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Controller Synthesis for Linear System With
Reach-Avoid Specifications

Chuchu Fan , Zengyi Qin , Umang Mathur , Qiang Ning , Sayan Mitra ,
and Mahesh Viswanathan

Abstract—We address the problem of synthesizing prov-
ably correct controllers for linear systems with reach-avoid
specifications. Discrete abstraction-based controller syn-
thesis techniques have been developed for linear and non-
linear systems with various types of specifications. How-
ever, these methods typically suffer from the state space
explosion problem. Our solution decomposes the overall
synthesis problem into two smaller, and more tractable
problems: one synthesis problem for an open-loop con-
troller, which can produce a reference trajectory, and a
second for synthesizing a tracking controller, which can
enforce the other trajectories to follow the reference trajec-
tory. As a key building-block result, we show that, once a
tracking controller is fixed, the reachable states from an
initial neighborhood, subject to any disturbance, can be
overapproximated by a sequence of ellipsoids, with shapes
that are independent of the open-loop controller. Hence, the
open-loop controller can be synthesized independently to
meet the reach-avoid specification for an initial neighbor-
hood. Moreover, we are able to reduce the problem of syn-
thesizing open-loop controllers to satisfiability problems
over quantifier-free linear real arithmetic. The number of
linear constraints in the satisfiability problem is linear to
the number of hyperplanes as the surfaces of the polytopic
obstacles and goal sets. The overall synthesis algorithm,
computes a tracking controller, and then iteratively covers
the entire initial set to find open-loop controllers for initial
neighborhoods. The algorithm is sound and, for a class
of robust systems, is also complete. We implement this
synthesis algorithm in a tool REALSYN VER 2.0 and use it
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on several benchmarks with up to 20 dimensions. Experi-
ment results are very promising: REALSYN VER 2.0 can find
controllers for most of the benchmarks in seconds.

Index Terms—Controller synthesis, disturbance, linear
system, reach-avoid specification.

I. INTRODUCTION

T
HE controller synthesis question asks whether an input

can be generated for a given system (or a plant) so that

it achieves a given specification. Algorithms for answering

this question hold the promise of automating controller design.

They have the potential to yield high-assurance systems that are

correct-by-construction, and even negative answers to the ques-

tion can convey insights about unrealizability of specifications.

This is neither a new nor a solved problem, but there has been

resurgence of interest with availability of powerful tools like

convex optimizations and satisfiability modulo theories (SMT)

solvers, and compelling applications such as path planning [1],

motion control [2], [3], and circuits design [4].

In this article, we study the control synthesis problem for lin-

ear, discrete-time, and time-varying plant models with bounded

disturbance [5], [6]. We will consider reach-avoid specifications,

which require that starting from any initial stateΘ, the controller

has to drive the system to a target set G, while avoiding certain

unsafe states or obstacles O. Reach-avoid specifications arise

naturally in many domains such as autonomous and assisted

driving, multirobot coordination, and spacecraft autonomy, and

have been studied for linear, nonlinear, as well as stochastic

models [7]–[12].

Textbook control design methods address specifications like

stability, disturbance rejection, and asymptotic convergence, but

they do not directly provide formal guarantees about reach-

avoid specifications. Receding horizon control and model pre-

dictive control (MPC), have been broadly used on constrained

control problems. Using MPC for reach-avoid specifications

typically solves a sequence of mixed integer linear program-

ming (MILP) [13], [14] or general nonlinear optimization prob-

lems [15], [16]. Another approach is based on discrete abstrac-

tions, where a discrete, finite-state, abstraction of the original

control system is computed, and a discrete controller is syn-

thesized by solving a two-player game on the abstracted game

graph [17], [18]. Theoretically, these methods can be applied

to systems with nonlinear dynamics and they can synthesize

controllers for a general class of linear temporal logic (LTL)

specifications. However, in practice, the discretization step leads
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to state-space explosion for higher dimensional models. A de-

tailed comparison between these methods and our proposed

approach is provided in Section II.

In this article, the synthesis algorithm follows a natural

paradigm for designing controllers. The approach is to separate

the controller into two parts: an open-loop controller and a

tracking controller, and synthesize them separately. An open-

loop controller for a single initial state x0 ∈ Θ to meet the

reach-avoid specification. This is called the reference trajectory.

For the remaining states in the initial set, a tracking controller is

added, that drives these other trajectories towards the reference

trajectory that starts from x0. However, designing such a com-

bined controller can be computationally expensive [19] because

of the interdependency between the open-loop controller and

the tracking controller (see Section IV-A). Our approach to

making this construction feasible, is to demonstrate that the two

controllers can be synthesized in a decoupled way as follows.

We first design a tracking controller using a standard linear

quadratic regulator (LQR) method [20]. The crucial result (see

Lemma 1) that helps decouple the synthesis of the tracking and

open-loop controller, is that for such a combined controller,

once the tracking controller is fixed, the set of states reached

from the initial set is contained within a sequence of ellipsoidal

sets [21] centered around the reference trajectory. The shape

and size of these ellipsoidal sets are solely dependent on the

tracking controller and the disturbance, and are independent

of the reference trajectory or the open-loop controller. In fact,

this is a special case of constructing a Lyapunuv function for

the error dynamics between the actual trajectory of the system

and the reference trajectory [22]. Moreover, ellipsoids have

been widely used in reachability computation to solve verifi-

cation [23], [24] and synthesis [25] problems. In this article, we

follow such controller design paradigm and enjoy the benefit of

using ellipsoidal reachable sets: The open-loop controller and

the resulting reference trajectory can be chosen independent of

the fixed tracking controller.

Based on this, the problem of synthesizing the open-loop

controller can be completely decoupled from synthesizing the

tracking controller. Our open-loop controller is synthesized by

encoding the problem as an SMT problem. The straightforward

encoding of the synthesis problem is to find an open loop

controller that can make sure all states in the reach set ellipsoids

satisfy the reach-avoid specification. Such encoding results in a

∃∀ formula in the theory of linear arithmetic. Unfortunately,

solving large instances of such formulas using current SMT

solvers is challenging. To overcome this, we exploit geometric

properties of polytopes and ellipsoids, and reduce the original

∃∀-formula into the quantifier-free fragment of linear arithmetic

(QF-LRA). Moreover, assuming that the obstacles and goal set

can be represented as polytopes, then the number of linear

constraints in the QF-LRA formulas grows linearly with time

and the number of hyperplanes as the surfaces in obstacles and

the goal set (see Lemmas 2 and 3). In this way, the proposed

approach for synthesizing the combined controller can scale to

large dimensional systems.

Our overall algorithm (see Algorithm 1), after computing

an initial tracking controller, iteratively synthesizes open-loop

controllers by solvingQF-LRA formulas for smaller subsets that

cover the initial set. The algorithm will automatically identify the

set of initial states for which the combined tracking+open-loop

controller is guaranteed to work. Our algorithm is sound (see

Theorem 1), and for a class of robust linear systems, it is also

complete (see Theorem 2).

We have implemented the new synthesis algorithm in the tool

REALSYN VER 2.0, which was developed with [26]. We compare

the performance of the new algorithm proposed in this article

with the previous algorithm as in [26], and a state-of-the-art

synthesis tool SMC [27], [28], on 10 benchmark problems. Here,

the obstacles are general polytopes instead of only axis-aligned

hyper-rectangles. In REALSYN VER 2.0, any SMT solver can

be plugged in for solving the synthesis problem. We report the

results of using the Yices solver, as it outperformed other

solvers in [26]. Results show that our new approach can achieve

a 2 to 150 × speedup for most benchmark models comparing

with the previous algorithm REALSYN VER 1.0 as in [26], and

a 2–80 × speedup comparing with SMC. The proposed new

algorithm also scales well for complex models—including a

system with three vehicles (12-D) trying to reach a common

goal while avoiding collision with the obstacles and each other,

and another system with 10 vehicles (20-D) trying to maintain

a platoon. For all the benchmark models, REALSYN VER 2.0

with the new algorithm finds a controller within 2 min using

the Yices solver, and for most benchmarks it finds a controller

within 10 s.

