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Proof Blocks is a novel software tool which enables
students to write mathematical proofs by dragging and
dropping prewritten lines into the correct order, rather
than writing a proof completely from scratch. We used
Proof Blocks problems as exam questions for a discrete
mathematics course with hundreds of students, allowing us
to collect thousands of student responses to Proof Blocks
problems. Using this data, we provide statistical evidence
that Proof Blocks are easier than written proofs, which
are typically very difficult. We also show that Proof Blocks
problems provide about as much information about student
knowledge as written proofs. Survey results show that
students believe that the Proof Blocks user interface is easy
to use, and that the questions accurately represent their
ability to write proofs.

1.0 INTRODUCTION

Understanding and writing mathematical proofs is one of the
critical yet difficult skills that students must learn as a part
of the discrete mathematics curriculum. Proofs and proof
techniques are included by the ACM curricular guidelines
as a core knowledge area that should be understood by any
student obtaining a degree in computer engineering, computer
science, or software engineering [12, 16, 30]. A panel of 21
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experts using a Delphi process agreed that 6 of the 11 most
difficult topics in a typical discrete mathematics course are
related to proofs and logic [9].

There are many aspects of writing mathematical proofs that
are difficult. Many students fail to produce the basic building
blocks that proofs have, such as properly declaring variables
or referencing theorems [23]. Students get stuck working
through the details of algebraic manipulations. They have a
tendency to commit certain logical fallacies such as confusing
a proposition with its converse [23, 27]. Studies have shown
that even when students have all the prerequisite content
knowledge to write a mathematical proof, they still struggle
to construct one [32]. Thus, there is a gap that needs to be
filled between students having the content knowledge to write
a proof and the aptitude to actually construct one.

Vygotsky’s theory of psychological development posits that
between the tasks which a person can and cannot do, there
is a so-called zone of proximal development: a set of tasks
which a person cannot perform unaided, but which they can
perform when given help and support, called scaffolding [31,
36]. Computer science instructors and researchers have used
various approaches to scaffolding students learning to write
code for the first time. Block based programming languages
such as Scratch and Blockly [8, 15] scaffold students by
providing them with building blocks from which to assemble
their programs and guarding against the struggles of syntax
errors. Research has shown that using block based languages
can accelerate the student learning process when first learning
to program [34]. Parson’s problems are a kind of homework and
exam question where students are asked to assemble prewritten
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lines of code into a correct program [17]. Researchers have
shown Parson’s problems to be useful both as test questions
[4] and as a learning tool for helping to accelerate the learning
process for beginners learning to write code [7].

Following from the success of Parson’s problem and similar
approaches to teach programming, we propose Proof Blocks.
Proof Blocks allows students to construct mathematical
proofs by dragging and dropping prewritten proof lines into
the correct order, rather than having to write the entire proof
from scratch. Figure 1 shows an example of a Proof Blocks
problem. Proof Blocks provides a scaffolded environment,
enabling students to construct mathematical proofs without
needing to worry about coming up with all of the details on
their own. A Proof Blocks problem may also contain distractor
lines which are not a part of any correct solution. The design
of the Proof Blocks grader [20] is flexible in allowing any
correct arrangement of the lines of the proof. This is enabled
by the instructor specifying which lines of the proof depend
on which other lines (the full dependence graph of the lines of
the proofin Figure 1 can be seen in Figure 2). Students who fail
to construct a correct proof on their first try can then receive
automated feedback from the computer, as shown in Figure 3,
before being given additional attempts at the discretion of the
instructor.

Proof Blocks problems are also very promising for saving
time for both students and course staff. Many computer
science departments are experiencing a huge increase in
enrollments. This increase in enrollments means course staft
lose more time to grading, making it more difficult for them to
spend the time they need helping students individually. Proof
Blocks helps to alleviate this strain by providing a way to test
some of students’ proof skills in a way that can be automated,
saving grading time and allowing course staff more time for
other activities that help students such as office hours and
review sessions.

The ability to receive automated feedback is also a boon to
students. Due to staff time constraints, students in a discrete
mathematics course may not be able to receive feedback on
the correctness of proofs they write until long after they have
completed them. Proof Blocks also helps with this, as it allows
students to receive feedback instantly, just as they receive
instant feedback from the compiler and from automated
testing suites as they write code.

In using a new kind of test question with our students, we
wanted to ensure that we were testing students on the correct
set of skills and that we were providing them with a fair and
equitable learning experience.

In this paper, we seek to answer the following three re-
search questions:

RQ1: What statistical information about student knowledge
do Proof Blocks problems provide relative to other
course content?

RQ2: What is the relationship between the knowledge
required to complete Proof Blocks problems and other
types of problems in a discrete mathematics course?
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RQ3: What are students’ perceptions about the fairness,
usability, and authenticity of being assessed by using
Proof Blocks problems?

Rational Numbers 2

Recall that a real number 7 is rational if there are integers a, b such thatb # O and r = % Drag and drop a
subset of the blocks below to create a proof of the following statement. Note, not all blocks maybe needed in
the proof.

