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Abstract—Inspired by sequential additive manufacturing
operations, we consider prediction tasks arising in processes
that comprise of sequential sub-operations and propose a multi-
stage inference procedure that exploits prior knowledge of the
operational sequence. Our approach decomposes a data-driven
model into several easier problems each corresponding to a sub-
operation and then introduces a Bayesian inference procedure
to quantify and propagate uncertainty across operational stages.
We also complement our model with an approach to incorporate
physical knowledge of the output of a sub-operation which
is often more practical in reality relative to understanding
the physics of the entire process. Comprehensive simulations
and two case studies on additive manufacturing show that
the proposed framework provides well-quantified uncertainties
and superior predictive accuracy compared to a single-stage
predictive approach.

Note to Practitioners—This paper is motivated by sequential
operations that often occur in manufacturing processes. For
example, several additive manufacturing processes consist of
multiple sequential steps, e.g., printing, washing, and curing
in stereolithography, or printing, debinding, and sintering in
binder jetting. In such settings, a complex data-driven model
that blindly throws all given data into a single predictive model
might not be optimal. To this end, we propose a multi-stage
inference procedure that decomposes the problem into easier sub-
problem using the prior knowledge of the operational sequence,
and propagates uncertainty across stages using Bayesian neural
networks. Here we note that even if sequential operations are not
existent in reality, one may conceptually decompose a complex
system into simpler pieces and exploit our procedure. Also, our
approach is able to incorporate physical knowledge of the output
of a sub-operation.
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I. INTRODUCTION

FOR many complex systems nowadays, understanding the
physical principles that guide the underlying process is

an increasingly challenging task. As a result, data-driven
approaches have risen as a powerful alternative (or com-
plement) for physical guidance, to model and predict the
evolution of a system and its operating state. Rapid advances
in Internet of Things enabled systems has helped pave the way
for such data-driven models, through facilitating the supply of
large scale data; be it in size, dimension, data type, amongst
others. Indeed, data-driven predictive analytics have seen
many successes in various engineering fields. Some examples
include fault detection of industrial motors [1], remaining
useful life prediction of milling machines [2], to name a few.
Despite recent success, data-driven approaches are highly

vulnerable to model mis-specifications and model inference
challenges, specifically within highly complex processes. Data
collected from such processes often exhibits high non-linearity,
and faces the curse of dimensionality in the presence of
many attributes and sub-processes [3]. Even with sufficient
data, training data-driven model in such settings poses signif-
icant inference challenges: over-fitting, vulnerability to being
trapped around bad local minima, slow convergence, and
inscalability [4].
On the other hand, knowledge (or physics) based models

exploit a priori scientific knowledge to deduce the rela-
tionship among physical variables in a system. Inspired by
such models, a large body of work on knowledge-guided
statistical models has been conducted to address the challenges
arising in pure data-driven modeling [5]. Naturally, strategies
incorporating physical knowledge with a data-driven model
vary widely depending on systems’ characteristics. In this
study, our focus is on a system with sequential sub-operations.
One common example is in additive manufacturing where
it is not uncommon for a part to be produced via multiple
sequential operations. For example, stereolithography [6] is
an additive manufacturing process comprising three opera-
tions: printing, washing, and curing; binder jetting [7] is an
increasingly popular additive manufacturing process that also
involves three operations: printing, debinding, and sintering.
Given knowledge of the operational sequence, a modeling
strategy for such systems is to employ a data-driven model
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for each sub-operation. Some examples can be found in
different domains. [8] estimated a 3D human pose composed
of top and bottom joints where each joint is modeled by a
neural network (NN). [9] proposed compositional NNs that
reflect prior knowledge on eye localization processes. Along
this line, [10] proposed a knowledge-based NN for additive
manufacturing where physical operations are linked based on a
causal graph based on dimensional analysis. Despite promising
results of knowledge-guided data-driven models for sequential
operations, we see limitations of most existing studies in
three aspects: (i) They do not consider predictive uncertainty
that represents how reliable the prediction of a knowledge-
guided model is. Indeed, this requires uncertainty propagation
across stages which may be challenging. (ii) Knowledge is
only accounted for through an architecture that resembles the
sequential system. Yet, current literature cannot incorporate
exact or inexact physical knowledge of a sub-operation, which
is often more practical in reality relative to understanding the
physics of the entire process. (iii) Literature only deals with
cases where an operational sequence is explicitly recognized.
In this paper, we consider prediction tasks arising in

processes that comprise of sequential sub-operations. Here
a sequential structure does not have to be explicit. For
instance, even if a system encompasses one process, one may
conceptually decompose such operation to simpler pieces:
often a set of base processes/components. We argue that
a purely data-driven method that blindly throws all given
data in a single predictive model might not be optimal.
Rather, one may exploit prior knowledge of the operational
sequence to decompose a data-driven model into several easier
problems, each corresponding to a sub-operation. With this
end goal in mind, we propose a knowledge-guided multi-
stage inference framework that is able to propagate uncertainty
and incorporate physical knowledge. We specifically focus
on Bayesian neural networks (BNN) and propose a Bayesian
inference procedure that quantifies uncertainties at each stage
and propagates them to sequential stages. Our framework is
also amenable to incorporating physical knowledge of the
output of a sub-operation. Through extensive numerical studies
on both simulated and real-world case studies on additive
manufacturing we show that our method excels in improving
predictive capabilities of sequential processes. Prior to high-
lighting our contributions, we start by real-world examples that
motivate our approach.

A. Motivating Examples

The proposed multi-stage framework is mainly inspired by
sequential operations that occur in a variety of manufacturing
processes. For example, in the additive manufacturing process
known as stereolithography (SLA) [6], a part undergoes
three operations as shown in Fig. 1. The operations are:
printing, where the physical shape of the object is produced by
photopolymerization of a resin; washing in isopropyl alcohol,
to remove excessive resin from the printed part; and curing
by exposing the printed part to ultraviolet light to improve its
mechanical properties. The final part dimension is affected by
the part dimensions resulting from each operation. However,

Fig. 1. Example of a stereolithography, an additive manufacturing process
comprising a sequence of three operations.

