] = 𝜆𝑡 :

{

V(𝑡) + 𝑖, if 𝑡 = 𝑡 ′

V(𝑡), otherwise
(Increment)

WewriteV1 = V2 to denote thatV1 ⊑ V2 andV2 ⊑ V1. Let us see

how vector timestamps provide an efficient implicit representation

of partial orders.

712

ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland Umang Mathur, Andreas Pavlogiannis, Hünkar Can Tunç, and Mahesh Viswanathan

Timestamping for a partial order. Consider a partial order ≤𝜎
P

defined on the set of events of 𝜎 such that ≤𝜎
TO
⊆≤𝜎

P
. In this case,

we can define the P-timestamp of an event 𝑒 as the following vector

timestamp:

𝐶
≤𝜎
P

𝑒 = 𝜆𝑢 : max{ lTime𝜎 (𝑓) | 𝑓 ≤𝜎P 𝑒, tid(𝑓) = 𝑢}

In words,𝐶
≤𝜎
P

𝑒 contains the timestamps of the events that appear the

latest in their respective threads such that they are ordered before 𝑒

in the partial order ≤𝜎
P
. We remark that 𝐶

≤𝜎
P

𝑒 (tid(𝑒)) = lTime𝜎 (𝑒).

The following observation then shows that the timestamps defined

above precisely capture the order ≤𝜎
P
.

Lemma 1. Let ≤𝜎
P
be a partial order defined on the set of events of

trace 𝜎 such that ≤𝜎
TO
⊆≤𝜎

P
. Then for any two events 𝑒1, 𝑒2 of 𝜎 , we

have, 𝐶
≤𝜎
P

𝑒1
⊑ 𝐶
≤𝜎
P

𝑒2
⇐⇒ 𝑒1 ≤

𝜎
P
𝑒2.

In words, Lemma 1 implies that, in order to check whether two

events are ordered according to ≤𝜎
P
, it suffices to compare their

vector timestamps.

The vector clock data structure. When establishing a causal or-

der over the events of a trace, the timestamps of an event is com-

puted using timestamps of other events in the trace. Instead of

explicitly storing timestamps of each event, it is often sufficient

to store only the timestamps of a few events, as the algorithms

is running. Typically a data-structure called vector clocks is used

to store vector times. Vector clocks are implemented as a simple

integer array indexed by thread identifiers, and they support all

the operations on vector timestamps. A useful feature of this data-

structure is the ability to perform in-place operations. In particular,

there are methods such as Join(·), Copy(·) or Increment(·, ·) that

store the result of the corresponding vector time operation in the

original instance of the data-structure. For example, for a vector

clock C and a vector time 𝑉 , a function call C.Join(𝑉) stores the

value C⊔𝑉 back in C. Each of these operations iterates over all the

thread identifiers (indices of the array representation) and compares

the corresponding components in C and 𝑉 . The running time of

the join operation for the vector clock data structure is thus Θ(𝑘),

where 𝑘 is the number of threads. Similarly, copy and comparison

operations take Θ(𝑘) time.

2.3 The Happens-Before Partial Order

Lamport’s Happens-Before (HB) [33] is one of the most frequently

used partial orders for the analysis of concurrent executions, with

wide applications in domains such as dynamic race detection. Here

we use HB to illustrate the disadvantages of vector clocks and

form the basis for the tree clock data structure. In later sections we

show how tree clocks also apply to other partial orders, such as

Schedulably-Happens-Before and the Mazurkiewicz partial order.

Happens-before. Given a trace 𝜎 , the happens-before (HB) partial

order ≤𝜎
HB

of 𝜎 is the smallest partial order over the events of 𝜎

that satisfies the following conditions.

1. ≤𝜎
TO
⊆≤𝜎

HB
.

2. For every release event rel(ℓ) and acquire event acq(ℓ) on

the same lock ℓ with rel(ℓ) <𝜎
tr acq(ℓ), we have rel(ℓ) ≤

𝜎
HB

acq(ℓ).

For two events 𝑒1, 𝑒2 in trace 𝜎 , we use 𝑒1 ∥
𝜎
HB

𝑒2 to denote that

neither 𝑒1 ≤
𝜎
HB

𝑒2, nor 𝑒2 ≤
𝜎
HB

𝑒1. We say 𝑒1 <
𝜎
HB

𝑒2 when 𝑒1 ≠ 𝑒2

Algorithm 1: Computing the HB partial order.

1 procedure acquire(𝑡 , ℓ)

2 C𝑡 .Join(Cℓ)

3 procedure release(𝑡 , ℓ)

4 Cℓ .Copy(C𝑡)

and 𝑒1 ≤
𝜎
HB

𝑒2. Given a trace 𝜎 , two events 𝑒1, 𝑒2 of 𝜎 are said to be

in a happens-before (data) race if (i) 𝑒1 ≍ 𝑒2 and (ii) 𝑒1 ∥
𝜎
HB

𝑒2.

The happens-before algorithm. In light of Lemma 1, race detec-

tion based onHB constructs the ≤𝜎
HB

partial order in terms of vector

timestamps and detects races using these. The core algorithm for

constructing ≤
HB

is shown in Algorithm 1. The algorithmmaintains

a vector clock C𝑡 for every thread 𝑡 ∈Thrds, and a similar one Cℓ
for every lock ℓ . When processing an event 𝑒 = ⟨𝑡, op⟩, it performs

an update C𝑡 .Increment(𝑡, 1), which is implicit and not shown in

Algorithm 1. Moreover, if op = acq(ℓ) or op = rel(ℓ), the algo-

rithm executes the corresponding procedure. The HB-timestamp

of 𝑒 is then simply the value stored in Ctid(𝑒) right after 𝑒 has been

processed.

Running time using vector clocks. If a trace 𝜎 has 𝑛 events and

𝑘 threads, computing the HB partial order with Algorithm 1 and

using vector clocks takes𝑂 (𝑛 ·𝑘) time. The quadratic bound occurs

because every vector clock join and copy operation iterates over

all 𝑘 threads.

3 THE TREE CLOCK DATA STRUCTURE

In this section we introduce tree clocks, a new data structure for

representing logical times in concurrent and distributed systems.

We first illustrate the intuition behind tree clocks, and then develop

the data structure in detail.

3.1 Intuition

Like vector clocks, tree clocks represent vector timestamps that

record a thread’s knowledge of events in other threads. Thus, for

each thread 𝑡 , a tree clock records the last known local time of 𝑡 .

However, unlike a vector clock which is flat, a tree clock maintains

this information hierarchically Ð nodes store local times of a thread,

while the tree structure records how this information has been

obtained transitively through intermediate threads. In the following

examples we use the operation sync(ℓ) to denote the sequence

acq(ℓ), rel(ℓ).

1. Directmonotonicity.Recall that a vector clock-based algorithm

like Algorithm 1 maintains a vector clock C𝑡 which intuitively

captures thread 𝑡 ’s knowledge about all threads. However, it does

not maintain how this information was acquired. Knowledge of how

such information was acquired can be exploited in join operations,

as we show through an example. Consider a computation of the

HB partial order for the trace 𝜎 shown in Figure 2a. At event 𝑒7,

thread 𝑡4 transitively learns information about events in the trace

through thread 𝑡3 because 𝑒6 <
𝜎
HB

𝑒7 (dashed edge in Figure 2a).

This is accomplished by joining with clock C𝑡3 of thread 𝑡3. Such a

join using vector clocks will take 4 steps because we need to take

the pointwise maximum of two vectors of length 4.

Suppose in addition to these timestamps, we maintain how these

timestamps were updated in each clock. This would allow one to

make the following observations.

713

A Tree Clock Data Structure for Causal Orderings in Concurrent Executions ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland

𝑡1 𝑡2 𝑡3 𝑡4

1 sync(ℓ1)

2 sync(ℓ1)

3 sync(ℓ1)

4 sync(ℓ2)

5 sync(ℓ2)

6 sync(ℓ3)

7 sync(ℓ3)

H
B

H
B

HB

H
B

(a) Direct monotonicity.

𝑡1 𝑡2 𝑡3 𝑡4

1 sync(ℓ1)

2 sync(ℓ1)

3 sync(ℓ2)

4 sync(ℓ2)

5 sync(ℓ2)

6 sync(ℓ3)

7 sync(ℓ3)

HB

H
B

H
B

H
B

(b) Indirect monotonicity.

Figure 2: Illustration of the two insights behind tree clocks. An event sync(ℓ) represents two events acq(ℓ), rel(ℓ).

1. Thread 𝑡3 knows of event 𝑒1 of 𝑡1 transitively, through event 𝑒2
of thread 𝑡2.

2. Thread 𝑡4 (before the join at 𝑒7) knows of event 𝑒1 through 𝑒4 of

thread 𝑡2.

