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ABSTRACT KEYWORDS

Dynamic techniques are a scalable and effective way to analyze con-
current programs. Instead of analyzing all behaviors of a program,
these techniques detect errors by focusing on a single program
execution. Often a crucial step in these techniques is to define a
causal ordering between events in the execution, which is then
computed using vector clocks, a simple data structure that stores
logical times of threads. The two basic operations of vector clocks,
namely join and copy, require @(k) time, where k is the number of
threads. Thus they are a computational bottleneck when k is large.

In this work, we introduce tree clocks, a new data structure that re-
places vector clocks for computing causal orderings in program ex-
ecutions. Joining and copying tree clocks takes time that is roughly
proportional to the number of entries being modified, and hence the
two operations do not suffer the a-priori ®(k) cost per application.
We show that when used to compute the classic happens-before
(HB) partial order, tree clocks are optimal, in the sense that no
other data structure can lead to smaller asymptotic running time.
Moreover, we demonstrate that tree clocks can be used to compute
other partial orders, such as schedulable-happens-before (SHB) and
the standard Mazurkiewicz (MAZ) partial order, and thus are a
versatile data structure. Our experiments show that just by replac-
ing vector clocks with tree clocks, the computation becomes from
2.02x faster (MAZ) to 2.66X (SHB) and 2.97x (HB) on average per
benchmark. These results illustrate that tree clocks have the poten-
tial to become a standard data structure with wide applications in
concurrent analyses.

CCS CONCEPTS

« Software and its engineering — Software verification and
validation; « Theory of computation — Theory and algorithms
for application domains; Program analysis.
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1 INTRODUCTION

The analysis of concurrent programs is one of the major challenges
in formal methods, due to the non-determinism of inter-thread com-
munication. The large space of communication interleavings poses
a significant challenge to the programmer, as intended invariants
can be broken by unexpected communication patterns. The sub-
tlety of these patterns also makes verification a demanding task, as
exposing a bug requires searching an exponentially large space [45].
Consequently, significant efforts are made towards understanding
and detecting concurrency bugs efficiently [11, 20, 35, 62, 67, 72].
Dynamic analyses and partial orders. One popular approach to the
scalability problem of concurrent program verification is dynamic
analysis [24, 40, 43, 49]. Such techniques have the more modest goal
of discovering faults by analyzing program executions instead of
whole programs. Although this approach cannot prove the absence
of bugs, it is far more scalable than static analysis and typically
makes sound reports of errors. These advantages have rendered
dynamic analyses a very effective and widely used approach to
error detection in concurrent programs.

The first step in virtually all techniques that analyze concurrent
executions is to establish a causal ordering between the events of
the execution. Although the notion of causality varies with the
application, its transitive nature makes it naturally expressible as
a partial order between these events. One prominent example is
the Mazurkiewicz partial order (MAZ), which often serves as the
canonical way to represent concurrent traces [8, 44] (aka Shasha-
Snir traces [61]). Another vastly common partial order is Lamport’s
happens-before (HB) [33], initially proposed in the context of dis-
tributed systems [59]. In the context of testing multi-threaded pro-
grams, partial orders play a crucial role in dynamic race detection
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techniques, and have been thoroughly exploited to explore trade-
offs between soundness, completeness, and running time of the un-
derlying analysis. Prominent examples include the widespread use
of HB [19, 24, 30, 49, 60], schedulably-happens-before (SHB) [37],
causally-precedes (CP) [63], weak-causally-precedes (WCP) [31],
doesn’t-commute (DC) [53], and strong/weak-dependently-pre-
cedes (SDP/WDP) [28], M2 [48] and SyncP [41]. Beyond race de-
tection, partial orders are often employed to detect and reproduce
other concurrency bugs such as atomicity violations [9, 26, 42],
deadlocks [57, 65], and other concurrency vulnerabilities [70].
Vector clocks in dynamic analyses. Often, the computational task of
determining the partial ordering between events of an execution is
achieved using a simple data structure called vector clock. Informally,
avector clock Cis an integer array indexed by the processes/threads
in the execution, and succinctly encodes the knowledge of a process
about the whole system. For vector clock Cy, associated with thread
t1,if Cy, (t2) = i then it means that the latest event of #; is ordered
after the first i events of thread t; in the partial order. Vector clocks,
thus seamlessly capture a partial order, with the point-wise ordering
of the vector timestamps of two events capturing the ordering
between the events with respect to the partial order of interest.
For this reason, vector clocks are instrumental in computing the
HB parial order efficiently [22, 23, 43], and are ubiquitous in the
efficient implementation of analyses based on partial orders even
beyond HB [24, 31, 32, 37, 42, 53, 57, 65].

The fundamental operation on vector clocks is the pointwise join
Cy, < C4, UCy,. This occurs whenever there is a causal ordering
from thread #; to t;. Operationally, a join is performed by updating
Cy, (1) « max(Cy, (1), Cy, (1)) for every thread t, and captures the
transitivity of causal orderings: as t; learns about 7, it also learns
about other threads ¢ that t, knows about. Note that if #; is aware
of a later event of ¢, this operation is vacuous. With k threads,
a vector clock join takes ©(k) time, and can quickly become a
bottleneck even in systems with moderate k. This motivates the
following question: is it possible to speed up join operations by
proactively avoiding vacuous updates? The challenge in such a task
comes from the efficiency of the join operation itself—since it only
requires linear time in the size of the vector, any improvement must
operate in sub-linear time, i.e., not even touch certain entries of
the vector clock. We illustrate this idea on a concrete example, and
present the key insight in this work.

Motivating example. Consider the example in Figure 1. It shows
a partial trace from a concurrent system with 6 threads, along with
the vector timestmamps at each event. When event ey is ordered
before event e3 due to synchronization, the vector clock Cy, of
is joined with that of Cy,, i.e., the tj-th entry of C; is updated
to the maximum of Cy, (¢;) and Cy, (¢ j)l. Now assume that thread
ty has learned of the current times of threads t3, t4, t5 and tg via
thread t3. Since the t3-th component of the vector timestamp of
event ej is larger than the corresponding component of event e,
t; cannot possibly learn any new information about threads t4, ts,
and t¢ through the join performed at event es. Hence the naive
pointwise updates will be redundant for the indices j = {3,4,5, 6}.

! As with many presentations of dynamic analyses using vector clocks [30], we assume
that the local entry of a thread’s clock increments by 1 after each event it performs.
Hence, in Figure 1, the #;-th entry of C;, increases from 27 to 28 after e; is performed.
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Unfortunately, the flat structure of vector clocks is not amenable to

such reasoning and cannot avoid these redundant operations.

To alleviate this problem, we introduce a new hierarchical tree-
like data structure for maintaining vector times called a tree clock.
The nodes of the tree encode local clocks, just like entries in a vector
clock. In addition, the structure of the tree naturally captures which
clocks have been learned transitively via intermediate threads. Fig-
ure 1 (right) depicts a (simplified) tree clock encoding the vector
times of Cy,. The subtree rooted at thread t3 encodes the fact that t,
has learned about the current times of t4, t5 and t¢ transitively, via
t3. To perform the join operation C;, « C; U Cy,, we start from
the root of Cy,, and traverse the tree as follows. Given a current
node u, we proceed to the children of u if and only if u represents
the time of a thread that is not known to ¢;. Hence, in the example,
the join operation will now access only the light-gray area of the
tree, and thus compute the join without accessing the whole tree,
resulting in a sublinear running time of the join operation.