The major contributions of this article is to explore an assem-

bly of several techniques from control, geometry, SAT solving to

develop a fast and formally guaranteed algorithm for controller

synthesis. To be more concrete, the following conditions hold.

1) We propose a synthesis algorithm to find correct-by-

construction controllers for linear time-varying systems

with respect to reach-avoid specifications. Our synthesis

algorithm is sound, and is also complete for a class of

robust linear systems.

2) Our proposed algorithm achieves scalability by reducing

the synthesis problem to satisfiability over quantifier-free

linear arithmetic and leveraging modern SMT solvers. We

develop efficient encoding methods so that the number of

constraints in the resulting SMT problem grows linearly

with time and the complexity of the reach-avoid specifi-

cation.

3) Our algorithm significantly improves the practical ef-

ficiency of control synthesis for large linear systems

with disturbances. Empirical results show a significant

improvement over state-of-the-art synthesis methods.

II. RELATED WORKS

Controller synthesis techniques have been the center of exten-

sive investigation with numerous publications every year lately.

Here, we briefly review related works based on different plant

models, specifications, and several major approaches.

1) Models and Specifications for Synthesis: In increas-

ing order of generality, the types of plant models that have

been considered for controller synthesis are double-integrator

models [2], linear dynamical models [13], [29]–[34], piecewise
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affine models [8], [35], and nonlinear (possibly switched) mod-

els [7], [16], [17], [36], [37]. There is also a line of work on

synthesis approaches for stochastic plants (see [38], and the

references therein). For each of the classes, both continuous

and discrete-time models have been addressed with possibly

different approaches.

There are several classes of specifications typically used for

synthesis as follows:

1) stabilization for system with special properties, including

positive systems [29] and systems with quantized mea-

surements [39], [40];

2) pure safety or invariance specifications [17], [41], [42];

3) reach-avoid [7]–[9], [17], [41];

4) general LTL, GR(1) [30], [43], [44] [31], [35], [45], metric

temporal logic [46], and signal temporal logic [14], [47].

For each of these classes both bounded and unbounded-time

variants have been considered.

In this article, we focus on linear, discrete-time, time-varying

systems with reach-avoid specifications.

2) Model Predictive Control: MPC [48] utilizes an explicit

plant model to predict the plant state and compute the control

input to the plant based on this prediction. At each control

interval, an MPC algorithm attempts to solve a constrained,

discrete-time, optimal control problem in an online setting,

with the objective of optimizing future plant behavior based

on current state. Without loss of generality, assume the current

state of the system is x[0], MPC solves a finite horizon (N steps)

optimal control problem defined by

minu[0],...,u[N−1] Vf (x[N ]) +
N−1
∑

i=0

�(x[i],u[i])

s.t.
∧N

i=0 x[i] ∈ X,
∧N−1

j=0 u[j] ∈ U

(1)

where in the objective function Vf defines cost of the final state

of the controlled systemx[N ], � defines the cost of the rest of the

states and control inputs, and the controlled system is required

to satisfy the state and control constraints x[i] ∈ X,u[i] ∈ U ,

respectively. The implicit MPC law asks that at the state x[0],
the first control u[0] of the computed optimal control sequence

is applied, and the entire calculation is repeated at subsequent

control intervals. When optimal control problems admit an

explicit offline solution, online operations reduce to a simple

function evaluation. Such explicit MPC has been exploited in

many applications including motion planing [13], [33], [34]. The

idea of explicit MPC is to solve the optimization problem (1)

offline for all x within a given set, and to make the dependence

of u(t) on x(t) explicit. The resulting MPC control law is a

piecewise affine function of the state x defined over a polyhedral

partition of the feasible set Xf . For systems with large state and

input spaces, explicit MPC is not practical. Furthermore, it is

hard to make explicit MPC handle cases where the system, cost

function, or constraints are time-varying [49].

Using MPC for controller synthesis typically requires model

reduction for casting the optimization problem (1) as a linear

programming (LP) [33], quadratic programming (QP) [50],

MILP [13], [14], [47], or general nonlinear optimization prob-

lems [15], [16].

In this article, the obstacles at each step are specified by a

collection of polytopes. Therefore, the safe region X , as the

complement of the obstacles, is usually nonconvex. To encode

such avoidance condition x[i] ∈ X in the optimization prob-

lem (1), one has to introduce disjunctions to the constraints. Liu

et al. [16] used Farkas’ lemma to change the avoidance condition

into its dual form that is compatible for MPC formulation.

However, the extra variables introduced by Farkas’ lemma will

lead to nonlinear constraints. Vitus et al. [13] introduced extra

Boolean variables to eliminate the disjunctions, and make the

original optimization problem (1) an MILP. Both the works

use implicit MPC law. The main drawback of implicit MPC

is the need to solve a mathematical program online or within

the sampling time to compute the control action. Therefore, it

is hard to use on systems with large dimensionality [51] and

when the sampling period is short. Explicit MPC can help relieve

the heavy computation load, especially when the optimization

problem is a LP or QP. However, in this case, the explicit solution

for nonlinear optimization and MILP cannot be solved very

efficiently in practice [51].

Compared with the above encoding for reach-avoid, our

proposed method benefits from the fact that the tracking con-

troller can fix the shapes and sizes of the reach set ellipsoids

from an initial set. We further exploit special properties of

the separation between ellipsoids and polytopes to make the

constraints quantifier-free over linear real arithmetics, which can

be efficiently solved using state-of-the-art SMT solvers or MILP

solvers.

The major differences between our approach and the MPC-

based approaches include the following.

1) Our approach does not require the help of a cost function.

Instead, we only need a feasible solution of the satisfia-

bility problem and sacrificed optimality.

2) MPC can be used in scenarios when obstacles are con-

structed dynamically when system evolves by solving the

optimization problem (1) iteratively, while our proposed

approach solves a one-shot SAT problem to find con-

trollers that work for an initial set X0 when obstacles

are fixed. In Section IV-D, we discuss how to adjust

our proposed encoding for the reach-avoid and input

constraints to be used in MPC.

3) Control Lyapunov and Barrier Functions: The idea of

control Lyapunov function (CLF) [52]–[54] is to associate a

Lyapunov function V (x) with its global minimum at the target

state x∗ to the nonlinear system that needs to be stabilized.

At each time step, find a control input u to force V (x) to

decrease to guarantee that the target state x∗ can be reached

asymptotically.

Control barrier functions (CBF) [55] play a similar role to

CLF in the study of liveness properties for nonlinear systems.

CBF can ensure safety by enforcing invariance of a set. That is,

CBF makes sure that that there exists a control input u such that

the nonlinear system will not leave a safe set. In general, it is

not easy to find a CLF for CBF for a given system.

4) Discrete Abstractions: Controller synthesis based on

discrete abstractions have received considerable attention [17],

[30], [30]–[32], [41], [43], [44]. These techniques involve con-

structing a finite partition of the continuous state space with

respect to a set-valued map. Following those methods, it is

possible to synthesize controllers for general nonlinear systems

to enforce complex temporal logic specifications.
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There is a growing set of controller synthesis tools and li-

braries based on the discrete abstraction approach. These in-

clude tools like CoSyMA [56], Pessoa [4], LTLMop [57], [58],

Tulip [44], [59], and SCOTS [36]. Compared with these meth-

ods, our proposed solution takes a different route by “designing”

the shape of reach sets first with the tracking controller, then

“placing” the reach sets using the open loop controller. The

entire process does not involve any partition of the state space,

and therefore, avoids the potential problem of exponentially

growing partitions for large dimensional systems. Our trial with

a four-dimensional (4-D) example on Tulip [44], [59] did not

finish the discretization step in one hour. Recent methods like

feedback refinement [60] and multilayered abstraction [61] have

been introduced to address the issue of exponentially growing

partitions. However, such methods are yet to be available as

synthesis tools. LTLMop [57], [58] handles GR(1) LTL spec-

ifications, which are more general than reach-avoid specifi-

cations considered in this article, but it is designed for 2-D

robot models working in the Euclidean plane. It generates a

hybrid controller as a combination of discrete controllers and

continuous controllers to meet the high-level specification under

certain assumptions on the environment.