Fig. 2. Example of a case in additive manufacturing where a process is
decomposed into multiple imaginary sequential operations.

for such complex systems with multiple affecting operations,
a simple predictive model may fail to provide accurate predic-
tions of the final part dimension due to its low representation
power. On the other hand, using a more complex model is
not a silver bullet either, because of the computational issues
discussed earlier. However, if dimensional measurements are
performed after each operation is finished, one may be able to
exploit the knowledge of the sequential processes to model the
effects of each operation using multiple simple models. The
issues of using too simple or too complex models can thereby
be prevented.
Moreover, the idea of imaginary operations, such as the

geometry transformation of the desired parts, also motivates
the usage of the proposed multi-stage framework. For example,
as shown in Fig. 2, the bolt without thread can be decomposed
into a long circular cylinder and a shorter elliptical cylinder;
furthermore, these two cylinders can be regarded as a circular
disk subject to different geometry transformations. Since it is
expected that similar product shapes, e.g., disk, cylinders, and
elliptical cylinders, may share similar characteristics due to
similar dynamic response and thermal distribution etc., the
multi-stage model can also be useful in this situation that
the earlier stages model the simpler geometry and the later
stages consider further geometry transformation effects. These
imaginary processes also decompose a complex system into
simpler pieces, reducing the model complexity.

B. Contributions

We summarize our contributions in this article as follows.
• We propose a predictive analytics framework for settings
that involve sequential processes. Our approach is also
able to incorporate physical knowledge of the output of
a sub-operation which is often more practical in reality
relative to understanding the physics of the entire process.
Despite our focus on NN, our approach is amenable to
different statistical models.

• We propose a principled way to propagate uncertainty
between stages. Our approach is based on stochastic
gradient Markov chain Monte-Carlo (SGMCMC) [11]
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and is compatible with any Bayesian probabilistic model
for regression. To the best of our knowledge, this is
the first work exploring uncertainty propagation between
sequential BNNs.

• We extensively evaluate the proposed model using both
simulated and real-world data. The results show that the
model outperforms benchmark models as well as is capa-
ble of providing well-quantified predictive uncertainty.

The remainder of the paper is structured as follows.
In Sec. II, we review related work on knowledge-guided
statistical models and BNNs. In Sec. III, we discuss the
basic framework of the proposed knowledge-guided multi-
stage model. In Sec. IV, we comprehensively examine the
model using simulations. Two additive manufacturing case
studies are then presented in Sec. V. Finally, Sec. VI concludes
the paper with a brief discussion.

II. RELATED WORK

A. Knowledge-Guided Statistical Models

While knowledge based models provide explanations on
intrinsic physical principles, they often fail in practice as real
systems possess inherent complexity that cannot be easily
understood. On the other hand, data-driven models introduce
a statistical model that infers the relationship using collected
data. They can capture inherent complexity exhibited in the
data, whereas hardly serve causality to intuitively under-
stand intrinsic principles and are vulnerable to model mis-
specifications.
Taking the best of both worlds, a large body of work

on knowledge-guided statistical models has been conducted.
Related studies are categorized based on the strategy for
embedding knowledge in data-driven models [5]. One strategy
is to maneuver a statistical model towards physically consistent
solutions. Such strategies include: (i) setting a knowledge-
based solution as the starting point of the inference algo-
rithm [12]. (ii) Placing a knowledge-guided prior under a
Bayesian framework [13]–[15]. (iii) Regularizing the objective
in a frequentist framework. In such approaches, the objective
function of a data-driven model is penalized with a term
that reflects domain knowledge. Such approaches have been
explored in climate science [16], genome informatics [17],
geology [18] and fragility analysis [19], amongst many others.
Readers interested in the comprehensive review of knowledge-
guided statistical models are referred to [5]. (iv) Amongst
others, designing a model architecture in accordance with
domain knowledge is the incorporating strategy most closely
related to the multi-stage framework. In particular, there have
been some studies where the architecture of a NN is modeled
to reflect prior knowledge on the system. For instance, [20]
investigated the prediction of lake temperature, proposing a
recurrent NN with nodes representing the energy and mass
conservation of a lake obtained by physical simulations.
The studies, introduced earlier, on knowledge-guided NNs
to model eye localization [9] or an additive manufacturing
process [10] also fall into this category.
In the context of a knowledge-guidedmulti-stage framework

where information propagates across stages, the stream of

variation (SOV) analysis [21] for multi-station machining
processes is perhaps the most closely related to our approach.
The SOV analysis models the variations of products poten-
tially propagated through multi-stage manufacturing processes,
which state-space models can successfully describe [22]–[24].
However, our proposed approach is different from the SOV
modeling in that: (i) it models each stage using a data-
driven model (e.g., BNN); (ii) it can conceptually decompose
one complex operation into simpler imaginary sub-operations;
(iii) it propagates predictive uncertainty from BNN but not
dimensional variations.

B. Bayesian NN

There have been recent efforts to rethink NN from a
Bayesian perspective. This research was driven by the need
to quantify uncertainty within NNs and the often lack of
reliability obtained from point NN solutions obtained by
vanilla stochastic gradient descent (SGD) [25]–[27]. Indeed,
recent research has shown that NN can be extremely confident
with their predictions yet extremely wrong [28]. To this
end, BNNs [29], [30] have received significant attention.
A BNN simply places a prior on the weight parameters and a
posterior distribution is inferred given training data. Through
this posterior, BNNs are capable of providing a predictive
distribution rather than a single prediction value. Interestingly,
many studies on BNNs have reported that the predictive mean
often achieves better generalization than a NN in a variety of
tasks. This mean is obtained through integrating out over the
posterior. Hence instead of betting on one possible solution,
BNNs integrate over multiple hypothesis weighted by their
posterior probabilities. Such Bayesian model averaging have
been linked to flatter solution; which is a possible explanation
of the improved generalization [31].
However, the primary difficulty in BNNs is the intractabil-

ity of the posterior distribution. Recent studies have pro-
posed inference approaches that circumvent this challenge.
One category makes use of variational inferences (VI) [32].
VI finds a surrogate of posterior distribution through mini-
mizing Kullback-Leibler (KL) divergence between the original
posterior and the proxy. Hence it reformulates the problem
from an optimization perspective. In VI, the reparametriza-
tion trick [33], [34] is commonly used to derive stochastic
gradients [35]. Another category includes posterior sampling
methods. To avoid the heavy computation required in Markov
Chain Monte-Carlo based sampling, SGMCMC has been
proposed. For instance, the seminal work by [36] studied
the connection between Langevin dynamics [37] and the
search trajectory of a SGD when finding the maximum a
posteriori (MAP): maximizing P(θ |D) ∝ P(θ)P(D|θ ). Under
mild conditions, they show that the parameters θ over the
path of SGD updates, when injected with Gaussian noise
following Langevin dynamics, can be used as the samples from
the posterior P(θ |D). Inheriting the scalability of stochastic
gradient methods, they proposed a scalable sampling approach
called stochastic gradient Langevin dynamics (SGLD). Read-
ers interested in the comprehensive review on the inference of
BNNs are referred to [38]. Here we should note that despite the
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advances in BNN, their investigation and application within
the engineering field remains limited.