Before the join, since 𝑡4 has amore recent view of 𝑡2 when compared

to 𝑡3, it is aware of all the information that thread 𝑡3 knows about

the world via thread 𝑡2. Thus, when performing the join, we need

not examine the component corresponding to thread 𝑡1 in the two

clocks. Tree clocks, by maintaining such additional information,

can avoid examining some components of a vector timestamp and

yield sublinear updates.

2. Indirect monotonicity. We now illustrate that if in addition

to information about łhow a view of a thread was updatedž, we

also maintained łwhen the view of a thread was updatedž, the cost

of join operations can be further reduced. Consider the trace 𝜎 of

Figure 2b. At each of the events of thread 𝑡4, it learns about events

in the trace transitively through thread 𝑡3 by performing two join

operations. At the first join (event 𝑒5), thread 𝑡4 learns about events

𝑒1, 𝑒2, 𝑒3 transitively through event 𝑒4. At event 𝑒7, thread 𝑡4 finds

out about new events in thread 𝑡3 (namely, 𝑒6). However, it does not

need to update its knowledge about threads 𝑡1 and 𝑡2 Ð thread 𝑡3’s

information about threads 𝑡1 and 𝑡2 were acquired by the time of

event 𝑒4 about which thread 𝑡4 is aware. Thus, if information about

when knowledge was acquired is also kept, this form of łindirect

monotonicityž can be exploited to avoid examining all components

of a vector timestamp.

The flat structure of vector clocks misses the transitivity of in-

formation sharing, and thus arguments based on monotonicity are

lost, resulting in vacuous operations. On the other hand, tree clocks

maintain transitivity in their hierarchical structure. This enables

reasoning about direct and indirect monotonicity, and thus avoid

redundant operations.

3.2 Tree Clocks

We now present the tree clock data structure in detail.

Tree clocks. A tree clock TC consists of the following.

1. T = (V, E) is a rooted tree of nodes of the form (tid, clk, aclk) ∈

Thrds ×N2. Every node 𝑢 stores its children in an ordered list

Chld(𝑢) of descending aclk order.We also store a pointer Prnt(𝑢)

of 𝑢 to its parent in T.

2. ThrMap: Thrds →V is a thread map, with the property that if

ThrMap(𝑡) = (tid, clk, aclk), then 𝑡 = tid.

𝑡4, 2,⊥

𝑡2, 2, 1

𝑡1, 1, 1

𝑡3, 2, 2

𝑡4, 2,⊥

𝑡3, 3, 2

𝑡1, 1, 1𝑡2, 1, 2

Figure 3: The tree clock of 𝑡4 after processing the event 𝑒7 in

the traces of Figure 2a (left) and Figure 2b (right).

We denote by T . root the root of T, and for a tree clock TC we refer

by TC . T and TC .ThrMap to the rooted tree and thread map of TC,

respectively. For a node 𝑢 = (tid, clk, aclk) of T, we let 𝑢. tid = tid,

𝑢. clk = clk and 𝑢. aclk = aclk, and say that 𝑢 points to the unique

event 𝑒 with tid(𝑒) = tid and lTime (𝑒) = clk. Intuitively, if 𝑣 =

Prnt(𝑢), then 𝑢 represents the following information.

1. TC has the local time 𝑢. clk for thread 𝑢. tid.

2. 𝑢. aclk is the attachment time of 𝑣 . tid, which is the local time of

𝑣 when 𝑣 learned about 𝑢. clk of 𝑢. tid (this will be the time that

𝑣 had when 𝑢 was attached to 𝑣).

Naturally, if 𝑢 = T . root then 𝑢. aclk = ⊥. See Figure 3.

Tree clock operations. Just like vector clocks, tree clocks provide

functions for initialization, update and comparison. There are two

main operations worth noting. The first is Join Ð TC1 .Join(TC2)

joins the tree clock TC2 to TC1. In contrast to vector clocks, this

operation takes advantage of the direct and indirect monotonicity

outlined in Section 3.1 to perform the join in sublinear time in the

size of TC1 and TC2 (when possible). The second is MonotoneCopy.

We use TC1 .MonotoneCopy(TC2) to copy TC2 to TC1 when we

know that TC1 ⊑ TC2. The idea is that when this holds, the copy op-

eration has the same semantics as the join, and hence the principles

that make Join run in sublinear time also apply to MonotoneCopy.

Algorithm 2 gives a pseudocode description of this functionality.

The functions on the left column present operations that can be

performed on tree clocks, while the right column lists helper rou-

tines for the more involved functions Join and MonotoneCopy. In

the following we give an intuitive description of each function.

1. Init(𝑡). This function initializes a tree clock TC𝑡 that belongs to

thread 𝑡 , by creating a node 𝑢 = (𝑡, 0,⊥). Node 𝑢 will always be the

root of TC𝑡 . This initialization function is only used for tree clocks

that represent the clocks of threads. Auxiliary tree clocks for storing

vector times of release events do not execute this initialization.

714

ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland Umang Mathur, Andreas Pavlogiannis, Hünkar Can Tunç, and Mahesh Viswanathan

Algorithm 2: The tree clock data structure.

// Initialize a tree clock for thread 𝑡

1 function Init(𝑡)

2 Let 𝑢 ← (𝑡, 0,⊥)

3 Make 𝑢 the root of T

4 LetThrMap(𝑡) ← 𝑢

// Get the clock for thread 𝑡

5 function Get(𝑡)

6 if TC .ThrMap(𝑡) ≠ ⊥ then

7 Let 𝑢 ←ThrMap(𝑡)

8 return 𝑢. clk

9 return 0

// Increment the clock of the root thread

10 function Increment(𝑖)

11 Let 𝑧 ← T . root

12 𝑧. clk← 𝑧. clk+𝑖

// True iff ⊑ TC′

13 function LessThan(TC′)

14 Let 𝑧 ← T . root

15 return 𝑧. clk ≤ TC′ .Get(𝑧. tid)

// Update with ⊔TC′

16 function Join(TC′)

17 Let 𝑧′ ← TC′ . T . root

18 if 𝑧′. clk ≤ Get(𝑧′. tid) then

19 return

20 Let S ← an empty stack

21 getUpdatedNodesJoin (S, 𝑧′)

22 detachNodes (S)

23 attachNodes (S)

// Place the updated subtree under the root of T

24 Let𝑤 ←ThrMap(𝑧′. tid)

25 Let 𝑧 ← T . root

26 Assign𝑤. aclk← 𝑧. clk

27 pushChild (𝑤 , 𝑧)

// Monotone copy, assumes that this ⊑ TC′

28 function MonotoneCopy(TC′)

29 Let 𝑧′ ← TC′ . T . root

30 Let 𝑧 ← T . root

31 Let S ← an empty stack

32 getUpdatedNodesCopy (S, 𝑧′, 𝑧)

33 detachNodes (S)

34 attachNodes (S)

// New root has the same tid as the root of TC′ . T

35 Assign T . root←ThrMap(𝑧′. tid)

// Populate S with a pre-order traversal of the subtree rooted at 𝑢′

with nodes whose clock has progressed

36 routine getUpdatedNodesJoin(S, 𝑢 ′)

37 foreach 𝑣 ′ in Chld(𝑢 ′) do

38 if Get(𝑣 ′. tid) < 𝑣 ′. clk then getUpdatedNodesJoin (S, 𝑣 ′) ;

39 else if 𝑣 ′. aclk ≤ Get(𝑢 ′. tid) then break;

40 Push 𝑢 ′ in S

// Detach from T the nodes with tid that appears in S

41 routine detachNodes(S)

42 foreach 𝑣 ′ in S do

43 if ThrMap(𝑣 ′. tid) ≠ ⊥ then

44 Let 𝑣 ←ThrMap(𝑣 ′. tid)

45 if 𝑣 ≠ T . root then

46 Let 𝑥 ← Prnt(𝑣)

47 Remove 𝑣 from Chld(𝑥)

// Re-attach the nodes of T with tid that appears in S to obtain the

shape corresponding to TC′ . T

48 routine attachNodes(S)

49 while S is not empty do

50 Let 𝑢 ′ ← pop S

51 if ThrMap(𝑢 ′. tid) ≠ ⊥ then

52 Let 𝑢 ←ThrMap(𝑢 ′. tid)

53 else

54 Let 𝑢 ← (𝑢 ′. tid, 0,⊥)

55 Let ThrMap(𝑢. tid) ← 𝑢

56 Assign 𝑢. clk← 𝑢 ′. clk

57 Let 𝑦′ ← Prnt(𝑢 ′)

58 if 𝑦′ ≠ ⊥ then

59 Assign 𝑢. aclk← 𝑢 ′. aclk

60 Let 𝑦 ←ThrMap(𝑦′. tid)

61 pushChild (𝑢, 𝑦)

// Similar to getUpdatedNodesJoin

62 routine getUpdatedNodesCopy(S, 𝑢 ′, 𝑧)

63 foreach 𝑣 ′ in Chld(𝑢 ′) do

64 if Get(𝑣 ′. tid) < 𝑣 ′. clk then

65 getUpdatedNodesCopy (S, 𝑣 ′, 𝑧)

66 else

67 if 𝑧 ≠ ⊥ and 𝑣 ′. tid = 𝑧. tid then Push 𝑣 ′ in S ;

68 if 𝑣 ′. aclk ≤ Get(𝑢 ′. tid) then break;

69 Push 𝑢 ′ in S

// Push 𝑢 in the front of head of Chld(𝑣)

70 routine pushChild(𝑢, 𝑣)

71 Assign Prnt(𝑢) ← 𝑣

72 Push 𝑢 to the front of Chld(𝑣)

2. Get(𝑡). This function simply returns the time of thread 𝑡 stored

in TC, while it returns 0 if 𝑡 is not present in TC.