The above principle, which we call direct monotonicity is one
of two key ideas exploited by tree clocks; the other being indirect
monotonicity. The key technical challenge in developing the tree
clock data structure lies in (i) using direct and indirect monotonicity
to perform efficient updates, and (ii) perform these updates such that
direct and indirect monotonicity are preserved for future operations.
Section 3.1 illustrates the intuition behind these two principles in
depth.

Contributions. Our contributions are as follows.

1. We introduce tree clock, a new data structure for maintaining
logical times in concurrent executions. In contrast to the flat
structure of the traditional vector clocks, the dynamic hierar-
chical structure of tree clocks naturally captures ad-hoc com-
munication patterns between processes. In turn, this allows for
join and copy operations that run in sublinear time. As a data
structure, tree clocks offer high versatility as they can be used
in computing many different ordering relations.

2. We prove that tree clocks are an optimal data structure for com-
puting HB, in the sense that, for every input trace, the total com-
putation time cannot be improved (asymptotically) by replacing
tree clocks with any other data structure. On the other hand,
vector clocks do not enjoy this property.

3. We illustrate the versatility of tree clocks by presenting tree

clock-based algorithms for the MAZ and SHB partial orders.

. We perform a large-scale experimental evaluation of the tree
clock data structure for computing the MAZ, SHB and HB partial
orders, and compare its performance against the standard vector
clock data structure. Our results show that just by replacing
vector clocks with tree clocks, the computation becomes up
to 2.97x faster on average. Given our experimental results, we
believe that replacing vector clocks by tree clocks in partial
order-based algorithms can lead to significant improvements on
many applications. We provide the proofs for the theorems and
lemmas presented in the paper in our technical report [39].

2 PRELIMINARIES

In this section we develop relevant notation and present standard
concepts regarding concurrent executions, partial orders and vector
clocks.
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Figure 1: (Left) Illustration of the effect of a join operation C;, < C;, LI C;, on the clocks of the two threads. The j-th entry
in timestamps correspond to thread t;. Red entries remain unchanged, as t; already knows of a later time. (Right) A tree
representation of the clocks C;, that encodes transitivity. Dark gray marks the threads whose clock has processed in C;,
compared to C;, (i.e., just f2). Light gray marks the nodes that we need to examine when performing the join operation.

2.1 Concurrent Model and Traces

We start with our main notation on traces. The exposition is stan-
dard and follows related work (e.g., [24, 31, 63]).

Events and traces. We consider execution traces of concurrent
programs represented as a sequence of events performed by differ-
ent threads. Each event is a tuple e = (i, ¢, op), where i is the unique
event identifier of e, t is the identifier of the thread that performs e,
and op is the operation performed by e, which can be one of the
following types 2.

1. op = r(x), denoting that e reads global variable x.

2. op = w(x), denoting that e writes to global variable x.

3. op = acq(?), denoting that e acquires the lock ¢.

4. op = rel(¢), denoting that e releases the lock ¢.

We write tid(e) and op(e) to denote the thread identifier and the
operation of e, respectively. For a read/write event e, we denote by
Variable(e) the (unique) variable that e accesses. We often ignore
the identifier i and represent e as (t, op). In addition, we are often
not interested in the thread of e, in which case we simply denote
e by its operation, e.g., we refer to event r(x). When the variable
of e is not relevant, it is also omitted (e.g., we may refer to a read
event r).

A (concrete) trace is a sequence of events o = ey,...,ey. The
trace o naturally defines a total order <7 (pronounced trace order)
over the set of events appearing in o, i.e., we have e < e’ iff
either e = ¢’ or e appears before e’ in o; when e # ¢’, then we say
e <{ ¢’. We require that o respects the semantics of locks. That
is, for every lock ¢ and every two acquire events acqy (¢), acqy(£)
on the lock ¢ such that acq; () < acqgy(f), there exists a lock
release event rel;(¢) in o with tid(acq;(¢)) = tid(rel;(¢)) and
acq; (£) <g rely(€) <7 acqy(¢). Finally, we denote by Thrds, the
set of thread identifiers appearing in o.
Thread order. Given a trace o, the thread order
partial order such that e; S?O ez iff tid(e1) = tid(ez) and e; <7
For an event e in a trace o, the local time ITime’ (e) of e is the
number of events that appear before e in the trace o that are also
performed by tid(e), i.e., ITime? (e) = [{e" | ¢’ <{ e}|. We remark
that the pair (tid(e),1Time? (e)) uniquely identifies the event e in
the trace o.

o -
<Jols the smallest

es.

ZFork and join events are ignored for ease of presentation. Handling such events is
straightforward.
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Conflicting events. Two events of ey, ez of ¢ are called conflicting,
denoted by e; < ey, if (i) Variable(e;) = Variable(ey), (ii) tid(e1) #
tid(ez), and (iii) at least one of ej, e is a write event. The standard
approach in concurrent analyses is to detect conflicting events that
are causally independent, according to some pre-defined notion of
causality, and can thus be executed concurrently.

2.2 Partial Orders, Vector Times and Vector
Clocks

A partial order on a set S is a reflexive, transitive and anti-symmetric
binary relation on the elements of S. Partial orders are the standard
mathematical object for analyzing concurrent executions. The main
idea behind such techniques is to define a partial order <7 on the
set of events of the trace o being analyzed. The intuition is that <7
captures causality — the relative order of two events of ¢ must be
maintained if they are ordered by <7. More importantly, when two
events ey and e; are unordered by <7 (denoted eq ||J ez), then they
can be deemed concurrent. This principle forms the backbone of all
partial-order based concurrent analyses.

A naive approach for constructing such a partial order is to
explicitly represent it as an acyclic directed graph over the events of
o0, and then perform a graph search whenever needed to determine
whether two events are ordered. Vector clocks, on the other hand,
provide a more efficient method to represent partial orders and
therefore are the key data structure in most partial order-based
algorithms. The use of vector clocks enables designing streaming
algorithms, which are also suitable for monitoring the system. These
algorithms associate vector timestamps [22, 23, 43] with events
so that the point-wise ordering between timestamps reflects the
underlying partial order. Let us formalize these notions now.
Vector Timestamps. Let us fix the set of threads Thrds in the
trace. A vector timestamp (or simply vector time) is a mapping
V: Thrds — N. It supports the following operations.

ViEV, iff Vi: Vi(t) < Va(t) (Comparison)

ViUV = At: max(Vy(t), Va(t)) (Join)
V(t)+i, ift=1t

V[t' - +i] = At: ORI (Increment)

v, otherwise

We write Vi = V3 to denote that V; C Vy and V2 C Vy. Let us see
how vector timestamps provide an efficient implicit representation
of partial orders.
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Timestamping for a partial order. Consider a partial order <7
defined on the set of events of o such that s?ogsg. In this case,
we can define the P-timestamp of an event e as the following vector

timestamp:
<U
Ce" = Au: max{1Time’ (f) | f <7 e, tid(f) = u}

<U
Inwords, C, " contains the timestamps of the events that appear the
latest in their respective threads such that they are ordered before e

in the partial order <J. We remark that CeSP (tid(e)) = ITime? (e).
The following observation then shows that the timestamps defined

3 [en
above precisely capture the order <.