III. KNOWLEDGE-GUIDED MULTI-STAGE
INFERENCES VIA BNN

In this section, we discuss the proposed knowledge-guided
multi-stage inference procedure. In Sec. III-A, we start by
highlighting single-stage models. We then present the basic
framework for our approach in Sec. III-B. Sec. III-C considers
incorporating exact or inexact knowledge on a sub-operation.
Sec. III-D introduces a Bayesian formulation of our framework
for uncertainty quantification and propagation.

A. Data-Driven Models for Sequential Operations

Assume a dataset with N observations collected from a
system composed of M inherent sequential sub-operations,
denoted by D ≡ (X,�,Y), where X ∈ R

N×d represents the
initial input of the system, Y ∈ R

N×l the final output, and
� = (�1, . . . ,�M) where �m ∈ R

N×dm for m = 1, . . . , M
are system input parameters specific to the m-th sub-operation.
Note that we can collectively define X′ = (X,�1, . . . ,�M) as
the input of the system, but we intentionally separate them for
later development. A simple way to build a predictive model
is

Y = f (X,�1, . . . ,�M; θ) + ε, (1)

where f (·; θ) is a predictive model with parameters θ and
measurement noise ε. We refer to this model (1) as a
single-stage model because the input-output relationship is
established in one shot.
Now consider intermediate outputs from each stage are

available and denote outputs at the m-th operation by
Ym ∈ R

N×lm . That is, while only Y is given in the model
(1), we now have Y1, . . . ,YM−1 as well as Y = YM with
l = lM . An alternative single-stage model that uses all the
given information is expressed as

YM = f (X,�1 . . .�M ,Y1, . . . ,YM−1; θ) + ε, (2)

which we refer to as a single-stage model with additional
information on intermediate outputs. The key idea behind (2),
is to pool data from all stages into one large model. Inference
for (1) and (2) then proceeds to finds f (·; θ∗) where θ∗

minimizes some empirical risk function. Those two mod-
els however do not exploit the sequential structure of the
system. As aforementioned, a simple predictive model may
not be capable of capturing the complex and high non-
linear relationship between inputs and outputs arising from
the sequential operations. While a complex model is neither
an absolute remedy, as it may overfit to training data, suffer
from inscalability, get trapped in bad local minima, or even
fail to converge.

B. The Basic Framework of Proposed Model

A simple idea to improve upon the models above is to
exploit prior domain knowledge to decompose the problem

into easier yet interrelated sub-problems. Mathematically,
we inductively model the m-th operation as

Ŷ0 = X,

Ym = fm(Ŷm−1,�m; θm) + εm for m ∈ {1, . . . , M} (3)

where Ŷm = fm(Ŷm−1,�m; θm) for m ∈ {1, . . . , M} and
εm is the measurement noise at the m-th operation. In this
inductive model, the output from a previous model is fed to
the next model. At each stage, we estimate θm that minimizes
an empirical risk defined through the loss function Lm(·, ·) at
the m-th stage: θ∗

m = argmin
θm

Lm
(
fm(Ŷm−1,�m; θm),Ym

)
.

Once model parameters θ∗
m are estimated, predictions for a

new observation x∗ and system parameters λ∗
m are sequentially

obtained by

y∗
0 = x∗,

y∗
m = fm(y∗

m−1,λ
∗
m; θ∗

m) for m ∈ {1, . . . , M},
where y∗

M is the final prediction.
Fig. 3 shows a schematic illustration of the single-stage

inference, single-stage inference with full information, and
multi-stage inference. As shown in the figure, multi-stage
inference decomposes one complicated process into several
simpler sub-processes, thereby a model with less complex-
ity can be employed for each sub-operation thus avoiding
challenges induced in high-dimensional non-convex model
learning. Also, such a model allows physical knowledge of
sub-operations to be seamlessly integrated. This is highlighted
in the following section.

C. Inverse Transformation: What If Physical Knowledge on
the Input-Output Relationship of a Sub-Operation Is Known?

In practice, physical knowledge of sub-operations within
the entire process is easier to extract compared to understand-
ing that of the entire process (i.e. the transformation from
X′ → Y). One key goal and motivation behind (3) is to address
such situations. Through our multi-stage approach, one may
apply inverse transformations to the final output to generate
intermediate outputs when they are missing.
Without loss of generality, suppose that we do not have

the intermediate output Ym yet we have partial knowledge
given as the physical formulas Pm+1(·; �m+1) that map stage
specific input (Ŷm,�m+1) to Ym+1. Then, we conduct inverse
transformations, which are essentially the inverse function
P−1
m+1, to generate

Ỹm = P−1
m+1(Ym+1; �m+1).

The generated output Ỹm serves as a proxy of the unobserved
output Ym . Here we say the knowledge is partial, because
P−1
m+1 may not make Ỹm perfectly independent of �m+1. Using

the proxy Ỹm , we first train the m-th model given as

Ỹm = fm(Ŷm−1,�m; θm) + εm

to estimate parameter θ∗
m and thus we can get a pseudo output

Y
pseudo

m = fm(Ŷm−1,�m; θ∗
m). Then, we train the (m + 1)-th
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Fig. 3. An illustration of Multi-stage vs. single-stage inference with or without collecting outputs from intermediate operations.

Fig. 4. The process of inverse transformation with a multi-stage framework.

model represented as

Ym+1 = fm+1
(
Pm+1

(
Y

pseudo

m ; �m+1
)
,�m+1; θm+1

)
+ εm+1.

(4)

Fig. 4 illustrates the process of inverse transformations.
Here we emphasize two modeling insights at the (m +
1)-th stage. First, we infer fm+1 instead of directly use
Pm+1(Y

pseudo

m ,�m+1). This is due to the potential incom-
pleteness of the knowledge Pm+1(·,�m+1). The model
fm+1(·) can infer what Pm+1(·,�m+1) may miss out on the
underlying truth. Second, we train the model fm+1 using
Pm+1(Y

pseudo

m ,�m+1) instead of directly using the pseudo out-
put Y

pseudo

m . By doing so, we can further exploit the knowledge
from Pm+1 in the inference of fm+1.

