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Abstraci—We address the problem of synthesizing prov-
ably correct controllers for linear systems with reach-avoid
specifications. Discrete abstraction-based controller syn-
thesis techniques have been developed for linear and non-
linear systems with various types of specifications. How-
ever, these methods typically suffer from the state space
explosion problem. Our solution decomposes the overall
synthesis problem into two smaller, and more tractable
problems: one synthesis problem for an open-loop con-
troller, which can produce a reference trajectory, and a
second for synthesizing a tracking controller, which can
enforce the other trajectories to follow the reference trajec-
tory. As a key building-block result, we show that, once a
tracking controller is fixed, the reachable states from an
initial neighborhood, subject to any disturbance, can be
overapproximated by a sequence of ellipsoids, with shapes
that are independent of the open-loop controller. Hence, the
open-loop controller can be synthesized independently to
meet the reach-avoid specification for an initial neighbor-
hood. Moreover, we are able to reduce the problem of syn-
thesizing open-loop controllers to satisfiability problems
over quantifier-free linear real arithmetic. The number of
linear constraints in the satisfiability problem is linear to
the number of hyperplanes as the surfaces of the polytopic
obstacles and goal sets. The overall synthesis algorithm,
computes a tracking controller, and then iteratively covers
the entire initial set to find open-loop controllers for initial
neighborhoods. The algorithm is sound and, for a class
of robust systems, is also complete. We implement this
synthesis algorithm in a tool REALSYN VER 2.0 and use it
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on several benchmarks with up to 20 dimensions. Experi-
ment results are very promising: REALSYN VER 2.0 can find
controllers for most of the benchmarks in seconds.

Index Terms—Controller synthesis, disturbance, linear
system, reach-avoid specification.

|. INTRODUCTION

HE controller synthesis question asks whether an input
T can be generated for a given system (or a plant) so that
it achieves a given specification. Algorithms for answering
this question hold the promise of automating controller design.
They have the potential to yield high-assurance systems that are
correct-by-construction, and even negative answers to the ques-
tion can convey insights about unrealizability of specifications.
This is neither a new nor a solved problem, but there has been
resurgence of interest with availability of powerful tools like
convex optimizations and satisfiability modulo theories (SMT)
solvers, and compelling applications such as path planning [1],
motion control [2], [3], and circuits design [4].

In this article, we study the control synthesis problem for lin-
ear, discrete-time, and time-varying plant models with bounded
disturbance [5], [6]. We will consider reach-avoid specifications,
which require that starting from any initial state ©, the controller
has to drive the system to a target set G, while avoiding certain
unsafe states or obstacles O. Reach-avoid specifications arise
naturally in many domains such as autonomous and assisted
driving, multirobot coordination, and spacecraft autonomy, and
have been studied for linear, nonlinear, as well as stochastic
models [7]-[12].

Textbook control design methods address specifications like
stability, disturbance rejection, and asymptotic convergence, but
they do not directly provide formal guarantees about reach-
avoid specifications. Receding horizon control and model pre-
dictive control (MPC), have been broadly used on constrained
control problems. Using MPC for reach-avoid specifications
typically solves a sequence of mixed integer linear program-
ming (MILP) [13], [14] or general nonlinear optimization prob-
lems [15], [16]. Another approach is based on discrete abstrac-
tions, where a discrete, finite-state, abstraction of the original
control system is computed, and a discrete controller is syn-
thesized by solving a two-player game on the abstracted game
graph [17], [18]. Theoretically, these methods can be applied
to systems with nonlinear dynamics and they can synthesize
controllers for a general class of linear temporal logic (LTL)
specifications. However, in practice, the discretization step leads
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to state-space explosion for higher dimensional models. A de-
tailed comparison between these methods and our proposed
approach is provided in Section II.

In this article, the synthesis algorithm follows a natural
paradigm for designing controllers. The approach is to separate
the controller into two parts: an open-loop controller and a
tracking controller, and synthesize them separately. An open-
loop controller for a single initial state o € © to meet the
reach-avoid specification. This is called the reference trajectory.
For the remaining states in the initial set, a tracking controller is
added, that drives these other trajectories towards the reference
trajectory that starts from xy. However, designing such a com-
bined controller can be computationally expensive [19] because
of the interdependency between the open-loop controller and
the tracking controller (see Section IV-A). Our approach to
making this construction feasible, is to demonstrate that the two
controllers can be synthesized in a decoupled way as follows.
We first design a tracking controller using a standard linear
quadratic regulator (LQR) method [20]. The crucial result (see
Lemma 1) that helps decouple the synthesis of the tracking and
open-loop controller, is that for such a combined controller,
once the tracking controller is fixed, the set of states reached
from the initial set is contained within a sequence of ellipsoidal
sets [21] centered around the reference trajectory. The shape
and size of these ellipsoidal sets are solely dependent on the
tracking controller and the disturbance, and are independent
of the reference trajectory or the open-loop controller. In fact,
this is a special case of constructing a Lyapunuv function for
the error dynamics between the actual trajectory of the system
and the reference trajectory [22]. Moreover, ellipsoids have
been widely used in reachability computation to solve verifi-
cation [23], [24] and synthesis [25] problems. In this article, we
follow such controller design paradigm and enjoy the benefit of
using ellipsoidal reachable sets: The open-loop controller and
the resulting reference trajectory can be chosen independent of
the fixed tracking controller.

Based on this, the problem of synthesizing the open-loop
controller can be completely decoupled from synthesizing the
tracking controller. Our open-loop controller is synthesized by
encoding the problem as an SMT problem. The straightforward
encoding of the synthesis problem is to find an open loop
controller that can make sure all states in the reach set ellipsoids
satisfy the reach-avoid specification. Such encoding results in a
3V formula in the theory of linear arithmetic. Unfortunately,
solving large instances of such formulas using current SMT
solvers is challenging. To overcome this, we exploit geometric
properties of polytopes and ellipsoids, and reduce the original
JV-formula into the quantifier-free fragment of linear arithmetic
(QF-LRA). Moreover, assuming that the obstacles and goal set
can be represented as polytopes, then the number of linear
constraints in the QF -LRA formulas grows linearly with time
and the number of hyperplanes as the surfaces in obstacles and
the goal set (see Lemmas 2 and 3). In this way, the proposed
approach for synthesizing the combined controller can scale to
large dimensional systems.

Our overall algorithm (see Algorithm 1), after computing
an initial tracking controller, iteratively synthesizes open-loop
controllers by solving QF -LRA formulas for smaller subsets that

cover the initial set. The algorithm will automatically identify the
set of initial states for which the combined tracking+open-loop
controller is guaranteed to work. Our algorithm is sound (see
Theorem 1), and for a class of robust linear systems, it is also
complete (see Theorem 2).

We have implemented the new synthesis algorithm in the tool
REALSYN VER 2.0, which was developed with [26]. We compare
the performance of the new algorithm proposed in this article
with the previous algorithm as in [26], and a state-of-the-art
synthesis tool SMC [27], [28], on 10 benchmark problems. Here,
the obstacles are general polytopes instead of only axis-aligned
hyper-rectangles. In REALSYN VER 2.0, any SMT solver can
be plugged in for solving the synthesis problem. We report the
results of using the Yices solver, as it outperformed other
solvers in [26]. Results show that our new approach can achieve
a 2 to 150 x speedup for most benchmark models comparing
with the previous algorithm REALSYN VER 1.0 as in [26], and
a 2-80 x speedup comparing with SMC. The proposed new
algorithm also scales well for complex models—including a
system with three vehicles (12-D) trying to reach a common
goal while avoiding collision with the obstacles and each other,
and another system with 10 vehicles (20-D) trying to maintain
a platoon. For all the benchmark models, REALSYN VER 2.0
with the new algorithm finds a controller within 2 min using
the Yices solver, and for most benchmarks it finds a controller
within 10 s.