Lemma 1. Let <7 be a partial order defined on the set of events of

trace o such that <§,C<F. Then for any two events ey, ez of o, we

<¢ <¢
have, C," EC.} & e <7 e

In words, Lemma 1 implies that, in order to check whether two

events are ordered according to <7, it suffices to compare their
vector timestamps.
The vector clock data structure. When establishing a causal or-
der over the events of a trace, the timestamps of an event is com-
puted using timestamps of other events in the trace. Instead of
explicitly storing timestamps of each event, it is often sufficient
to store only the timestamps of a few events, as the algorithms
is running. Typically a data-structure called vector clocks is used
to store vector times. Vector clocks are implemented as a simple
integer array indexed by thread identifiers, and they support all
the operations on vector timestamps. A useful feature of this data-
structure is the ability to perform in-place operations. In particular,
there are methods such as Join(-), Copy(-) or Increment(-,-) that
store the result of the corresponding vector time operation in the
original instance of the data-structure. For example, for a vector
clock C and a vector time V, a function call C.Join(V) stores the
value C UV back in C. Each of these operations iterates over all the
thread identifiers (indices of the array representation) and compares
the corresponding components in C and V. The running time of
the join operation for the vector clock data structure is thus ©(k),
where k is the number of threads. Similarly, copy and comparison
operations take ©(k) time.

2.3 The Happens-Before Partial Order

Lamport’s Happens-Before (HB) [33] is one of the most frequently
used partial orders for the analysis of concurrent executions, with
wide applications in domains such as dynamic race detection. Here
we use HB to illustrate the disadvantages of vector clocks and
form the basis for the tree clock data structure. In later sections we
show how tree clocks also apply to other partial orders, such as
Schedulably-Happens-Before and the Mazurkiewicz partial order.
Happens-before. Given a trace o, the happens-before (HB) partial
order < of o is the smallest partial order over the events of &
that satisfies the following conditions.

L <75S<7p-

2. For every release event rel(£) and acquire event acq(f) on
the same lock ¢ with rel(¢) <{ acq(¢), we have rel(¢f) <7,
acq(?).

For two events eq, e; in trace o, we use e] ||ﬁB ez to denote that

neither e; SﬂB e, NOT € SﬂB e1. We say e <EB e; when e # ey
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Algorithm 1: Computing the HB partial order.

1 procedure acquire(t, £)
2 | Cr.Join(Cy)

3 procedure release(t, £)
1 | Cp.Copy(Cy)

and e SﬂB e2. Given a trace o, two events e, ez of o are said to be
in a happens-before (data) race if (i) e; < ez and (ii) e1 ||ﬂB es.

The happens-before algorithm. In light of Lemma 1, race detec-
tion based on HB constructs the <{, partial order in terms of vector
timestamps and detects races using these. The core algorithm for
constructing <, is shown in Algorithm 1. The algorithm maintains
a vector clock C; for every thread t € Thrds, and a similar one C,
for every lock £. When processing an event e = (t, op), it performs
an update C;.Increment(t, 1), which is implicit and not shown in
Algorithm 1. Moreover, if op = acq(¢) or op = rel(¢), the algo-
rithm executes the corresponding procedure. The HB-timestamp
of e is then simply the value stored in Cyjq () right after e has been
processed.

Running time using vector clocks. If a trace ¢ has n events and
k threads, computing the HB partial order with Algorithm 1 and
using vector clocks takes O(n - k) time. The quadratic bound occurs
because every vector clock join and copy operation iterates over
all k threads.

3 THE TREE CLOCK DATA STRUCTURE

In this section we introduce tree clocks, a new data structure for
representing logical times in concurrent and distributed systems.
We first illustrate the intuition behind tree clocks, and then develop
the data structure in detail.

3.1 Intuition

Like vector clocks, tree clocks represent vector timestamps that
record a thread’s knowledge of events in other threads. Thus, for
each thread t, a tree clock records the last known local time of t.
However, unlike a vector clock which is flat, a tree clock maintains
this information hierarchically — nodes store local times of a thread,
while the tree structure records how this information has been
obtained transitively through intermediate threads. In the following
examples we use the operation sync(f) to denote the sequence
acq(t), rel(e).
1. Direct monotonicity. Recall that a vector clock-based algorithm
like Algorithm 1 maintains a vector clock C; which intuitively
captures thread ¢’s knowledge about all threads. However, it does
not maintain how this information was acquired. Knowledge of how
such information was acquired can be exploited in join operations,
as we show through an example. Consider a computation of the
HB partial order for the trace o shown in Figure 2a. At event e,
thread #4 transitively learns information about events in the trace
through thread ¢35 because eg <le e7 (dashed edge in Figure 2a).
This is accomplished by joining with clock Cy, of thread t3. Such a
join using vector clocks will take 4 steps because we need to take
the pointwise maximum of two vectors of length 4.

Suppose in addition to these timestamps, we maintain how these
timestamps were updated in each clock. This would allow one to
make the following observations.
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ty t2 i3 |21
1| sync(f1) \"S&
2 sync(fl)\/%)
3 sync(#y)
4 sync(fy) HB
5 \sync(fz)
6 sync(f3) :S&
7 ‘sync(f3)

(a) Direct monotonicity.
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3] t2 t3 t4
1| sync(#y) HB
2 \sync(ﬁ)
3 sync(l’z)\ff&
4 sync({’z)\/‘%’
5 sync(fz)
6 sync(fg)\\é&
7 *sync(t3)

(b) Indirect monotonicity.

Figure 2: Illustration of the two insights behind tree clocks. An event sync(¢) represents two events acq(¢), rel(¢).

1. Thread t3 knows of event e of #; transitively, through event e,
of thread ts.
2. Thread t4 (before the join at e7) knows of event e; through e4 of
thread t5.

Before the join, since #4 has a more recent view of t, when compared
to ts, it is aware of all the information that thread #3 knows about
the world via thread 2. Thus, when performing the join, we need
not examine the component corresponding to thread #; in the two
clocks. Tree clocks, by maintaining such additional information,
can avoid examining some components of a vector timestamp and
yield sublinear updates.

2. Indirect monotonicity. We now illustrate that if in addition
to information about “how a view of a thread was updated”, we
also maintained “when the view of a thread was updated”, the cost
of join operations can be further reduced. Consider the trace o of
Figure 2b. At each of the events of thread t4, it learns about events
in the trace transitively through thread 3 by performing two join
operations. At the first join (event es), thread t4 learns about events
e1, e, e3 transitively through event e4. At event ey, thread t4 finds
out about new events in thread t3 (namely, es). However, it does not
need to update its knowledge about threads t; and ¢, — thread t3’s
information about threads #; and #; were acquired by the time of
event e4 about which thread t4 is aware. Thus, if information about
when knowledge was acquired is also kept, this form of “indirect
monotonicity” can be exploited to avoid examining all components
of a vector timestamp.

The flat structure of vector clocks misses the transitivity of in-
formation sharing, and thus arguments based on monotonicity are
lost, resulting in vacuous operations. On the other hand, tree clocks
maintain transitivity in their hierarchical structure. This enables
reasoning about direct and indirect monotonicity, and thus avoid
redundant operations.