5) Sampling-Based Path Planning: Sampling-based

methods such as probabilistic road maps [62], rapidly-exploring

random trees (RRT) [63], and fast marching tree [64] have

offered the benefits of generating feasible trajectories through

known or partially known environments. Compared with

the deterministic guarantees provided by synthesis methods

discussed previously, including ours, the sampling based

methods come with stochastic guarantees. Also, they are not

designed to be robust to model uncertainty or disturbances.

6) Satisfiability Modulo Convex Optimization: SMC [27],

[28] solves satisfiability problems, which are represented as

Boolean combinations of convex constraints over the real num-

bers. Unlike our approach that reduces the reach-avoid problem

to a pure SAT problem, SMC uses a combination of SAT solving

and convex programming to provide a satisfying assignment

or determine that the formula is unsatisfiable. Therefore, SMC

enjoys both the efficiency of convex optimizations and the formal

guarantees of SAT solving, while our approach depends more

on the efficiency of SMT solvers over quantifier-free linear real

arithmetic. SMC can be used to solve robotic motion planning

problems and has been shown to be much more effective than

sampling-based methods like RRT. In Section V, we compare

our proposed algorithm with SMC by adapting the original

implementation of SMC to handle our examples.

In addition to the abovementioned approaches, an alternative

synthesis technique generates mode switching sequences for

switched system models [65]–[69] to meet the specifications.

This line of work focuses on a finite input space, instead of the

infinite input space we are considering in this articles.

Abate et al. [42] used a controller template similar to the one

considered in this article for invariant specifications. A counter-

example guided inductive synthesis approach is used to first

find a feedback controller for stabilizing the system. Since this

feedback controller may not be safe for all initial states of the

system, a separate verification step is employed to verify safety,

or alternatively to find a counter example. In the latter case,

the process is repeated until a valid controller is found. This is

different from our approach, where any controller found needs

no further verification.

III. PRELIMINARIES AND PROBLEM STATEMENT

A. Notations

For a setS and a finite or infinite sequence σ of elements from

S, we denote the tth element ofσ byσ[t]. In the rest of the article,

we will use boldfaced letters (for example, A,B,x,d,u, etc.,)

to denote a sequence of matrices or vectors. Given a vector x ∈
R

n, x(i) is the ith component of x. Given a matrix A ∈ R
n×m,

A(i) is the ith row of A. Given an invertible matrix M ∈ R
n×n

and a vector x ∈ R
n, ‖x‖M ∆

=
√
x�M�Mx is called the M -

norm of x.

Given a vector c ∈ R
n, an invertible matrix M , and a scalar

value r ≥ 0, we define Er(c,M)
∆
= {x | ‖x− c‖M ≤ r} to

be the ellipsoid centered at c with radius r and shape M .

Br(c)
∆
= Er(c, I) is the ball of radius r centered at c. For two

sets R,S ⊆ R
n, we define R⊕ S

∆
= {x+ y | x ∈ R, y ∈ S};

for a singleton set, we abuse notation and use v ⊕ S to denote

{v} ⊕ S. For set S ⊆ R
n and matrix M ∈ R

n×n, we define

M ⊗ S
∆
= {Mx | x ∈ S}. We say a set S ⊆ R

n is a poly-

tope if there is a matrix Ak×n and a vector b ∈ R
k such that

S = {x | Ax ≤ b}.

B. Discrete Time Linear Control Systems

An (n,m)-dimensional time-varying discrete-time linear

systemA is a five-tuple 〈A,B,Θ, U,D〉, where the following

conditions hold:

1) A is an infinite sequence of R
n×n matrices, called dy-

namic matrices;

2) B is an infinite sequence of R
n×m matrices, called input

matrices, and at each time step t, the pair (A[t],B[t]) is

controllable [6];

3) Θ ⊆ R
n is a set of initial states;

4) U ⊆ R
m is the space of inputs;

5) D ⊆ R
n is the space of disturbances.

A control sequence for an (n,m)-dimensional system A is

a (possibly infinite) sequence u = u[0],u[1], . . ., where each

u[t] ∈ U . Similarly, a disturbance sequence for A is a (possi-

bly infinite) sequence d = d[0],d[1], . . ., where each d[t] ∈ D.

Given control u and disturbance d, and an initial state x[0] ∈ Θ,

the execution of A is uniquely defined as the (possibly infinite)

sequence of states x = x[0],x[1], . . . , where for each t > 0

x[t+ 1] = A[t]x[t] +B[t]u[t] + d[t]. (2)

An open-loop control sequence (also called an open-loop

controller) for a given single initial state x0 ∈ Θ is a con-

trol sequence u such that the corresponding execution x with

x[0] = x0 and 0 disturbance (i.e., ∀t ≥ 0,d[t] = 0) satisfies the

reach-avoid constraints..

A (state feedback) controller for A is a function g : Θ×
R

n → R
m, that maps an initial state and a (current) state to

an input. That is, given an initial state x0 ∈ Θ and state x ∈ R
n
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Fig. 1. Settings for controller synthesis of a mobile robot with reach-
avoid specification.

at time t, the control input to the plant at time t is

u[t] = g(x0, x). (3)

This controller is allowed to use the memory of some initial

state x0 (not necessarily the current execution’s initial state) for

deciding the current state-dependent feedback. Thus, given an

initial state x[0], a disturbance d, and a state feedback controller

g, Equations (2) and (3) define a unique executionx ofA. A state

x is reachable at the tth-step if there exists an execution x of

A such that x[t] = x. The set of all reachable states from some

set S ⊆ Θ in exactly T steps using the controller g is denoted

by ReachA,g(S, T ). When A and g are clear from the context,

we simply write Reach(S, T ).

C. Bounded Controller Synthesis Problem

Given an (n,m)-dimensional time-varying discrete-time lin-

ear system A, a sequence O of obstacles or unsafe sets (with

O[t] ⊆ R
n, for each t), a goal G ⊆ R

n, and a time bound T ,

the bounded time controller synthesis problem is to find, a state

feedback controller g such that for every initial state θ ∈ Θ
and any disturbance sequence d ∈ DT of length T , the unique

execution x of A with g, starting from x[0] = θ, satisfies the

following:

1) for all t ≤ T , u[t] ∈ U ;

2) for all t ≤ T , x[t] �∈ O[t];
3) x[T ] ∈ G.

For the rest of the article, we will assume that each of the sets

in {O[t]}t∈N , G and U are closed polytopes.

The controller synthesis problem requires one to find a state

feedback controller that ensures that the execution starting from

any initial state in Θ will meet the reach-avoid specification.

Since the set of initial states Θ will typically be an infinite set,

this requires the synthesized feedback controller g to have a

finite representation. An “enumerative” representation, where

a (separate) open-loop control sequence is constructed for each

initial state, is not feasible. We, therefore, need a useful template

that will serve as the representation for the feedback controller.

Example 1: Consider a mobile robot that needs to reach the

green area of an apartment starting from the entrance area, while

avoiding the red areas (see Fig. 1 ). The robot’s dynamics are

described by a linear model (for example the navigation model

from [70]). The obstacle sequenceO (red rectangles and outside

of the figure region) here is static, that is, O[t] = O[0] for all

t ≥ 0. Both Θ (light green) and G (dark green) are rectangles

(which are also polytopes). Although these sets are depicted in

2-D, the dynamics of the robot may involve a higher dimensional

state space.

In this example, there is no disturbance, but a similar problem

can be formulated for a drone flying outdoors, in which case,

the disturbance input could model the effect of wind. Time-

varying obstacle sets are useful for modeling safety requirements

of multirobot systems.

Suppose robot is asked to reach the target set in 40 steps. The

dotted curves are two executions from Θ and the pink ellipsoids

show the projection of the reachset on the robot’s position with

a synthesized controller.