The major contributions of this article is to explore an assem-
bly of several techniques from control, geometry, SAT solving to
develop a fast and formally guaranteed algorithm for controller
synthesis. To be more concrete, the following conditions hold.

1) We propose a synthesis algorithm to find correct-by-
construction controllers for linear time-varying systems
with respect to reach-avoid specifications. Our synthesis
algorithm is sound, and is also complete for a class of
robust linear systems.

2) Our proposed algorithm achieves scalability by reducing
the synthesis problem to satisfiability over quantifier-free
linear arithmetic and leveraging modern SMT solvers. We
develop efficient encoding methods so that the number of
constraints in the resulting SMT problem grows linearly
with time and the complexity of the reach-avoid specifi-
cation.

3) Our algorithm significantly improves the practical ef-
ficiency of control synthesis for large linear systems
with disturbances. Empirical results show a significant
improvement over state-of-the-art synthesis methods.

[I. RELATED WORKS

Controller synthesis techniques have been the center of exten-
sive investigation with numerous publications every year lately.
Here, we briefly review related works based on different plant
models, specifications, and several major approaches.

1) Models and Specifications for Synthesis: In increas-
ing order of generality, the types of plant models that have
been considered for controller synthesis are double-integrator
models [2], linear dynamical models [13], [29]-[34], piecewise
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affine models [8], [35], and nonlinear (possibly switched) mod-
els [7], [16], [17], [36], [37]. There is also a line of work on
synthesis approaches for stochastic plants (see [38], and the
references therein). For each of the classes, both continuous
and discrete-time models have been addressed with possibly
different approaches.

There are several classes of specifications typically used for
synthesis as follows:

1) stabilization for system with special properties, including
positive systems [29] and systems with quantized mea-
surements [39], [40];

2) pure safety or invariance specifications [17], [41], [42];

3) reach-avoid [7]-[9], [17], [41];

4) general LTL, GR(1) [30], [43],[44][31],[35], [45], metric
temporal logic [46], and signal temporal logic [14], [47].

For each of these classes both bounded and unbounded-time
variants have been considered.

In this article, we focus on linear, discrete-time, time-varying
systems with reach-avoid specifications.

2) Model Predictive Control: MPC [48] utilizes an explicit
plant model to predict the plant state and compute the control
input to the plant based on this prediction. At each control
interval, an MPC algorithm attempts to solve a constrained,
discrete-time, optimal control problem in an online setting,
with the objective of optimizing future plant behavior based
on current state. Without loss of generality, assume the current
state of the system is x[0], MPC solves a finite horizon (V steps)
optimal control problem defined by

minyjo,...,

uv-1] Ve(x[N]) + Z £(x[d], uld])
s.t. /\ﬁiox[]eX/\jouueU

(D

where in the objective function V; defines cost of the final state
of the controlled system x[N], ¢ defines the cost of the rest of the
states and control inputs, and the controlled system is required
to satisfy the state and control constraints x[i] € X, u[i] € U,
respectively. The implicit MPC law asks that at the state x[0],
the first control u[0] of the computed optimal control sequence
is applied, and the entire calculation is repeated at subsequent
control intervals. When optimal control problems admit an
explicit offline solution, online operations reduce to a simple
function evaluation. Such explicit MPC has been exploited in
many applications including motion planing [13], [33], [34]. The
idea of explicit MPC is to solve the optimization problem (1)
offline for all x within a given set, and to make the dependence
of u(t) on x(t) explicit. The resulting MPC control law is a
piecewise affine function of the state  defined over a polyhedral
partition of the feasible set X . For systems with large state and
input spaces, explicit MPC is not practical. Furthermore, it is
hard to make explicit MPC handle cases where the system, cost
function, or constraints are time-varying [49].

Using MPC for controller synthesis typically requires model
reduction for casting the optimization problem (1) as a linear
programming (LP) [33], quadratic programming (QP) [50],
MILP [13], [14], [47], or general nonlinear optimization prob-
lems [15], [16].

In this article, the obstacles at each step are specified by a
collection of polytopes. Therefore, the safe region X, as the

complement of the obstacles, is usually nonconvex. To encode
such avoidance condition x[i] € X in the optimization prob-
lem (1), one has to introduce disjunctions to the constraints. Liu
etal. [16] used Farkas’ lemma to change the avoidance condition
into its dual form that is compatible for MPC formulation.
However, the extra variables introduced by Farkas’ lemma will
lead to nonlinear constraints. Vitus et al. [13] introduced extra
Boolean variables to eliminate the disjunctions, and make the
original optimization problem (1) an MILP. Both the works
use implicit MPC law. The main drawback of implicit MPC
is the need to solve a mathematical program online or within
the sampling time to compute the control action. Therefore, it
is hard to use on systems with large dimensionality [51] and
when the sampling period is short. Explicit MPC can help relieve
the heavy computation load, especially when the optimization
problem s a LP or QP. However, in this case, the explicit solution
for nonlinear optimization and MILP cannot be solved very
efficiently in practice [51].

Compared with the above encoding for reach-avoid, our
proposed method benefits from the fact that the tracking con-
troller can fix the shapes and sizes of the reach set ellipsoids
from an initial set. We further exploit special properties of
the separation between ellipsoids and polytopes to make the
constraints quantifier-free over linear real arithmetics, which can
be efficiently solved using state-of-the-art SMT solvers or MILP
solvers.

The major differences between our approach and the MPC-
based approaches include the following.

1) Our approach does not require the help of a cost function.
Instead, we only need a feasible solution of the satisfia-
bility problem and sacrificed optimality.

2) MPC can be used in scenarios when obstacles are con-
structed dynamically when system evolves by solving the
optimization problem (1) iteratively, while our proposed
approach solves a one-shot SAT problem to find con-
trollers that work for an initial set Xy when obstacles
are fixed. In Section IV-D, we discuss how to adjust
our proposed encoding for the reach-avoid and input
constraints to be used in MPC.

3) Control Lyapunov and Barrier Functions: The idea of
control Lyapunov function (CLF) [52]-[54] is to associate a
Lyapunov function V' (z) with its global minimum at the target
state z* to the nonlinear system that needs to be stabilized.
At each time step, find a control input u to force V(x) to
decrease to guarantee that the target state x* can be reached
asymptotically.

Control barrier functions (CBF) [55] play a similar role to
CLF in the study of liveness properties for nonlinear systems.
CBF can ensure safety by enforcing invariance of a set. That is,
CBF makes sure that that there exists a control input u such that
the nonlinear system will not leave a safe set. In general, it is
not easy to find a CLF for CBF for a given system.

4) Discrete Abstractions: Controller synthesis based on
discrete abstractions have received considerable attention [17],
[30], [30]-[32], [41], [43], [44]. These techniques involve con-
structing a finite partition of the continuous state space with
respect to a set-valued map. Following those methods, it is
possible to synthesize controllers for general nonlinear systems
to enforce complex temporal logic specifications.

Authorized licensed use limited to: University of lllinois. Downloaded on October 07,2022 at 14:39:12 UTC from IEEE Xplore. Restrictions apply.



1716

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 67, NO. 4, APRIL 2022

There is a growing set of controller synthesis tools and li-
braries based on the discrete abstraction approach. These in-
clude tools like CoSyMA [56], Pessoa [4], LTLMop [57], [58],
Tulip [44], [59], and SCOTS [36]. Compared with these meth-
ods, our proposed solution takes a different route by “designing”
the shape of reach sets first with the tracking controller, then
“placing” the reach sets using the open loop controller. The
entire process does not involve any partition of the state space,
and therefore, avoids the potential problem of exponentially
growing partitions for large dimensional systems. Our trial with
a four-dimensional (4-D) example on Tulip [44], [59] did not
finish the discretization step in one hour. Recent methods like
feedback refinement [60] and multilayered abstraction [61] have
been introduced to address the issue of exponentially growing
partitions. However, such methods are yet to be available as
synthesis tools. LTLMop [57], [58] handles GR(1) LTL spec-
ifications, which are more general than reach-avoid specifi-
cations considered in this article, but it is designed for 2-D
robot models working in the Euclidean plane. It generates a
hybrid controller as a combination of discrete controllers and
continuous controllers to meet the high-level specification under
certain assumptions on the environment.