3. Increment(𝑖). This function increments the time of the root node

of TC. It is only used on tree clocks that have been initialized using

Init, i.e., the tree clock belongs to a thread that is always stored in

the root of the tree.

4. LessThan(TC′). This function compares the vector time of TC

to the vector time of TC′, i.e., it returns True iff TC ⊑ TC′.

715

A Tree Clock Data Structure for Causal Orderings in Concurrent Executions ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland

𝑡1, 16,⊥

𝑡3, 17, 7𝑡2, 20, 9

𝑡7, 11, 2𝑡6, 15, 8

𝑡10, 2, 15

𝑡5, 4, 14

𝑡9, 10, 4

𝑡12, 2, 4𝑡11, 8, 7

𝑡4, 23, 18

𝑡8, 2, 19

TC1

𝑡12, 25,⊥

𝑡7, 24, 16

𝑡11, 15, 7

𝑡2, 14, 9

𝑡6, 15, 8

𝑡4, 31, 20

𝑡5, 8, 20

𝑡1, 4, 4

𝑡3, 10, 4

𝑡8, 10, 8

𝑡9, 16, 5

𝑡10, 6, 12

TC2

𝑡12, 25,⊥

𝑡7, 24, 16

𝑡11, 15, 7𝑡4, 31, 20

𝑡5, 8, 20

𝑡8, 10, 8

𝑡9, 16, 5

𝑡10, 6, 12

𝑡1, 16, 25

𝑡3, 17, 7𝑡2, 20, 9

𝑡6, 15, 8

TC′2

Figure 4: Illustration of TC2 .Join(TC1). Light graymarks the nodes of TC1 whose time is compared to the time of the respective

thread in TC2 (i.e., the total iterations in Line 37). Dark gray marks the nodes that are updating/being updated (i.e., the size of

S). TC′2 is the result of the join, where dark gray marks the sub-tree updated by Join.

𝑡1, 28,⊥

𝑡4, 12, 5𝑡3, 14, 7

𝑡8, 8, 2𝑡7, 8, 4

𝑡11, 7, 5

𝑡12, 15, 2

𝑡6, 8, 9

𝑡10, 2, 2

𝑡9, 9, 6

𝑡2, 13, 9

𝑡5, 8, 11

TC1

𝑡3, 14,⊥

𝑡8, 8, 2

𝑡5, 4, 4

𝑡2, 6, 2

𝑡7, 8, 4

𝑡11, 7, 5

𝑡12, 15, 2

𝑡6, 8, 9

𝑡10, 2, 2

𝑡9, 9, 6

𝑡1, 4, 2

𝑡4, 12, 5

TC2

𝑡1, 28,⊥

𝑡4, 12, 5𝑡3, 14, 7

𝑡8, 8, 2𝑡7, 8, 4

𝑡11, 7, 5

𝑡12, 15, 2

𝑡6, 8, 9

𝑡10, 2, 2

𝑡9, 9, 6

𝑡2, 13, 9

𝑡5, 8, 11

TC′2

Figure 5: Illustration of TC2 .MonotoneCopy(TC1). Light gray marks the nodes of TC1 whose time is compared to the time of the

respective thread in TC2 (i.e., the total iterations in Line 63). Dark gray marks the nodes that are updating/being updated (i.e.,

the size of S). TC′2 is the result of the copy, where dark gray marks the sub-tree updated by MonotoneCopy. Node (𝑡3, 14,⊥) (i.e.,

the root) of TC2 is updated although 𝑡3 has not progressed in TC1, as it is placed under the new root (𝑡1, 28,⊥) in TC′2.

5. Join(TC′). This function implements the join operation with

TC′, i.e., updating TC ← TC⊔TC′. At a high level, the function

performs the following steps.

1. Routine getUpdatedNodesJoin performs a pre-order traversal

of TC′, and gathers in a stack S the nodes of TC′ that have pro-

gressed in TC′ compared to TC. The traversal may stop early due

to direct or indirect monotonicity, hence, this routine generally

takes sub-linear time.

2. Routine detachNodes detaches from TC the nodes whose tid

appears in S, as these will be repositioned in the tree.

3. Routine attachNodes updates the nodes of TC that were de-

tached in the previous step, and repositions them in the tree.

This step effectively creates a subtree of nodes of TC that is iden-

tical to the subtree of TC′ that contains the progressed nodes

computed by getUpdatedNodesJoin.

4. Finally, the last 4 lines of Join attach the subtree constructed

in the previous step under the root 𝑧 of TC, at the front of the

Chld(𝑧) list.

Figure 4 provides an illustration.

6. MonotoneCopy(TC′). This function implements the copy oper-

ation TC ← TC′ assuming that TC ⊑ TC′. The function is very

similar to Join. The key difference is that this time, the root of TC is

always considered to have progressed in TC′, even if the respective

times are equal. This is required for changing the root of TC from

the current node to one with tid equal to the root of TC′. Figure 5

provides an illustration.

The crucial parts of Join and MonotoneCopy that exploit the

hierarchical structure of tree clocks are in getUpdatedNodesJoin

and getUpdatedNodesCopy. In each case, we proceed from a parent

𝑢 ′ to its children 𝑣 ′ only if 𝑢 ′ has progressed wrt its time in TC (re-

call Figure 2a), capturing direct monotonicity. Moreover, we proceed

from a child 𝑣 ′ of 𝑢 ′ to the next child 𝑣 ′′ (in order of appearance in

Chld(𝑢 ′)) only if TC is not yet aware of the attachment time of 𝑣 ′

on 𝑢 ′ (recall Figure 2b), capturing indirect monotonicity.

Remark 1 (Constant time epoch accesses). The functionTC .Get(𝑡)

returns the time of thread 𝑡 stored in TC in𝑂 (1) time, just like vector

clocks. This allows all epoch-related optimizations [24, 54] from vector

clocks to apply to tree clocks.

4 TREE CLOCKS FOR HAPPENS-BEFORE

Let us see how tree clocks are employed for computing the HB

partial order. We start with the following observation.

Lemma 2 (Monotonicity of copies). Right before Algorithm 1 pro-

cesses a lock-release event ⟨𝑡, rel(ℓ)⟩, we have Cℓ ⊑ C𝑡 .

Tree clocks forHB. Algorithm 3 shows the algorithm for comput-

ing HB using the tree clock data structure for implementing vector

times. When processing a lock-acquire event, the vector-clock join

716

ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland Umang Mathur, Andreas Pavlogiannis, Hünkar Can Tunç, and Mahesh Viswanathan

operation has been replaced by a tree-clock join. Moreover, in light

of Lemma 2, when processing a lock-release event, the vector-clock

copy operation has been replaced by a tree-clock monotone copy.

Algorithm 3: HB with tree clocks.

1 procedure acquire(𝑡 , ℓ)

2 C𝑡 .Join(Cℓ)

3 procedure release(𝑡 , ℓ)

4 Cℓ .MonotoneCopy(C𝑡)

Correctness.We now state the correctness of Algorithm 3, i.e., we

show that the algorithm indeed computes the HB partial order. We

start with two monotonicity invariants of tree clocks.

Lemma 3. Consider any tree clock C and node 𝑢 of C. T. For any

tree clock C′, the following assertions hold.

1. Direct monotonicity: If 𝑢. clk ≤ C′.Get(𝑢. tid) then for every

descendant𝑤 of 𝑢 we have that𝑤. clk ≤ C′.Get(𝑤. tid).

2. Indirect monotonicity: If 𝑣 . aclk ≤ C′.Get(𝑢. tid) where 𝑣 is a

child of 𝑢 then for every descendant𝑤 of 𝑣 we have that𝑤. clk ≤

C
′.Get(𝑤. tid).

The following lemma follows from the above invariants and

establishes that Algorithm 3 with tree clocks computes the correct

timestamps on all events, i.e., the correctness of tree clocks for HB.

Lemma 4. When Algorithm 3 processes an event 𝑒 , the vector time

stored in the tree clock Ctid(𝑒) is 𝐶
≤𝜎
HB

𝑒 .