D. Uncertainty Quantification Using BNN

Given our multi-stage framework, a key remaining challenge
is quantifying uncertainty and propagating it through the
stages. To this end, we propose a Bayesian extension for our
multi-stage framework. For the m-th stage, denote the dataset
by Dm ≡ (Ŷm−1,�m,Ym). At each stage instead of finding
θ∗
m , a Bayesian treatment first places a prior distribution
P(θm) and then infers a posterior distribution P(θm|Dm).
This Bayesian inference is conducted at all stages for
m = 1, . . . , M .
Now assume that P(θm|Dm) are known for all m ∈

{1, . . . , M}. Inference for this posterior will be discussed
shortly. After inference, uncertainty propagation and quantifi-
cation at a new input point (x∗,λ∗) is done sequentially as
shown in Alg. 1. Recall, λ∗ = (λ∗

1, · · · ,λ∗
M ).

The underlying idea behind Alg. 1 is to propagate a
predictive distribution across stages. At the first stage, we take
T samples from the posterior distribution θ

(t)
1 ∼ P(θ 1|D1) for

t = 1, . . . , T . We then obtain the Monte-Carlo samples for
predictions y∗

1,t = f1(x∗,λ∗
1; θ

(t)
1 ) for t = 1, . . . , T . Using the

samples, the predictive distribution can be approximated to
Fm . One example of approximating distributions is a Gaussian
distribution

F1 := N (
μ̂1, �̂1

)
, (5)

where μ̂1 = 1
T

∑T
t=1 y

∗
1,t and �̂1 = 1

T

∑T
t=1(y

∗
1,t − μ̂1)

(y∗
1,t − μ̂1)

	.

Algorithm 1 Uncertainty Propagation
Input: Posteriors P(θ 1|D1), . . . , P(θM |DM ) and test inputs

(x∗,λ∗)
Output: Predictive distribution FM

# The first stage
1: Sample θ

(t)
1 ∼ P(θ 1|D1) for t = 1, . . . , T .

2: Get predictions y∗
1,t = f1(x∗,λ∗

1; θ
(t)
1 ) for 1, . . . , T .

3: Approximate the distribution of y∗
1,t to F1.

# The second and later stages
4: for m = 2, . . . , M do
5: Sample z∗m−1,s ∼ Fm−1 for s = 1, . . . , S.
6: Sample θ (t)

m ∼ P(θm|Dm) for 1, . . . , T .
7: Get predictions y∗

m,t,s = fm(z∗m−1,s ,λ
∗
m; θ (t)

m ) for s =
1, . . . , S and 1, . . . , T .

8: Approximate the distribution of y∗
m,t,s to Fm .

9: end for
10: return FM

We now feed the outputs from the first stage to the second
stage. Here, the key idea is that, instead of μ̂1, we draw S
samples from F1 and deliver them to the next stage. Using
the samples denoted as z∗1,s for s = 1, . . . , S, we can obtain S
predictions for each parameter sample θ

(t)
2 ∼ P(θ 2|D2) using

y∗
2,t,s = f2(z∗1,s ,λ

∗
2; θ

(t)
2 ) for t = 1, . . . , T and s = 1, . . . , S.

We then approximate F2 using S×T prediction samples from
the second BNN. We again form a set of samples drawn
from the approximate predictive distribution at the second
stage to feed the next stage. For the m-th stage with m ≥ 2,
we inductively perform this procedure until the final predictive
distribution is obtained.
In our approach we generate samples from an approximated

distribution (e.g., Eq. (5)) and deliver them to the next stage.
This allows models to deliver the information about predictive
variance to the next stage. Here we should note that one may
also feed the sampled outputs (e.g. y∗

2,t,s ) directly to the next
stage. However, the number of predictive samples at the m-
th stage will be S × Tm . On the contrary, by (5), S × T
predictive samples at the m-th stage as we only transfer a fixed
number of samples at each stage. Here one may not need the
approximation if m is small enough thereby evaluating S×Tm
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samples using a predictive model does not require significant
computation. We finally note that approximations other than
the Gaussian (5) can be used, such as a mixture of Gaussians
or a non-parametric approximation.

E. Posterior Sampling in BNN

The main challenge remaining is estimating P(θm |Dm). In a
BNN it is usually intractable to find P(θm|Dm), yet one may
hope to extract some samples from it. One obvious sample is
the MAP, which is obtained by solving:

Minimize
θm

− (log P(θm) + log P(Dm |θm)). (6)

In a BNN, log P(Dm |θm) is usually given as the log Gaussian
likelihood − N

2 log σ 2 − 1
2σ 2

∑N
i=1([ fm(ŷm−1)]i − [ym]i)2 for

a regression problem or the cross-entropy for a multi-class
classification.
Solving for the MAP is usually done via SGD. At each

iteration t , SGD takes a mini-batch {D(t,i)
m }i=1,...,n of size n

and updates θ (t)
m as θ (t+1)

m = θ (t)
m − ηt�θ (t)

m :

�θ (t)
m = ηt

2

(
∇ log P(θ (t)

m ) + N

n

n∑
i=1

∇ log P(D(t,i)
m |θ (t)

m )

)
(7)

where ηt denotes the step size at iteration t . It is known that
for SGD, and under the conditions of decreasing step sizes
with

∑∞
t=1 ηt = ∞ and

∑∞
t=1 η2t < ∞, parameters obtained

by iterating (7) converge to a critical point.
The issue here is that the MAP estimation only provides

the mode of a posterior, while we need multiple samples from
P(θm|Dm) to propagate uncertainty. Here SGLD [36] provides
an elegant solution.
The intuition behind SGLD is that, by injecting a Gaussian

noise to (7) that depends on the step size, εt ∼ N (0, ηt I), the
parameter updates do not collapse to the critical points and
they converge to samples from the true posterior distribution.
As a result, one can use the parameters collected from the
SGLD updates as posterior samples. Specifically, the update
is written as

�θ (t)
m = ηt

2

(
∇ log P(θ (t)

m ) + N

n

n∑
i=1

∇ log P(D(t,i)
m |θ (t)

m )

)

+ τεt ,

εt ∼ N (0, ηt I), (8)

where τ is the hyperparameter representing a thermal
noise [38].
Through this, and at the stage m, we are now able to gather

T samples θ (t)
m for t ∈ {1, . . . , T } from P(θm |Dm). Those sam-

ples address the last missing part of Alg. 1. In practice, we set
burn-in iterations to T ′ with the total iterations T ′ + T [36],
thus we collect the T parameter samples {θ (T ′+1)

m , . . . , θ (T ′+T )
m }

from (8). Those samples can be regarded as the samples drawn
from the posterior distribution P(θm|Dm), used in the step
1 and 6 in Alg. 1.
We should note that SGLD uses the same step size for all

parameters. This often leads to slow convergence when the loss
surface of BNN is highly variable in the different directions
in parameter space. This phenomenon is also seen in NN and

was an underlying reason behind the Adam optimizer [39]
and more recent alternatives. To this end, one may also utilize
a preconditioned SGLD [40] that uses adaptive step sizes
instead. We refer the reader to the Appendix for additional
details.
We finally remark that, within the SGLD framework,

training samples Ŷm can be obtained by the posterior mean
approximated through SGLD iterations. More specifically,
we calculate

Ŷm =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1

T

T ′+T∑
t=T ′+1

fm(X,�m; θ (t)
m ) if m = 1

1

ST

T ′+T∑
t=T ′+1

S∑
s=1

fm(Zm−1,s ,�m; θ (t)
m ) o.w.,

where Zm−1,s ∈ R
N×lm−1 denotes the samples obtained simi-

larly to Step 5 in Alg. 1 but evaluated at training inputs. Note
carefully that Ŷm is calculated in the training phase, not in the
testing phase (i.e., Alg. 1).