For any real number r # 0, if r is rational then ‘7 + 2is also rational

Drag from here:

[SInce a, bare integers, 2a + bis an integer.

ISincer #0,a#0.

a 1 i ;

@ Ir + 2 is not rational.
Cremioo-=

@ [2a+b2a
[L+2>2

[2(1 + b and a have no common factors.

©

Ia is odd while 2a + b is even.

Construct your solution here:

lLet T be an arbitrary rational number. l

[Let a,bbe integers such thatb # O and 7 = 4. J

oo

[% + 2 s rational. ]

Figure 1: An example of the Proof Blocks user interface used by students.
Individual lines of the proof start out shuffled in the light-blue starting
zone, and students attempt to drag and drop them into the correct order
in the yellow target zone. The instructor wrote the problem with 1, 2,

3, 4,5, 6 as the intended solution, but the Proof Blocks autograder will
also accept any other correct solution as determined by the dependency
graph shown Figure 2. For example, both 1,2, 5, 4, 3,6 and 1,2, 4,5, 3,6
would also be accepted as correct solutions.

O,

Figure 2: The dependency graph of the statements in the proof shown

in Figure 1. The Proof Blocks grader will accept any topological sort of

this directed acyclic graph as a correct solution. For more details of the
implementation of the Proof Blocks grader, see [20].
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Your answer:

1. Let r be an arbitrary rational number.
2. Leta, bbeintegers such thatb # O and r = ..
3 % + 2 is rational.

e This line is not a part of the correct solution

Your Proof is incorrect starting at line number 3. The problem is most likely one of the following:

o This line is not adequately supported by previous lines of the proof
¢ You have attempted to start a new case without finishing the proof of a previously stated case

()5

Figure 3: Example of feedback given to students working on Proof Blocks problems. To avoid giving
students so much information that we are not actually testing their knowledge, they are only told at
which line their proof fails, not the reason why or what the solution is. One area of future research is to
investigate what kind of feedback is best for students to receive when using Proof Blocks as a tool for

learning to write proofs.

2.0 RELATED WORK

Anecdotally, we have heard of instructors using scrambled proofs
to assess student knowledge both in Euclidean geometry and in
higher-level mathematics. In theory, instructors may have offered
such questions on paper even before the advent of computers,
though we can find no explicit record of this. Additionally, to our
knowledge there has been no research into the merits of these
questions either for learning or for assessment.

We will give a brief overview of related work including Par-
son’s problems, research on teaching and learning proofs, and
software tools for constructing mathematical proofs in an edu-
cational context.

2.1 PARSON’S PROBLEMS

The use of scrambled code problems was first documented by
Parsons [17]. They have since been studied for their desirable
properties both in assessment and learning [4, 5, 7]. The desir-
able properties of Parson’s problems were a major inspiration
for the creation of Proof Blocks.

Denny et al. [4] showed that Parson’s problems are easier to
grade than free-form code writing questions, and yet still offer
rich information about student knowledge. We will show the
same to be true with Proof Blocks problems in relation to free-
form proof writing questions. Ericson et al. [7] showed that stu-
dents learning to write code using Parson’s problems learn at
an accelerated rate in the early stages of learning compared to
students being taught to fix code or write code from scratch.

2.2 RESEARCH ON TEACHING AND LEARNING PROOFS
There are many threads of research in seeking to illuminate
students’ understandings and misunderstandings about proofs
[24, 26, 27]. One thread establishes that, as they learn, students
go through different phases in the complexity of ways they are
able to think about solving proof problems [33]. Another study
demonstrated that even when students had all of the knowledge
required to write a proof and were able to apply that knowl-

edge in other types of questions, they were still unable to write
a proof [32], thus highlighting the need to scaffold students
through the proof-writing process.

On the other hand, there is little research on concrete edu-
cational interventions for improving the proof learning process
[11, 27]. Indeed, a recent review of the literature on teaching
and learning proofs concluded: “more intervention-oriented
studies in the area of proof are sorely needed” [27]. Hodds et al.
[11] showed that training students to engage more with proofs
through self-explanation increased student comprehension of
proofs in a lasting way. Proof Blocks problems similarly force
deliberate engagement with proof content, as close reading is
necessary to determine the correct arrangement of lines. Proof
Blocks also shows promise as a tool that can provide scaffolding
that students are so in need of when learning to write proofs.

2.3 EDUCATIONAL THEOREM PROVING SOFTWARE

A few other software tools have been created to enable students
to create proofs in the computer in such a way that they can
receive automated feedback. Some use text-based representa-
tions, while others use visual representations of proofs.

Polymorphic Blocks [13] is a novel user interface which
presents propositions as colorful blocks with uniquely shaped
connectors as a signifier of which types of propositions can be
connected in a proof. While the user interface has been shown
to engage students in learning proofs, it supports only proposi-
tional logic. The Incredible Proof Machine [3] guides students
through constructing proofs as graphs. As with Polymorphic
Blocks, the user interface is engaging, but the formality of the
system limits the topics which can be effectively covered.