5) Sampling-Based Path  Planning: Sampling-based
methods such as probabilistic road maps [62], rapidly-exploring
random trees (RRT) [63], and fast marching tree [64] have
offered the benefits of generating feasible trajectories through
known or partially known environments. Compared with
the deterministic guarantees provided by synthesis methods
discussed previously, including ours, the sampling based
methods come with stochastic guarantees. Also, they are not
designed to be robust to model uncertainty or disturbances.

6) Satisfiability Modulo Convex Optimization: SMC [27],
[28] solves satisfiability problems, which are represented as
Boolean combinations of convex constraints over the real num-
bers. Unlike our approach that reduces the reach-avoid problem
to a pure SAT problem, SMC uses a combination of SAT solving
and convex programming to provide a satisfying assignment
or determine that the formula is unsatisfiable. Therefore, SMC
enjoys both the efficiency of convex optimizations and the formal
guarantees of SAT solving, while our approach depends more
on the efficiency of SMT solvers over quantifier-free linear real
arithmetic. SMC can be used to solve robotic motion planning
problems and has been shown to be much more effective than
sampling-based methods like RRT. In Section V, we compare
our proposed algorithm with SMC by adapting the original
implementation of SMC to handle our examples.

In addition to the abovementioned approaches, an alternative
synthesis technique generates mode switching sequences for
switched system models [65]-[69] to meet the specifications.
This line of work focuses on a finite input space, instead of the
infinite input space we are considering in this articles.

Abate et al. [42] used a controller template similar to the one
considered in this article for invariant specifications. A counter-
example guided inductive synthesis approach is used to first
find a feedback controller for stabilizing the system. Since this
feedback controller may not be safe for all initial states of the
system, a separate verification step is employed to verify safety,

or alternatively to find a counter example. In the latter case,
the process is repeated until a valid controller is found. This is
different from our approach, where any controller found needs
no further verification.

I1l. PRELIMINARIES AND PROBLEM STATEMENT
A. Notations

For a set S and a finite or infinite sequence o of elements from
S, we denote the tth element of o by o[t]. In the rest of the article,
we will use boldfaced letters (for example, A, B, x,d, u, etc.,)
to denote a sequence of matrices or vectors. Given a vector x €
R™, 2:(7) is the ith component of . Given a matrix A € R"*™,
A® s the ith row of A. Given an invertible matrix M/ € R™*"
and a vector € R", ||z||py = VzT M M is called the M-
norm of x.

Given a vector ¢ € R", an invertible matrix M, and a scalar
value r > 0, we define E,.(c, M) = {z | ||z —¢|am <7} to
be the ellipsoid centered at ¢ with radius r and shape M.
B,.(¢) = E,(c,I) is the ball of radius r centered at ¢. For two
sets R, S C R™, we define R S = {r+y|xe€eRyeS}
for a singleton set, we abuse notation and use v & S to denote
{v} @ S. For set S C R™ and matrix M € R™", we define
M®S={Mz|zecS} Wesay aset SCR" is a poly-
tope if there is a matrix A**™ and a vector b € R¥ such that
S ={z| Az < b}.

B. Discrete Time Linear Control Systems

An (n,m)-dimensional time-varying discrete-time linear
systemA is a five-tuple (A, B, 0, U, D), where the following
conditions hold:

1) A is an infinite sequence of R™*" matrices, called dy-
namic matrices,

2) B is an infinite sequence of R™*"" matrices, called input
matrices, and at each time step ¢, the pair (A[t], B[t]) is
controllable [6];

3) © C R" is a set of initial states;,

4) U C R™ is the space of inputs;

5) D C R™ is the space of disturbances.

A control sequence for an (n, m)-dimensional system A is
a (possibly infinite) sequence u = u[0], u[l],..., where each
uft] € U. Similarly, a disturbance sequence for A is a (possi-
bly infinite) sequence d = d[0], d[1],.. ., where each d[t] € D.
Given control u and disturbance d, and an initial state x[0] € ©,
the execution of A is uniquely defined as the (possibly infinite)
sequence of states x = x[0], x[1], ..., where for each t > 0

x[t + 1] = Alt]x[t] + B[tJu[t] + d[t]. 2)

An open-loop control sequence (also called an open-loop
controller) for a given single initial state xo € © is a con-
trol sequence u such that the corresponding execution x with
x[0] = x¢ and 0 disturbance (i.e., V¢ > 0, d[t] = 0) satisfies the
reach-avoid constraints..

A (state feedback) controller for A is a function g : © X
R™ — R™, that maps an initial state and a (current) state to
an input. That is, given an initial state xo € © and state z € R"
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Fig. 1. Settings for controller synthesis of a mobile robot with reach-
avoid specification.

at time ¢, the control input to the plant at time ¢ is
uft] = g(zo, ). 3)

This controller is allowed to use the memory of some initial
state z( (not necessarily the current execution’s initial state) for
deciding the current state-dependent feedback. Thus, given an
initial state x[0], a disturbance d, and a state feedback controller
g, Equations (2) and (3) define a unique execution x of A. A state
x is reachable at the tth-step if there exists an execution x of
A such that x[t] = x. The set of all reachable states from some
set S C © in exactly 1" steps using the controller ¢ is denoted
by Reach 4 4(S,T). When A and g are clear from the context,
we simply write Reach (S, T).

C. Bounded Controller Synthesis Problem

Given an (n, m)-dimensional time-varying discrete-time lin-
ear system A, a sequence O of obstacles or unsafe sets (with
O[t] € R™, for each t), a goal G C R"™, and a time bound T,
the bounded time controller synthesis problem is to find, a state
feedback controller g such that for every initial state § € ©
and any disturbance sequence d € D™ of length T', the unique
execution x of A with g, starting from x[0] = 0, satisfies the
following:

1) forallt < T, uft] € U,
2) forallt <T,x[t] & O[t];
3) x[T] € G.

For the rest of the article, we will assume that each of the sets
in {O[t]}+en, G and U are closed polytopes.

The controller synthesis problem requires one to find a state
feedback controller that ensures that the execution starting from
any initial state in © will meet the reach-avoid specification.
Since the set of initial states © will typically be an infinite set,
this requires the synthesized feedback controller g to have a
finite representation. An “enumerative” representation, where
a (separate) open-loop control sequence is constructed for each
initial state, is not feasible. We, therefore, need a useful template
that will serve as the representation for the feedback controller.

Example 1: Consider a mobile robot that needs to reach the
green area of an apartment starting from the entrance area, while
avoiding the red areas (see Fig. 1 ). The robot’s dynamics are

described by a linear model (for example the navigation model
from [70]). The obstacle sequence O (red rectangles and outside
of the figure region) here is static, that is, O[t] = O]0] for all
t > 0. Both O (light green) and G (dark green) are rectangles
(which are also polytopes). Although these sets are depicted in
2-D, the dynamics of the robot may involve a higher dimensional
state space.

In this example, there is no disturbance, but a similar problem
can be formulated for a drone flying outdoors, in which case,
the disturbance input could model the effect of wind. Time-
varying obstacle sets are useful for modeling safety requirements
of multirobot systems.

Suppose robot is asked to reach the target set in 40 steps. The
dotted curves are two executions from © and the pink ellipsoids
show the projection of the reachset on the robot’s position with
a synthesized controller.

IV. SYNTHESIS ALGORITHM
A. Algorithm Overview

A natural controller design paradigm is to first find a reference
execution Xf, Which uses an open-loop controller, then add
a tracking controller, which tries to force other executions x
starting from different initial states x[0] to get close tO Xyef
by minimizing the distance between Xet and x. This form of
controller combining open-loop control with tracking control
is also proposed in [19] for reach-avoid specifications. For the
discrete-time linear control system defined as (2), the combined
controller is formally defined as follows.