3.2 Tree Clocks

We now present the tree clock data structure in detail.

Tree clocks. A tree clock TC consists of the following.

1. T = (V, &) is a rooted tree of nodes of the form (tid, clk, aclk) €
Thrds xN?. Every node u stores its children in an ordered list
Chld(u) of descending aclk order. We also store a pointer Prnt(u)
of u to its parent in T.

2. ThrMap: Thrds — YV is a thread map, with the property that if
ThrMap(t) = (tid, clk, aclk), then ¢ = tid.

714

14,2, L 4,2, L
t3,2,2 19,2,1 t3,3,2
t1,1,1 12, 1,2 t1,1,1

Figure 3: The tree clock of ¢4 after processing the event e7 in
the traces of Figure 2a (left) and Figure 2b (right).

We denote by T . root the root of T, and for a tree clock TC we refer
by TC. T and TC. ThrMap to the rooted tree and thread map of TC,
respectively. For a node u = (tid, clk, aclk) of T, we let u. tid = tid,
u. clk = clk and u. aclk = aclk, and say that u points to the unique
event e with tid(e) = tid and 1ITime(e) = clk. Intuitively, if v =
Prnt(u), then u represents the following information.
1. TC has the local time u. clk for thread u. tid.
2. u.aclk is the attachment time of v. tid, which is the local time of
v when v learned about u. clk of u. tid (this will be the time that
v had when u was attached to v).
Naturally, if u = T . root then u. aclk = L. See Figure 3.
Tree clock operations. Just like vector clocks, tree clocks provide
functions for initialization, update and comparison. There are two
main operations worth noting. The first is Join — TC; .Join(TCy)
joins the tree clock TCz to TCy. In contrast to vector clocks, this
operation takes advantage of the direct and indirect monotonicity
outlined in Section 3.1 to perform the join in sublinear time in the
size of TCy and TCy (when possible). The second is MonotoneCopy.
We use TC; .MonotoneCopy(TCz) to copy TCy to TC; when we
know that TCy E TCy. The idea is that when this holds, the copy op-
eration has the same semantics as the join, and hence the principles
that make Join run in sublinear time also apply to MonotoneCopy.
Algorithm 2 gives a pseudocode description of this functionality.
The functions on the left column present operations that can be
performed on tree clocks, while the right column lists helper rou-
tines for the more involved functions Join and MonotoneCopy. In
the following we give an intuitive description of each function.
1. Init(¢). This function initializes a tree clock TC; that belongs to
thread t, by creating a node u = (t,0, L). Node u will always be the
root of TC;. This initialization function is only used for tree clocks
that represent the clocks of threads. Auxiliary tree clocks for storing
vector times of release events do not execute this initialization.



ASPLOS °22, February 28 - March 4, 2022, Lausanne, Switzerland

Umang Mathur, Andreas Pavlogiannis, Hiinkar Can Tung, and Mahesh Viswanathan

Algorithm 2: The tree clock data structure.
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34
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// Initialize a tree clock for thread t
function Init(t)

Letu « (£,0, 1)

Make u the root of T

Let ThrMap(t) « u

// Get the clock for thread ¢

function Get (t)

if TC . ThrMap(t) # L then
Let u « ThrMap(t)
return u. clk

return 0

// Increment the clock of the root thread
function Increment (i)

Let z < T.root

z.clk « z.clk+i

// True iff C TC’

function LessThan(TC’)

Let z < T.root

return z. clk < TC’ .Get(z. tid)

// Update with LTC’

function Join(TC’)

Let z’ « TC’.T.root

if z’. clk < Get(z’.tid) then

‘ return

Let S « an empty stack
getUpdatedNodesJoin (S, z’)
detachNodes (S)
attachNodes (S)

// Place the updated subtree under the root of T
Let w « ThrMap(z’. tid)

Let z « T.root

Assign w. aclk « z.clk
pushChild (w, z)

// Monotone copy, assumes that this & TC
function MonotoneCopy (TC")

Let z’ « TC’.T.root

Let z < T.root

Let S « an empty stack
getUpdatedNodesCopy (S, z’, z)

detachNodes (S)

attachNodes (S)

// New root has the same tid as the root of TC'.T

Assign T . root « ThrMap(z’. tid)

36
37
38
39

40

41
42
43
44
45
46

47

49
50
51
52
53
54
55
56
57
58
59
60

61

62

63
64
65
66
67
68

69

70
71

// Populate S with a pre-order traversal of the subtree rooted at u’
with nodes whose clock has progressed

routine getUpdatedNodesJoin(S, u’)

foreach v’ in Chld(u’) do
if Get(v’.tid) < v’. clk then getUpdatedNodesJoin (S, v’);
else if v’. aclk < Get(u’.tid) then break;

Pushu’ in S

// Detach from T the nodes with tid that appears in S
routine detachNodes(S)
foreach v’ in S do
if ThrMap(ov’. tid) # L then
Let v « ThrMap(v’. tid)
if v # T .root then
Let x « Prnt(v)
Remove v from Chld(x)

// Re-attach the nodes of T with tid that appears in S to obtain the
shape corresponding to TC'.T
routine attachNodes(S)
while § is not empty do
Letu’ «—pop S
if ThrMap(u’. tid) # L then
‘ Let u « ThrMap(v’. tid)
else
Let u « (u’.tid,0, 1)
Let ThrMap(u. tid) « u
Assign u. clk « u’. clk
Let y’ « Prnt(u’)
if y’ # 1 then
Assign u.aclk « u’. aclk
Let y « ThrMap(y’. tid)
pushChild (u, y)

// Similar to getUpdatedNodesJoin
routine getUpdatedNodesCopy (S, u’, z)
foreach v’ in Chld(u’) do

if Get(v’.tid) < v’. clk then

‘ getUpdatedNodesCopy (S, v/, z)

else
if z # L andv’.tid = z. tid then Pusho’in S ;
if v’. aclk < Get(u’.tid) then break;
Pushu’in S

// Push u in the front of head of Chld(v)
routine pushChild(u, v)

Assign Prot(u) « v

Push u to the front of Chld(v)

2. Get(t). This function simply returns the time of thread t stored

in TC, while it returns 0 if ¢ is not present in TC.

3. Increment(i). This function increments the time of the root node
of TC. It is only used on tree clocks that have been initialized using

Init, i.e., the tree clock belongs to a thread that is always stored in
the root of the tree.

4. LessThan(TC’). This function compares the vector time of TC
to the vector time of TC’, i.e., it returns True iff TC & TC’.
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Figure 4: Illustration of TC; .Join(TC;). Light gray marks the nodes of TC; whose time is compared to the time of the respective
thread in TC; (i.e., the total iterations in Line 37). Dark gray marks the nodes that are updating/being updated (i.e., the size of
8). TC; is the result of the join, where dark gray marks the sub-tree updated by Join.
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Figure 5: Illustration of TC; .MonotoneCopy(TC;). Light gray marks the nodes of TC; whose time is compared to the time of the
respective thread in TC; (i.e., the total iterations in Line 63). Dark gray marks the nodes that are updating/being updated (i.e.,
the size of S). TC; is the result of the copy, where dark gray marks the sub-tree updated by MonotoneCopy. Node (t3,14, 1) (i.e.,
the root) of TC; is updated although t; has not progressed in TCy, as it is placed under the new root (11, 28, 1) in TC}.