Jape [2] is a “Proof calculator; which guides students through
the process of constructing formal proofs in mathematical nota-
tion with the help of the computer. While Jape can allow students
to construct proofs in arbitrary logics, it requires the instruc-
tor to implement these logics in its own custom programming
language before students can use them to construct proofs.
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MathsTiles [1] is a block-based programming interface for
constructing proofs for the Isabelle/HOL proof assistant. In
theory, having an open-ended environment where students
could construct arbitrarily complex proofs seems like it could be
a huge advantage. However, in user studies, the authors found
that students only had a chance at being successful while using
MathsTiles if they were provided a small instructor-procured subset
of blocks, namely, those needed to complete the problem at hand.

Ensley and Winston offer some scrambled proofs in a JavaS-
cript applet as supplementary material to their discrete mathe-
matics textbook [6]. However, their tools are restricted in only
supporting grading by simple ordering, greatly restricting the
types of proofs that students can construct using the tool. The
directed acyclic graph-based grading that the Proof Blocks au-
tograder uses enables assessing proofs which are more complex
and use a greater variety of writing styles.

Most of these tools cover only small subset of the material
typically covered in a discrete mathematics course, and those
that are more flexible require learning complex theorem prover
languages. In contrast, Proof Blocks enables instructors to eas-
ily provide students with proof questions on any topic. To our
knowledge, no research has been published on using any of the
above tools as part of student assessments.

3.0 COURSE CONTEXT

We evaluated Proof Blocks problems by using them for exams
in a discrete mathematics course at the University of Illinois at
Urbana-Champaign. At the University of Illinois, the discrete
mathematics course in the computer science department is
taught every semester (including during the summer) and is
taken by hundreds of students each semester, across multiple
sections. Most students are freshmen and take the course as
part of their computer science major, computer science minor,
or computer engineering major. The listed prerequisites for the
course are introductory programming and introductory calcu-
lus. The course is designed to prepare students for the theory
track in the computer science department and usually covers
logic, proofs, functions, cardinality, graphs and trees, induction,
recursion, number theory, probability, basic algorithm analy-
sis, and sometimes additional topics as time permits. Though
taught in the computer science department, it is solely a theory
class, with no programming assignments.

In Fall 2020, the course was taught completely online due to
the COVID-19 pandemic. The course was split into 3 sections,
each with a unique instructor, with a total of 404 students. Each
week’s content consisted of a video lecture and small group as-
signments completed over video conferencing with teaching
assistant guidance and support. Students were then assigned
homework to provide additional practice with the material. At
the beginning of each week, students took a short exam on the
material covered the previous week. Some weeks, the students
were also given a practice exam to assist in studying. If a stu-
dent had to miss an exam for some reason, they were allowed
to make up the exam the following week.
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In lieu of a final exam, students were given the opportunity
to retake any three of the exams. A full listing of the topics on
each exam, as well as the number of each type of question on
each exam, can be seen in Table 1. While the distribution of
question types among tests may not be ideal for measuring the
qualities of types of questions, it gives the study a large degree
of ecological validity. That is, in the discrete mathematics class
examined in this study, Proof Blocks problems were not used at
an artificially inflated rate, but rather were used as one would
want to use any type of test question—intermixed with other
types of test questions, at times when they were appropriate.

Table 1: The breakdown of question types on each exam. Proof Blocks
problems were used on exams throughout the semester as and when
the instructors felt that they would be useful. They were not used at an
artificially inflated rate for the purposes of this study.

Exam Proof

Number Topics Proof Blocks Other
1 Logic and Proofs 1 2 3
2 Sets, functions, and Relations 2 7
3 Cardinality 1 2 3
4 Directed Graphs 1 1 4
5 Undirected Graphs and Trees 1 1 4
6 Induction 2 3
7 Recur;ive sets and Structural 1 5
Induction
Number Theory 1 1 4
Probability and Counting

10 Series Sums and Solving 5
Recurrences

n Algorithm Analysis and Big O 2 4

Students took their exams using PrairieLearn, an open-
source online homework and exam platform [35]. Especially
for a course of this size, Proof Blocks’ fully automated grading
was a big advantage in saving course staff time which could
be reallocated in other ways. In total, students were given 9
Proof Blocks problems on exams and 3 on practice exams.
Students received immediate correctness feedback on each
Proof Blocks problem on their exams and were given up to 4
or 5 attempts at each question, with a decreasing number of
points awarded depending on the number of attempts used.
Students were typically given 3 attempts for multiple choice
questions, and 4 or 5 attempts for fill-in-the-blank compu-
tation questions, also with a decreasing number of points
awarded depending on which attempt they successfully an-
swered correctly. In all cases, the students were only award-
ed full points if they completed the question correctly on the
first attempt. Students wrote free response proof questions in
text entry box which supported markdown and LaTeX, but
were told that using plain text (for example, spelling out “and”
instead of using A and spelling out “intersection” instead of
using N) was acceptable as we did not expect them to learn
LaTeX for the course.



