
acm Inroads • inroads.acm.org  41

Seth Poulsen, Mahesh Viswanathan, Geoffrey L. Herman, and Matthew West
University of Illinois at Urbana-Champaign

Evaluating Proof
Blocks Problems as
Exam Questions

Proof Blocks is a novel software tool which enables

students to write mathematical proofs by dragging and

dropping prewritten lines into the correct order, rather

than writing a proof completely from scratch. We used

Proof Blocks problems as exam questions for a discrete

mathematics course with hundreds of students, allowing us

to collect thousands of student responses to Proof Blocks

problems. Using this data, we provide statistical evidence

that Proof Blocks are easier than written proofs, which

are typically very difficult. We also show that Proof Blocks

problems provide about as much information about student

knowledge as written proofs. Survey results show that

students believe that the Proof Blocks user interface is easy

to use, and that the questions accurately represent their

ability to write proofs.

1.0 INTRODUCTION

Understanding and writing mathematical proofs is one of the

critical yet difficult skills that students must learn as a part

of the discrete mathematics curriculum. Proofs and proof

techniques are included by the ACM curricular guidelines

as a core knowledge area that should be understood by any

student obtaining a degree in computer engineering, computer

science, or software engineering [12, 16, 30]. A panel of 21

experts using a Delphi process agreed that 6 of the 11 most

difficult topics in a typical discrete mathematics course are

related to proofs and logic [9].

There are many aspects of writing mathematical proofs that

are difficult. Many students fail to produce the basic building

blocks that proofs have, such as properly declaring variables

or referencing theorems [23]. Students get stuck working

through the details of algebraic manipulations. They have a

tendency to commit certain logical fallacies such as confusing

a proposition with its converse [23, 27]. Studies have shown

that even when students have all the prerequisite content

knowledge to write a mathematical proof, they still struggle

to construct one [32]. Thus, there is a gap that needs to be

filled between students having the content knowledge to write

a proof and the aptitude to actually construct one.

Vygotsky’s theory of psychological development posits that

between the tasks which a person can and cannot do, there

is a so-called zone of proximal development: a set of tasks

which a person cannot perform unaided, but which they can

perform when given help and support, called scaffolding [31,

36]. Computer science instructors and researchers have used

various approaches to scaffolding students learning to write

code for the first time. Block based programming languages

such as Scratch and Blockly [8, 15] scaffold students by

providing them with building blocks from which to assemble

their programs and guarding against the struggles of syntax

errors. Research has shown that using block based languages

can accelerate the student learning process when first learning

to program [34]. Parson’s problems are a kind of homework and

exam question where students are asked to assemble prewritten

The original version of this paper was published in the
Proceedings of the 17th ACM Conference on International

Computing Education Research (Aug. 2021), 157-168.

Reprinted with permission.

This work was recognized with an Honorable Mention at ICER ’21.

42  acm Inroads  2022 March • Vol. 13 • No. 1

Evaluating Proof Blocks Problems as Exam Questions

RQ3: What are students’ perceptions about the fairness,

usability, and authenticity of being assessed by using

Proof Blocks problems?

lines of code into a correct program [17]. Researchers have

shown Parson’s problems to be useful both as test questions

[4] and as a learning tool for helping to accelerate the learning

process for beginners learning to write code [7].

Following from the success of Parson’s problem and similar

approaches to teach programming, we propose Proof Blocks.

Proof Blocks allows students to construct mathematical

proofs by dragging and dropping prewritten proof lines into

the correct order, rather than having to write the entire proof

from scratch. Figure 1 shows an example of a Proof Blocks

problem. Proof Blocks provides a scaffolded environment,

enabling students to construct mathematical proofs without

needing to worry about coming up with all of the details on

their own. A Proof Blocks problem may also contain distractor

lines which are not a part of any correct solution. The design

of the Proof Blocks grader [20] is flexible in allowing any

correct arrangement of the lines of the proof. This is enabled

by the instructor specifying which lines of the proof depend

on which other lines (the full dependence graph of the lines of

the proof in Figure 1 can be seen in Figure 2). Students who fail

to construct a correct proof on their first try can then receive

automated feedback from the computer, as shown in Figure 3,

before being given additional attempts at the discretion of the

instructor.

Proof Blocks problems are also very promising for saving

time for both students and course staff. Many computer

science departments are experiencing a huge increase in

enrollments. This increase in enrollments means course staff

lose more time to grading, making it more difficult for them to

spend the time they need helping students individually. Proof

Blocks helps to alleviate this strain by providing a way to test

some of students’ proof skills in a way that can be automated,

saving grading time and allowing course staff more time for

other activities that help students such as office hours and

review sessions.