Definition 1: Given a discrete-time linear system as (2), the
combined controller g is a tuple (K, Xef[0], ures) such that the
control input u[¢] to the system is

uft] = wetft] + K[t](x[t] — xref[t]), with 4)
Xref[t + 1] = Alt]xref[t] + B[t]uret[t] 5)

where

1) uyet is called the open-loop control sequence, which de-
termines the value of the reference execution Xye[t] at
each time step ¢ € N once x¢[0] is fixed,

2) K is called the tracking controller, which is a sequence
of matrices that determine the additive component of the
input based on the difference between the current state
and the reference execution.

Given the combined feedback controller g as the tuple
(K, Xref[0], uref), we could rewrite the linear system in (4) as

an augmented system
| s | AT o) [ x
o[ sia] [az] 0+ [o] .

Observe that the above-mentioned augmented system has the
form

Alt] + B[t]K[t] —B[t]K[t]] [ x } ;

X[t + 1] = A[t)x[t] + B[t]a[t] + d[t]
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and its closed-form solution is given by

HA (Bl]a[i] + d[i]).

Jj=1+1

(6)
To synthesize a controller g of this form, therefore, requires find-
ing K, Xet[0], urer such that the closed-form solution meets the
reach-avoid specification. This is indeed the approach followed
in [19], albeit in the continuous time setting. Observe that in the
closed-form solution, A [t], @1, and %[0] all depend on parameters
that we need to synthesize. Therefore, solving such constraints
involves polynomials whose degrees grow with the time bound.
This is very expensive, and unlikely to scale to large dimensions
and time bounds.

In this article, to achieve scalability, we take a slightly differ-
ent approach than the one where K, Xe¢[0], and uyes are simulta-
neously synthesized. We first synthesize a tracking controller K,
independent of Xe¢[0] and uyef, using the standard LQR method.
Once K is synthesized, we show that, no matter what X;ef[0]
and uye are, the state of the system at time ¢ starting from
x( is guaranteed to be contained within an ellipsoid centered
at Xyef[t] with shape and radius that depend only on K, the
initial distance between x and xe[0], time ¢, and disturbance
set D. Moreover, this radius is only a linear function of the
initial distance (see Lemma 1). Thus, if we can synthesize
an open-loop controller uy starting from some state Xye[0],
such that ellipsoids centered around x,¢ satisfy the reach-avoid
specification, we can conclude that the combined controller will
work correctly for all initial states in some ball around the initial
state Xyef[0]. The radius of the ball around xef[0] for which the
controller is guaranteed to work will depend on the radii of the
ellipsoids around x.¢ that satisfy the reach-avoid specification.
This decoupled approach to synthesis is the first key idea in our
algorithm.

Synthesizing the tracking controller K still leaves open the
problem of synthesizing an open-loop controller for an ini-
tial state Xyef[0]. A straightforward encoding of the problem
could be to find an open-loop controller that works for all
initial states in some ball around x[0]. That is, finding a
satisfying solution for the formula Juyef, Ir, such that ¥x[0] €

B, (xref[0]), Aj—o X[t] ¢ O[t] A x[T] € G. This results in a 3v-
formula in the theory of real arithmetic. Unfortunately, solving
such formulas does not scale to large dimensional systems using
current SMT solvers [71]. The next key idea in our algorithm
is to simplify these constraints and make the formula quantifier
free. We reduce the problem of deciding whether an ellipsoid
(the set of reachable states) is separated from (or contained in) a
polytope (the obstacles or the goal) to measuring the distances
of the center of the ellipsoid to surfaces of the polytopes in
a linearly transformed coordinate. In this way, we are able to
reduce the original 3V-formula into the QF -LRA [72], [73] (see
Section IV-D).

Putting it all together, the overall algorithm (see Algorithm 1)
works as follows. After computing an initial tracking controller
K, it synthesizes open-loop controllers for different initial states
by solving QF-LRA formulas. After each open-loop controller

= <H A[i]) x[0] + 2

=0

is synthesized, the algorithm identifies the set of initial states for
which the combined tracking+open-loop controller is guaran-
teed to work, and removes this set from ©. In each new iteration,
it picks a new initial state not covered by previous combined con-
trollers, and the process terminates when all of © is covered. Our
algorithm is sound (see Theorem 1)—whenever a controller is
synthesized, it meets the specifications. Furthermore, for robust
systems (defined later in this article), our algorithm is guaranteed
to terminate when the system has a combined controller for all
initial states (see Theorem 2).

B. Synthesizing the Tracking Controller K

Given any open-loop controller uyes and the corresponding
reference execution X, by replacing in (2), the controller of
(4), we get

x[t +1] = (A[t] + B[] K[t]) x[t] — B[t]K]xer[]

+ Bltjurff] + ). ™)
Subtracting Xef[t + 1] from both sides, we have that for any exe-
cution x starting from the initial states x[0] and with disturbance
d, the distance between x and x,ef changes with time as

X[t + 1] — Xpet[t + 1]

— (A[f] + BIKI) (x[f] — xeilt]) +dff].  ®
With A[f] 2 Alf] + BEKIf], ylf] 2 x[t] - xeeff], (8) be-

ylt+1] = Acftly[t] + d[t].

We want x[t] to be as close to Xyef[t] as possible, which means
K[t] should be designed to make |y[t]| converge. Equivalently,
K[t] should be designed as a linear feedback controller such that
the systemy[t + 1] = A_[t]y[t]is stable. Such a matrix K[t] can
be computed using several methods. In this article, we compute
K[t] as finding a linear state feedback controller by solving the
LQR problem [20], stated as follows.

Definition 2 (LQR): For a time-varying linear system A as
defined in Section III-B with O disturbance and a time bound
T, the LQR problem is the optimal control problem of finding
open loop control u[0],...,u[T" — 1], such that the following
objective function is minimized:

J(x[0],u, T) = x[T) Q[T |x[T]

T—

2

where QQ and R are sequences of symmetric positive definite
matrices.

The optimal control for LQR is given by Vt = 0,...,
u[t] = K[t]x[t] where

)_.

t] +ult] "R[tult])

T-1,

-1

K[t] = — B[t]"P[t + 1]A[f]

(€))

(B[t] 'P[t + 1]B[t] + Rt])
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and P[t] is computed by solving the discrete time Riccati dif-
ference equation

P[t] = A[t]"P[t + 1]A[t] + Q[t] — A[t] "P[t + 1]BJ[t]
(B[t]"P[t + 1|B[t] + R[t]) 'B[t] "P[t + 1]A[t]

with boundary condition P[T] = Q[T] [74]. The matrices K in
(9) can be used as a tracking controller as in Definition 1.

When T — oo and Vt > 0, Aft] = A, B[t] = B, Q[t] = Q,
and R[¢] = Rareall constant matrices, and K|[¢] computed using
(9) will also become a constant matrix K . Furthermore, if the pair
(A, B) is controllable (or stabilizable), the closed-loop system
x[t + 1] = (A + BK)x]t] is stable. That is, the eigenvalues of
A. = A+ BK with K given by (9) have magnitudes less than 1.
Therefore, when 7" — oo, the tracking controller K computed
using LQR can guarantee that the any execution x will converge
to Xref asymptotically when there is no disturbance.

For most of the experiments presented in Section V, we fix
each Q[t] and R[t] to be identity matrices. Roughly, for a given
R, scaling up Q results in a K that makes an execution x
converge faster to the reference execution X but will also
result in larger values of u. In this article, the detailed tradeoffs
involved in the choices of Q[t] and R[t] will not be pursued
further.

With the synthesized K, we are able to compute the set of
reachable states for .A with an arbitrary reference trajectory Xef,
as shown in the following section.