In order to combat student cheating efforts, almost all ques-
tions had multiple variants. Many questions had three or four
static variants, one for each of the three course sections on the
primary test day, and the fourth being used the following week
for the make up exams. Other questions had variants generated
uniquely for each student based on a random number gener-
ator. Questions randomized values such as elements of a set,
edges in a graph, and other question properties which could be
easily randomized and then computer graded.

All multiple choice, fill in the blank computation, and Proof
Blocks problems were automatically graded by PrairieLearn as
soon as the student completed them, and they were immedi-
ately shown their grade on these questions. An overview of the
workings of the Proof Blocks autograder can be seen in [20].
Written proof questions were then hand graded by one of the
course’s 8 teaching assistants, based on rubrics created collab-
oratively between the instructors and teaching assistants. The
rubrics were different for each exam, but generally students
were awarded points for following the correct proof structure,
properly declaring variables, knowing and correctly applying
definitions, and logical flow from one step to another. Points
were not awarded for style. The first author of this paper was
a teaching assistant for the course, and the second was one of
three faculty instructors for the course, with the other authors
having no affiliation with the course.

4.0 DATAHANDLING

All submissions to exam questions were automatically saved to
a database by PrairieLearn. With approval from our university’s
Institutional Review Board, the course data was accessed by an
instructional technology specialist employed by the engineer-
ing college, and then fully anonymized before being delivered
to the research team for analysis. All research team members
handling the data were trained in proper student privacy and
human subjects research protocols.

4.1 DATA PREPARATION

For our analysis, we treat all variants of a question as the same
question. Though there are small differences in difficulty be-
tween question variants, we concluded that these small differ-
ences were not relevant to the research questions we are ad-
dressing with this study.

Because the final exam involved retaking exams which may
have contained questions overlapping with questions that students
had already seen, and we are focusing only on students’ first
interactions with a given question, we exclude the final exam from
our analysis, focusing only on the 11 exams given to the students
throughout the semester. Two questions on Exam 2 had user
interface bugs in them, causing the course staff to award everyone
in the course full points on those questions for fairness, so they
were also excluded from the analysis. The Proof Blocks question
given on Exam 8 was nearly identical to a question given on a
practice exam, so we omit it from the analysis to avoid the analysis
being skewed due to students knowing the answer in advance.

With the anonymity restrictions placed by our Institutional
Review Board, we are unable to know which students in our
data set formally dropped the course before the end, so for our
analysis we only kept students who attempted at least 10 of
the 11 exams (325 of 404 students). In some cases, different
questions were used between primary exams and make up
exams, so we do not have a response from every student for
every question, even for students who took every exam. Our
final data set consisted of 325 students over 62 questions. A
complete data set would have been 20,150 answers, but we
had 569 missing data points, giving us a total of 19,581 student
answers.

To keep all questions on the same scale, remove effects
of un-validated grading rubrics, and to remove the effects of
guessing on additional submissions after feedback, we re-grad-
ed all questions on a dichotomous scale (1 for fully correct, 0
for not fully correct) and graded only the first submission. This
decision aligns our data more closely with the two-parameter
logistic model of item response theory (See Section 5.1).

5.0 METHODS

We use the two-parameter logistic model (2PL) from item re-
sponse theory [14] to answer RQ1 and correlation analysis to
answer RQ2. To answer RQ3, we administered a survey.

5.1 PSYCHOMETRICS

To answer RQ1, we want to understand what level of student
knowledge Proof Blocks questions assess, and how accurately
it assesses that knowledge. 2PL has been used widely in
psychometrics and has been used within computer science
education mostly for validation of concept inventories [10, 18,
19, 37]. 2PL is a good fit for our needs because it provides a
way to model the probability of each student answering each
question correctly as a function of a question’s difficulty and
discrimination.

The difficulty is how hard it is to answer a question correct-
ly, and the discrimination is how well a question differentiates
between students of lower and higher ability levels. In the case
of difficulty, we want to explore whether Proof Blocks problems
have lower difficulty than written proofs, giving evidence that
they may provide scaffolding. For discrimination, higher is al-
ways better in the sense that if a question’s discrimination is
higher, it will provide more information about student knowl-
edge. We would like to explore if Proof Blocks problems have
comparable discrimination to written proof problems.

We used the R programming language and the package Itm
to clean the data and fit item response theory models [21, 22].
In 2PL, we assume that the probability of student n correctly
responding to item i can be modeled as a function of the
student’s ability, 6,, the discrimination of the item, 4;, and the
difficulty of the item, b;, as follows:

1
pi (en) =

1 + e-aOn—bp’
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The distribution of student ability parameters 6, is normal-
ized to a mean of 0 and standard deviation of 1. In this case,
because the students were learning across the course of the se-
mester in between these test questions, the difficulty measure-
ment of the questions is relative to the student knowledge at the
time they took that particular exam, rather than absolute.