IV. SYNTHESIS ALGORITHM

A. Algorithm Overview

A natural controller design paradigm is to first find a reference

execution xref, which uses an open-loop controller, then add

a tracking controller, which tries to force other executions x

starting from different initial states x[0] to get close to xref

by minimizing the distance between xref and x. This form of

controller combining open-loop control with tracking control

is also proposed in [19] for reach-avoid specifications. For the

discrete-time linear control system defined as (2), the combined

controller is formally defined as follows.

Definition 1: Given a discrete-time linear system as (2), the

combined controller g is a tuple 〈K,xref[0],uref〉 such that the

control input u[t] to the system is

u[t] = uref[t] +K[t](x[t]− xref[t]),with (4)

xref[t+ 1] = A[t]xref[t] +B[t]uref[t] (5)

where

1) uref is called the open-loop control sequence, which de-

termines the value of the reference execution xref[t] at

each time step t ∈ N once xref[0] is fixed,

2) K is called the tracking controller, which is a sequence

of matrices that determine the additive component of the

input based on the difference between the current state

and the reference execution.

Given the combined feedback controller g as the tuple

〈K,xref[0],uref〉, we could rewrite the linear system in (4) as

an augmented system

[

x

xref

]

[t+ 1] =

[

A[t] +B[t]K[t] −B[t]K[t]
0 A[t]

] [

x

xref

]

[t]

+

[

B[t] 0
0 B[t]

] [

uref

uref

]

[t] +

[

d

0

]

[t].

Observe that the above-mentioned augmented system has the

form

x̂[t+ 1] = Â[t]x̂[t] + B̂[t]û[t] + d̂[t]
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and its closed-form solution is given by

x̂[t]=

(

t−1
∏

i=0

Â[i]

)

x̂[0] +
t−1
∑

i=0

⎛

⎝

t−1
∏

j=i+1

Â[j]

⎞

⎠(B̂[i]û[i] + d̂[i]).

(6)

To synthesize a controller g of this form, therefore, requires find-

ing K,xref[0],uref such that the closed-form solution meets the

reach-avoid specification. This is indeed the approach followed

in [19], albeit in the continuous time setting. Observe that in the

closed-form solution, Â[t], û, and x̂[0] all depend on parameters

that we need to synthesize. Therefore, solving such constraints

involves polynomials whose degrees grow with the time bound.

This is very expensive, and unlikely to scale to large dimensions

and time bounds.

In this article, to achieve scalability, we take a slightly differ-

ent approach than the one where K,xref[0], and uref are simulta-

neously synthesized. We first synthesize a tracking controllerK,

independent of xref[0] and uref, using the standard LQR method.

Once K is synthesized, we show that, no matter what xref[0]
and uref are, the state of the system at time t starting from

x0 is guaranteed to be contained within an ellipsoid centered

at xref[t] with shape and radius that depend only on K, the

initial distance between x0 and xref[0], time t, and disturbance

set D. Moreover, this radius is only a linear function of the

initial distance (see Lemma 1). Thus, if we can synthesize

an open-loop controller uref starting from some state xref[0],
such that ellipsoids centered around xref satisfy the reach-avoid

specification, we can conclude that the combined controller will

work correctly for all initial states in some ball around the initial

state xref[0]. The radius of the ball around xref[0] for which the

controller is guaranteed to work will depend on the radii of the

ellipsoids around xref that satisfy the reach-avoid specification.

This decoupled approach to synthesis is the first key idea in our

algorithm.

Synthesizing the tracking controller K still leaves open the

problem of synthesizing an open-loop controller for an ini-

tial state xref[0]. A straightforward encoding of the problem

could be to find an open-loop controller that works for all

initial states in some ball around xref[0]. That is, finding a

satisfying solution for the formula ∃uref, ∃r, such that ∀x[0] ∈
Br(xref[0]),

∧T
t=0 x[t] /∈ O[t] ∧ x[T ] ∈ G. This results in a ∃∀-

formula in the theory of real arithmetic. Unfortunately, solving

such formulas does not scale to large dimensional systems using

current SMT solvers [71]. The next key idea in our algorithm

is to simplify these constraints and make the formula quantifier

free. We reduce the problem of deciding whether an ellipsoid

(the set of reachable states) is separated from (or contained in) a

polytope (the obstacles or the goal) to measuring the distances

of the center of the ellipsoid to surfaces of the polytopes in

a linearly transformed coordinate. In this way, we are able to

reduce the original ∃∀-formula into the QF-LRA [72], [73] (see

Section IV-D).

Putting it all together, the overall algorithm (see Algorithm 1)

works as follows. After computing an initial tracking controller

K, it synthesizes open-loop controllers for different initial states

by solving QF-LRA formulas. After each open-loop controller

is synthesized, the algorithm identifies the set of initial states for

which the combined tracking+open-loop controller is guaran-

teed to work, and removes this set fromΘ. In each new iteration,

it picks a new initial state not covered by previous combined con-

trollers, and the process terminates when all ofΘ is covered. Our

algorithm is sound (see Theorem 1)—whenever a controller is

synthesized, it meets the specifications. Furthermore, for robust

systems (defined later in this article), our algorithm is guaranteed

to terminate when the system has a combined controller for all

initial states (see Theorem 2).

B. Synthesizing the Tracking Controller K

Given any open-loop controller uref and the corresponding

reference execution xref, by replacing in (2), the controller of

(4), we get

x[t+ 1] = (A[t] +B[t]K[t])x[t]−B[t]K[t]xref[t]

+B[t]uref[t] + d[t]. (7)

Subtractingxref[t+ 1] from both sides, we have that for any exe-

cution x starting from the initial states x[0] and with disturbance

d, the distance between x and xref changes with time as

x[t+ 1]− xref[t+ 1]

= (A[t] +B[t]K[t]) (x[t]− xref[t]) + d[t]. (8)

With Ac[t]
∆
= A[t] +B[t]K[t], y[t]

∆
= x[t]− xref[t], (8) be-

comes

y[t+ 1] = Ac[t]y[t] + d[t].

We want x[t] to be as close to xref[t] as possible, which means

K[t] should be designed to make |y[t]| converge. Equivalently,

K[t] should be designed as a linear feedback controller such that

the systemy[t+ 1] = Ac[t]y[t] is stable. Such a matrixK[t] can

be computed using several methods. In this article, we compute

K[t] as finding a linear state feedback controller by solving the

LQR problem [20], stated as follows.

Definition 2 (LQR): For a time-varying linear system A as

defined in Section III-B with 0 disturbance and a time bound

T , the LQR problem is the optimal control problem of finding

open loop control u[0], . . . ,u[T − 1], such that the following

objective function is minimized:

J(x[0],u, T )
∆
= x[T ]�Q[T ]x[T ]

+

T−1
∑

t=0

(x[t]�Q[t]x[t] + u[t]�R[t]u[t])

where Q and R are sequences of symmetric positive definite

matrices.

The optimal control for LQR is given by ∀t = 0, . . . , T − 1,

u[t] = K[t]x[t] where

K[t]
∆
= −

(

B[t]�P[t+ 1]B[t] +R[t]
)−1

B[t]�P[t+ 1]A[t]
(9)
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and P[t] is computed by solving the discrete time Riccati dif-

ference equation

P[t] = A[t]�P[t+ 1]A[t] +Q[t]−A[t]�P[t+ 1]B[t]
(B[t]�P[t+ 1]B[t] +R[t])−1B[t]�P[t+ 1]A[t]

with boundary condition P[T ] = Q[T ] [74]. The matrices K in

(9) can be used as a tracking controller as in Definition 1.

When T → ∞ and ∀t ≥ 0,A[t] = A,B[t] = B,Q[t] = Q,

andR[t] = R are all constant matrices, andK[t] computed using

(9) will also become a constant matrixK. Furthermore, if the pair

(A,B) is controllable (or stabilizable), the closed-loop system

x[t+ 1] = (A+BK)x[t] is stable. That is, the eigenvalues of

Ac = A+BK with K given by (9) have magnitudes less than 1.