C. Reachset Overapproximation With Tracking Controller

In this section, we assume that the tracking controller, which
is a sequence of matrices K, computed as in Section IV-B, will
make A[t] + B[¢|K[t] invertible for any time ¢. We do not need
Alt] + B[t]K[t] to be stable for the analysis of the rest of the
article. However, later on we will see that if K can make the
other trajectories x converge to X, the set of reachable states
will also converge to its center Xef, Which is desirable for the
overall synthesis algorithm.

Once we fix K, we show that the reachable states of the
system A with an open-loop controller uet (to be computed
in Section IV-D) can be overapproximated using a sequence of
ellipsoids centered at the corresponding X, with shapes and
radii depending on A, B, K, the initial set, and the disturbances
(see Lemma 1). Moreover, for systems with O disturbances (i.e.,
D ={0}), Corollary 1 shows that the set of reachable states
can be computed precisely (i.e., there is no overapproximation
error).

Lemma 1: Consider a linear system .4 = (A, B,0,U, D)
with a controller defined as in (4). Fix the following:

1) a tracking controller K such that A[t] + B[t]K]] is in-
vertible for each time ¢;

2) an open-loop controller u,e; with the corresponding ref-
erence execution Xyef;

3) an ellipsoidal initial set S = Ey[](xref[0], M[0]) C O,
where r[0] and MJ0] are the radius and shape of the
ellipsoid, respectively. Then,

Reach(S,t) C Er[t] (xref[t], M[t]),V ¢t < T, where

-1
M{t] = M][0] (H(A[i] + B[i]K[i])1>
i=0
-1
r[t] = r0] + Y _ 4[], (10)
i=0
d[i] is chosen such that Vi > 0, E5(;(0, M[i + 1]) 2 D.
Proof: We prove this lemma by induction on ¢.
Base case: When t = 0, from the condition (3) of the Lemma
we know that Reach(S,0) = S = E, ) (xrer[0], M[0]).
Induction step: Assume that at time step ¢, we have
Reach(S,t) C Eypy(xrer[t], M[t]).
Let A [t] = Aft] + B[t]K[t]. At time step ¢ + 1, from (),
we have that

x4+ 1] = xeflt + 1] + Aclt)(x[t] — xerlt]) + dt].

vx[t] € Reach(S, 1), we have X[t] — Xref[t] €
E11(0, M[t]). Moreover, since d[t] € D, we have that

X[t + 1] € Xpet[t + 1] ® Ac[t] By (0, M[t]) @ D. (11)

Recall that @ is the addition of all elements of sets,
and A [t]Ey(0,M[t]) means multiplying each vector in
Er[t] (07 M[t]) with Ac[t].

The right-hand side of (11) can be computed as follows.

1) The second item A[t] Ey)(0, M[t]), which contains all
possible values of A.[t](x[t] — Xef[t]), can be computed
as

Acft] B (0, M[t]) = {Acft]a | [|2]lmpy < rlt]}
= {Acltle | [Mt]z]]2 < rft]}.

Letting y = A.[t]z, then, we have
Ac[t] Ery (0,M[t]) = {y | [M[HA* [ty < x[t]}
={y [ llylmya. < rlt]} = By (0, M[t 4 1]).
2) Then, since D C Ej(0, M[t + 1]), which means Vd €
D, ||d||fe+1) < 0[t]. Therefore, we have
Eyy(0,M[t +1]) @& D
— o+ d| lollnesn < vl Il < 01}
Using triangular inequality of the M [t + 1] norm, we have

By (0,M[t +1]) © D S {y | llyllmge+1 < r[t] + 6[¢]}
= Lorft41] (07 M[t + 1])

3) Finally, it is easy to see that

Xret[t + 1] @ Erp41)(0, Mt
= Eppppr) (X[t + 1], Mt

Therefore, we have
Reach (S, t+ 1) - Er[t—H] (Xref[t + 1], M[t + 1])

]

In the above-mentioned proof, the only overapproximation

happened in Step 2, as we overapproximate the disturbance D

using an ellipsoid with shape M[¢ + 1]. This is because we want

to keep reach sets represented as ellipsoids all the time. If there is

no disturbance, i.e., D = {0}, we do not need to conduct Step 2,
and Lemma 1 can give us exact reach sets.
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Corollary ~ 1: Consider a  linear system A=
(A,B,0,U,D ={0}) with a controller defined as in
Equation (4). Fix the following:

1) atracking controller K;

2) an open-loop controller u,es with the corresponding ref-
erence execution Xref;

3) an ellipsoidal initial set S = Eyo)(xref[0], M[0]) C ©,
where r[0] and M[0] are the radius and shape of the
ellipsoid respectively. Then,

Reach(S,t) = Er[t] (xref[t], M[t]),VE < T (12)
where M[t] = M[0](IT;_y (Al + BEK[i]) ™).

In Lemma 1, r[0] and M]0] can be chosen arbitrarily as
long as the corresponding ellipsoid Ey[o) (Xret[0], M[0]) contains
(or is equal to) the initial set S. It follows that given any
sequence of uet as the open-loop controller, which leads to
a corresponding reference trajectory X, the reachable states
from S Reach(S,¢) can be overapproximated by an ellipsoid
centered at Xef[t + 1] with shape M[t] = M[0](TT:Z4(A[i] +
BJ[i]K[i])~!) and radius r[0] (when there is no disturbance) or
r[0] plus an additive term S _{ 8[i], which accounts for bounded
disturbance. Note that the shapes and radii of the ellipsoids
are all independent of the open-loop controller urs and the
reference trajectory X¢. This is the key step to decouple the
synthesis of the tracking controller K and rest of the parame-
ters in the feedback controller (uyref, Xref[0]). In the following
section, we discuss a novel approach to finding the latter two
efficiently.

D. Synthesis of Open-Loop Controller

In this section, we will discuss the synthesis of the open-loop
controller ures and Xye[0] in (K, Xyef[0], uref). From the pre-
vious section, we know that given an initial set .S, a tracking
controller K, and an open-loop controller u,, the reachable
set (under any disturbance) at time ¢ is overapproximated by
By (xret[t], M[t]). Thus, once we fix K, the problem of syn-
thesizing a controller reduces to the problem of synthesizing an
appropriate uges and Xre[0] such that the reachset overapproxi-
mations meet the reach-avoid specification. Indeed, for the rest
of the this section, we will assume fixed K.

For synthesizing uyet and Xyef[0], we would like to formalize
the problem in terms of constraints that will allow us to use SMT
solvers. As we have discussed in Section IV-A, the quantifier-
free formulas are simpler than formulas with quantifier alter-
nations [73]. In the following, we describe the details of how
this problem can be formalized as a quantifier-free first-order
formula over the theory of reals. We will then lay out specific as-
sumptions and/or simplifications required to reduce the problem
to QF -LRA theory, which is implemented effectively in existing
state-of-the-art SMT solvers. Most SMT solvers also provide
the functionality of explicit model generation, and the concrete
controller values can be read-off from the models generated
when the constraints are satisfiable.

1) Constraints for Synthesizing u,s: The ure synthesis
problem can be stated as finding satisfying solutions for the

formula ¢syntn, where the initial set of states is S = By(o (Xret[0])

Dsynth = E|uref[0]a uref[l]a -+« Uref [T—l], I‘[O]
eref [0]7 Xref[l], oo Xyef [T]
¢control(uref) A ¢execution(uref7 Xref)
APavoid (r[o]a Uref, Xref) N Preach (r[o]v Uref, Xref)
(13)

where @control constrains the space of inputs, @execution States
that the sequence X¢f is a reference execution following (4),
davoid specifies the safety constraint, and ¢reach specifies that
the system reaches G:

boontan(tte) 2 A\ erlt] @ (K[t] © By (0, M[f])) € U

0
Pexecution (urefa Xref)
(

A Xref[ﬁ + 1] = A[t]Xref [t] + B[t]uref[t])

Pavoid (r[0], Uref, Xref) = 2Z\O Evpg (xref[t], M[t]) N O[t] =0

Preach (T[O]a Uref, Xref) = [T (Xref[T]a M[TD ca.