After fitting the 2PL model, we test two null hypotheses:

1. The distribution of difficulties of Proof Blocks problems

is the same as for written proof problems. (We desire for

Proof Blocks to be easier.)

2. The distribution of discriminations of Proof Blocks
problems is the same as for written proof problems. (We
desire for Proof Blocks to be comparably discriminatory.)

After using a Shapiro-Wilk test to confirm the normality of
these distributions, we use a t-test to test the hypotheses.

In order to fit the dichotomous response requirement of 2PL,
we converted all problems to binary responses: 1 for full points
and 0 for anything less than full points (See Section 4.1). To en-
sure robustness of our results, we also fit our data to a graded
response model, a type of polytomous item response theory
model that accounts for assignment of partial credit. This model
supported our conclusions just as well as the 2PL model, so we
present the simpler model for ease of presentation. As a further
robustness check, we also used a standard classical test theory
model, which again supported the same conclusions.

5.1.1 Item Response Functions. Inserting the difficulty and
discrimination parameters for each test item into Equation 1
gives the item response functions, which help us visualize the dif-
ficulty and discrimination of test items, and the probability that a
student with a given ability level will answer the question correct-
ly. The difficulty of the item determines the ability level at which
a student will have a 50% probability of getting the question cor-
rect. For example, in Figure 4 the solid line describes an item
with difficulty 0, meaning that if we choose a random student
with mean ability level, there is a 50% chance that student would

have answered that item correctly. The dotted item is an easier
item with a difficulty of -0.5, meaning that students who are half
a standard deviation below the mean in ability level answer that
item correctly at a rate of 50%, and students with mean ability
level answer that item correctly at a rate greater than 50%. A good
assessment will have questions with a variety of difficulty levels to
assess student knowledge at all relevant levels of ability.

The discrimination of an item manifests in the item response
function as the slope, with a higher positive discrimination lead-
ing to a more strongly positive slope. For example, the dashed
line in Figure 4 denotes an item that has the same difficulty as
the solid-line item, but with a higher discrimination, so that the
probability that a student gets the questions correct rises more
quickly for students above mean-ability level, and decreases
more quickly for students below mean-ability level. Questions
with high discrimination allow assessments to measure student
knowledge with high accuracy and less error, so it is always de-
sirable for items to have high discrimination.

5.1.2 Item Information Functions. The item information
function for an item is the derivative of the item response func-
tion for that item. It shows how much information that item
gives about students taking the test at each level of ability. Figure
4 shows example item information curves for the same items as
it shows item response functions. The solid item collects more
information about higher performing students than the dotted
item, due to having higher difficulty. The high discrimination
of the dashed item allows it to provide much more information
across a range of ability levels than either of the other two items.

Summing together multiple item information functions
gives the combined information that can be gained about a giv-
en student from a set of items. To better understand the quality
of information that Proof Blocks problems provide about stu-
dents in a discrete mathematics course, we calculate the average
item information curve for each category by summing the in-
formation curves for all the items in each category (i.e., Proofs,
Proof Blocks, Other), and then dividing by the total number

Example two-parameter item-response functions
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Example Item Information Curves
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Figure 4: Left: Three example item response functions with varying discrimination (ai) and difficulty (bi). Right: Item information curves for the same

example items.
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of items in that category. We compare the average amount of
information each problem category provides to further explore
the relative utility of Proof Blocks problems.

5.2 CORRELATION
In order to examine the overlap between the skills needed for
different question types (RQ2), we calculated the correlation
between students’ average scores in each question category. By
design, Proof Blocks problems are scaffolded proof problems, and
so we expect that only some of the skills required to solve proof
problems are also required to solve Proof Blocks problems. Thus,
we expect to find a correlation between students’ scores across
these question types, but not a correlation so strong that it would
imply the questions are assessing the exact same knowledge. This
shows one of the limitations of our study: based on our current
data, we can take a broad look at the closeness of the association
between Proof Blocks problems and proof problems, but without
further data we are not yet able to comment on which exact skills
are required to answer one type of question but are not for the other.
After using a Shapiro-Wilk test and finding that the data
were non-normal, we used the Spearman correlation to cal-
culate the correlation between students’ scores in the different
question categories.

5.3 SURVEY
We used an anonymous survey to help us answer RQ3: What are
students’ perceptions about the fairness, usability, and authenticity
of being assessed using Proof Blocks problems? We asked these
questions because we wanted to create a scaffolded learning tool
that students would readily engage with during their learning
process. We asked about fairness and usability, because a negative
response to these issues would reveal student affect which may
cause students to disengage from Proof Blocks problems. Likewise,
when students feel that scaffolded learning environments are
inauthentic, as some students feel about block-based programming
languages [34], they may disengage. We asked the students Likert
scale questions with 5 possible responses: strongly disagree,
somewhat disagree, neutral, somewhat agree, and strongly agree.
Out of the 325 students included in the psychometric analysis,
only 51 responded to the survey (15.7%).
To evaluate student’s perceptions of authenticity, we had
students rate their agreement to the following:
1. Proof Blocks accurately represent my understanding of how
to write proofs.
2. Written proofs accurately represent my understanding of
how to write proofs.