Therefore, when T → ∞, the tracking controller K computed

using LQR can guarantee that the any execution x will converge

to xref asymptotically when there is no disturbance.

For most of the experiments presented in Section V, we fix

each Q[t] and R[t] to be identity matrices. Roughly, for a given

R, scaling up Q results in a K that makes an execution x

converge faster to the reference execution xref but will also

result in larger values of u. In this article, the detailed tradeoffs

involved in the choices of Q[t] and R[t] will not be pursued

further.

With the synthesized K, we are able to compute the set of

reachable states for A with an arbitrary reference trajectory xref,

as shown in the following section.

C. Reachset Overapproximation With Tracking Controller

In this section, we assume that the tracking controller, which

is a sequence of matrices K, computed as in Section IV-B, will

make A[t] +B[t]K[t] invertible for any time t. We do not need

A[t] +B[t]K[t] to be stable for the analysis of the rest of the

article. However, later on we will see that if K can make the

other trajectories x converge to xref, the set of reachable states

will also converge to its center xref, which is desirable for the

overall synthesis algorithm.

Once we fix K, we show that the reachable states of the

system A with an open-loop controller uref (to be computed

in Section IV-D) can be overapproximated using a sequence of

ellipsoids centered at the corresponding xref with shapes and

radii depending on A,B,K, the initial set, and the disturbances

(see Lemma 1). Moreover, for systems with 0 disturbances (i.e.,

D = {0}), Corollary 1 shows that the set of reachable states

can be computed precisely (i.e., there is no overapproximation

error).

Lemma 1: Consider a linear system A = 〈A,B,Θ, U,D〉
with a controller defined as in (4). Fix the following:

1) a tracking controller K such that A[t] +B[t]K[t] is in-

vertible for each time t;
2) an open-loop controller uref with the corresponding ref-

erence execution xref;

3) an ellipsoidal initial set S = Er[0](xref[0],M[0]) ⊆ Θ,

where r[0] and M[0] are the radius and shape of the

ellipsoid, respectively. Then,

Reach(S, t) ⊆ Er[t](xref[t],M[t]), ∀ t ≤ T, where

M[t] = M[0]

(

t−1
∏

i=0

(A[i] +B[i]K[i])−1

)

r[t] = r[0] +

t−1
∑

i=0

δ[i], (10)

δ[i] is chosen such that ∀i ≥ 0, Eδ[i](0,M[i+ 1]) ⊇ D.

Proof: We prove this lemma by induction on t.
Base case: When t = 0, from the condition (3) of the Lemma

we know that Reach(S, 0) = S = Er[0](xref[0],M[0]).
Induction step: Assume that at time step t, we have

Reach(S, t) ⊆ Er[t](xref[t],M[t]).
Let Ac[t] = A[t] +B[t]K[t]. At time step t+ 1, from (8),

we have that

x[t+ 1] = xref[t+ 1] +Ac[t](x[t]− xref[t]) + d[t].

∀x[t] ∈ Reach(S, t), we have x[t]− xref[t] ∈
Er[t](0,M[t]). Moreover, since d[t] ∈ D, we have that

x[t+ 1] ∈ xref[t+ 1]⊕Ac[t]Er[t](0,M[t])⊕D. (11)

Recall that ⊕ is the addition of all elements of sets,

and Ac[t]Er[t](0,M[t]) means multiplying each vector in

Er[t](0,M[t]) with Ac[t].
The right-hand side of (11) can be computed as follows.

1) The second item Ac[t]Er[t](0,M[t]), which contains all

possible values of Ac[t](x[t]− xref[t]), can be computed

as

Ac[t]Er[t](0,M[t]) = {Ac[t]x | ‖x‖M[t] ≤ r[t]}
= {Ac[t]x | ‖M[t]x‖2 ≤ r[t]}.

Letting y = Ac[t]x, then, we have

Ac[t]Er[t](0,M[t]) = {y | ‖M[t]A−1
c [t]y‖2 ≤ r[t]}

= {y | ‖y‖M[t]Ac[t]−1 ≤ r[t]} = Er[t](0,M[t+ 1]).

2) Then, since D ⊆ Eδ[t](0,M[t+ 1]), which means ∀d ∈
D, ‖d‖M[t+1] ≤ δ[t]. Therefore, we have

Er[t](0,M[t+ 1])⊕D
= {x+ d | ‖x‖M[t+1] ≤ r[t], ‖d‖M[t+1] ≤ δ[t]}.

Using triangular inequality of theM [t+ 1]norm, we have

Er[t](0,M[t+ 1])⊕D ⊆ {y | ‖y‖M[t+1] ≤ r[t] + δ[t]}
= Er[t+1](0,M[t+ 1]).

3) Finally, it is easy to see that

xref[t+ 1]⊕ Er[t+1](0,M[t+ 1])
= Er[t+1](xref[t+ 1],M[t+ 1]).

Therefore, we have

Reach(S, t+ 1) ⊆ Er[t+1](xref[t+ 1],M[t+ 1]).

�

In the above-mentioned proof, the only overapproximation

happened in Step 2, as we overapproximate the disturbance D
using an ellipsoid with shape M[t+ 1]. This is because we want

to keep reach sets represented as ellipsoids all the time. If there is

no disturbance, i.e., D = {0}, we do not need to conduct Step 2,

and Lemma 1 can give us exact reach sets.
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Corollary 1: Consider a linear system A =
〈A,B,Θ, U,D = {0}〉 with a controller defined as in

Equation (4). Fix the following:

1) a tracking controller K;

2) an open-loop controller uref with the corresponding ref-

erence execution xref;

3) an ellipsoidal initial set S = Er[0](xref[0],M[0]) ⊆ Θ,

where r[0] and M[0] are the radius and shape of the

ellipsoid respectively. Then,

Reach(S, t) = Er[t](xref[t],M[t]), ∀ t ≤ T (12)

where M[t] = M[0](
∏t−1

i=0(A[i] +B[i]K[i])−1).
In Lemma 1, r[0] and M[0] can be chosen arbitrarily as

long as the corresponding ellipsoidEr[0](xref[0],M[0]) contains

(or is equal to) the initial set S. It follows that given any

sequence of uref as the open-loop controller, which leads to

a corresponding reference trajectory xref, the reachable states

from S Reach(S, t) can be overapproximated by an ellipsoid

centered at xref[t+ 1] with shape M[t] = M[0](
∏t−1

i=0(A[i] +
B[i]K[i])−1) and radius r[0] (when there is no disturbance) or

r[0]plus an additive term
∑t−1

i=0 δ[i], which accounts for bounded

disturbance. Note that the shapes and radii of the ellipsoids

are all independent of the open-loop controller uref and the

reference trajectory xref. This is the key step to decouple the

synthesis of the tracking controller K and rest of the parame-

ters in the feedback controller (uref, xref[0]). In the following

section, we discuss a novel approach to finding the latter two

efficiently.

D. Synthesis of Open-Loop Controller

In this section, we will discuss the synthesis of the open-loop

controller uref and xref[0] in 〈K,xref[0],uref〉. From the pre-

vious section, we know that given an initial set S, a tracking

controller K, and an open-loop controller uref, the reachable

set (under any disturbance) at time t is overapproximated by

Er[t](xref[t],M[t]). Thus, once we fix K, the problem of syn-

thesizing a controller reduces to the problem of synthesizing an

appropriate uref and xref[0] such that the reachset overapproxi-

mations meet the reach-avoid specification. Indeed, for the rest

of the this section, we will assume fixed K.

For synthesizing uref and xref[0], we would like to formalize

the problem in terms of constraints that will allow us to use SMT

solvers. As we have discussed in Section IV-A, the quantifier-

free formulas are simpler than formulas with quantifier alter-

nations [73]. In the following, we describe the details of how

this problem can be formalized as a quantifier-free first-order

formula over the theory of reals. We will then lay out specific as-

sumptions and/or simplifications required to reduce the problem

to QF-LRA theory, which is implemented effectively in existing

state-of-the-art SMT solvers. Most SMT solvers also provide

the functionality of explicit model generation, and the concrete

controller values can be read-off from the models generated

when the constraints are satisfiable.