The ability to receive automated feedback is also a boon to

students. Due to staff time constraints, students in a discrete

mathematics course may not be able to receive feedback on

the correctness of proofs they write until long after they have

completed them. Proof Blocks also helps with this, as it allows

students to receive feedback instantly, just as they receive

instant feedback from the compiler and from automated

testing suites as they write code.

In using a new kind of test question with our students, we

wanted to ensure that we were testing students on the correct

set of skills and that we were providing them with a fair and

equitable learning experience.

In this paper, we seek to answer the following three re-

search questions:

RQ1: What statistical information about student knowledge

do Proof Blocks problems provide relative to other

course content?

RQ2: What is the relationship between the knowledge

required to complete Proof Blocks problems and other

types of problems in a discrete mathematics course?

Figure 1: An example of the Proof Blocks user interface used by students.
Individual lines of the proof start out shuffled in the light-blue starting
zone, and students attempt to drag and drop them into the correct order
in the yellow target zone. The instructor wrote the problem with 1, 2,
3, 4, 5, 6 as the intended solution, but the Proof Blocks autograder will
also accept any other correct solution as determined by the dependency
graph shown Figure 2. For example, both 1, 2, 5, 4, 3, 6 and 1, 2, 4, 5, 3, 6
would also be accepted as correct solutions.

Figure 2: The dependency graph of the statements in the proof shown
in Figure 1. The Proof Blocks grader will accept any topological sort of
this directed acyclic graph as a correct solution. For more details of the
implementation of the Proof Blocks grader, see [20].

acm Inroads • inroads.acm.org  43

edge in other types of questions, they were still unable to write

a proof [32], thus highlighting the need to scaffold students

through the proof-writing process.

On the other hand, there is little research on concrete edu-

cational interventions for improving the proof learning process

[11, 27]. Indeed, a recent review of the literature on teaching

and learning proofs concluded: “more intervention-oriented

studies in the area of proof are sorely needed” [27]. Hodds et al.

[11] showed that training students to engage more with proofs

through self-explanation increased student comprehension of

proofs in a lasting way. Proof Blocks problems similarly force

deliberate engagement with proof content, as close reading is

necessary to determine the correct arrangement of lines. Proof

Blocks also shows promise as a tool that can provide scaffolding

that students are so in need of when learning to write proofs.

2.3 EDUCATIONAL THEOREM PROVING SOFTWARE
A few other software tools have been created to enable students

to create proofs in the computer in such a way that they can

receive automated feedback. Some use text-based representa-

tions, while others use visual representations of proofs.

Polymorphic Blocks [13] is a novel user interface which

presents propositions as colorful blocks with uniquely shaped

connectors as a signifier of which types of propositions can be

connected in a proof. While the user interface has been shown

to engage students in learning proofs, it supports only proposi-

tional logic. The Incredible Proof Machine [3] guides students

through constructing proofs as graphs. As with Polymorphic

Blocks, the user interface is engaging, but the formality of the

system limits the topics which can be effectively covered.

Jape [2] is a “Proof calculator,” which guides students through

the process of constructing formal proofs in mathematical nota-

tion with the help of the computer. While Jape can allow students

to construct proofs in arbitrary logics, it requires the instruc-

tor to implement these logics in its own custom programming

language before students can use them to construct proofs.

2.0 RELATED WORK

Anecdotally, we have heard of instructors using scrambled proofs

to assess student knowledge both in Euclidean geometry and in

higher-level mathematics. In theory, instructors may have offered

such questions on paper even before the advent of computers,

though we can find no explicit record of this. Additionally, to our

knowledge there has been no research into the merits of these

questions either for learning or for assessment.

We will give a brief overview of related work including Par-

son’s problems, research on teaching and learning proofs, and

software tools for constructing mathematical proofs in an edu-

cational context.

2.1 PARSON’S PROBLEMS
The use of scrambled code problems was first documented by

Parsons [17]. They have since been studied for their desirable

properties both in assessment and learning [4, 5, 7]. The desir-

able properties of Parson’s problems were a major inspiration

for the creation of Proof Blocks.

Denny et al. [4] showed that Parson’s problems are easier to

grade than free-form code writing questions, and yet still offer

rich information about student knowledge. We will show the

same to be true with Proof Blocks problems in relation to free-

form proof writing questions. Ericson et al. [7] showed that stu-

dents learning to write code using Parson’s problems learn at

an accelerated rate in the early stages of learning compared to

students being taught to fix code or write code from scratch.

2.2 RESEARCH ON TEACHING AND LEARNING PROOFS
There are many threads of research in seeking to illuminate

students’ understandings and misunderstandings about proofs

[24, 26, 27]. One thread establishes that, as they learn, students

go through different phases in the complexity of ways they are

able to think about solving proof problems [33]. Another study

demonstrated that even when students had all of the knowledge

required to write a proof and were able to apply that knowl-

Figure 3: Example of feedback given to students working on Proof Blocks problems. To avoid giving
students so much information that we are not actually testing their knowledge, they are only told at
which line their proof fails, not the reason why or what the solution is. One area of future research is to
investigate what kind of feedback is best for students to receive when using Proof Blocks as a tool for
learning to write proofs.