IV. PROOF OF CONCEPT

We start with a proof of concept for our proposed model.
First, we examine the multi-stage BNN on synthetic data.
Next, we discuss the case where some physical knowledge is
known. For all simulation studies, we compare three models.
(i) Multi-(B)NN: the multi-stage (Bayesian) NN, which is our
proposed multi-stage model, (ii) Single-(B)NN: the single-
stage (Bayesian) NN (iii) Single-(B)NN-Add: the single-stage
(Bayesian) NN with additional information on outputs from
intermediate stages. Note that we use “(B)NN” to collectively
refer to Bayesian NN and non-Bayesian NN. The goal of this
comparison is to shed light on the benefits of a knowledge-
guided multi-stage structure (e.g., through Multi-(B)NN vs.
Single-(B)NN) as well as uncertainty estimation and general-
ization via BNN (e.g., by Multi-BNN vs Multi-NN). Note that
we set the number of hidden units in single-stage models to
be equivalent to the sum of the number of hidden units of all
models in the multi-stage model for a fair condition in model
flexibility.

A. Simulation Study 1: Multi-Stage Inference

1) Setup:
a) Data Generation: We assume that the generating

process of the synthetic data is composed of five sequential
operations. To generate samples, we construct the sequen-
tial data generating model given by ym = y true

m + εm =
fm(y true

m−1, λm) + εm for m = 1, . . . , 5 and y true
0 = x ,

where fm(·, λm) = GPm(·) is a realization of a Gaussian
process with a squared exponential kernel kexp(x, x ′) =
γ exp

(− 1
2l (x − x ′)2

)
with l = 0.3 and γ = 1 and y true

m is
the underlying truth at the stage m without the measurement
error εm ∼ N (0, 0.12). We generate 30 input data points
xi ∼ Unif(−1, 1), where Unif(·, ·) denotes a uniform distrib-
ution. For simplicity, we assume the operation-specific inputs
λm are independent of y true

m−1 for all m.
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Fig. 5. The trend of average MSEs in the number of stages.

TABLE I

SUMMARY OF THE RESULTS ON SIMULATION STUDY 1

b) Model Evaluation: We investigate the (i) predictive
power using mean squared error (MSE) and (ii) uncertainty
quantification capability of all benchmarked models. We col-
lect 300 test inputs from Unif(−1, 1) for x to generate test
outputs using the same data generating models above. The test
outputs are collected from each stage to evaluate the m-stage
Multi-(B)NN compared with Single-(B)NN (i.e., ym = f (x)+
ε) and Single-(B)NN-add (i.e., ym = f (x, y1, . . . , ym−1) + ε)
for m = 2, . . . , 5. Note that we use a predictive mean for
BNNs to calculate their MSEs. Finally, we repeat the evalua-
tion 20 times. Detailed settings for the model implementation
and hyperparameters are deferred to the Appendix.
2) Simulation Results: The results are given in Fig. 5 and

Table I. From the results, we can obtain several insights.
First, the Multi-(B)NN outperforms Single-(B)NN and Single-
(B)NN-Add in prediction accuracy. This confirms our intuition
that knowledge-based structural modeling significantly helps
increasing the model’s prediction ability through decomposing
it into multiple simpler problems. Second, we observe in
Table I that the variances in the prediction of multi-stage
models are less than the single-stage models, showing that
predictions provided by our model are more robust. Here
robustness is a direct consequence of the decomposition to
simpler models and implies a reduced vulnerability to model
mis-specifications, initialization and other optimization issues.
In particular, the difference in prediction by single-stage
models and Multi-(B)NN becomes more significant with a
larger number of stages. This is intuitively understandable as

Fig. 6. Uncertainty quantification by Multi-BNN.

more operations imply higher complexity in the input/output
relationship and hence a greater challenge for single-stage
inference. Finally, we see that Bayesian inference not only
can quantify uncertainty but also provide better generalization.
As shown in Table I, using a BNN can help better generalize
to new data.
Regarding uncertainty quantification, we plot the predictive

mean and variance for the final output y2 of the two-stage
model to check whether uncertainty is reasonably deduced.
Specifically, we plot results for x ∈ (−1.7, 1.7) in Fig. 6.
We intentionally generate test data outside the training region
x ∈ (−1, 1) to see variance performance in unobserved
regions. Comparing to the true confidence interval, Multi-BNN
is able to reasonably quantify uncertainty. Further, the model
clearly reflects the lack of information, via high variance,
in extrapolated regions.

B. Simulation Study 2: Multi-Stage Inference With Inverse
Transformation

We now study multi-stage inference with inverse transfor-
mations. The motivation of this simulation is from additive
manufacturing. Consider 3D printing that stacks thin elliptical
disks to produce a 3D object. The goal is to predict the
shape of a manufactured disk, and its deviations from the
target ellipse due to unknown physical factors like humidity
and velocity of extruders. An ellipse is defined by scaling
parameters (a, b) along major and minor axes and a rotation
parameter φ (see Fig. 7). Given such parameters, we aim
to predict the manufactured shape y = f (x; a, b, φ) where
x ∈ [0, 2π) using pairs of (ai , bi , φi ) and yi from shapes
previously produced. Here, we hypothesize that there exists
a sequence of inherent sub-operations in f (·): the ellipse
shape is first affected by scaling and then rotation. Thus,
in the first stage, we infer the model for scaling f1(·; a, b)
using unrotated shapes and their scaling parameters, and in
the second stage, we infer the model for rotation f2(·; φ) that
relates the output from the first model and rotation parameters
to the corresponding rotated shapes.
Yet, since manufacturing an ellipse in reality is often

done in one shot, we may not have the intermediate output:
the dataset of actual shapes corresponding to the unrotated
ellipses. However, we know P2(·, φ). That is, we know the
function that transforms the output from an unrotated ellipse
to a rotated one. The inverse transformation of this function
is simply given as

P−1
2 ( f (x); φ) = f (x + φ). (9)
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Fig. 7. Inverse transformation on an ellipse.