1) Constraints for Synthesizing uref: The uref synthesis

problem can be stated as finding satisfying solutions for the

formulaφsynth, where the initial set of states isS = Br[0](xref[0])

φsynth
∆
= ∃uref[0],uref[1], . . .uref[T−1], r[0]

∃xref[0],xref[1], . . .xref[T ]
φcontrol(uref) ∧ φexecution(uref,xref)
∧φavoid(r[0],uref,xref) ∧ φreach(r[0],uref,xref)

(13)

where φcontrol constrains the space of inputs, φexecution states

that the sequence xref is a reference execution following (4),

φavoid specifies the safety constraint, and φreach specifies that

the system reaches G:

φcontrol(uref)
∆
=

T−1
∧

t=0
uref[t]⊕

(

K[t]⊗ Er[t](0,M[t])
)

⊆ U

φexecution(uref,xref)
∆
=

T−1
∧

t=0
(xref[t+ 1] = A[t]xref[t] +B[t]uref[t])

φavoid(r[0],uref,xref)
∆
=

T
∧

t=0
Er[t](xref[t],M[t]) ∩O[t] = ∅

φreach(r[0],uref,xref)
∆
= Er[T ](xref[T ],M[T ]) ⊆ G.

(14)

We make a few remarks about this formulation. First, each of

the formulas φcontrol, φavoid, and φreach represent sufficient con-

ditions to check for the existence of uref. Second, the constraints

stated previously belong to the (decidable) theory of reals.

However, φcontrol, φavoid, and φreach, and thus, φsynth, are not

quantifier free as they use subset and disjointness checks. This

is because for setsS, T expressed as predicatesϕS(·) andϕT (·),
S ∩ T = ∅ corresponds to the formula ∀x · ¬(ϕS(x) ∧ ϕT (x))
and S ⊆ T (or equivalently S ∩ T c = ∅) corresponds to the

formula ∀x · ϕS(x) ⇒ ϕT (x).
2) Reduction to QF-LRA: The central idea behind eliminat-

ing the universal quantification in the disjointness predicates

in φavoid, or in the inferred disjointness predicates in φreach

and φcontrol, is to check whether an ellipsoid is disjointed or

contained in a polytope. Lemmas 2 and 3 state that the dis-

jointness and containment checks can be done through linear

constraints.

Lemma 2: For an ellipsoidEr[t](xref[t],M[t]) and a polytope

{x ∈ R
k | Ax ≤ b}, if

k
∨

i=1

(

A(i)xref[t] > b(i)
)

∧

(

A(i)xref[t]− b(i)

‖Ã(i)‖2
> r[t] ∨ A(i)xref[t]− b(i)

‖Ã(i)‖2
< −r[t]

)

(15)

where Ã = AM−1[t], then

Er[t](xref[t],M[t]) ∩ {x | Ax ≤ b} = ∅.

Proof: Take an affine coordinate transformation y = M[t]x
and let x̃ref[t] = M[t]xref[t]. Under the transformed coordinate,

the ellipsoid Er[t](xref[t],M[t]) becomes a ball

Er[t](M[t]xref[t], I) = Br[t](x̃ref[t])
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Fig. 2. Illustration of B
r[t](x̃ref[t]) being disjointed from the polytope

{y | Ãy ≤ b}.

and the polytope also becomes Ãy ≤ b. Affine transformation

preserves the disjointness between objects. As long as the ball

Br[t](x̃ref[t]) is disjointed from the polytope Ãy ≤ b, the original

ellipsoid and polytope are disjointed.

Consider the ball Br[t](x̃ref[t]) in the transformed coordinate,

if the center x̃ref[t] is outside the polytope Ãy ≤ b and its

distance to an surface of the polytope is greater than r[t], then

the ball Br[t](x̃ref[t]) is not intersecting with any surfaces of

the polytope, and therefore, is disjointed from the polytope (as

shown in Fig. 2). Equivalently, this means that there exists an

i ≤ k, such that Ã(i)x̃ref[t] > b(i), and the distance from x̃ref[t]
to any surface, which is a hyperplane Ã(i)x = b(i), is greater

than r[t]. Recall that A(i) and b(i) are the ith row of A and b,
respectively.

The distance from x̃ref[t] to a hyperplane Ã(i)x = b(i) is
|Ã(i)

x̃ref[t]−b(i)|
‖Ã(i)‖2

. Therefore, the ball Br[t](x̃ref[t]) is disjointed

from the polytope {y | Ãy ≤ b} if the following is true:

k
∨

i=1

(

Ã(i)x̃ref[t] > b(i)
)

∧

(

Ã(i)x̃ref[t]− b(i)

‖Ã(i)‖2
> r[t] ∨ Ã(i)x̃ref[t]− b(i)

‖Ã(i)‖2
< −r[t]

)

which is equivalent to (15). �

In Lemma 2, to check whether an ellipsoid is disjointed from

a polytope (obstacle) with k surfaces using (15), the formula

contains 3 k linear inequalities with conjunctions and disjunc-

tions. In [26], the reach set overapproximations are represented

using hyper-rectangles. The hyper-rectangle is disjointed from

the polytope if there is a surface of the polytope such that the

vertices of the hyper-rectangle lie on the other side of the surface.

Such a formula has 2nk linear inequalities, where n is the

dimensionality of the state space. Compared with the methods

used in [26], Lemma 2 reduces the number of constraints in

φavoid from 2nk to 3 k, which is the key fact that makes the

proposed approach scale to systems with large n. We will also

see the same improvement in φreach and φcontrol.

Similar to Lemma 2, as long as the center of the ball

Br[t](x̃ref[t]) is inside the polytope Ãy ≤ b, and the distances

from x̃ref[t] to all surfaces of the polytope Ã(i)x = b(i) are

greater than the radius r[t], the ball is entirely contained in the

polytope.

Lemma 3: For any ellipsoid Er[t](xref[t],M[t]) and a poly-

tope {x ∈ R
k | Ax ≤ b}, if

k
∧

i=1

(

A(i)xref[t] ≤ b(i)
)

∧

(

A(i)xref[t]− b(i)

‖Ã(i)‖2
≥ r[t] ∨ A(i)xref[t]− b(i)

‖Ã(i)‖2
≤ −r[t]

)

(16)

where Ã = AM−1[t], then

Er[t](xref[t],M[t]) ⊆ {x | Ax ≤ b}.
With Lemma 2 and 3, we can rewrite φavoid and φreach in (14)

as

φavoid(r[0],uref,xref)
∆
=

T
∧

t=0

∧

{x|Ax≤b}∈O[t]

k
∨

i=1

(

A(i)xref[t] > b(i)
)

∧
(

A(i)xref[t]− b(i)

‖Ã(i)‖2
> r[t] ∨ A(i)xref[t]− b(i)

‖Ã(i)‖2
< −r[t]

)

φreach(r[0],uref,xref)
∆
=

k
∧

i=1

(

A
(i)
G xref[T ] ≤ bG(i)

)

∧
(

AG
(i)xref[T ]− bG(i)

‖ÃG
(i)‖2

≥ r[T ] ∨ AG
(i)xref[T ]− bG(i)

‖ÃG
(i)‖2

≤

−r[T ]) (17)

where in φreach, the goal set G is represented as an ellipsoid

{x|AGx ≤ bG}. Once the tracking controller K is fixed, the

matrices Ã (or ÃG) are constants. Moreover, r[t] = r[0] +
∑t−1

i=0 δ[i] and δ are also constants. Therefore, φavoid and φreach

are linear expressions of r[0],uref,xref with disjunctions. In the

expression φcontrol of (14), uref[t]⊕ (K[t]⊗ Er[t](0,M[t])) is

essentially also an ellipsoid Er[t](uref[t],M[t]K−1[t]). There-

fore, φcontrol can also be represented as a linear expression of

uref and r[0].
As discussed previously, the constraints as in

φcontrol, φexecution, φavoid, and φreach only give rise to linear

constraints, do not have the ∀ quantification over states, and are

sound transformations of φsynth into QF-LRA. Moreover, the

number of linear inequality constraints in φsynth is only O(kT ),
where T is the number of time steps T , and k is the number of

surfaces in obstacles and the goal set. In Section IV-E, we will

see that as the reach sets are exact when the disturbance is 0

(see Corollary 1), these checks will also turn out to be sufficient

to ensure that if there exists a controller, φsynth is satisfiable.