5. Join(TC’). This function implements the join operation with
TC’, i.e., updating TC < TC LITC’. At a high level, the function
performs the following steps.

1. Routine getUpdatedNodesJoin performs a pre-order traversal
of TC’, and gathers in a stack S the nodes of TC’ that have pro-
gressed in TC” compared to TC. The traversal may stop early due
to direct or indirect monotonicity, hence, this routine generally
takes sub-linear time.

2. Routine detachNodes detaches from TC the nodes whose tid
appears in S, as these will be repositioned in the tree.

3. Routine attachNodes updates the nodes of TC that were de-
tached in the previous step, and repositions them in the tree.
This step effectively creates a subtree of nodes of TC that is iden-
tical to the subtree of TC’ that contains the progressed nodes
computed by getUpdatedNodesJoin.

4. Finally, the last 4 lines of Join attach the subtree constructed
in the previous step under the root z of TC, at the front of the
Chld(z) list.

Figure 4 provides an illustration.

6. MonotoneCopy(TC’). This function implements the copy oper-

ation TC « TC’ assuming that TC C TC’. The function is very

similar to Join. The key difference is that this time, the root of TC is
always considered to have progressed in TC’, even if the respective
times are equal. This is required for changing the root of TC from

the current node to one with tid equal to the root of TC’. Figure 5
provides an illustration.

The crucial parts of Join and MonotoneCopy that exploit the
hierarchical structure of tree clocks are in getUpdatedNodesJoin
and getUpdatedNodesCopy. In each case, we proceed from a parent
u’ to its children o’ only if u” has progressed wrt its time in TC (re-
call Figure 2a), capturing direct monotonicity. Moreover, we proceed
from a child v of u’ to the next child v’/ (in order of appearance in
Chld(u”)) only if TC is not yet aware of the attachment time of v’
on u’ (recall Figure 2b), capturing indirect monotonicity.

Remark 1 (Constant time epoch accesses). The function TC .Get(t)
returns the time of thread t stored in TC in O(1) time, just like vector
clocks. This allows all epoch-related optimizations [24, 54] from vector
clocks to apply to tree clocks.

4 TREE CLOCKS FOR HAPPENS-BEFORE

Let us see how tree clocks are employed for computing the HB
partial order. We start with the following observation.

Lemma 2 (Monotonicity of copies). Right before Algorithm 1 pro-
cesses a lock-release event (t,rel(f)), we have C; C C;.

Tree clocks for HB. Algorithm 3 shows the algorithm for comput-
ing HB using the tree clock data structure for implementing vector
times. When processing a lock-acquire event, the vector-clock join
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operation has been replaced by a tree-clock join. Moreover, in light
of Lemma 2, when processing a lock-release event, the vector-clock
copy operation has been replaced by a tree-clock monotone copy.

Algorithm 3: HB with tree clocks.

1 procedure acquire(t, £) 3 procedure release(t, £)
2 ‘ Ct.Join(Cy) 4 | Cy.MonotoneCopy(Cy)

Correctness. We now state the correctness of Algorithm 3, i.e., we
show that the algorithm indeed computes the HB partial order. We
start with two monotonicity invariants of tree clocks.

Lemma 3. Consider any tree clock C and node u of C. T. For any

tree clock C’, the following assertions hold.

1. Direct monotonicity: If u.clk < C’.Get(u.tid) then for every
descendant w of u we have that w. clk < C’.Get(w. tid).

. Indirect monotonicity: If v. aclk < C’.Get(u.tid) whereov is a
child of u then for every descendant w of v we have that w. clk <
C’.Get(w.tid).

The following lemma follows from the above invariants and
establishes that Algorithm 3 with tree clocks computes the correct
timestamps on all events, i.e., the correctness of tree clocks for HB.

Lemma 4. When Algorithm 3 processes an event e, the vector time

<a
stored in the tree clock Cyjg(ey is Co .

Data structure optimality. Just like vector clocks, computing HB
with tree clocks takes ©(n - k) time in the worst case, and it is
known that this quadratic bound is likely to be tight for common
applications such as dynamic race prediction [32]. However, we
have seen that tree clocks can take sublinear time on join and copy
operations, whereas vector clocks always require time linear in the
size of the vector (i.e., ®(k)). A natural question arises: is there a
more efficient data structure than tree clocks? More generally, what
is the most efficient data structure for the HB algorithm to repre-
sent vector times? To answer this question, we define vector-time
work, which gives a lower bound on the number of data structure
operations that HB has to perform regardless of the actual data
structure used to store vector times. Then, we show that tree clocks
match this lower bound, hence achieving optimality for HB.

Vector-time work. Consider the general HB algorithm (Algo-
rithm 1) and let © = {Cy,Cy, ..., Cy,} be the set of the vector-time
data structures used. Consider the execution of the algorithm on a
trace o. Given some 1 < i < |o]|, we let C% denote the vector time
represented by C; after the algorithm has processed the i-th event
of 0. We define the vector-time work (or vi-work, for short) on o as

VTWork(c) = Z Z |t € Thrds: CE (1) # Ci(n)].
1<i<lo| J
In words, for every processed event, we add the number of vector-
time entries that change as a result of processing the event, and
VTWork(o) counts the total number of entry updates in the overall
course of the algorithm. Note that vt-work is independent of the
data structure used to represent each Cj, and satisfies the inequality

n < VIWork(o) < n- k.

as with every event of o the algorithm updates one of C;.
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Vector-time optimality. Given an input trace o, we denote by
Tps(o) the time taken by the HB algorithm (Algorithm 1) to pro-
cess o using the data structure DS to store vector times. Intuitively,
VTWork(o) captures the number of times that instances of DS
change state. For data structures that represent vector times ex-
plicitly, VTWork(o) presents a natural lower bound for 7pg(o).
Hence, we say that the data structure DS is vt-optimal if Tpg(o) =
O(VTWork(o)). It is not hard to see that vector clocks are not vt-
optimal, i.e., taking DS = VC to be the vector clock data structure,
one can construct simple traces o where VTWork(o) = O(n) but
Tps(o) = Q(n - k), and thus the running time is k times more than
the vt-work that must be performed on o. In contrast, the following
theorem states that tree clocks are vt-optimal.

THEOREM 1 (TREE-cLOCK OPTIMALITY). For any input trace o, we
have I1c (o) = O(VTWork(0)).

The key observation behind Theorem 1 is that, when HB uses
tree clocks, the total number of tree-clock entries that are accessed
over all join and monotone copy operations (i.e., the sum of the sizes
of the light-gray areas in Figure 4 and Figure 5) is < 3 - VITWork(o).

Remark 2. Theorem 1 establishes strong optimality for tree clocks,
in the sense that they are vt-optimal on every input. This is in contrast
to usual notions of optimality that is guaranteed on only some inputs.

5 TREE CLOCKS IN OTHER PARTIAL
ORDERS

5.1 Schedulable-Happens-Before

SHB is a strengthening of HB, introduced recently [37] in the con-
text of race detection. Given a trace o and a read event r let Iws(r)
be the last write event of o before r with Variable(w) = Variable(r).
SHB is the smallest partial order that satisfies the following.