Data structure optimality. Just like vector clocks, computingHB

with tree clocks takes Θ(𝑛 · 𝑘) time in the worst case, and it is

known that this quadratic bound is likely to be tight for common

applications such as dynamic race prediction [32]. However, we

have seen that tree clocks can take sublinear time on join and copy

operations, whereas vector clocks always require time linear in the

size of the vector (i.e., Θ(𝑘)). A natural question arises: is there a

more efficient data structure than tree clocks? More generally, what

is the most efficient data structure for the HB algorithm to repre-

sent vector times? To answer this question, we define vector-time

work, which gives a lower bound on the number of data structure

operations that HB has to perform regardless of the actual data

structure used to store vector times. Then, we show that tree clocks

match this lower bound, hence achieving optimality for HB.

Vector-time work. Consider the general HB algorithm (Algo-

rithm 1) and let𝔇 = {C1,C2, . . . ,C𝑚} be the set of the vector-time

data structures used. Consider the execution of the algorithm on a

trace 𝜎 . Given some 1 ≤ 𝑖 ≤ |𝜎 |, we let 𝐶𝑖
𝑗
denote the vector time

represented by C𝑗 after the algorithm has processed the 𝑖-th event

of 𝜎 . We define the vector-time work (or vt-work, for short) on 𝜎 as

VTWork(𝜎) =
∑

1≤𝑖≤ |𝜎 |

∑

𝑗

|𝑡 ∈Thrds : 𝐶𝑖−1
𝑗 (𝑡) ≠ 𝐶𝑖

𝑗 (𝑡) |.

In words, for every processed event, we add the number of vector-

time entries that change as a result of processing the event, and

VTWork(𝜎) counts the total number of entry updates in the overall

course of the algorithm. Note that vt-work is independent of the

data structure used to represent eachC𝑗 , and satisfies the inequality

𝑛 ≤ VTWork(𝜎) ≤ 𝑛 · 𝑘.

as with every event of 𝜎 the algorithm updates one of C𝑗 .

Vector-time optimality. Given an input trace 𝜎 , we denote by

TDS (𝜎) the time taken by the HB algorithm (Algorithm 1) to pro-

cess 𝜎 using the data structure DS to store vector times. Intuitively,

VTWork(𝜎) captures the number of times that instances of DS

change state. For data structures that represent vector times ex-

plicitly, VTWork(𝜎) presents a natural lower bound for TDS (𝜎).

Hence, we say that the data structure DS is vt-optimal if TDS (𝜎) =

𝑂 (VTWork(𝜎)). It is not hard to see that vector clocks are not vt-

optimal, i.e., taking DS = VC to be the vector clock data structure,

one can construct simple traces 𝜎 where VTWork(𝜎) = 𝑂 (𝑛) but

TDS (𝜎) = Ω(𝑛 · 𝑘), and thus the running time is 𝑘 times more than

the vt-work that must be performed on 𝜎 . In contrast, the following

theorem states that tree clocks are vt-optimal.

Theorem 1 (Tree-clock Optimality). For any input trace 𝜎 , we

have TTC (𝜎) = 𝑂 (VTWork(𝜎)).

The key observation behind Theorem 1 is that, when HB uses

tree clocks, the total number of tree-clock entries that are accessed

over all join andmonotone copy operations (i.e., the sum of the sizes

of the light-gray areas in Figure 4 and Figure 5) is ≤ 3 ·VTWork(𝜎).

Remark 2. Theorem 1 establishes strong optimality for tree clocks,

in the sense that they are vt-optimal on every input. This is in contrast

to usual notions of optimality that is guaranteed on only some inputs.

5 TREE CLOCKS IN OTHER PARTIAL
ORDERS

5.1 Schedulable-Happens-Before

SHB is a strengthening of HB, introduced recently [37] in the con-

text of race detection. Given a trace 𝜎 and a read event r let lw𝜎 (r)

be the last write event of 𝜎 before rwith Variable(w) = Variable(r).

SHB is the smallest partial order that satisfies the following.

1. ≤𝜎
HB
⊆≤𝜎

SHB
.

2. for every read event r, we have lw𝜎 (r) ≤
𝜎
SHB

r.

Algorithm for SHB. Similarly toHB, the SHB partial order is com-

puted by a single pass of the input trace 𝜎 using vector-times [37].

The SHB algorithm processes synchronization events (i.e., acq(ℓ)

and rel(ℓ)) similarly to HB. In addition, for each variable 𝑥 , the

algorithm maintains a data structure LW𝑥 that stores the vector

time of the latest write event on 𝑥 . When a write event w(𝑥) is en-

countered, the vector time Ctid(w) is copied to LW𝑥 . In turn, when a

read event r(𝑥) is encountered the algorithm joins LW𝑥 to Ctid(r) .

SHBwith tree clocks. Tree clocks can directly be used as the data

structure to store vector times in the SHB algorithm. We refer to

Algorithm 4 for the pseudocode. The important new component is

the function CopyCheckMonotone in Line 8 that copies the vector

time of C𝑡 to LW𝑥 . In contrast to MonotoneCopy, this copy is not

guaranteed to be monotone, i.e., we might have LW𝑥 ̸⊑ C𝑡 . Note,

however, that using tree clocks, this test requires only constant

time. Internally, CopyCheckMonotone performs MonotoneCopy if

LW𝑥 ⊑ C𝑡 (running in sublinear time), otherwise it performs a

deep copy for the whole tree clock (running in linear time). In

practice, we expect that most of the times CopyCheckMonotone

results in MonotoneCopy and thus is very efficient. The key insight

is that if MonotoneCopy is not used, then LW𝑥 ̸⊑ C𝑡 and thus we

have a race (lw𝜎 (r), r). Hence, the number of times a deep copy

717

A Tree Clock Data Structure for Causal Orderings in Concurrent Executions ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland

Algorithm 4: SHB with tree clocks.

1 procedure acquire(𝑡 , ℓ)

2 C𝑡 .Join(Lℓ)

3 procedure read(𝑡 , 𝑥)

4 C𝑡 .Join(LW𝑥)

5 procedure release(𝑡 , ℓ)

6 Lℓ .MonotoneCopy(C𝑡)

7 procedure write(𝑡 , 𝑥)

8 LW𝑥 .CopyCheckMonotone(C𝑡)

Algorithm 5: MAZ with tree clocks.

1 procedure acquire(𝑡 , ℓ)

2 C𝑡 .Join(Lℓ)

3 procedure read(𝑡 , 𝑥)

4 C𝑡 .Join(LW𝑥)

5 R𝑡,𝑥 .MonotoneCopy(C𝑡)

6 LRDs𝑥 ← LRDs𝑥 ∪{𝑡}

7 procedure release(𝑡 , ℓ)

8 Lℓ .MonotoneCopy(C𝑡)

9 procedure write(𝑡 , 𝑥)

10 C𝑡 .Join(LW𝑥)

11 foreach 𝑡 ′ ∈ LRDs𝑥 do

12 C𝑡 .Join(R𝑡 ′,𝑥)

13 LW𝑥 .MonotoneCopy(C𝑡)

14 LRDs𝑥 ← ∅

is performed is bounded by the number of write-read races in 𝜎

between a read and its last write.

5.2 The Mazurkiewicz Partial Order

The Mazurkiewicz partial order (MAZ) [44] has been the canonical

way to represent concurrent executions algebraically using an inde-

pendence relation that defines which events can be reordered. This

algebraic treatment allows to naturally lift language-inclusion prob-

lems from the verification of sequential programs to concurrent

programs [8]. As such, it has been the most studied partial order

in the context of concurrency, with deep applications in dynamic

analyses [26, 42, 46], ensuring consistency [61] and stateless model

checking [27]. In shared memory concurrency, the standard inde-

pendence relation deems two events as dependent if they conflict,

and independent otherwise [29]. In particular, MAZ is the smallest

partial order that satisfies the following conditions.

1. ≤𝜎
HB
⊆≤𝜎

MAZ
.

2. for every two events 𝑒1, 𝑒2 such that 𝑒1 ≤
𝜎
tr 𝑒2 and 𝑒1 ≍ 𝑒2, we

have 𝑒1 ≤
𝜎
MAZ

𝑒2.

MAZwith tree clocks. The algorithm for computingMAZ is sim-

ilar to that for SHB. The main difference is that MAZ includes

read-to-write orderings, and thus we need to store additional vec-

tor times R𝑡,𝑥 of the last event r(𝑥) of thread 𝑡 . In addition, we

use the set LRDs𝑥 to store the threads that have executed a r(𝑥)

event after the latest w(𝑥) event so far. This allows us to only spend

computation time in the first read-to-write ordering, as orderings

between the read event and later write events follow transitively

via intermediate write-to-write orderings. Overall, this approach

yields the efficient time complexity 𝑂 (𝑛 · 𝑘) forMAZ, similarly to

HB and SHB. We refer to Algorithm 5 for the pseudocode.