We converted these items to numeric scales of 1-5 so that
we could use statistical tests to help us answer RQ3. We used
a Mann-Whitney U test to determine if students’ responses to
these two questions were significantly different, with the null
hypothesis that students have the same perception of how well
Proof Blocks problems and written proofs represent their un-
derstanding of how to write proofs. To evaluate students’ per-
ceptions of fairness, we had them rate their agreement to:

1. The assignment of partial credit for Proof Blocks was fair.
2. The assignment of partial credit for written proofs was fair.

Again, we used a Mann-Whitney U test to determine if stu-
dents’ responses to these two questions were significantly dif-
ferent, this time with the null hypothesis that students believed
that the assignment of partial credit was equally fair for Proof
Blocks problems and written proofs. To understand students’
perceptions of the usability of Proof Blocks, we had them rate
their agreement to:

1. The Proof Blocks user interface was easy to use.

We do not apply any statistical tests for this construct be-
cause the user interface for Proof Blocks is incommensurate
with the interface for writing proofs.

Finally, to see if student’s perceptions of Proof Blocks’ diffi-
culty aligned with the empirical evidence about question diffi-
culty, we had students to rate their agreement to:

1. Proof Blocks problems are easier than written proofs.

Again, there were no statistical test for this item, but we felt
it would be desirable to know if the students’ perception of the
difficulty of Proof Blocks questions aligned with the empirical
evidence.

We also asked three optional open ended questions, mainly
with the goal of giving students the opportunity to voice any
major concerns they may have had with Proof Blocks:

1. How do you think we could improve Proof Blocks

Questions?

2. Given more practice problems, what do you think Proof

Blocks would help you learn?

3. Do you have any other feedback about Proof Blocks?

No major concerns were raised. While we did not have
enough responses to the open ended questions to do a qualita-
tive analysis, we will use some of them to help us interpret the
results of the quantitative survey questions.

6.0 RESULTS AND DISCUSSION

6.1 PSYCHOMETRICS

6.1.1 Results. We will now examine the fit of the 2PL model to
answer RQ1. The full model fit of the 2PL is shown in Table
2, with the test questions divided by category. It is important
to recall that in this case, because the students were learning
across the course of the semester in between these test ques-
tions, the difficulty measurement of the questions is relative
to the student knowledge at the time they took that particular
exam, rather than absolute.

Figure 5isabox and whisker plot that compares the difficulty
of the different types of questions. We first used a Shapiro-Wilk
normality test to show that the distributions of difficulty of
proof problems (W= 0.92, p = 0.39) and Proof Blocks problems
(W =099, p = 099) are both close enough to normal
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Table 2: Difficulty (Diff.) and Discrimination (Disc.) parameters for all items in the 2PL model fit. Topic names have
been shortened to save space. For the full names, refer to Table 1.

Question Question

Proof 1 Logic and Proofs -0.54 | 1.04 2 Sets, functions -0.28 1.68
3 Sets, functions 0.55 0.84 4 Cardinality 1.66 0.67
5 Directed graphs 0.24 0.93 6 Undirected Graphs | 2.41 0.64

7 Induction 0.75 119 8 Induction 0.87 118

9 Recursive sets 0.54 1.45 10 Number Theory 0.27 1.20
ProofBlocks n Logic and Proofs -118 0.80 12 Logic and Proofs -0.99 116
13 Cardinality -0.52 | 138 14 Cardinality -0.28 | 126
15 Directed graphs -0.34 | 0.49 16 Undirected Graphs | 0.38 0.90
17 Algorithm analysis | -1.76 0.57 18 Algorithm analysis | -0.71 1.04
Other 19 Logic and Proofs -2.54 0.91 20 Logic and Proofs -497 | 0.39
21 Logic and Proofs -3.32 0.73 22 Sets, functions 0.02 0.64
23 Sets, functions -6.75 | 0.37 24 Sets, functions -2.06 | 0.83

25 Cardinality -2.85 1.06 26 Cardinality -3.77 0.61
27 Cardinality -1.79 0.66 28 Directed graphs -0.01 0.58
29 Directed graphs -2.33 | 0.45 30 Directed graphs 0.54 0.78
31 Directed graphs -1.97 0.99 32 Undirected Graphs | -0.45 | 0.64
33 Undirected Graphs | -0.35 | 0.44 34 Undirected Graphs | -1.72 0.88