1 <PpC<¢p

2. for every read event r, we have lw4(r) S?HB r.

Algorithm for SHB. Similarly to HB, the SHB partial order is com-
puted by a single pass of the input trace o using vector-times [37].
The SHB algorithm processes synchronization events (i.e., acq(¢)
and rel(¢)) similarly to HB. In addition, for each variable x, the
algorithm maintains a data structure LWy that stores the vector
time of the latest write event on x. When a write event w(x) is en-
countered, the vector time Cyjq(y) is copied to LWx. In turn, when a
read event r(x) is encountered the algorithm joins LWy to Cyiq(r)-
SHB with tree clocks. Tree clocks can directly be used as the data
structure to store vector times in the SHB algorithm. We refer to
Algorithm 4 for the pseudocode. The important new component is
the function CopyCheckMonotone in Line 8 that copies the vector
time of C; to LWx. In contrast to MonotoneCopy, this copy is not
guaranteed to be monotone, i.e., we might have LWy Z C;. Note,
however, that using tree clocks, this test requires only constant
time. Internally, CopyCheckMonotone performs MonotoneCopy if
LWy C C; (running in sublinear time), otherwise it performs a
deep copy for the whole tree clock (running in linear time). In
practice, we expect that most of the times CopyCheckMonotone
results in MonotoneCopy and thus is very efficient. The key insight
is that if MonotoneCopy is not used, then LW, Z C; and thus we
have a race (Iws(r), r). Hence, the number of times a deep copy
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Algorithm 4: SHB with tree clocks.

1 procedure acquire(t, £)
2 | Ct.Join(Ly)

5 procedure release(t, £)
6 |L¢.MonotoneCopy(Cy)

3 procedure read(t, x)
4 | Cr.Join(LWy)

7 procedure write(t, x)
8 ‘]LWx.CopyCheckMonotone(Ct)

Algorithm 5: MAZ with tree clocks.

1 procedure acquire(t, £)
2 | Cr.Join(Ly)

7 procedure release(t, £)
s | L¢.MonotoneCopy(Cy)

3 procedure read(t, x)

4 | Cp.Join(LWy)

5 | Ryx.MonotoneCopy(C;)
6 | LRDsy « LRDs, U{t}

9 procedure write(t, x)
Cy.Join(LWy)

foreach t’ € LRDsy do

| Cr.Join(Ry x)

LW, .MonotoneCopy(Cy)
LRDsy < 0

is performed is bounded by the number of write-read races in o
between a read and its last write.

5.2 The Mazurkiewicz Partial Order

The Mazurkiewicz partial order (MAZ) [44] has been the canonical
way to represent concurrent executions algebraically using an inde-
pendence relation that defines which events can be reordered. This
algebraic treatment allows to naturally lift language-inclusion prob-
lems from the verification of sequential programs to concurrent
programs [8]. As such, it has been the most studied partial order
in the context of concurrency, with deep applications in dynamic
analyses [26, 42, 46], ensuring consistency [61] and stateless model
checking [27]. In shared memory concurrency, the standard inde-
pendence relation deems two events as dependent if they conflict,
and independent otherwise [29]. In particular, MAZ is the smallest
partial order that satisfies the following conditions.

<0 C<9

L spgS=maz:

2. for every two events ey, e; such that e; St‘; er and e1 < ey, we
have e; <9, es.

MAZ with tree clocks. The algorithm for computing MAZ is sim-
ilar to that for SHB. The main difference is that MAZ includes
read-to-write orderings, and thus we need to store additional vec-
tor times Ry x of the last event r(x) of thread t. In addition, we
use the set LRDs, to store the threads that have executed a r(x)
event after the latest w(x) event so far. This allows us to only spend
computation time in the first read-to-write ordering, as orderings
between the read event and later write events follow transitively
via intermediate write-to-write orderings. Overall, this approach
yields the efficient time complexity O(n - k) for MAZ, similarly to
HB and SHB. We refer to Algorithm 5 for the pseudocode.

6 EXPERIMENTS

In this section we report on an implementation and experimental
evaluation of the tree clock data structure. The primary goal of
these experiments is to evaluate the practical advantage of tree
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clocks over the vector clocks for keeping track of logical times in a
concurrent program executions.

Implementation. Our implementation is in Java and closely fol-
lows Algorithm 2. The tree clock data structure is represented as
two arrays of length k (number of threads), the first one encod-
ing the shape of the tree and the second one encoding the integer
timestamps as in a standard vector clock. For efficiency reasons,
recursive routines have been made iterative.

Benchmarks. Our benchmark set consists of standard benchmarks
found in benchmark suites and recent literature. In particular, we
used the Java benchmarks from the IBM Contest suite [20], Java
Grande suite [64], DaCapo [10], and SIR [17]. In addition, we used
OpenMP benchmark programs, whose execution lenghts and num-
ber of threads can be tuned, from DataRaceOnAccelerator [58],
DataRaceBench [34], OmpSCR [18] and the NAS parallel bench-
marks [7], as well as large OpenMP applications contained in the fol-
lowing benchmark suites: CORAL [1, 2], ECP proxy applications [3],
and Mantevo project [4]. Each benchmark was instrumented and
executed in order to log a single concurrent trace, using the tools
RV-Predict [55] (for Java programs) and ThreadSanitizer [60] (for
OpenMP programs). Overall, this process yielded a large set of
153 benchmark traces that were used in our evaluation. Table 1
presents aggregate information about the benchmark traces gen-
erated. Information on the individual traces is provided in our
technical report [39].

Table 1: Trace Statistics

‘ ‘Min: Max:MeanH Min:Max:Mean
Threads 3; 222; 31 Events 51; 2.1B; 227M
Locks 1: 60.5k: 688 || Sync. Events (%) 0.0: 44.4: 9.5
Variables 18137‘8M1 1.8M || R/W Events (%) 55.61 1001 90.5

Setup. Each trace was processed for computing each of the MAZ,
SHB and HB partial orders using both tree clocks and the stan-
dard vector clocks. This allows us to directly measure the speedup
conferred by tree clocks in computing the respective partial order,
which is the goal of this paper.

As the computation of these partial orders is usually the first
component of any analysis, in general, we evaluated the impact of
the conferred speedup in an overall analysis as follows. For each
pair of conflicting events ej, ez, we computed whether these events
are concurrent wrt the corresponding partial order (e.g., whether
e1 || €2)- This test is performed in dynamic race detection (in the
cases of HB and SHB) where such pairs constitute data races, as
well in stateless model checking (in the case of MAZ) where the
model checker identifies such event pairs and attempts to reverse
their order on its way to exhaustively enumerate all Mazurkiewicz
traces of the concurrent program. For a fair comparison, in the case
of HB we used common epoch optimizations [24] to speed up the
analysis for both tree clocks and vector clocks (recall Remark 1).
For consistency, every measurement was repeated 3 times and the
average time was reported.