Lemma 4: If the formula φsynth is satisfiable, then there is

a control sequence uref such that for every x ∈ Br[0](xref[0])
and for every d ∈ DT , the unique execution x defined by the

controller 〈K,xref[0],uref〉 and d, starting at x, satisfies x[T ] ∈
G ∧ ∀t ≤ T · x[t] �∈ O[t].

We remark that a possible alternative for eliminating the ∀
quantifier is the use of Farkas’ lemma, but this gives rise to
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nonlinear constraints.1 Indeed, in our experimental evaluation,

we observed the downside of resorting to Farkas’ lemma in this

problem.

We also remark that the SAT encoding as in Lemma 2 can be

formulated as mixed integer linear constraints using the “big-M”

method to get rid of the disjunction operators ∨, by introducing

extra auxiliary integer variables (see details in [75]). Then,φsynth

in (13) can be solved through solving a MILP or MIQP problem.

In this way, our encoding for φcontrol, φexecution, and φavoid (as

mixed integer linear formulaeφ′
control, φ

′
execution, andφ′

avoid using

the “big-M” method on the original formulae) can be used in

dynamic and real-time control using MPC, where the obstacles

O[t] are constructed dynamically as system evolves, and Θ is a

set instead of a single point due to bounded localization errors

min
uref[0],...uref[N−1],
r[0],xref[0],...xref[N ]

Vf (xref[N ]) +
N−1
∑

i=0

�(xref[i],uref[i])

s.t. φ′
control(uref) ∧ φ′

execution(uref,xref)
∧φ′

avoid(r[0],uref,xref)
∧ (xref[0] = center(Θ))
∧ (r[0] ≥ diameter(Θ)) . (18)

We implemented both the SAT encoding as in (17) and the

corresponding mixed integer linear encoding with the objective

function‖xref[N ]− center(G)‖2 (using the Gurobi solver), and

observe that both the two encoding has no major difference in

terms of running time when N = T . Moreover, both SAT over

QF-LRA and MIP problems are NP-hard [76].

E. Synthesis Algorithm Putting it All Together

Section IV-D describes how to formalize constraints to gen-

erate a control sequence that works for S, which could be a

subset of the initial set Θ. The overall synthesis procedure

(see Algorithm 1), first computes a tracking controller K, then

generates open-loop control sequences and reference executions

in order to cover the entire set Θ.

The procedure ReachParams computes the tracking con-

troller K, based on which it further computes a sequence of

shape matrices M and disturbance bounds δ using Lemma 1,

for the system A and time bound T with Q,R for the LQR

method. Given any reference execution xref and initial set

Br[0](xref[0]), the parameters computed by ReachParams can

be used to overapproximate Reach(Br[0](xref[0]), t) with the

ellipsoid Er[t](xref[t],M[t]), where r[t] = r[0] +
∑t−1

i=0 δ[i].
The procedure getConstraints constructs the logical formula

ψsynth such that whenever ψsynth holds, we can find an initial

radius r[0] that is abovementioned some threshold t∗, and center

xref[0] in the setΘ \ cover and a control sequenceuref such that

any controlled execution starting from Br[0](xref[0]) satisfies

the reach-avoid requirements

ψsynth
∆
= φsynth ∧ xref[0] ∈ Θ ∧ xref[0] �∈ cover ∧ r[0] > r∗.

(19)

1Farkas’ lemma introduces auxiliary variables that get multiplied with existing
variables xref[0], . . . ,xref[T ], leading to nonlinear constraints.

Line 3 checks for the satisfiability of ψsynth. If satisfiable, we

extract the model generated to get the radius of the initial ball,

the control sequence uref, and the reference execution xref in

Line 4. The generated controller 〈K,xref[0],uref〉 is guaranteed

to work for the ball Br[0](xref[0]), which can be marked covered

by adding it to the set cover. In order to keep all the con-

straints linear, one can further underapproximate Br[0](xref[0])
with a hypercube {x ∈ R

n | ∧n
i=1 xref[0](i)− r[0](i)/

√
n ≤

x ≤ xref[0](i) + r[0](i)/
√
n}. If ψsynth is unsatisfiable, then we

reduce the minimum radius r∗ (see Line 8) and continue to look

for controllers, until we find that Θ ⊆ cover.

The set controllers is the set of pairs

(〈K,xref[0],uref〉, S), such that the controller 〈K,xref[0],uref〉
drives the set S to meet the desired specification. Each time a

new controller is found, it is added to the set controllers

together with the initial set for which it works (see Line 6).

The following theorem asserts the soundness of Algorithm 1,

and it follows from Lemmas 1 and 4.

Theorem 1: If Algorithm 1 terminates, then the synthesized

controller is correct. That is, (a) for each x ∈ Θ, there is

a (〈K,xref[0],uref〉, S) ∈ controllers, such that x ∈ S,

and (b) for each (〈K,xref[0],uref〉, S) ∈ controllers, the

unique controller 〈K,xref[0],uref〉 is such that for every x ∈
S and for every d ∈ DT , the unique execution defined by

〈K,xref[0],uref〉 and d [as in (2) and (4)], starting at x, satisfies

the reach-avoid specification.

Algorithm 1 ensures that, upon termination, every x ∈ Θ
is covered, i.e., one can construct a combined controller that

drives x to G while avoiding O. However, it may find multiple

controllers for a pointx ∈ Θ. This nondeterminism can be easily

resolved by picking any controller assigned for x.

Below, we show that, under certain robustness assumptions

on the system A, G and the sets O, and in the absence of

disturbance, Algorithm 1 terminates.
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Robustly controllable systems: A system A =
〈A,B,Θ, U,D〉 is said to be ε-robustly controllable (ε > 0)

with respect to the reach-avoid specification (O, G) and

matrices K, if (a) D = {0}, and (b) for every initial state

θ ∈ Θ there is an open loop-controller uref ∈ UT such that the

unique execution starting from θ using the open-loop controller

uref satisfies the reach-avoid specification. Moreover, with the

controller 〈K, θ,uref〉 defined as in (4), ∀x ∈ Bε(θ), the unique

trajectory x defined by the controller 〈K, θ,uref〉 starting from

x also satisfies the reach avoid specification.

Theorem 2: If A is an ε-robust controllable system with

respect to the reach-avoid specification (O, G), the tracking

controller K, and an arbitrarily small ε > 0, then Algorithm 1

terminates.

Proof: As seen in Corollary 1, when the system is robust,

then (in the absence of any disturbance, i.e.,D = {0}), the com-

puted ellipsoids are exact reach sets starting from Br[0](xref[0]).
Moreover, as r∗ approaches 0, r[0] can also approach 0. From

Corollary 1, we know that ∀t ≥ 0, r[t] = r[0], so the radii of the

reach sets ellipsoids all converge to 0. With r[t] → 0, (15) and

(16) in Lemmas 2 and 3 [therefore, (17)] also become satisfiable

whenever there is a controller. The correctness of Theorem 2

then follows from the above observations. �

We remark that an alternative approach to solve the bounded

controller synthesis problem is to synthesize an open-loop con-

trol sequence uref for a single initial condition xref[0] first, and

then find the maximum cover such that there exists a track-

ing controller K to make every execution starting from the

cover also satisfy the reach-avoid specification. However, when

implemented this approach, we observed that the synthesized

reference trajectory xref always got very close to the obstacles.