35 Undirected Graphs | 0.25 0.27 36 Induction -1.44 1.37

37 Induction -0.29 | 1.69 38 Induction -1.06 129

39 Recursive sets -0.12 0.87 40 Recursive sets -1.42 0.91

41 Recursive sets -2.48 114 42 Recursive sets -2.33 1.58
43 Recursive sets -2.22 | 0.90 44 Number Theory -2.03 | 0.88

45 Number Theory -1.91 0.92 46 Number Theory -1.20 1.01
47 Number Theory -1.31 1.10 48 Probability -1.31 0.93

49 Probability -0.70 111 50 Probability 1.95 111
51 Probability -129 | 0.95 52 Probability -0.72 | 0.96

53 Probability -0.02 1.24 54 Series sums 0.22 1.47
55 Series sums 0.46 1.49 56 Series sums -0.18 0.82

57 Series sums 0.38 1.84 58 Series sums 0.16 1.00
59 Algorithm analysis | -1.39 1.03 60 Algorithm analysis | -4.12 0.43
61 Algorithm analysis | 0.42 0.87 62 Algorithm analysis | -0.06 | 0.79

distributions to justify using a standard t-test. The t-test
shows that proof questions are significantly more difficult
than Proof Blocks problems (p = 0.003). Proof questions had
a mean difficulty of 0.64 (95% CI [0.025, 1.27]), meaning that
students who had an ability level of 0.64 standard deviations
above the mean had a 50% chance of receiving full credit on
a proof problem, with students at mean ability level having a
lower chance of receiving full credit. Proof Blocks problems
had a mean difficulty of -0.68 (95% CI [-1.22, -0.134]), meaning
that students with ability level 0.68 standard deviations below
the mean had a 50% chance of receiving full credit on a Proof
Blocks problem, on average.

A Shapiro-Wilk normality test showed that the distribution
of discrimination parameters was also normal for both writ-
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ten proofs (W = 0.96, p = 0.77) and Proof Blocks questions
(W =0.96, p = 0.80). A t-test shows that the two distributions
are indistinguishable (p = 0.40), so we do not reject the null
hypothesis that written proofs and Proof Blocks problems mea-
sure knowledge with the same discrimination. The mean of the
discriminations is 1.08 (95% CI [0.84, 1.32]) for written proofs,
and 0.95 (95% CI [0.68, 1.21]) for Proof Blocks problems.

Figure 6 shows the relative information given by the types
of questions, normalized by the number of questions in each
category. In the information curves, the height and area under
the curve are influenced by the discrimination of the questions
(with more area meaning more information about student
knowledge and a more accurate measurement), and the loca-
tion of the peak of the curve shows the difficulty.



6.1.2 Discussion. The statistical evidence is clear: Proof
Blocks problems were easier than proof problems, and on aver-
age, Proof Blocks problems provided a similar amount of infor-
mation about student knowledge as did written proof questions.
This makes Proof Blocks problems ideal test questions: they are
straightforward to write, give substantial information about stu-
dent knowledge, and can be graded fully automatically.
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Figure 5: : Box and whisker plot showing the relative difficulty of Proof,
Proof Blocks, and Other questions. There is a clear separation between
the difficulty level of proof problems and Proof Blocks problems, with
Proof Blocks problems being slightly easier (o = 0.003).
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Figure 6: Information given by each type of test question, normalized by
number of questions of that type. This plot can be viewed as a summary
of the psychometric results: the large amount of area under the curve for
both Proof Blocks problems and written proofs showed that they give a
substantial amount of information about student knowledge, while the
location of the peaks shows that Proof Blocks problems are easier than
written proofs.

6.2 CORRELATIONS WITH OTHER QUESTIONS

6.2.1 Results. Table 3 gives the correlations between students’
performance on different types of exam questions. All ques-
tions types were highly correlated.

Table 3: Correlations between question types. Student grades are highly
correlated between all types of questions given to students on their
exams. Each of the correlations is significant at p < 0.001.

Correlation Low. 95% C.I. Up.95% C.l.
Proof-Proof Blocks 0.65 0.58 0.71
Proof Blocks-Other 0.75 0.68 0.80
Proof-Other 0.72 0.65 0.77

6.2.2 Discussion. The high correlation between all types
suggests that the types of skills assessed by the different types
of questions are not dissimilar. By engaging students with Proof
Blocks problems, which require similar skills to written proofs,
but are easier, we hope to bridge the gap from students having
the content knowledge required to understand proofs, to actu-
ally being able to write proofs.

6.3SURVEY

6.3.1 Results. Only 51 of the 325 students included in the psy-
chometric analysis responded to the survey (15.7%). The results
of the Likert scale survey questions are show in Figure 7.

A Mann-Whitney U test fails to show significant difference
(p =087, W = 1058) between student agreement with to the
statement “Proof Blocks accurately represent my understanding
of how to write proofs” (mean = 3.67) and the statement “Written
proofs accurately represent my understanding of how to write
proofs” (mean = 3.98). As with all hypothesis tests, this could
mean either that there is no difference, or that the effect size was
small enough that our sample wasn't large enough to detect it.

A Mann-Whitney U test also shows no significant difference
(p =0.75, W= 1255) between student agreement with the state-
ment “The assignment of partial credit for Proof Blocks was
fair” (mean = 3.64) and student agreement with the statement
“The assignment of partial credit for written proofs was fair”
(mean = 3.75). No students disagreed that the user interface
was easy to use.