Running times. For each partial order, Table 2 shows the average
speedup over all benchmarks, both with and without the analysis
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Figure 6: Times for processing each benchmark trace using tree clocks (TC) and vector clocks (VC). The top row shows the
time for computing the partial order, while the bottom row shows the time including the analysis component.

component. We see that tree clocks are very effective in reducing
the running time of the computation of all 3 partial orders, with the
most significant impact being on SHB where the average speedup
is 2.53 times. For the cases of MAZ and SHB, this speedup also lead
to a significant speedup in the overall analysis time. On the other
hand, although HB with tree clocks is about 2 times faster than
with vector clocks, this speedup has a smaller effect on the overall
analysis time. The reason behind this observation is straightfor-
ward: SHB and MAZ are much more computationally-heavy, as
they are defined using all types of events; on the other hand, HB is
defined only on synchronization events (acq and rel) and on aver-
age, only ~ 9.5% of the events are synchronization events on our
benchmark traces. Since our analysis considers all events, the HB-
computation component occupies a smaller fraction of the overall
analysis time. We remark, however, that for programs that are more
synchronization-heavy, or for analyses that are more lightweight
(e.g., when checking for data races on a specific variable as opposed
to all variables), the speedup of tree clocks will be larger on the
whole analysis. Indeed, Figure 7 shows the obtained speedup on the
total analysis time for HB as a function of synchronization events.
We observe a trend for the speedup to increase as the percentage of
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Table 2: Average speedup for computing the partial order
due to tree clocks.

‘MAZ‘SHB‘HB‘

PO | 2.02 | 2.66 |2.97

PO + Analysis | 1.49 | 1.80 | 1.11

synchronization events increases in the trace. A further observation
is that speedup is prominent when the number of threads are large.

Figure 6 gives a more detailed view of the tree clocks vs vector
clocks times across all benchmarks. We see that tree clocks almost
always outperform vector clocks on all partial orders, and in some
cases by large margins. Interestingly, the speedup tends to be larger
on more demanding benchmarks (i.e., on those that take more
time). In the very few cases tree clocks are slower, this is only by a
small factor. These are traces where the sub-linear updates of tree
clocks only yield a small potential for improvement, which does
not justify the overhead of maintaining the more complex tree data
structure (as opposed to a vector). Nevertheless, overall tree clocks
consistently deliver a generous speedup to each of MAZ, HB and
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Figure 7: Speedup on HB+analysis computation as a func-
tion of the percentage of synchronization events, for the
traces where the total time is not too small (> 100ms).
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Figure 8: Comparison of the ratios TCWork(c)/VTWork(o)
and VCWork(o)/VTWork(o) across all benchmarks.

SHB. Finally, we remark that all these speedups come directly from
just replacing the underlying data structure, without any attempt to
optimize the algorithm that computes the respective partial order,
or its interaction with the data structure.

Comparison with vt-work. We also investigate the total num-
ber of entries updated using each of the data structures. Recall
that the metric VTWork(o) (Section 4) measures the minimum
amount of updates that any implementation of the vector time
must perform when computing the HB partial order. We can like-
wise define the metrics TCWork(o) and VCWork(o) correspond-
ing to the number of entries updated when processing each event
when using respectively the data structures tree clocks and vec-
tor clocks. These metrics are visualized in Figure 8 for computing
the HB partial order in our benchmark suite. The figure shows
that the VCWork(c) /VTWork(o) ratio is often considerably large.
In contrast, the ratio TCWork(o)/VTWork(o) is typically signif-
icantly smaller. The differences in running times between vector
and tree clocks reflect the discrepancies between TCWork(-) and
VCWork(-). Next, recall the intuition behind the optimality of tree
clocks (Theorem 1), namely that TCWork(o) < 3-VTWork(o). Fig-
ure 8 confirms this theoretical bound, as the TCWork(o)/VTWork
(o) ratio stays nicely upper-bounded by 3 while the VCWork(o)/
VTWork(o) ratio grows to nearly 100. Interestingly, for some bench-
marks we have TCWork(o) =~ 2.99 - VTWork(o), i.e., these bench-
marks push tree clocks to their vt-work upper-bound. Going one
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step further, Figure 9 shows the ratio VCWork(o) /TCWork(o) for
each partial order in our dataset. The results indicate that vector
clocks perform a lot of unnecessary work compared to tree clocks,
and experimentally demonstrate the source of speedup on tree
clocks. Although Figure 9 indicates that the potential for speedup
can be large (reaching 55x), the actual speedup in our experiments
(Figure 6) is smaller, as a single tree clock operation is more com-
putationally heavy than a single vector clock operation.
Scalability. To get a better insight on the scalability of tree clocks,
we performed a set of controlled experiments on custom bench-
marks, by controlling the number of threads and the number of
locks parameters while keeping the communication patterns con-
stant. Each trace consists of 10M events, while the number of
threads varies between 10 and 360. The traces are generated in a
way such that a randomly chosen thread performs two consecutive
operations, acq(l) followed by a rel(l), on a randomly (when appli-
cable) chosen lock I. We have considered four cases: (a) all threads
communicate over a single common lock (single lock); (b) similar
to (a), but there are 50 locks, and 20% of the threads are 5 times
more likely to perform an operation compared to the rest of the
threads (50 locks, skewed); (c) k — 1 client threads communicate
with a single server thread via a dedicated lock per thread (star
topology); (d) similar to (a), but every pair of threads communicates
over a dedicated lock (pairwise communication). Figure 10 shows
the obtained results. Scenario (a) shows how tree clocks have a
constant-factor speedup over vector clocks in this setting. As we
move to more locks in scenario (b), thread communication becomes
more independent and the benefit of tree clocks may slightly di-
minish. As a subset of the threads is more active than the rest,
timestamps are frequently exchanged through them, making tree
clocks faster in this setting as well. Scenario (c) represents a case
in which tree clocks thrive: while the time taken by vector clocks
increases with the number of threads, it stays constant for tree
clocks. This is because the star topology implies that, on average,
every tree clock join and copy operation only affects a constant
number of tree clock entries, despite the fact that every thread is
aware of the state of every other thread. Intuitively, the star commu-
nication topology naturally affects the shape of the tree to (almost)
a star, which leads to this effect. Finally, scenario (d) represents the
worst case for tree clocks as all pairs of threads can communicate
with each other and the communication is conducted via a unique
lock per thread pair. This pattern nullifies the benefit of tree clocks,
while their increased complexity results in a general slowdown.
However, even in this worst-case scenario, the difference between
tree clocks and vector clocks remains relatively small.

7 RELATED WORK

Other partial orders and tree clocks. As we have mentioned in
the introduction, besides HB and SHB, many other partial orders
perform dynamic analysis using vector clocks. In such cases, tree
clocks can replace vector clocks either partially or completely, some-
times requiring small extensions to the data structure as presented
here. In particular, we foresee interesting applications of tree clocks
for the WCP [31], DC [53] and SDP [28] partial orders.