44  acm Inroads  2022 March • Vol. 13 • No. 1

Evaluating Proof Blocks Problems as Exam Questions

In lieu of a final exam, students were given the opportunity

to retake any three of the exams. A full listing of the topics on

each exam, as well as the number of each type of question on

each exam, can be seen in Table 1. While the distribution of

question types among tests may not be ideal for measuring the

qualities of types of questions, it gives the study a large degree

of ecological validity. That is, in the discrete mathematics class

examined in this study, Proof Blocks problems were not used at

an artificially inflated rate, but rather were used as one would

want to use any type of test question—intermixed with other

types of test questions, at times when they were appropriate.

Students took their exams using PrairieLearn, an open-

source online homework and exam platform [35]. Especially

for a course of this size, Proof Blocks’ fully automated grading

was a big advantage in saving course staff time which could

be reallocated in other ways. In total, students were given 9

Proof Blocks problems on exams and 3 on practice exams.

Students received immediate correctness feedback on each

Proof Blocks problem on their exams and were given up to 4

or 5 attempts at each question, with a decreasing number of

points awarded depending on the number of attempts used.

Students were typically given 3 attempts for multiple choice

questions, and 4 or 5 attempts for fill-in-the-blank compu-

tation questions, also with a decreasing number of points

awarded depending on which attempt they successfully an-

swered correctly. In all cases, the students were only award-

ed full points if they completed the question correctly on the

first attempt. Students wrote free response proof questions in

text entry box which supported markdown and LaTeX, but

were told that using plain text (for example, spelling out “and”

instead of using ∧ and spelling out “intersection” instead of

using ∩) was acceptable as we did not expect them to learn

LaTeX for the course.

MathsTiles [1] is a block-based programming interface for

constructing proofs for the Isabelle/HOL proof assistant. In

theory, having an open-ended environment where students

could construct arbitrarily complex proofs seems like it could be

a huge advantage. However, in user studies, the authors found

that students only had a chance at being successful while using

MathsTiles if they were provided a small instructor-procured subset

of blocks, namely, those needed to complete the problem at hand.

Ensley and Winston offer some scrambled proofs in a JavaS-

cript applet as supplementary material to their discrete mathe-

matics textbook [6]. However, their tools are restricted in only

supporting grading by simple ordering, greatly restricting the

types of proofs that students can construct using the tool. The

directed acyclic graph-based grading that the Proof Blocks au-

tograder uses enables assessing proofs which are more complex

and use a greater variety of writing styles.

Most of these tools cover only small subset of the material

typically covered in a discrete mathematics course, and those

that are more flexible require learning complex theorem prover

languages. In contrast, Proof Blocks enables instructors to eas-

ily provide students with proof questions on any topic. To our

knowledge, no research has been published on using any of the

above tools as part of student assessments.

3.0 COURSE CONTEXT

We evaluated Proof Blocks problems by using them for exams

in a discrete mathematics course at the University of Illinois at

Urbana-Champaign. At the University of Illinois, the discrete

mathematics course in the computer science department is

taught every semester (including during the summer) and is

taken by hundreds of students each semester, across multiple

sections. Most students are freshmen and take the course as

part of their computer science major, computer science minor,

or computer engineering major. The listed prerequisites for the

course are introductory programming and introductory calcu-

lus. The course is designed to prepare students for the theory

track in the computer science department and usually covers

logic, proofs, functions, cardinality, graphs and trees, induction,

recursion, number theory, probability, basic algorithm analy-

sis, and sometimes additional topics as time permits. Though

taught in the computer science department, it is solely a theory

class, with no programming assignments.

In Fall 2020, the course was taught completely online due to

the COVID-19 pandemic. The course was split into 3 sections,

each with a unique instructor, with a total of 404 students. Each

week’s content consisted of a video lecture and small group as-

signments completed over video conferencing with teaching

assistant guidance and support. Students were then assigned

homework to provide additional practice with the material. At

the beginning of each week, students took a short exam on the

material covered the previous week. Some weeks, the students

were also given a practice exam to assist in studying. If a stu-

dent had to miss an exam for some reason, they were allowed

to make up the exam the following week.

Table 1: The breakdown of question types on each exam. Proof Blocks
problems were used on exams throughout the semester as and when
the instructors felt that they would be useful. They were not used at an
artificially inflated rate for the purposes of this study.