Thus from the final output, we can use (9) to generate the
proxy of intermediate outputs and then employ a multi-stage
inference framework.
1) Setup:
a) Data Generation: We generate the curve of N =

300 elliptical objects, evaluated at equally spaced 120 points
X = [xi ]i=1,...,N where xi = (

0, 3
360 2π, . . . , 357360 2π

)	 ∈ R
120×1

on the angular axis of the polar coordinate system. The system
parameters are defined as � = (�1,�2) composed of the
scale parameters �1 = [a,b] with a = [ai]	i=1,...,N and
b = [bi ]	i=1,...,N , and rotation parameter �2 = φ = [φi ]	i=1,...,N .
With these parameters, we generate the i -th output for the
second operation Y = Y2 = [y2,i ]i=1,...,N with y2,i ∈ R

120×1
for Case A and B as follows.

Case A: y2,i = aibi√
a2i sin

2(xi − φi) + b2i cos
2(xi − φi )

+ a
1
3
i sin(xi − φi ) + ε, (10)

Case B: y2,i = aibi√
a2i sin

2(xi − φi) + b2i cos
2(xi − φi )

+ a
1
3
i sin(xi − 1

2
φi ) + ε. (11)

We set the scaling parameters as ai
i.i.d.∼ Unif(3, 5), bi

i.i.d.∼
Unif(1, 3), the rotation parameter φi

i.i.d.∼ Unif(0, 12π), and

Gaussian noise ε
i.i.d.∼ N (0, 0.12). Note that the second term

differentiates the cases. In Case A, the inverse transformation
renders Y completely independent of the rotation parameter
φ. This is ideal because the physical model P2 can perfectly
represent its sub-operation. On the other hand, in Case B, the
second term is still dependent on φ after the inverse trans-
formation is executed, implying that our physical knowledge
is partial and incomplete. Case B will highlight the ability
of the inverse transformation approach within our multi-stage
framework to incorporate physical knowledge and compensate
for its incompleteness.

b) Model Evaluation: First, we compare the models in
terms of predictive accuracy. We generate the parameters
ai , bi , φi for the test dataset by drawing 30 i.i.d. sam-
ples from the same distribution used for the training set.
We evaluate the models using the average of the MSEs for
predicted curves as an evaluation metric. This is expressed
as 1

120N

∑N
i=1

∑120
j=1

([Y∗
i ] j − [Ytrue

i ] j
)2

where Y∗
i and Ytrue

i
present the predicted vector for the i -th observation and the
corresponding true values without noise, respectively. Next,
we investigate how the estimated uncertainty obtained by our
model evolves as moving further away from training observa-
tions, for both scaling and rotation parameters. We repeat the

Fig. 8. Boxplots for MSEs of the comparative models with inverse
transformation.

simulation 20 times. We finally note that Single-(B)NN-Add
is excluded in this simulation as the intermediate output is
not available. Detailed settings for model implementation and
hyperparameters are deferred to the Appendix.
2) Simulation Results: Results are highlighted in Fig. 8.

We can directly see that multi-stage (B)NNs outperform their
single-stage counterparts consistently in both Case A and
Case B. This sheds light on the advantage of exploiting
physical knowledge through inverse transformations and also
the benefit of a multi-stage framework even when a process
is not sequential but can be conceptually divided into simpler
sequential pieces. To further highlight this, boxplots in Case B
show that the first stage does not predict well for the inferred
intermediate outputs because of the incomplete knowledge on
the inverse transformation. Despite that, multi-stage models
eventually excel at the final prediction and outperform a single-
stage approach. This is intuitively understandable, as the multi-
stage framework in (4) can capture inherent association across
the stages through the additional knowledge incorporated. This
demonstrates that even if intermediate output prediction (Y∗

1)
is not very accurate, if they are more associated with the final
output (Y2), they can improve predictive power.
We also provide plots in Fig. 9 for both interpolated results

within the design space (column 1) and extrapolated results
(columns 2-4). Here we either fix the rotation parameter
φ = 0.25π (the first row) or the scaling parameter (a, b) =
(4, 2) (the second row). The results show that we can accu-
rately predict within the interpolated region. Intriguingly, quite
reasonable extrapolations are obtained in the scaling space
whereas the extrapolation is quickly spoiled in the rotation
space. We conjecture that the underlying reason is that the
functional behaviour in extrapolated regions of the rotation
space is largely different compared to that within the design
space.

V. CASE STUDIES: ADDITIVE MANUFACTURING

We apply the proposed framework to predict the dimen-
sional errors of additively manufactured parts via two case
studies. In the first case study, the parts are decomposed
into a sequence of imaginary operations which are modeled
using the proposed framework. In the second case study, the
parts are produced using an additive manufacturing process
that physically involves three sequential processes which are
modeled using the proposed framework.
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Fig. 9. Predictive means and variances of Multi-BNNs with inverse transformation. Figures in the first row illustrate the cases where the rotation φ is fixed
whereas in the second row the scaling is fixed. Note that the scale of the y-axis in each row is fixed for the ease of visual comparison while the range might
be different.

Fig. 10. The ellipse and the dimension terms for the experimental case
study: (left) normal printing orientation, (right) printed in a different printing
orientation.

A. Case Study I: Elliptical Disks Production

1) Problem Description: The first case study focuses on the
production of elliptical disks and aims to quantify geometry
or dimension error. We 3D print several ellipses of different
sizes, elongation, and printing orientation using an Ultimaker
3 Extended 3D printer. A total of 64 representative samples are
selected so that all possible combinations of the nominal x-axis
length among 20, 40, 60, or 80 mm, nominal y-axis length
among 20, 40, 60, or 80 mm, and nominal rotation degree
among −30◦, −15◦, 0◦, 15◦, or 30◦ are included. The above
dimension terms are explained in Fig. 10. We limit the rotation
degree between −45◦ and 45◦. The outputs of interest are the
dimension error (from the nominal shape), specifically along
the x-axis and y-axis in the ellipse frame. We focus on those
two axes because the errors on the axes are the most significant
over the other angles, and the dimensions with the extreme
length matter most in practice. This output is measured using a
Starrett electronic Vernier caliper with a measuring resolution
of 0.01 mm. Also, four markers are printed above the ellipse
to indicate the major and minor axes. The raw data of the
measured error is presented in Fig. 11. According to the above
experiment design, since ellipses can be transformed from
circles by scaling along the x-axis and y-axis and then rotation,

Fig. 11. Surface plots of the measured error (raw data).

the design of the multi-stage approach also follows the same
sequence of the imaginary operation. Therefore, the case study
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Fig. 12. Inputs and outputs for comparative models in the case study.