6.3.2 Discussion. We find it very encouraging that 71% of
respondents agreed that Proof Blocks problems did accurately
represent their ability to write proofs, giving support to the au-
thenticity of Proof Blocks—nearly as many as the 75% who be-
lieved that written proofs problems accurately represented their
ability. It is difficult to have a scaffolded activity feel as authen-
tic as the real thing. For example, some students have concerns
over the authenticity of writing code using block based languag-
es [34]. We also find it encouraging that students felt that the
assignment of partial credit for Proof Blocks problems was just
as fair as the partial credit assignment for written proofs.

Some students gave answers to the free response questions
that helped give more meaning to the quantitative survey
results. One student elaborated on the benefits of the scaffolding
provided by Proof Blocks:
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Proof Blocks accurately represent my 18%
understanding of how to write proofs. °

Written proofs accurately represent my 129
understanding of how to write proofs. 2

The assignment of partial credit for Proof Blocks 24%
was fair. °

The assignment of partial credit for written 209,

proofs was fair.
Proof Blocks problems are easier than written 10%
proofs.
The Proof Blocks user interface was easy to use. 0%
100 50
Response Strongly Disagree

12% 71%

14%

75%

20%

50 10

57%
16% 75%

10% 90%

1
0
Percentage

0

Somewhat Disgree Neutral Somewhat Agree . Strongly Agree

Figure 7: Responses to the Likert scale questions on the survey. Notable highlights of the survey are that no students disagreed
that the user interface was easy to use, 71% felt that Proof Blocks accurately represented their understanding of how to write
proofs (versus 75% for written proofs), and 57% felt that the assignment of partial credit for Proof Blocks problems was fair

(versus 63% for written proofs).

Usually my biggest struggle when it comes to writing
proofs is finding a place to start and using concrete
wording/reasoning to do so. With Proof Blocks, I get
the skeleton and concrete wording given to me so I can
focus on applying theorems and having a coherent train
of thought.

Another student gave more insight into why they felt that
Proof Blocks were easier than written proofs, a sentiment that
most students seemed to share based on the Likert scale data:

I think they’re much easier than written proofs because
of how much information the problem gives. There were
a lot of proof block questions that I would have no clue
how to do as a written proof but I got full credit on them
through simple process of elimination. For example, some
proofs have multiple sets of “consider” where you pick the
function f and corresponding next steps based on which
function was picked. It’s very easy to tell which blocks
go with which “set” of steps go together, which effectively
makes the question multiple choice (with fewer choices)
because the last step of the proof is obvious.

7.0 LIMITATIONS

The primary limitation of our study is the fact that our data set
allows us only to answer certain questions about Proof Blocks
problems and not others. For example, we are able to make a
strong claim that Proof Blocks problems function well as test
questions, assessing student knowledge of discrete mathemat-
ics in an accurate and useful way, but we are not yet able to
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comment on the usefulness of Proof Blocks problems for learn-
ing to write proofs. Since nearly all of the data we collected was
quantitative, we are largely unaware of students thought pro-
cesses and affect as they work through Proof Blocks problems.
Furthermore, as distractors for questions were chosen in an
ad-hoc manner, we are not able to comment on what types of
distractor lines do or don’t work well in Proof Blocks problems,
or what their impact is on learning or assessment. Another lim-
itation is that our survey sample was a small percentage of the
course (15.7%), and because the survey was completely anony-
mous, we have no way of knowing any demographic informa-
tion about those who chose to complete the survey.

The discrete mathematics course was taught by multiple in-
structors, some of whom had reservations about putting un-
proven problem formats onto the exams. Consequently, we
could not include Proof Blocks problems and traditional proofs
on every relevant exam, limiting the types of analyses we could
perform. However, we believe that our study has very high eco-
logical validity—we demonstrated that Proof Blocks problems
are useful in flow of a normal discrete mathematics course,
without special changes being made and without emphasizing
Proof Blocks problems during instruction or assignments.

8.0 ADOPTING PROOF BLOCKS

Documentation, instructions, and more examples for Proof
Blocks and PrairieLearn can be found online in the PrairieLearn
documentation and example courses [28, 29]. PrairieLearn is
integrated with Learning Tools Interoperability [25] to enable
easier sharing of student data across learning platforms. Au-
thors may be contacted with questions.



9.0 CONCLUSION

We have shown that Proof Blocks problems have many proper-
ties that instructors desire when writing tests. First, they have
high discrimination and thus provide a substantial amount of
information about student knowledge—comparable to written
proofs. They are also easier than written proof problems, and
thus may be appropriate for scaffolding students from content
knowledge to writing proofs. Proof Blocks decrease the grading
burden on course staff, allowing more time for office hours and
other activities that help students learn. Furthermore, students
felt that the Proof Blocks interface was easy to use, that the
questions accurately represented their understanding of how to

*,

write proofs—almost as well as actually writing proofs. <
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