(14)

‘We make a few remarks about this formulation. First, each of
the formulas @control; Pavoid> and @reach represent sufficient con-
ditions to check for the existence of uef. Second, the constraints
stated previously belong to the (decidable) theory of reals.
However, ¢control; @avoids and Preach, and thus, ¢synth, are not
quantifier free as they use subset and disjointness checks. This
is because for sets S, T expressed as predicates ¢g(-) and o7 (+),
SN T = () corresponds to the formula Vz - —=(ps(x) A pr(z))
and S C T (or equivalently S NT° =) corresponds to the
formula Vz - pg(z) = or(z).

2) Reduction to QF-LRA: The central idea behind eliminat-
ing the universal quantification in the disjointness predicates
in ¢ayoid> Or in the inferred disjointness predicates in ¢reach
and ¢control, 18 to check whether an ellipsoid is disjointed or
contained in a polytope. Lemmas 2 and 3 state that the dis-
jointness and containment checks can be done through linear
constraints.

Lemma 2: For an ellipsoid Ei.y (xref[t], M[t]) and a polytope
{x € R¥ | Az < b}, if

\7 (A“)xref[t] > b(i)) A

ADxgt] — b(3)

AOx ] — b(0)
( L Ay T

IA®]2

< —r[t])

(15)
where A = AM~'[t], then
Er[t] (Xref[ﬂ,M[t]) N {.13 | Az < b} = @

Proof: Take an affine coordinate transformation y = M|tz
and let Xyef[t] = M[t]xref[t]. Under the transformed coordinate,
the ellipsoid Ey[y)(Xret[t], M[t]) becomes a ball

By (M[t]xres[t], I) = Brpy (Xref[t])
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/A0y = p®

Fig. 2. lllustration of By (Xef[t]) being disjointed from the polytope
{y| Ay < b}.

and the polytope also becomes fly < b. Affine transformation
preserves the disjointness between objects. As long as the ball
Biy(Xret[t]) is disjointed from the polytope Ay < b, the original
ellipsoid and polytope are disjointed.

Consider the ball B,[)(Xref[t]) in the transformed coordinate,

if the center Xeft] is outside the polytope Ay < b and its
distance to an surface of the polytope is greater than r[¢], then
the ball B,[;)(Xref[t]) is not intersecting with any surfaces of
the polytope, and therefore, is disjointed from the polytope (as
shown in Fig. 2). Equivalently, this means that there exists an
i < k, such that A% [t] > b(i), and the distance from Xef[t]
to any surface, which is a hyperplane A g = b(7), is greater
than r[t]. Recall that A() and b(4) are the ith row of A and b,
respectively.

The distance from Xef[t] to a hyperplane AWz = b(i) is
W. Therefore, the ball By, (Xref[t]) is disjointed

from the polytope {y | Ay < b} if the following is true:

< —r[t])

which is equivalent to (15). [ |

In Lemma 2, to check whether an ellipsoid is disjointed from
a polytope (obstacle) with k& surfaces using (15), the formula
contains 3 k linear inequalities with conjunctions and disjunc-
tions. In [26], the reach set overapproximations are represented
using hyper-rectangles. The hyper-rectangle is disjointed from
the polytope if there is a surface of the polytope such that the
vertices of the hyper-rectangle lie on the other side of the surface.
Such a formula has 2"k linear inequalities, where n is the
dimensionality of the state space. Compared with the methods
used in [26], Lemma 2 reduces the number of constraints in
Oavoid from 2"k to 3 k, which is the key fact that makes the
proposed approach scale to systems with large n. We will also
see the same improvement in ¢reach and @eontrol-

Similar to Lemma 2, as long as the center of the ball
Biy(Xret[t]) is inside the polytope Ay < b, and the distances

\ (A9%et] > b(0)) A
(A(i)iref[t] - b(l> >

v A(i)iref[t] B b(z)
[A® |2

IA® |

from Xet] to all surfaces of the polytope Az = b(i) are
greater than the radius r[t], the ball is entirely contained in the
polytope.

Lemma 3: For any ellipsoid Eyp;)(Xref[t], M[t]) and a poly-
tope {z € R¥ | Az < b}, if

k
A (A@)xref 1] < b(i)) A
i=1
(A(i)xrej [t] —b(1)
[AD]2

A(i)xref [t} —b(i)

>rft] v s
[A®]]

< —r[t])
(16)
where A = AM~1[t], then
By (xeet[t], M[t]) C {x | Az < b}.

With Lemma 2 and 3, we can rewrite ¢ayoig and ¢preach in (14)
as

T k
®avoid (r[o}vufeﬁxfef) = /\ /\ \/

t=0 {z|Az<b}cO[t] i=1
(A9xet] > (1))

A (A“Xf[ﬂb() .
4O,

ADxgi[t] — b(d)

rt] v =
[A®]2

< —r[t])

(Ag)xref[T] < bG<i))

Preach (I‘[O], Uref, Xref) =

~.

1

. (Aa<i>xrefm — ba(i)
14672
i)

Vv AG(i)Xref[T] — b(;(’L) S

> r[T] G
A [I2

a7

where in ¢reach, the goal set G is represented as an ellipsoid
{z|Agx < be}. Once the tracking controller K is fixed, the
matrices A (or Ag) are constants. Moreover, r[t] = r[0] +
Zﬁ;(l) 4[] and 6 are also constants. Therefore, @ayoid and Preach
are linear expressions of r[0], Wyef, Xref With disjunctions. In the
expression ¢eontrol Of (14), ret[t] © (K[t] @ Epp(0, M[t])) is
essentially also an ellipsoid Ey.p) (uef[t], M[t]K ' [¢]). There-
fore, dcontrol can also be represented as a linear expression of
Ure and r[0].

As discussed previously, the constraints as in
Gcontrol, Pexecutions Pavoid> aNd Greach Only give rise to linear
constraints, do not have the V quantification over states, and are
sound transformations of ¢synth into QF-LRA. Moreover, the
number of linear inequality constraints in ¢syntn is only O(kT'),
where T is the number of time steps 7', and k is the number of
surfaces in obstacles and the goal set. In Section IV-E, we will
see that as the reach sets are exact when the disturbance is 0
(see Corollary 1), these checks will also turn out to be sufficient
to ensure that if there exists a controller, @synth is satisfiable.

Lemma 4: If the formula ¢gsynn is satisfiable, then there is
a control sequence uyes such that for every = € Byg)(Xref[0])
and for every d € DT, the unique execution x defined by the
controller (K, xef[0], urer) and d, starting at z, satisfies x[T'] €
G AVt <T-x[t] & O]t].

We remark that a possible alternative for eliminating the V
quantifier is the use of Farkas’ lemma, but this gives rise to
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nonlinear constraints.! Indeed, in our experimental evaluation,
we observed the downside of resorting to Farkas’ lemma in this
problem.

We also remark that the SAT encoding as in Lemma 2 can be
formulated as mixed integer linear constraints using the “big-M”
method to get rid of the disjunction operators V, by introducing
extra auxiliary integer variables (see details in [75]). Then, ¢syntn
in (13) can be solved through solving a MILP or MIQP problem.
In this way, our encoding for ¢control, Pexecutions and Pavoid (as
mixed integer linear formulae ¢, o> Pexecution A4 Payoig USING
the “big-M” method on the original formulae) can be used in
dynamic and real-time control using MPC, where the obstacles
O[t] are constructed dynamically as system evolves, and © is a
set instead of a single point due to bounded localization errors

Vi (xret[N]) + %—:1 €(xref[i], urer[i])

min
Urer[0],...upef [N —1], 1=0

r[0],Xref[0],. .- Xret [ V]
8.t Qsz:ontrol (uref) A (rb/execution (uI’Efa Xref)
AQavoia (T[0], Uref, Xret)

A (Xref[0] = center(©))

A (r[0] > diameter(©)). (18)

We implemented both the SAT encoding as in (17) and the
corresponding mixed integer linear encoding with the objective
function ||z N] — center(G)||2 (using the Gurobi solver), and
observe that both the two encoding has no major difference in
terms of running time when N = 7. Moreover, both SAT over
QF-LRA and MIP problems are NP-hard [76].