6 EXPERIMENTS

In this section we report on an implementation and experimental

evaluation of the tree clock data structure. The primary goal of

these experiments is to evaluate the practical advantage of tree

clocks over the vector clocks for keeping track of logical times in a

concurrent program executions.

Implementation. Our implementation is in Java and closely fol-

lows Algorithm 2. The tree clock data structure is represented as

two arrays of length 𝑘 (number of threads), the first one encod-

ing the shape of the tree and the second one encoding the integer

timestamps as in a standard vector clock. For efficiency reasons,

recursive routines have been made iterative.

Benchmarks.Our benchmark set consists of standard benchmarks

found in benchmark suites and recent literature. In particular, we

used the Java benchmarks from the IBM Contest suite [20], Java

Grande suite [64], DaCapo [10], and SIR [17]. In addition, we used

OpenMP benchmark programs, whose execution lenghts and num-

ber of threads can be tuned, from DataRaceOnAccelerator [58],

DataRaceBench [34], OmpSCR [18] and the NAS parallel bench-

marks [7], as well as large OpenMP applications contained in the fol-

lowing benchmark suites: CORAL [1, 2], ECP proxy applications [3],

and Mantevo project [4]. Each benchmark was instrumented and

executed in order to log a single concurrent trace, using the tools

RV-Predict [55] (for Java programs) and ThreadSanitizer [60] (for

OpenMP programs). Overall, this process yielded a large set of

153 benchmark traces that were used in our evaluation. Table 1

presents aggregate information about the benchmark traces gen-

erated. Information on the individual traces is provided in our

technical report [39].

Table 1: Trace Statistics

Min Max Mean Min Max Mean

Threads 3 222 31 Events 51 2.1B 227M

Locks 1 60.5k 688 Sync. Events (%) 0.0 44.4 9.5

Variables 18 37.8M 1.8M R/W Events (%) 55.6 100 90.5

Setup. Each trace was processed for computing each of theMAZ,

SHB and HB partial orders using both tree clocks and the stan-

dard vector clocks. This allows us to directly measure the speedup

conferred by tree clocks in computing the respective partial order,

which is the goal of this paper.

As the computation of these partial orders is usually the first

component of any analysis, in general, we evaluated the impact of

the conferred speedup in an overall analysis as follows. For each

pair of conflicting events 𝑒1, 𝑒2, we computed whether these events

are concurrent wrt the corresponding partial order (e.g., whether

𝑒1 ∥
𝜎
HB

𝑒2). This test is performed in dynamic race detection (in the

cases of HB and SHB) where such pairs constitute data races, as

well in stateless model checking (in the case of MAZ) where the

model checker identifies such event pairs and attempts to reverse

their order on its way to exhaustively enumerate all Mazurkiewicz

traces of the concurrent program. For a fair comparison, in the case

of HB we used common epoch optimizations [24] to speed up the

analysis for both tree clocks and vector clocks (recall Remark 1).

For consistency, every measurement was repeated 3 times and the

average time was reported.

Running times. For each partial order, Table 2 shows the average

speedup over all benchmarks, both with and without the analysis

718

A Tree Clock Data Structure for Causal Orderings in Concurrent Executions ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland

A ARTIFACT APPENDIX

A.1 Abstract

This artifact contains all the source codes and experimental data

for replicating our evaluation in Section 6. We implemented the

analyses programs as part of the tool Rapid [36]. The provided

experimental data contains all the 153 trace logs used in our eval-

uation. In our artifact we also provide Python scripts that fully

automate the process of replicating our evaluation.

A.2 Artifact Check-List (Meta-Information)
• Algorithm: Tree Clock

• Data set: Trace logs obtained from the benchmarks described in

Section 6.

• Metrics: Execution time.

• Output: CSV files and graphs (optional).

• How much disk space required (approximately)?: 150 GB.

• Howmuch time is needed to prepareworkflow (approximate-

ly)?: We provide all the scripts that automate our workflow.

• Howmuch time is needed to complete experiments (approx-

imately)?: Replicating all the results: 15 days (without paralleliza-

tion). Replicating a small set of results: 1 day (without parallelization).

We also provide instructions for parallelizing the computation (see

Section A.6).

• Publicly available?: Yes [38].

• Code licenses (if publicly available)?: MIT License.

• Data licenses (if publicly available)?: None.

• Archived (provide DOI)?: doi.org/10.5281/zenodo.5749092

A.3 Description

A.3.1 How to Access. Obtain the artifact from [38]. The total size

is expected to be approximately 50 MB.

A.3.2 Hardware Dependencies. Replicating the results of large

benchmarks requires up to 60 GB RAM. Otherwise, there are no

special hardware requirements for using our artifact.

A.3.3 Software Dependencies. Java 11, Ant 1.10 or higher, Python

3.7 or higher, including the packages pandas and matplotlib.

A.3.4 Data Sets. The trace logs are available for download at [5].

A.4 Installation

Obtain the artifact (see Section A.3.1), extract the archive files and

set the $AE_HOME environment variable:

> export AE_HOME=/path/to/AE

Next, install Rapid:

> cd $AE_HOME/rapid/

> ant jar

Then, download the benchmark traces (see Section A.3.4) into

the folder $AE_HOME/benchmarks/.

A.5 Experiment Workflow

In Figure 11 we display the directory structure of our artifact. The

directory rapid contains the Rapid tool which includes our imple-

mentation of the tree clock and vector clock data structures and the

analyses programs based on HB, SHB andMAZ partial orders. The

directory benchmarks is designated for the trace logs. The direc-

tory scripts contains a collection of helper scripts that automate

our workflow. In particular, the script $AE_HOME/scripts/run.py

can be utilized to automate the process of replicating the results of

Section 6. In Section A.6 we describe how the script can be used

to replicate all or part of our experimental evaluation. In addition,

Section A.7 contains instructions on how the script can be used to

evaluate a new trace log that is not part of the original benchmark

set. The README.md file provides more comprehensive information

on certain aspects of our artifact.

AE_HOME/

|--- rapid/

|--- benchmarks/

|--- scripts/

|--- results/

|--- LICENSE.txt

|--- README.md

Figure 11: Directory structure of the artifact

A.6 Evaluation and Expected Results

Executing the following command will run all the analyses on all

the trace logs:

> python $AE_HOME/scripts/run.py -b all

The outputs of the executions will be extracted as CSV files under

the folder $AE_HOME/results/. Note that this command expects

to locate the benchmarks used in our evaluation (see Section A.3.4)

under the folder $AE_HOME/benchmarks/.

The main goal of this evaluation is to measure the performance

benefits of tree clocks over vector clocks for keeping track of logical

times in concurrent programs. We expect that the overall speedup

would remain similar to the speedups reported in Table 2 for each

category. After the CSV output files have been generated, the

script $AE_HOME/scripts/compute_averages.pymay be utilized

to compute the average speedup for each category and replicate

the Table 2:

> python $AE_HOME/scripts/compute_averages.py

$AE_HOME/results/

This script expects the path to the results folder as argument and

outputs a file named table2.csv under the same folder which cor-

responds to replication of Table 2. Similarly, the script $AE_HOME/

scripts/plot.py can be utilized to visualize the obtained outputs

and replicate the Figure 6:

> python $AE_HOME/scripts/plot.py $AE_HOME/results/

This script also expects the path to the results folder as argument

and outputs the plot files under the folder $AE_HOME/results/

plots which corresponds to replication of Figure 6.

We remark that, as also indicated in Section A.2, replicating the

whole evaluation can take very long if executed serially. We refer

the interested readers to the file $AE_HOME/README.md where we

describe a procedure which may be utilized to parallelize the eval-

uation. Furthermore, the script $AE_HOME/scripts/run.py also

provides an option to replicate only parts of our experimental eval-

uation. The following command runs the analyses on a small set of

benchmarks which require moderate system resources and reduced

computation time:

722

ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland Umang Mathur, Andreas Pavlogiannis, Hünkar Can Tunç, and Mahesh Viswanathan

> python $AE_HOME/scripts/run.py -b small

We refer the readers to the $AE_HOME/README.md file for more

detailed information on customizing the experiments.

A.7 Experiment Customization

Users might utilize the script $AE_HOME/scripts/run.py to eval-

uate a new trace log that is not part of our original benchmark set.

This can be achieved with the following command:

> python $AE_HOME/scripts/run.py -p path/to/trace -n

output-folder-name

The above command will run all the analyses on the input trace

located in path/to/trace and extract the output CSV files into

$AE_HOME/results/output-folder-name. Note that the given in-

put trace must be in one of the formats admitted by the Rapid

tool. Readers may refer to the $AE_HOME/rapid/README.md file for

information regarding the formats admitted by Rapid.

A.8 Notes

We note that the reported execution times correspond to the time

taken for performing the respective analyses and do not include

the time taken for processing the input files. Hence, the actual

execution times are expected to be longer than the reported times.