Speeding up dynamic analyses. Vector-clock based dynamic
race detection is known to be slow [56], which many prior works
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Figure 10: Comparison of tree clocks (TC) and vector clocks (VC) on four different benchmarks with increasing number of
threads.

have aimed to mitigate. One of the most prominent performance bot- absolutely necessary, in contrast to vector clocks. Finally, our ex-
tlenecks is the linear dependence of the size of vector timestamps on periments show that tree clocks effectively reduce the running time
the number of threads. Despite theoretical limits [13], prior research for computing the MAZ, SHB and HB partial orders significantly,
exploits special structures in traces [6, 14, 16, 21, 66] that enable and thus offer a promising alternative over vector clocks.

succinct vector time representations. The Goldilocks [19] algorithm Interesting future work includes incorporating tree clocks in an
infers HB-orderings using locksets instead of vector timestamps online analysis such as ThreadSanitizer [60]. Any use of additional
but incurs severe slowdown [24]. The FASTTRACK [24] optimiza- synchronization to maintain analysis atomicity in this online set-
tion uses epochs for maintaining succinct access histories and our ting is identical and of the same granularity to both vector clocks
work complements this optimization — tree clocks offer optimiza- and tree clocks. However, the faster joins performed by tree clocks
tions for other clocks (thread and lock clocks). Other optimizations may lead to less congestion compared to vector clocks, especially
in clock representations are catered towards dynamic thread cre- for partial orders such as SHB and MAZ where synchronization
ation [50, 51, 68]. Another major source of slowdown is program occurs on all events (i.e., synchronization, as well as access events).
instrumentation and expensive metadata synchronization. Several We leave this evaluation for future work. Finally, since tree clocks
approaches have attempted to minimize this slowdown, including are a drop-in replacement of vector clocks, most of the existing
hardware assistance [15, 73], hybrid race detection [47, 71], static techniques that minimize the slowdown due to metadata synchro-
analysis [25, 52], and sophisticated ownership protocols [12, 54, 69]. nization (Section 7) are directly applicable to tree clocks.

8 CONCLUSION

We have introduced tree clocks, a new data structure for maintain-
ing logical times in concurrent executions. In contrast to standard
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A ARTIFACT APPENDIX
A.1 Abstract

This artifact contains all the source codes and experimental data
for replicating our evaluation in Section 6. We implemented the
analyses programs as part of the tool Rarip [36]. The provided
experimental data contains all the 153 trace logs used in our eval-
uation. In our artifact we also provide Python scripts that fully
automate the process of replicating our evaluation.

A.2 Artifact Check-List (Meta-Information)

Algorithm: Tree Clock

Data set: Trace logs obtained from the benchmarks described in
Section 6.

Metrics: Execution time.

Output: CSV files and graphs (optional).

How much disk space required (approximately)?: 150 GB.

How much time is needed to prepare workflow (approximate-
ly)?: We provide all the scripts that automate our workflow.

o How much time is needed to complete experiments (approx-
imately)?: Replicating all the results: 15 days (without paralleliza-
tion). Replicating a small set of results: 1 day (without parallelization).
We also provide instructions for parallelizing the computation (see
Section A.6).

Publicly available?: Yes [38].

Code licenses (if publicly available)?: MIT License.

Data licenses (if publicly available)?: None.

Archived (provide DOI)?: doi.org/10.5281/zenodo0.5749092

A.3 Description

A.3.1 How to Access. Obtain the artifact from [38]. The total size
is expected to be approximately 50 MB.

A.3.2 Hardware Dependencies. Replicating the results of large
benchmarks requires up to 60 GB RAM. Otherwise, there are no
special hardware requirements for using our artifact.

A.3.3 Software Dependencies. Java 11, Ant 1.10 or higher, Python
3.7 or higher, including the packages pandas and matplotlib.

A.3.4 Data Sets. The trace logs are available for download at [5].

A.4 Installation

Obtain the artifact (see Section A.3.1), extract the archive files and
set the $AE_HOME environment variable:

> export AE_HOME=/path/to/AE

Next, install RapiD:

> cd $AE_HOME/rapid/
> ant jar

Then, download the benchmark traces (see Section A.3.4) into
the folder $AE_HOME /benchmarks/.

A.5 Experiment Workflow

In Figure 11 we display the directory structure of our artifact. The
directory rapid contains the RaPID tool which includes our imple-
mentation of the tree clock and vector clock data structures and the
analyses programs based on HB, SHB and MAZ partial orders. The
directory benchmarks is designated for the trace logs. The direc-
tory scripts contains a collection of helper scripts that automate
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our workflow. In particular, the script $AE_HOME/scripts/run.py
can be utilized to automate the process of replicating the results of
Section 6. In Section A.6 we describe how the script can be used
to replicate all or part of our experimental evaluation. In addition,
Section A.7 contains instructions on how the script can be used to
evaluate a new trace log that is not part of the original benchmark
set. The README . md file provides more comprehensive information
on certain aspects of our artifact.

AE_HOME/

rapid/
benchmarks/
scripts/
results/
LICENSE. txt
README . md

Figure 11: Directory structure of the artifact

A.6 Evaluation and Expected Results

Executing the following command will run all the analyses on all
the trace logs:

> python $AE_HOME/scripts/run.py -b all

The outputs of the executions will be extracted as CSV files under
the folder $AE_HOME/results/. Note that this command expects
to locate the benchmarks used in our evaluation (see Section A.3.4)
under the folder $AE_HOME/benchmarks/.

The main goal of this evaluation is to measure the performance
benefits of tree clocks over vector clocks for keeping track of logical
times in concurrent programs. We expect that the overall speedup
would remain similar to the speedups reported in Table 2 for each
category. After the CSV output files have been generated, the
script $AE_HOME/scripts/compute_averages.py may be utilized
to compute the average speedup for each category and replicate
the Table 2:

> python $AE_HOME/scripts/compute_averages.py
$AE_HOME/results/

This script expects the path to the results folder as argument and
outputs a file named table2. csv under the same folder which cor-
responds to replication of Table 2. Similarly, the script $AE_HOME/
scripts/plot.py can be utilized to visualize the obtained outputs
and replicate the Figure 6:

> python $AE_HOME/scripts/plot.py $AE_HOME/results/

This script also expects the path to the results folder as argument
and outputs the plot files under the folder $AE_HOME/results/
plots which corresponds to replication of Figure 6.

We remark that, as also indicated in Section A.2, replicating the
whole evaluation can take very long if executed serially. We refer
the interested readers to the file $AE_HOME/README . md where we
describe a procedure which may be utilized to parallelize the eval-
uation. Furthermore, the script $AE_HOME/scripts/run.py also
provides an option to replicate only parts of our experimental eval-
uation. The following command runs the analyses on a small set of
benchmarks which require moderate system resources and reduced
computation time:
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> python $AE_HOME/scripts/run.py -b small
We refer the readers to the $AE_HOME /README . md file for more
detailed information on customizing the experiments.

A.7 Experiment Customization

Users might utilize the script $AE_HOME/scripts/run.py to eval-
uate a new trace log that is not part of our original benchmark set.
This can be achieved with the following command:

> python $AE_HOME/scripts/run.py -p path/to/trace -n
output-folder-name

The above command will run all the analyses on the input trace
located in path/to/trace and extract the output CSV files into
$AE_HOME/results/output-folder-name. Note that the given in-
put trace must be in one of the formats admitted by the Rarip
tool. Readers may refer to the $AE_HOME/rapid/README . md file for
information regarding the formats admitted by RapID.

A.8 Notes

We note that the reported execution times correspond to the time
taken for performing the respective analyses and do not include
the time taken for processing the input files. Hence, the actual
execution times are expected to be longer than the reported times.
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