Fig. 13. MSEs of comparative models from the case study using 3D printer
dataset.

provides a valid example of Eq. (2) and (3). Multi-(B)NN
(i.e., Eq. (3)) performs the first stage to model and predict the
scaling effects using the observations with 0◦ rotation, and
then the second stage for the rotation effects. On the contrary,
Single-(B)NN-Add (i.e., Eq. (2)) throws all data including 0◦
rotation into a single-stage model. The inputs and outputs for
the comparative models are compared in Fig. 12.
2) Data Generation: We first form a dataset for the multi-

stage model as follows. For the first stage, we randomly select
75% of the observations with rotation degree 0◦ as the training
data and remainder as the test data. For the second stage,
we form the training data from data with non-zero rotation
scaling, but with scaling factors similar to those in the first
stage. For the Single-(B)NN-Add we aggregate the training
data in the first and second stages. Hence, the comparative
models, Multi-(B)NN and Single-(B)NN-Add, are given the
same training and test datasets.
3) Results: Fig. 13 provides boxplots summarizing the

prediction accuracies of the comparative approaches. Many
key insights can be derived. (i) As observed in previous
cases, Multi-(B)NN significantly outperforms Single-(B)NN-
Add, with around a 17.9% improvement in prediction accu-
racy. Indeed, this confirms the benefits of knowledge guidance:
the deviation of a rotated shape is highly related to that
of the unrotated shape, therefore through a simpler model
that predicts deviation of the basic unrotated shape one may
provide outputs with higher predictive power at the last
and final stage. (ii) It is also crucial to note that Single-
(B)NN-Add do not provide better predictions than Single-
(B)NN even though Single-(B)NN-Add are trained with more
observations (non-rotated ellipses). This highlights our initial
motivation that blindly throwing more data in highly complex
models such as NN, does not always guarantee a better
prediction, and hence emphasizes the importance of leveraging

Fig. 14. The trend of test loss in epochs. We record the test losses from
20 evaluations with randomly initialized NNs while we use the same dataset.
Solid lines and shaded areas present mean and a half standard deviation of
the test loss at each epoch, respectively.

Fig. 15. Heatmap of predictive standard deviations for input space with
λ2 = 15◦ .

process-specific knowledge. (iii) BNNs in both single and
multi-stage models give slightly less MSEs than corresponding
regular NNs on average. The difference however is not
significant. We believe this is due to the small sample size.
(iv) Lastly, we find that multi-stage models provide robust
predictions with lower variance than single-stage models. This
is well illustrated in Fig. 14 where we draw the trend of test
losses in epochs from 20 repetitions with randomly initialized
NNs using the same dataset. The trend shows that the single-
stage model gives highly variable test loss depending on the
starting point of the optimization. This again confirms the
benefit of the proposed model that reduces search space by
the decomposition, allowing us to consistently find good local
minima.
In Fig. 15 we plot the heatmap of the predictive standard

deviation by a BNN in the input space where λ2 is fixed to 15◦.
We find that the estimated uncertainty is small for the region
in which observations are collected (red dots). Furthermore,
the estimated uncertainty at the input (20, 20) or (20, 60) is
larger than that of the input (40, 40), as (40, 40) has more
adjacent training points around.

B. Case Study II: Stereolithography

1) Problem Description: The second case study aims to
learn the dimensional changes of 3D-printed parts throughout
printing and post-processing processes. In particular, we con-
sider SLA 3D printing [6] that uses a laser to photopolymerize
liquid resin into hardened plastic to form 3D objects. An SLA
3D-printing process comprises three sequential operations:

Authorized licensed use limited to: University of Michigan Library. Downloaded on April 05,2022 at 18:13:28 UTC from IEEE Xplore.  Restrictions apply.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CHUNG et al.: MULTISTAGE APPROACH FOR KNOWLEDGE-GUIDED PREDICTIONS WITH APPLICATION 11

Fig. 16. Inputs and outputs of the sequential operations in SLA additive
manufacturing.

printing, washing, and curing, written in order. In the printing
process, a 3D printer produces a part using given dimension
information. Then the washing process removes liquid resin
on the part’s surface, followed by the post-curing process
that completes the polymerization reaction. One crucial fact is
that the operations sequentially make a subtle deformation in
printed parts, inducing deviations between the actual dimen-
sion of printed parts and the input dimension. Attaining an
accurate prediction of such deviations is essential in quality
control for 3D printed parts. To this end, we can use the pro-
posed framework to build sequential predictive models where
each model learns dimensional changes by each operation in
the SLA additive manufacturing process. Our specific focus
is on circular 3D-printed disks. We specifically aim to predict
the absolute deviation of the maximum disk diameter from
the nominal diameter of the circular disk. Figure 16 illustrates
inputs and outputs of the SLA process.
2) Data Generation: We printed 70 circular disks with

nominal diameters ranging from 14-22mm, using Form 3,
a Formlab’s SLA printer [41]. After printing, we performed
washing using Formlab’s FormWash and then post-curing of
the printed disks, using Formlab’s FormCure. The parameter
of the washing process is washing time, set to 5, 10, or
15 minutes. The parameters of the post-curing process are
curing time and temperature, set to 30 or 60 minutes and
45, 60, or 75 ◦C, respectively. Once each process ended,
we measured the maximum diameter of each disk using a
Mitutoyo 293-340-30 digital micrometer to get intermediate
and final observations. We have made the dataset publicly
available1 [42].
3) Model Training and Evaluation: Each NN at the first,

second, and third stage in Multi-(B)NN sequentially learns the
maximum diameter deviations after the printing, washing, and
post-curing processes, respectively. The NNs take the deviation
from the previous process (i.e., an intermediate output) and
parameters of the current process to predict the deviation
after executing the current process. On the other hand,
Single-(B)NN-Add takes the entire data that encompasses all
intermediate outputs and process parameters to predict final
deviations, while Single-(B)NN only uses process parameters
to perform predictions. Predictive models are trained using
the observations of 56 randomly selected disks and tested on

1https://doi.org/10.5281/zenodo.5966323

TABLE II

SUMMARY OF THE RESULTS ON CASE STUDY II

the rest, repeated 10 times. We evaluate the models based on
MSEs of their predictions.
4) Results: Table II summarizes the average MSE and its

standard deviation across all models.
We first see that the proposed multi-(B)NNs provide more

precise predictions compared to the single-stage models. This
demonstrates that exploiting knowledge on the operational
sequence helps establish an improved predictive analytics
tool for an additive manufacturing process with sequential
sub-operations. Another advantage of the proposed model is
consistency in performance, shown by the lower standard
deviation of MSEs. Similar to the first case study, this is
attributed to the decomposition that reduces the search space
in parameter estimation. Meanwhile, the Bayesian treatment
to NNs consistently improves the generalization power of the
single-stage models while not requiring significant extra time
for inference.