Therefore, the maximum initial cover for which this reference

trajectory works would be minuscule, and result in a very large

number of partitions in the initial set. In contrast, Algorithm 1

asks the SMT solver to search for a reference that works for an

initial cover with the size of at least r∗ with any disturbance (and

r∗ is adjusted iteratively), resulting in a much smaller solution

space.

V. REALSYN VER 2.0 IMPLEMENTATION AND EVALUATION

For experimental evaluation, we have implemented Algo-

rithm 1, the tool REALSYN VER 2.0. The previous version of

the tool, REALSYN VER 1.0, appeared in our earlier paper [26].

The key distinction in the new implementation is the encoding

of the reach-avoid constraints, as in Lemmas 2 and 3. As a

result, the final formulas for the reach-avoid constraints (17)

for synthesizing the open-loop controller consist of O(k) linear

constraints, with k being the number of hyperplanes of the

obstacles and the goal set. In contrast, in REALSYN VER 1.0,

such formulas have O(2nk) linear constraints, where n is the

dimensionality of the state space.

For solving (19), REALSYN VER 2.0 can use any SMT solver

as a subroutine. For our results here we use Yices [77],

as it outperformed the other solvers in [26]. We evaluate our

approach on 10 example synthesis problems (from [26]) on a

standard laptop with Intel Core i7 processor, 16 GB RAM. The

results are reported in Table I. Overall, our results demonstrate

the effectiveness of using our approach and the feasibility of

scalable controller synthesis for high-dimensional systems and

complex reach-avoid specifications.

Comparison with other tools: We considered other controller

synthesis tools for possible comparison with REALSYN VER 2.0.

In brief, CoSyMa [56], Pessoa [4], and SCOTS [36] do not

explicitly support discrete-time systems. LTLMop [57], [58] is

designed to analyze models in the 2-D Euclidean plane, and

therefore, is not suitable for most of our examples. TuLiP [44],

[59] comes closest to addressing the same class of problems.

TuLip relies on discretization of the state space and a receding

horizon approach for synthesizing controllers for more general

GR(1) specifications. However, we found that TuLip succumbs

to the state-space explosion problem when discretizing the state

space, and it did not work on most of our examples. For instance,

TuLiP was unable to synthesize a controller for the 2-D system

“1-robot” (see Table I), and returned unrealizable. On the

benchmark “2-robot” (n = 4), TuLip did not return any answer

within 1 h. SMC [27], [28], as discussed in Section II, is the

closest to ours as in solving reach-avoid problems, and the

only one among the tools that can return comparable results

to REALSYN VER 2.0. We adopt the implementation of SMC as

in2 to be used on our benchmarks and report results in Table I.

Benchmarks: Our benchmarks are mainly vehicle motion

planning problems with reach-avoid specifications. Benchmarks

1 and 2 model robots moving on the Euclidean plane, where

each robot is a 2-D system and admits a 1-D input. Starting

from some initial region on the plane, the robots are required to

reach the common goal area within the given time steps, while

avoiding certain obstacles. For “2-robot,” the robots are also

required to maintain a minimum separation. Benchmarks 3–7

are discrete vehicular models adopted from [70]. Each vehicle

is a 4-D linear system with 2-D input. Benchmark 3 from [26]

describes a mobile robot needs to accomplish a reach-avoid goal

in an apartment. Benchmark 4 describes a vehicle running on

a two-lane road, trying to overtake a vehicle in front of it. The

second vehicle serves as the dynamic obstacle. Benchmarks 5–7

are similar to Benchmark 2, where the vehicles are required

to reach a common goal area while avoiding collision with

the obstacles and with each other (inspired by a merge). The

velocities and accelerations of the vehicles are also constrained

in each of these benchmarks. Fig. 3 shows the setting for three

vehicles trying to reach the green goal set while avoiding the red

obstacle and maintaining a distance of > 0.5 (m) all the time.

Fig. 3 also shows the reachsets of each vehicle projected to the

2-D plane of vehicles’ positions. We observe from Fig. 3 that to

make sure that all vehicles do not collide with each other, the

synthesized controller forces the vehicles to arrive at the goal

set at different time steps.

Benchmarks 8–10 model multiple vehicles trying to form

a platoon by maintaining the safe relative distance between

consecutive vehicles. The models are adopted (and discretized)

from [19]. Each vehicle is a 2-D system with 1-D input. For the

2“SMC-LTL Github Repository,” [Online]. Available: https://github.com/
rcpsl/SMC-LTL
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TABLE I
RUN TIME PERFORMANCE COMPARISON OF CONTROLLER SYNTHESIS USING REALSYN VER 2.0 WITH THE ORIGINAL SYNTHESIS ALGORITHM

REALSYN VER 1.0 AS IN [26] AND SMC [27]

Fig. 3. Reachsets of three cars with synthesized controller for reach-
avoid specification. Ellipsoids represent the projection of the reachset
on the vehicle’s position on the 2-D plane. Ellipsoids of the same color
connected by the line of same color belong to the same vehicle. Reach-
sets of the same time step are connected using the black dotted line.
Red polytope is the obstacle and green polytope is the goal set. Note
that different vehicles arrive at the goal set at different time steps so they
do not collide with each other, although some ellipsoids (at different time
steps) appear to overlap.

four-car platoon model, the running times reported in Table I

are much smaller than the time (5 min) reported in [19]. This

observation aligns with our analysis in Section IV-A. For the

10-car platoon case, Fig. 4 shows the positions of the cars along

time with the synthesized controller using REALSYN VER 2.0.

As shown in Fig. 4, all vehicles are maintaining a safe relative

distance > 1(m) to its neighbor vehicles even with disturbances.

Synthesis performance: In Table I, columns “n” and “m”

stand for the dimensions of the state space and input space.

For each background solver, “#iter” is the number of iterations

Algorithm 1 required to synthesize a controller, and “time” is

the respective running times. All benchmarks are synthesized

for a specification with 10–20 steps.

Fig. 4. Ten cars are forming a platoon with synthesized controller. The
x-axis is time and the y-axis is the position of each car.

In general, the proposed algorithm improves the performance

of REALSYN VER 2.0 with the running time 2–150 times faster

than REALSYN VER 1.0 as in [26], and 2–80 times faster than

SMC as in. The only exception is Benchmark 4 where the run-

ning time stays almost the same for REALSYN VER 1.0 and REAL-

SYN VER 2.0. This is because in Benchmark 4, all obstacles, goal

set, and reach set overapproximations in [26] were represented

as axis-aligned hyper-rectangles. To check the disjointness and

containment of axis-aligned hyper-rectangles, [26] used a much

simpler method withO(n) linear inequalities, instead of enumer-

ating all the vertices of the hyper-rectangles, which introduces

O(2n) linear inequalities. Therefore, the improvement of the

proposed algorithm in this paper on Benchmark 4 is minor over

REALSYN VER 1.0.

However, for the rest of the benchmarks, where the obstacles

are not axis-aligned hyper-rectangles, the proposed new algo-

rithm can reduce the number of linear constraints in the final

SAT problem [(19)] from O(2n) to O(1) with respect to the

dimensionality of the system, comparing with REALSYN VER

1.0. The results in Table I substantiate our analysis in Section IV.

SMC needs to discretize the freespace (complimentary of the

obstacles) into convex regions for motion planning problems.
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Therefore, the complexity of the SMC problem relies on the

number of convex regions. We observe from Table I one that

SMC performs comparable to our proposed method for lower

dimensional problems and much slower on higher dimensional

examples.

VI. CONCLUSION

In this article, we proposed a novel technique for synthe-

sizing controllers for systems with time-varying discrete-time

linear dynamics, operating under bounded disturbances, and for

reach-avoid specifications. Our approach relies on generating

controllers that combine an open-loop controller with a tracking

controller, thereby allowing a decoupled approach for synthe-

sizing each component independently. Experimental evaluation

using our tool REALSYN VER 2.0 demonstrates the value of the

approach when analyzing systems with complex dynamics and

specifications.
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