E. Synthesis Algorithm Putting it All Together

Section I'V-D describes how to formalize constraints to gen-
erate a control sequence that works for .S, which could be a
subset of the initial set ©. The overall synthesis procedure
(see Algorithm 1), first computes a tracking controller K, then
generates open-loop control sequences and reference executions
in order to cover the entire set O.

The procedure ReachParams computes the tracking con-
troller K, based on which it further computes a sequence of
shape matrices M and disturbance bounds § using Lemma 1,
for the system A and time bound 7" with Q, R for the LQR
method. Given any reference execution Xt and initial set
B o] (%ref[0]), the parameters computed by ReachParams can
be used to overapproximate Reach (B, o) (xret[0]), t) with the
ellipsoid Eyy (xret[t], M[t]), where r[t] = r[0] + S8 dla).

The procedure getConstraints constructs the logical formula
synth such that whenever 1synth holds, we can find an initial
radius r[0] that is abovementioned some threshold ¢*, and center
Xref[0] inthe set © \ cover and a control sequence uyes such that
any controlled execution starting from B, [0](xref[0]) satisfies
the reach-avoid requirements

Psynth = Gsynth A Xref[0] € O A Xre£[0] & cover Ar[0] > r*.
(19)

!Farkas’ lemma introduces auxiliary variables that get multiplied with existing
variables Xygf[0], . . . , Xref[T], leading to nonlinear constraints.

Algorithm 1: Algorithm for Synthesizing Combined
Controllerer.
input : A,7,0,G,Q,R
output : controllers =
{ (K, xret[0], urer), By (xref[0])) }
initially: r* « diameter(9)/2 ;
K, M, + ReachParams(A4,7,Q,R) ;
cover + (;
controllers < )
1 while © € cover do
wsynth —
getConstraints(A, T, 0, G, M, §,r*, cover) ;
if CHECKSAT(Ysynin) = SAT then
r[0], Uyef, Xref mOde|(¢synth) ;
cover < cover U By (Xref[0]);
controllers <- controllersU

{ (K, Xref[0], uret) , Br[o](xref[o}) )}

~

A U B W

7 else
8 |2
9 return controllers ;

Line 3 checks for the satisfiability of 1)syntn. If satisfiable, we
extract the model generated to get the radius of the initial ball,
the control sequence U, and the reference execution X in
Line 4. The generated controller (K, Xef[0], uret) is guaranteed
to work for the ball B,jo) (xref[0]), which can be marked covered
by adding it to the set cover. In order to keep all the con-
straints linear, one can further underapproximate Biq] (Xref[0])
with a hypercube {z € R™ | A" Xpef[0](i) — r[0](¢)/+/1 <
x < Xret[0](2) + r[0](2) /v/n}. If thsyntn is unsatisfiable, then we
reduce the minimum radius r* (see Line 8) and continue to look
for controllers, until we find that © C cover.

The set controllers is the set of pairs
((K, Xref[0], ure), S), such that the controller (K, Xye[0], Uref)
drives the set S to meet the desired specification. Each time a
new controller is found, it is added to the set controllers
together with the initial set for which it works (see Line 6).

The following theorem asserts the soundness of Algorithm 1,
and it follows from Lemmas 1 and 4.

Theorem 1: If Algorithm 1 terminates, then the synthesized
controller is correct. That is, (a) for each x € ©, there is
a ((K, Xef[0], uref), S) € controllers, such that x € S,
and (b) for each ((K, Xef[0], uref), S) € controllers, the
unique controller (K, Xe[0], ures) is such that for every x €
S and for every d € DT, the unique execution defined by
(K, X1ef[0], urer) and d [as in (2) and (4)], starting at z;, satisfies
the reach-avoid specification.

Algorithm 1 ensures that, upon termination, every = € ©
is covered, i.e., one can construct a combined controller that
drives = to G while avoiding O. However, it may find multiple
controllers for apoint z € ©. This nondeterminism can be easily
resolved by picking any controller assigned for x.

Below, we show that, under certain robustness assumptions
on the system A, G and the sets O, and in the absence of
disturbance, Algorithm 1 terminates.
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Robustly  controllable  systems: A system A=
(A,B,0,U, D) is said to be e-robustly controllable (¢ > 0)
with respect to the reach-avoid specification (O, G) and
matrices K, if (a) D = {0}, and (b) for every initial state
6 € O there is an open loop-controller ues € U T guch that the
unique execution starting from 6 using the open-loop controller
Uyes satisfies the reach-avoid specification. Moreover, with the
controller (K, 0, uye) defined as in (4), V: € B.(0), the unique
trajectory x defined by the controller (K, 0, uy) starting from
x also satisfies the reach avoid specification.

Theorem 2: If A is an e-robust controllable system with
respect to the reach-avoid specification (O, G), the tracking
controller K, and an arbitrarily small € > 0, then Algorithm 1
terminates.

Proof: As seen in Corollary 1, when the system is robust,
then (in the absence of any disturbance, i.e., D = {0}), the com-
puted ellipsoids are exact reach sets starting from By (o) (Xref[0]).
Moreover, as r* approaches 0, r[0] can also approach 0. From
Corollary 1, we know that V¢t > 0, r[t] = r[0], so the radii of the
reach sets ellipsoids all converge to 0. With r[t] — 0, (15) and
(16) in Lemmas 2 and 3 [therefore, (17)] also become satisfiable
whenever there is a controller. The correctness of Theorem 2
then follows from the above observations. |

We remark that an alternative approach to solve the bounded
controller synthesis problem is to synthesize an open-loop con-
trol sequence uyes for a single initial condition xe¢[0] first, and
then find the maximum cover such that there exists a track-
ing controller K to make every execution starting from the
cover also satisfy the reach-avoid specification. However, when
implemented this approach, we observed that the synthesized
reference trajectory X always got very close to the obstacles.
Therefore, the maximum initial cover for which this reference
trajectory works would be minuscule, and result in a very large
number of partitions in the initial set. In contrast, Algorithm 1
asks the SMT solver to search for a reference that works for an
initial cover with the size of at least * with any disturbance (and
r* is adjusted iteratively), resulting in a much smaller solution
space.

V. REALSYN VER 2.0 IMPLEMENTATION AND EVALUATION

For experimental evaluation, we have implemented Algo-
rithm 1, the tool REALSYN VER 2.0. The previous version of
the tool, REALSYN VER 1.0, appeared in our earlier paper [26].
The key distinction in the new implementation is the encoding
of the reach-avoid constraints, as in Lemmas 2 and 3. As a
result, the final formulas for the reach-avoid constraints (17)
for synthesizing the open-loop controller consist of O(k) linear
constraints, with k being the number of hyperplanes of the
obstacles and the goal set. In contrast, in REALSYN VER 1.0,
such formulas have O(2"k) linear constraints, where n is the
dimensionality of the state space.

For solving (19), REALSYN VER 2.0 can use any SMT solver
as a subroutine. For our results here we use Yices [77],
as it outperformed the other solvers in [26]. We evaluate our
approach on 10 example synthesis problems (from [26]) on a
standard laptop with Intel Core 17 processor, 16 GB RAM. The

results are reported in Table I. Overall, our results demonstrate
the effectiveness of using our approach and the feasibility of
scalable controller synthesis for high-dimensional systems and
complex reach-avoid specifications.