REFERENCES
[1] [n.d.]. CORAL-2 Benchmarks. https://asc.llnl.gov/coral-2-benchmarks. Accessed:

2021-08-01.
[2] [n.d.]. CORAL Benchmarks. https://asc.llnl.gov/coral-benchmarks. Accessed:

2021-08-01.
[3] [n.d.]. ECP Proxy Applications. https://proxyapps.exascaleproject.org. Accessed:

2021-08-01.
[4] [n.d.]. Mantevo Project. https://mantevo.org. Accessed: 2021-08-01.
[5] 2022. Trace logs used in Section 6. https://uillinoisedu-

my.sharepoint.com/:f:/g/personal/umathur3_illinois_edu/
EskC1fg2xhNHnim2ZYjDD9gBJqme8hBTgWShHUmOfYmF-Q.

[6] Kunal Agrawal, Joseph Devietti, Jeremy T. Fineman, I-Ting Angelina Lee, Robert
Utterback, and Changming Xu. 2018. Race Detection and Reachability in Nearly
Series-Parallel DAGs. In Proceedings of the Twenty-Ninth Annual ACM-SIAM
Symposium on Discrete Algorithms (New Orleans, Louisiana) (SODA ’18). Society
for Industrial and Applied Mathematics, USA, 156ś171. https://doi.org/10.1137/
1.9781611975031.11

[7] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter, L. Dagum,
R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S. Schreiber, H. D. Simon,
V. Venkatakrishnan, and S. K. Weeratunga. 1991. The NAS Parallel Bench-
marksÐSummary and Preliminary Results. In Proceedings of the 1991 ACM/IEEE
Conference on Supercomputing (Albuquerque, New Mexico, USA) (Supercomput-
ing ’91). Association for Computing Machinery, New York, NY, USA, 158ś165.
https://doi.org/10.1145/125826.125925

[8] A. Bertoni, G. Mauri, and N. Sabadini. 1989. Membership problems for regular
and context-free trace languages. Information and Computation 82, 2 (1989),
135ś150. https://doi.org/10.1016/0890-5401(89)90051-5

[9] Swarnendu Biswas, Jipeng Huang, Aritra Sengupta, and Michael D. Bond. 2014.
DoubleChecker: Efficient Sound and Precise Atomicity Checking. In Proceedings
of the 35th ACM SIGPLAN Conference on Programming Language Design and
Implementation (Edinburgh, United Kingdom) (PLDI ’14). ACM, New York, NY,
USA, 28ś39. https://doi.org/10.1145/2594291.2594323

[10] StephenM. Blackburn, Robin Garner, Chris Hoffmann, AsjadM. Khang, Kathryn S.
McKinley, Rotem Bentzur, Amer Diwan, Daniel Feinberg, Daniel Frampton,
Samuel Z. Guyer, Martin Hirzel, Antony Hosking, Maria Jump, Han Lee, J. Eliot B.
Moss, Aashish Phansalkar, Darko Stefanović, Thomas VanDrunen, Daniel von
Dincklage, and Ben Wiedermann. 2006. The DaCapo Benchmarks: Java Bench-
marking Development and Analysis. In Proceedings of the 21st Annual ACM
SIGPLANConference on Object-Oriented Programming Systems, Languages, and Ap-
plications (Portland, Oregon, USA) (OOPSLA ’06). Association for Computing Ma-
chinery, New York, NY, USA, 169ś190. https://doi.org/10.1145/1167473.1167488

[11] Hans-J. Boehm. 2011. How to Miscompile Programs with łBenignž Data Races.
In Proceedings of the 3rd USENIX Conference on Hot Topic in Parallelism (Berkeley,
CA) (HotPar’11). USENIX Association, USA, 3. http://dl.acm.org/citation.cfm?
id=2001252.2001255

[12] Michael D. Bond, Milind Kulkarni, Man Cao, Minjia Zhang, Meisam Fathi Salmi,
Swarnendu Biswas, Aritra Sengupta, and Jipeng Huang. 2013. OCTET: Capturing
and Controlling Cross-Thread Dependences Efficiently. In Proceedings of the
2013 ACM SIGPLAN International Conference on Object Oriented Programming
Systems Languages & Applications (Indianapolis, Indiana, USA) (OOPSLA ’13).
Association for Computing Machinery, New York, NY, USA, 693ś712. https:
//doi.org/10.1145/2509136.2509519

[13] Bernadette Charron-Bost. 1991. Concerning the size of logical clocks in dis-
tributed systems. Inform. Process. Lett. 39, 1 (1991), 11 ś 16. https://doi.org/10.
1016/0020-0190(91)90055-M

[14] Guang-Ien Cheng, Mingdong Feng, Charles E. Leiserson, Keith H. Randall, and
Andrew F. Stark. 1998. Detecting Data Races in Cilk Programs That Use Locks.
In Proceedings of the Tenth Annual ACM Symposium on Parallel Algorithms and
Architectures (Puerto Vallarta, Mexico) (SPAA ’98). ACM, New York, NY, USA,
298ś309. https://doi.org/10.1145/277651.277696

[15] Joseph Devietti, Benjamin P. Wood, Karin Strauss, Luis Ceze, Dan Grossman, and
Shaz Qadeer. 2012. RADISH: Always-on Sound and Complete Race Detection
in Software and Hardware. In Proceedings of the 39th Annual International Sym-
posium on Computer Architecture (Portland, Oregon) (ISCA ’12). IEEE Computer
Society, USA, 201ś212. https://doi.org/10.1109/ISCA.2012.6237018

[16] Dimitar Dimitrov, Martin Vechev, and Vivek Sarkar. 2015. Race Detection in
Two Dimensions. In Proceedings of the 27th ACM Symposium on Parallelism in
Algorithms and Architectures (Portland, Oregon, USA) (SPAA ’15). Association for
Computing Machinery, New York, NY, USA, 101ś110. https://doi.org/10.1145/
2755573.2755601

[17] Hyunsook Do, Sebastian G. Elbaum, and Gregg Rothermel. 2005. Supporting
Controlled Experimentation with Testing Techniques: An Infrastructure and its
Potential Impact. Empirical Software Engineering: An International Journal 10, 4
(2005), 405ś435. https://doi.org/10.1007/s10664-005-3861-2

[18] A.J. Dorta, C. Rodriguez, and F. de Sande. 2005. The OpenMP source code
repository. In 13th Euromicro Conference on Parallel, Distributed and Network-
Based Processing. 244ś250. https://doi.org/10.1109/EMPDP.2005.41

[19] Tayfun Elmas, Shaz Qadeer, and Serdar Tasiran. 2007. Goldilocks: A Race
and Transaction-Aware Java Runtime. In Proceedings of the 28th ACM SIG-
PLAN Conference on Programming Language Design and Implementation (San
Diego, California, USA) (PLDI ’07). ACM, New York, NY, USA, 245ś255. https:
//doi.org/10.1145/1250734.1250762

[20] Eitan Farchi, Yarden Nir, and Shmuel Ur. 2003. Concurrent Bug Patterns and
How to Test Them. In Proceedings of the 17th International Symposium on Parallel
and Distributed Processing (IPDPS ’03). IEEE Computer Society, Washington, DC,
USA, 286.2ś. http://dl.acm.org/citation.cfm?id=838237.838485

[21] Mingdong Feng and Charles E. Leiserson. 1997. Efficient Detection of Deter-
minacy Races in Cilk Programs. In Proceedings of the Ninth Annual ACM Sym-
posium on Parallel Algorithms and Architectures (Newport, Rhode Island, USA)
(SPAA ’97). Association for Computing Machinery, New York, NY, USA, 1ś11.
https://doi.org/10.1145/258492.258493

[22] Colin Fidge. 1991. Logical Time in Distributed Computing Systems. Computer
24, 8 (Aug. 1991), 28ś33. https://doi.org/10.1109/2.84874

[23] Colin J. Fidge. 1988. Timestamps in Message-Passing Systems That Preserve the
Partial Ordering. In Proc. 11th Australian Comput. Science Conf. 56ś66.