VI. CONCLUSION

This article proposes a knowledge-guided multi-stage infer-
ence framework for systems comprised of a sequence of sub-
operations. Our approach exploits prior knowledge of the
operational sequence to decompose the model into easier
sub-problems that are inductively defined. We then propose
a Bayesian approach to quantify and propagate uncertainty
across operations. Our model can readily incorporate physical
knowledge of the output of a sub-operation which is often
more practical in reality relative to understanding the physics
of the entire process. Our method is then tested on both
simulated and real-world data from 3D printed disks.
One possible limitation of our approach is error propagation

across the stages. A predictive model can make an inaccurate
prediction in real-world applications because the data is highly
contaminated by measurement noise or the model converges
to poor minima. Such poor predictions that occur at an
intermediate stage can quickly propagate to the subsequent
stages. Our uncertainty propagation approach is intended to
detect such an issue; yet further exploiting diagnostics for early
detection of error propagation is an exciting research direction
to investigate.

APPENDIX A

Preconditioned SGLD in the Multi-Stage Framework

One challenge in SGLD is that the step size for every weight
parameter at each iteration are the same [43], [44]. Because
local curvature of the loss surface in BNN is often highly
variable in the different directions in the parameter space,
moving with the same step size for every parameter results in
slow convergence. The preconditioned SGLD [40] thus instead
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uses adaptive step sizes. It borrows the idea of an adaptive
optimizer called RMSprop [45], introducing a preconditioning
matrix to the parameter updating.
Specifically, let G(θ) denote the preconditioner matrix at θ ,

the parameter update of the preconditioned SGLD in the m-th
model is given by

�θ (t)
m = ηt

2

[
G(θ (t)

m )

(
∇ log P(θ (t)

m )
N

n

n∑
i=1

∇ log P(D(t,i)
m |θ (t)

m )

)

+ �(θ (t)
m )

]
+τG

1
2 (θ (t)

m )εt , εt ∼ N (0, ηt I), (12)

where �(θ) = ∑
j

∂Gi, j (θ)

∂θ j
. Also, the preconditioner is updated

by

G(θ (t+1)
m ) = diag

(
1�

(
α1 +

√
V (θ (t+1)

m )

))
V (θ (t+1)

m ) = βV (θ (t)) + (1− β)ḡ(θ (t)
m ;D(t)) � ḡ(θ (t)

m ;D(t))

where ḡ(θ (t)
m ;D(t)

m ) = ∑n
i=1 ∇ log P(D(t,i)

m |θ (t)
m ) is the sample

mean of the gradient of the log likelihood with a minibatch
at iteration t; α > 0 is a hyperparameter that determines the
extremes of the curvature; β ∈ [0, 1] is the hyperparameter for
weighted averaging between historical and current gradients;
� and � are the operators indicating element-wise product
and division, respectively.
Comparing to the SGLD update (8), the preconditioned

SGLD update (12) features the preconditioning matrix G(·).
This is for an adaptation of step sizes over parameters: making
step size smaller for the parameters with flat direction, or larger
for steep direction. As a result, it converges faster than the
SGLD in BNN. Detailed discussions and theoretical analysis
are provided in [40].

APPENDIX B

Implementation Settings

A. Simulation Study 1

For Multi-(B)NN, we use a NN with one hidden layer
with 30 hidden units for each stage. For Single-(B)NN and
Single-(B)NN-Add, we utilize a NN with one hidden layer
with 150 hidden units. As a result, the single-stage models are
more or similarly flexible to the proposed model. For all NNs,
RMSprop optimizer is employed with 2000 iterations. For all
BNNs, we place N (0, I) as a prior on the weight parameters
and use the preconditioned SGLD with total iterations T =
3000 including burn-in steps T ′ = 2000 for inference. We set a
precondition decay rate β = 0.99 and thermal noise τ = 0.02.
For all comparative models, we schedule decaying learning
rates starting from 0.001 and decreasing every 500 epochs by
the factor of 0.7.

B. Simulation Study 2

We establish 2 hidden layers with 10 units for NNs in Multi-
(B)NN while 20 units in the single-stage models. We also
remove the input X as it appears with every observation and
thus is redundant. In optimization, we utilize the RMSprop
optimizer with 1000 iterations for the regular NNs and the

preconditioned SGLD with 2000 iterations in total where the
first 1000 iterations are used for the burn-in steps. We use the
same learning rate schedule and detailed hyperparameters for
the preconditioned SGLD as in Appendix VI-A.

C. Case Study I

For the multi-stage models, we use a NN that comprises
two hidden layers where each layer contains 30 units for the
first NN, and 5 units for the second NN. For the single-
stage models, we use a NN that comprises two hidden layers
where each layer contains 35 units. We employ the NN
with more units at the first stage to prevent potential error
propagation caused in the first stage. For BNNs, we place
a standard multivariate Gaussian distribution N (0, I) as a
prior. We set burn-in iterations to 10000 and 2000 for the
first and second BNNs, respectively, and use 1000 iterations
after the burn-in stages for sampling in both models. The
hyperparameters of the first and second BNNs are set to
β1 = β2 = 0.99 (precondition decay rates) and τ1 = 0.0002,
τ2 = 0.002 (thermal noises). We set a constant learning rate
0.001. We confirmed that every model reached a stable training
loss for all optimization processes.

D. Case Study II

For the multi-stage models, we use a NN that comprises two
hidden layers. Each NN at the first, second, and third stages
has 15, 15, and 20 units for each layer, respectively. For the
single-stage models, we use a NN with two hidden layers with
50 units. By doing so, multi- and single-stage models are given
similar flexibility. For all BNNs, a prior distribution is set
to a standard multivariate Gaussian distribution N (0, I). All
BNN inferences involve 1500 burn-in iterations, followed by
500 iterations for the sampling stage. Regarding hyperparame-
ters, we set the precondition decay rate β and the thermal noise
τ to 0.99 and 0.0005 for all BNNs, respectively. The learning
rate of all model training is set to 0.001. We confirmed that
every model reached a stable training loss for all optimization
processes.
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