Comparison with other tools: We considered other controller
synthesis tools for possible comparison with REALSYN VER 2.0.
In brief, CoSyMa [56], Pessoa [4], and SCOTS [36] do not
explicitly support discrete-time systems. LTLMop [57], [58] is
designed to analyze models in the 2-D Euclidean plane, and
therefore, is not suitable for most of our examples. TuLiP [44],
[59] comes closest to addressing the same class of problems.
TuLip relies on discretization of the state space and a receding
horizon approach for synthesizing controllers for more general
GR(1) specifications. However, we found that TuLip succumbs
to the state-space explosion problem when discretizing the state
space, and it did not work on most of our examples. For instance,
TuLiP was unable to synthesize a controller for the 2-D system
“I-robot” (see Table I), and returned unrealizable. On the
benchmark “2-robot” (n = 4), TuLip did not return any answer
within 1 h. SMC [27], [28], as discussed in Section II, is the
closest to ours as in solving reach-avoid problems, and the
only one among the tools that can return comparable results
to REALSYN VER 2.0. We adopt the implementation of SMC as
in” to be used on our benchmarks and report results in Table I.

Benchmarks: Our benchmarks are mainly vehicle motion
planning problems with reach-avoid specifications. Benchmarks
1 and 2 model robots moving on the Euclidean plane, where
each robot is a 2-D system and admits a 1-D input. Starting
from some initial region on the plane, the robots are required to
reach the common goal area within the given time steps, while
avoiding certain obstacles. For “2-robot,” the robots are also
required to maintain a minimum separation. Benchmarks 3-7
are discrete vehicular models adopted from [70]. Each vehicle
is a 4-D linear system with 2-D input. Benchmark 3 from [26]
describes a mobile robot needs to accomplish a reach-avoid goal
in an apartment. Benchmark 4 describes a vehicle running on
a two-lane road, trying to overtake a vehicle in front of it. The
second vehicle serves as the dynamic obstacle. Benchmarks 5-7
are similar to Benchmark 2, where the vehicles are required
to reach a common goal area while avoiding collision with
the obstacles and with each other (inspired by a merge). The
velocities and accelerations of the vehicles are also constrained
in each of these benchmarks. Fig. 3 shows the setting for three
vehicles trying to reach the green goal set while avoiding the red
obstacle and maintaining a distance of > 0.5 (m) all the time.
Fig. 3 also shows the reachsets of each vehicle projected to the
2-D plane of vehicles’ positions. We observe from Fig. 3 that to
make sure that all vehicles do not collide with each other, the
synthesized controller forces the vehicles to arrive at the goal
set at different time steps.

Benchmarks 8—10 model multiple vehicles trying to form
a platoon by maintaining the safe relative distance between
consecutive vehicles. The models are adopted (and discretized)
from [19]. Each vehicle is a 2-D system with 1-D input. For the

24SMC-LTL Github Repository,” [Online]. Available: https://github.com/
repsl/SMC-LTL
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TABLE |
RUN TIME PERFORMANCE COMPARISON OF CONTROLLER SYNTHESIS USING REALSYN VER 2.0 WITH THE ORIGINAL SYNTHESIS ALGORITHM
REALSYN VER 1.0 AS IN [26] AND SMC [27]

Model 0l m Algorithm 1 CAV Algorithm [26] SMC [27]
F#iter time(s) | #iter time(s) F#iter  time(s)
1 | 1-robot 2 1 7 0.03 7 0.06 1 0.09
2 | 2-robot 4 12 1 0.04 183 2.26 1 1.69
3 | running-example in [26] | 4 2 1 104 1 319.97 1 227.86
4 | 1-car dynamic avoid 4 | 2 12 8.12 12 8.49 1 15.58
5 | l-car navigation 4 | 2 15 1.14 17 6.73 1 5.37
6 | 2-car navigation 8 | 4 1 1.86 1 4.07 1 6.07
7 | 3-car navigation 12| 6 1 4.70 1 741.73 1 372.48
8 | 4-car platoon 8§ | 4 1 0.03 1 0.15 1 0.33
9 | 8-car platoon 16 | 8 1 0.10 1 0.62 1 0.94
10 | 10-car platoon 20 | 10 1 0.12 1 7.74 1 5.72
6 20
10 -
44
0
2 -
-10 | ’
0 - —20 1
2 —30 -
_2 -
0 2 2 6 8 10
41 Fig. 4. Ten cars are forming a platoon with synthesized controller. The
'4 z-axis is time and the y-axis is the position of each car.

Fig. 3. Reachsets of three cars with synthesized controller for reach-
avoid specification. Ellipsoids represent the projection of the reachset
on the vehicle’s position on the 2-D plane. Ellipsoids of the same color
connected by the line of same color belong to the same vehicle. Reach-
sets of the same time step are connected using the black dotted line.
Red polytope is the obstacle and green polytope is the goal set. Note
that different vehicles arrive at the goal set at different time steps so they
do not collide with each other, although some ellipsoids (at different time
steps) appear to overlap.

four-car platoon model, the running times reported in Table I
are much smaller than the time (5 min) reported in [19]. This
observation aligns with our analysis in Section IV-A. For the
10-car platoon case, Fig. 4 shows the positions of the cars along
time with the synthesized controller using REALSYN VER 2.0.
As shown in Fig. 4, all vehicles are maintaining a safe relative
distance > 1(m) to its neighbor vehicles even with disturbances.

Synthesis performance: In Table I, columns “n” and “m”
stand for the dimensions of the state space and input space.
For each background solver, “#iter” is the number of iterations
Algorithm 1 required to synthesize a controller, and “time” is
the respective running times. All benchmarks are synthesized
for a specification with 10-20 steps.

In general, the proposed algorithm improves the performance
of REALSYN VER 2.0 with the running time 2—150 times faster
than REALSYN VER 1.0 as in [26], and 2—-80 times faster than
SMC as in. The only exception is Benchmark 4 where the run-
ning time stays almost the same for REALSYN VER 1.0 and REAL-
SYN VER 2.0. This is because in Benchmark 4, all obstacles, goal
set, and reach set overapproximations in [26] were represented
as axis-aligned hyper-rectangles. To check the disjointness and
containment of axis-aligned hyper-rectangles, [26] used a much
simpler method with O(n) linear inequalities, instead of enumer-
ating all the vertices of the hyper-rectangles, which introduces
O(2"™) linear inequalities. Therefore, the improvement of the
proposed algorithm in this paper on Benchmark 4 is minor over
REALSYN VER 1.0.

However, for the rest of the benchmarks, where the obstacles
are not axis-aligned hyper-rectangles, the proposed new algo-
rithm can reduce the number of linear constraints in the final
SAT problem [(19)] from O(2™) to O(1) with respect to the
dimensionality of the system, comparing with REALSYN VER
1.0. The results in Table I substantiate our analysis in Section IV.
SMC needs to discretize the freespace (complimentary of the
obstacles) into convex regions for motion planning problems.

Authorized licensed use limited to: University of lllinois. Downloaded on October 07,2022 at 14:39:12 UTC from IEEE Xplore. Restrictions apply.



FAN et al.: CONTROLLER SYNTHESIS FOR LINEAR SYSTEM WITH REACH-AVOID SPECIFICATIONS

1725

Therefore, the complexity of the SMC problem relies on the
number of convex regions. We observe from Table I one that
SMC performs comparable to our proposed method for lower
dimensional problems and much slower on higher dimensional
examples.

VI. CONCLUSION

In this article, we proposed a novel technique for synthe-
sizing controllers for systems with time-varying discrete-time
linear dynamics, operating under bounded disturbances, and for
reach-avoid specifications. Our approach relies on generating
controllers that combine an open-loop controller with a tracking
controller, thereby allowing a decoupled approach for synthe-
sizing each component independently. Experimental evaluation
using our tool REALSYN VER 2.0 demonstrates the value of the
approach when analyzing systems with complex dynamics and
specifications.
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