[24] Cormac Flanagan and Stephen N. Freund. 2009. FastTrack: Efficient and Precise
Dynamic Race Detection. In Proceedings of the 30th ACM SIGPLAN Conference on
Programming Language Design and Implementation (Dublin, Ireland) (PLDI ’09).
ACM, New York, NY, USA, 121ś133. https://doi.org/10.1145/1542476.1542490

[25] Cormac Flanagan and Stephen N. Freund. 2013. RedCard: Redundant Check Elim-
ination for Dynamic Race Detectors. In ECOOP 2013 ś Object-Oriented Program-
ming, Giuseppe Castagna (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg,
255ś280. https://doi.org/10.1007/978-3-642-39038-8_11

[26] Cormac Flanagan, Stephen N. Freund, and Jaeheon Yi. 2008. Velodrome: A
Sound and Complete Dynamic Atomicity Checker for Multithreaded Programs.
In Proceedings of the 29th ACM SIGPLAN Conference on Programming Language
Design and Implementation (Tucson, AZ, USA) (PLDI ’08). ACM, New York, NY,
USA, 293ś303. https://doi.org/10.1145/1375581.1375618

[27] Cormac Flanagan and Patrice Godefroid. 2005. Dynamic Partial-Order Reduction
for Model Checking Software. In Proceedings of the 32nd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (Long Beach, California,
USA) (POPL ’05). Association for Computing Machinery, New York, NY, USA,
110ś121. https://doi.org/10.1145/1040305.1040315

[28] Kaan Genç, Jake Roemer, Yufan Xu, and Michael D. Bond. 2019. Dependence-
Aware, Unbounded Sound Predictive Race Detection. Proc. ACM Program. Lang.
3, OOPSLA, Article 179 (Oct. 2019), 30 pages. https://doi.org/10.1145/3360605

[29] Patrice Godefroid, J. van Leeuwen, J. Hartmanis, G. Goos, and Pierre Wolper. 1996.
Partial-Order Methods for the Verification of Concurrent Systems: An Approach to
the State-Explosion Problem. Springer-Verlag, Berlin, Heidelberg.

[30] Ayal Itzkovitz, Assaf Schuster, and Oren Zeev-Ben-Mordehai. 1999. Toward
Integration of Data Race Detection in DSM Systems. J. Parallel Distrib. Comput.
59, 2 (Nov. 1999), 180ś203. https://doi.org/10.1006/jpdc.1999.1574

723

A Tree Clock Data Structure for Causal Orderings in Concurrent Executions ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland

[31] Dileep Kini, Umang Mathur, and Mahesh Viswanathan. 2017. Dynamic Race
Prediction in Linear Time. In Proceedings of the 38th ACM SIGPLAN Conference on
Programming Language Design and Implementation (Barcelona, Spain) (PLDI 2017).
ACM, New York, NY, USA, 157ś170. https://doi.org/10.1145/3062341.3062374

[32] Rucha Kulkarni, Umang Mathur, and Andreas Pavlogiannis. 2021. Dynamic Data-
Race Detection Through the Fine-Grained Lens. In 32nd International Conference
on Concurrency Theory (CONCUR 2021) (Leibniz International Proceedings in
Informatics (LIPIcs), Vol. 203), Serge Haddad and Daniele Varacca (Eds.). Schloss
Dagstuhl ś Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 16:1ś16:23.
https://doi.org/10.4230/LIPIcs.CONCUR.2021.16

[33] Leslie Lamport. 1978. Time, Clocks, and the Ordering of Events in a Distributed
System. Commun. ACM 21, 7 (July 1978), 558ś565. https://doi.org/10.1145/
359545.359563

[34] Chunhua Liao, Pei-Hung Lin, Joshua Asplund, Markus Schordan, and Ian Karlin.
2017. DataRaceBench: A Benchmark Suite for Systematic Evaluation of Data
Race Detection Tools. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis (Denver, Colorado)
(SC ’17). Association for Computing Machinery, New York, NY, USA, Article 11,
14 pages. https://doi.org/10.1145/3126908.3126958

[35] Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou. 2008. Learning from
Mistakes: A Comprehensive Study on Real World Concurrency Bug Characteris-
tics. In Proceedings of the 13th International Conference on Architectural Support for
Programming Languages and Operating Systems (Seattle, WA, USA) (ASPLOS XIII).
ACM, New York, NY, USA, 329ś339. https://doi.org/10.1145/1346281.1346323

[36] Umang Mathur. 2019. RAPID. https://github.com/umangm/rapid. Accessed:
2021-08-01.

[37] Umang Mathur, Dileep Kini, and Mahesh Viswanathan. 2018. What Happens-
after the First Race? Enhancing the Predictive Power of Happens-before Based
Dynamic Race Detection. Proc. ACM Program. Lang. 2, OOPSLA, Article 145 (Oct.
2018), 29 pages. https://doi.org/10.1145/3276515

[38] Umang Mathur, Andreas Pavlogiannis, Hünkar Can Tunç, and Mahesh
Viswanathan. 2021. Artifact for "A Tree Clock Data Structure for Causal Orderings
in Concurrent Executions". https://doi.org/10.5281/zenodo.5749092

[39] Umang Mathur, Andreas Pavlogiannis, Hünkar Can Tunç, and Mahesh
Viswanathan. 2022. A Tree Clock Data Structure for Causal Orderings in Con-
current Executions. arXiv:2201.06325 [cs.LO]

[40] Umang Mathur, Andreas Pavlogiannis, and Mahesh Viswanathan. 2020. The
Complexity of Dynamic Data Race Prediction. In Proceedings of the 35th Annual
ACM/IEEE Symposium on Logic in Computer Science (Saarbrücken, Germany)
(LICS ’20). Association for Computing Machinery, New York, NY, USA, 713ś727.
https://doi.org/10.1145/3373718.3394783

[41] Umang Mathur, Andreas Pavlogiannis, and Mahesh Viswanathan. 2021. Optimal
Prediction of Synchronization-Preserving Races. Proc. ACM Program. Lang. 5,
POPL, Article 36 (Jan. 2021), 29 pages. https://doi.org/10.1145/3434317

[42] Umang Mathur and Mahesh Viswanathan. 2020. Atomicity Checking in Linear
Time Using Vector Clocks. In Proceedings of the Twenty-Fifth International Confer-
ence on Architectural Support for Programming Languages and Operating Systems
(Lausanne, Switzerland) (ASPLOS ’20). Association for Computing Machinery,
New York, NY, USA, 183ś199. https://doi.org/10.1145/3373376.3378475

[43] FriedemannMattern. 1989. Virtual Time and Global States of Distributed Systems.
In Parallel and Distributed Algorithms: proceedings of the International Workshop
on Parallel & Distributed Algorithms, M. Cosnard et. al. (Ed.). Elsevier Science
Publishers B. V., 215ś226.

[44] Antoni Mazurkiewicz. 1987. Trace theory. In Petri Nets: Applications and Rela-
tionships to Other Models of Concurrency, W. Brauer, W. Reisig, and G. Rozen-
berg (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 278ś324. https:
//doi.org/10.1007/3-540-17906-2_30

[45] Madanlal Musuvathi, Shaz Qadeer, Thomas Ball, Gerard Basler, Pira-
manayagam Arumuga Nainar, and Iulian Neamtiu. 2008. Finding and Repro-
ducing Heisenbugs in Concurrent Programs. In Proceedings of the 8th USENIX
Conference on Operating Systems Design and Implementation (San Diego, Cal-
ifornia) (OSDI’08). USENIX Association, Berkeley, CA, USA, 267ś280. http:
//dl.acm.org/citation.cfm?id=1855741.1855760

[46] Robert H.B. Netzer and Barton P. Miller. 1990. On the Complexity of Event
Ordering for Shared-Memory Parallel Program Executions. In In Proceedings of
the 1990 International Conference on Parallel Processing. 93ś97.

[47] Robert O’Callahan and Jong-Deok Choi. 2003. Hybrid Dynamic Data Race
Detection. SIGPLAN Not. 38, 10 (June 2003), 167ś178. https://doi.org/10.1145/
966049.781528

[48] Andreas Pavlogiannis. 2019. Fast, Sound, and Effectively Complete Dynamic Race
Prediction. Proc. ACM Program. Lang. 4, POPL, Article 17 (Dec. 2019), 29 pages.
https://doi.org/10.1145/3371085

[49] Eli Pozniansky and Assaf Schuster. 2003. Efficient On-the-fly Data Race Detection
in Multithreaded C++ Programs. SIGPLAN Not. 38, 10 (June 2003), 179ś190.
https://doi.org/10.1145/966049.781529

[50] Raghavan Raman, Jisheng Zhao, Vivek Sarkar, Martin Vechev, and Eran Yahav.
2012. Efficient data race detection for async-finish parallelism. Formal Methods
in System Design 41, 3 (01 Dec 2012), 321ś347. https://doi.org/10.1007/s10703-

012-0143-7
[51] Veselin Raychev, Martin Vechev, and Manu Sridharan. 2013. Effective Race Detec-

tion for Event-Driven Programs. In Proceedings of the 2013 ACM SIGPLAN Interna-
tional Conference on Object Oriented Programming Systems Languages & Applica-
tions (Indianapolis, Indiana, USA) (OOPSLA ’13). Association for Computing Ma-
chinery, New York, NY, USA, 151ś166. https://doi.org/10.1145/2509136.2509538

[52] Dustin Rhodes, Cormac Flanagan, and Stephen N. Freund. 2017. BigFoot: Static
Check Placement for Dynamic Race Detection. In Proceedings of the 38th ACM
SIGPLAN Conference on Programming Language Design and Implementation
(Barcelona, Spain) (PLDI 2017). Association for Computing Machinery, New
York, NY, USA, 141ś156. https://doi.org/10.1145/3062341.3062350

[53] Jake Roemer, Kaan Genç, and Michael D. Bond. 2018. High-coverage, Un-
bounded Sound Predictive Race Detection. In Proceedings of the 39th ACM
SIGPLAN Conference on Programming Language Design and Implementation
(Philadelphia, PA, USA) (PLDI 2018). ACM, New York, NY, USA, 374ś389. https:
//doi.org/10.1145/3192366.3192385

[54] Jake Roemer, Kaan Genç, and Michael D. Bond. 2020. SmartTrack: Efficient
Predictive Race Detection. In Proceedings of the 41st ACM SIGPLAN Conference
on Programming Language Design and Implementation (London, UK) (PLDI 2020).
Association for Computing Machinery, New York, NY, USA, 747ś762. https:
//doi.org/10.1145/3385412.3385993

[55] Grigore Rosu. 2021. RV-Predict, Runtime Verification. https://runtimeverification.
com/predict/. Accessed: 2021-08-01.

[56] Caitlin Sadowski and Jaeheon Yi. 2014. How Developers Use Data Race De-
tection Tools. In Proceedings of the 5th Workshop on Evaluation and Usabil-
ity of Programming Languages and Tools (Portland, Oregon, USA) (PLATEAU
’14). Association for Computing Machinery, New York, NY, USA, 43ś51. https:
//doi.org/10.1145/2688204.2688205

[57] Malavika Samak and Murali Krishna Ramanathan. 2014. Trace Driven Dynamic
Deadlock Detection and Reproduction. In Proceedings of the 19th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming (Orlando, Florida,
USA) (PPoPP ’14). Association for Computing Machinery, New York, NY, USA,
29ś42. https://doi.org/10.1145/2555243.2555262

[58] Adrian Schmitz, Joachim Protze, Lechen Yu, Simon Schwitanski, and Matthias S.
Müller. 2020. DataRaceOnAccelerator ś A Micro-benchmark Suite for Evaluating
Correctness Tools Targeting Accelerators. In Euro-Par 2019: Parallel Processing
Workshops, Ulrich Schwardmann, Christian Boehme, Dora B. Heras, Valeria
Cardellini, Emmanuel Jeannot, Antonio Salis, Claudio Schifanella, Ravi Reddy
Manumachu, Dieter Schwamborn, Laura Ricci, Oh Sangyoon, Thomas Gruber,
Laura Antonelli, and Stephen L. Scott (Eds.). Springer International Publishing,
Cham, 245ś257. https://doi.org/10.1007/978-3-030-48340-1_19

[59] Reinhard Schwarz and Friedemann Mattern. 1994. Detecting causal relationships
in distributed computations: In search of the holy grail. Distributed computing 7,
3 (1994), 149ś174. https://doi.org/10.1007/BF02277859

[60] Konstantin Serebryany and Timur Iskhodzhanov. 2009. ThreadSanitizer: Data
Race Detection in Practice. In Proceedings of the Workshop on Binary Instrumen-
tation and Applications (New York, New York, USA) (WBIA ’09). Association for
Computing Machinery, New York, NY, USA, 62ś71. https://doi.org/10.1145/
1791194.1791203

[61] Dennis Shasha and Marc Snir. 1988. Efficient and Correct Execution of Parallel
Programs That Share Memory. ACM Trans. Program. Lang. Syst. 10, 2 (April
1988), 282ś312. https://doi.org/10.1145/42190.42277

[62] Yao Shi, Soyeon Park, Zuoning Yin, Shan Lu, Yuanyuan Zhou, Wenguang Chen,
and Weimin Zheng. 2010. Do I Use the Wrong Definition?: DeFuse: Definition-
use Invariants for Detecting Concurrency and Sequential Bugs. In Proceedings
of the ACM International Conference on Object Oriented Programming Systems
Languages and Applications (Reno/Tahoe, Nevada, USA) (OOPSLA ’10). ACM,
New York, NY, USA, 160ś174. https://doi.org/10.1145/1869459.1869474

[63] Yannis Smaragdakis, Jacob Evans, Caitlin Sadowski, Jaeheon Yi, and Cormac
Flanagan. 2012. Sound Predictive Race Detection in Polynomial Time. In Pro-
ceedings of the 39th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (Philadelphia, PA, USA) (POPL ’12). ACM, New York,
NY, USA, 387ś400. https://doi.org/10.1145/2103656.2103702

[64] L. A. Smith, J. M. Bull, and J. Obdrzálek. 2001. A Parallel Java Grande Benchmark
Suite. In Proceedings of the 2001 ACM/IEEE Conference on Supercomputing (Denver,
Colorado) (SC ’01). ACM, New York, NY, USA, 8ś8. https://doi.org/10.1145/
582034.582042

[65] Martin Sulzmann and Kai Stadtmüller. 2018. Two-Phase Dynamic Analysis of
Message-Passing Go Programs Based on Vector Clocks. In Proceedings of the 20th
International Symposium on Principles and Practice of Declarative Programming
(Frankfurt amMain, Germany) (PPDP ’18). Association for Computing Machinery,
NewYork, NY, USA, Article 22, 13 pages. https://doi.org/10.1145/3236950.3236959

[66] Rishi Surendran and Vivek Sarkar. 2016. Dynamic Determinacy Race Detection
for Task Parallelism with Futures. In Runtime Verification, Yliès Falcone and
César Sánchez (Eds.). Springer International Publishing, Cham, 368ś385. https:
//doi.org/10.1007/978-3-319-46982-9_23

[67] Tengfei Tu, Xiaoyu Liu, Linhai Song, and Yiying Zhang. 2019. Understanding Real-
World Concurrency Bugs in Go. In Proceedings of the Twenty-Fourth International

724

ASPLOS ’22, February 28 ś March 4, 2022, Lausanne, Switzerland Umang Mathur, Andreas Pavlogiannis, Hünkar Can Tunç, and Mahesh Viswanathan

Conference on Architectural Support for Programming Languages and Operating
Systems (Providence, RI, USA) (ASPLOS ’19). Association for Computing Machin-
ery, New York, NY, USA, 865ś878. https://doi.org/10.1145/3297858.3304069

[68] Xinli Wang, J. Mayo, W. Gao, and J. Slusser. 2006. An Efficient Implementation
of Vector Clocks in Dynamic Systems. In PDPTA.

[69] Benjamin P. Wood, Man Cao, Michael D. Bond, and Dan Grossman. 2017. Instru-
mentation Bias for Dynamic Data Race Detection. Proc. ACM Program. Lang. 1,
OOPSLA, Article 69 (Oct. 2017), 31 pages. https://doi.org/10.1145/3133893

[70] Kunpeng Yu, Chenxu Wang, Yan Cai, Xiapu Luo, and Zijiang Yang. 2021. Detect-
ing Concurrency Vulnerabilities Based on Partial Orders of Memory and Thread
Events. In Proceedings of the 29th ACM Joint Meeting on European Software Engi-
neering Conference and Symposium on the Foundations of Software Engineering

(Athens, Greece) (ESEC/FSE 2021). Association for Computing Machinery, New
York, NY, USA, 280ś291. https://doi.org/10.1145/3468264.3468572

[71] Yuan Yu, Tom Rodeheffer, and Wei Chen. 2005. RaceTrack: Efficient Detection of
Data Race Conditions via Adaptive Tracking. SIGOPS Oper. Syst. Rev. 39, 5 (Oct.
2005), 221ś234. https://doi.org/10.1145/1095809.1095832

[72] M. Zhivich and R. K. Cunningham. 2009. The Real Cost of Software Errors. IEEE
Security and Privacy 7, 2 (March 2009), 87ś90. https://doi.org/10.1109/MSP.2009.
56

[73] P. Zhou, R. Teodorescu, and Y. Zhou. 2007. HARD: Hardware-Assisted Lockset-
based Race Detection. In 2007 IEEE 13th International Symposium on High Per-
formance Computer Architecture. 121ś132. https://doi.org/10.1109/HPCA.2007.
346191

725

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Concurrent Model and Traces
	2.2 Partial Orders, Vector Times and Vector Clocks
	2.3 The Happens-Before Partial Order

	3 The Tree Clock Data Structure
	3.1 Intuition
	3.2 Tree Clocks

	4 Tree Clocks for Happens-Before
	5 Tree Clocks in Other Partial Orders
	5.1 Schedulable-Happens-Before
	5.2 The Mazurkiewicz Partial Order

	6 Experiments
	7 Related Work
	8 Conclusion
	Acknowledgments
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact Check-List (Meta-Information)
	A.3 Description
	A.4 Installation
	A.5 Experiment Workflow
	A.6 Evaluation and Expected Results
	A.7 Experiment Customization
	A.8 Notes

	References