Exam
Number

Topics Proof
Proof
Blocks

Other

1 Logic and Proofs 1 2 3

2 Sets, functions, and Relations 2 7

3 Cardinality 1 2 3

4 Directed Graphs 1 1 4

5 Undirected Graphs and Trees 1 1 4

6 Induction 2 3

7
Recursive sets and Structural
Induction

1 5

8 Number Theory 1 1 4

9 Probability and Counting 6

10
Series Sums and Solving
Recurrences

5

11 Algorithm Analysis and Big O 2 4

acm Inroads • inroads.acm.org  45

With the anonymity restrictions placed by our Institutional

Review Board, we are unable to know which students in our

data set formally dropped the course before the end, so for our

analysis we only kept students who attempted at least 10 of

the 11 exams (325 of 404 students). In some cases, different

questions were used between primary exams and make up

exams, so we do not have a response from every student for

every question, even for students who took every exam. Our

final data set consisted of 325 students over 62 questions. A

complete data set would have been 20,150 answers, but we

had 569 missing data points, giving us a total of 19,581 student

answers.

To keep all questions on the same scale, remove effects

of un-validated grading rubrics, and to remove the effects of

guessing on additional submissions after feedback, we re-grad-

ed all questions on a dichotomous scale (1 for fully correct, 0

for not fully correct) and graded only the first submission. This

decision aligns our data more closely with the two-parameter

logistic model of item response theory (See Section 5.1).

5.0 METHODS

We use the two-parameter logistic model (2PL) from item re-

sponse theory [14] to answer RQ1 and correlation analysis to

answer RQ2. To answer RQ3, we administered a survey.

5.1 PSYCHOMETRICS
To answer RQ1, we want to understand what level of student

knowledge Proof Blocks questions assess, and how accurately

it assesses that knowledge. 2PL has been used widely in

psychometrics and has been used within computer science

education mostly for validation of concept inventories [10, 18,

19, 37]. 2PL is a good fit for our needs because it provides a

way to model the probability of each student answering each

question correctly as a function of a question’s difficulty and

discrimination.

The difficulty is how hard it is to answer a question correct-

ly, and the discrimination is how well a question differentiates

between students of lower and higher ability levels. In the case

of difficulty, we want to explore whether Proof Blocks problems

have lower difficulty than written proofs, giving evidence that

they may provide scaffolding. For discrimination, higher is al-

ways better in the sense that if a question’s discrimination is

higher, it will provide more information about student knowl-

edge. We would like to explore if Proof Blocks problems have

comparable discrimination to written proof problems.

We used the R programming language and the package ltm

to clean the data and fit item response theory models [21, 22].

In 2PL, we assume that the probability of student n correctly

responding to item i can be modeled as a function of the

student’s ability, θn, the discrimination of the item, ai, and the

difficulty of the item, bi, as follows:

In order to combat student cheating efforts, almost all ques-

tions had multiple variants. Many questions had three or four

static variants, one for each of the three course sections on the

primary test day, and the fourth being used the following week

for the make up exams. Other questions had variants generated

uniquely for each student based on a random number gener-

ator. Questions randomized values such as elements of a set,

edges in a graph, and other question properties which could be

easily randomized and then computer graded.

All multiple choice, fill in the blank computation, and Proof

Blocks problems were automatically graded by PrairieLearn as

soon as the student completed them, and they were immedi-

ately shown their grade on these questions. An overview of the

workings of the Proof Blocks autograder can be seen in [20].

Written proof questions were then hand graded by one of the

course’s 8 teaching assistants, based on rubrics created collab-

oratively between the instructors and teaching assistants. The

rubrics were different for each exam, but generally students

were awarded points for following the correct proof structure,

properly declaring variables, knowing and correctly applying

definitions, and logical flow from one step to another. Points

were not awarded for style. The first author of this paper was

a teaching assistant for the course, and the second was one of

three faculty instructors for the course, with the other authors

having no affiliation with the course.

4.0 DATA HANDLING

All submissions to exam questions were automatically saved to

a database by PrairieLearn. With approval from our university’s

Institutional Review Board, the course data was accessed by an

instructional technology specialist employed by the engineer-

ing college, and then fully anonymized before being delivered

to the research team for analysis. All research team members

handling the data were trained in proper student privacy and

human subjects research protocols.

4.1 DATA PREPARATION
For our analysis, we treat all variants of a question as the same

question. Though there are small differences in difficulty be-

tween question variants, we concluded that these small differ-

ences were not relevant to the research questions we are ad-

dressing with this study.

Because the final exam involved retaking exams which may

have contained questions overlapping with questions that students

had already seen, and we are focusing only on students’ first

interactions with a given question, we exclude the final exam from

our analysis, focusing only on the 11 exams given to the students

throughout the semester. Two questions on Exam 2 had user

interface bugs in them, causing the course staff to award everyone

in the course full points on those questions for fairness, so they

were also excluded from the analysis. The Proof Blocks question

given on Exam 8 was nearly identical to a question given on a

practice exam, so we omit it from the analysis to avoid the analysis

being skewed due to students knowing the answer in advance.

46  acm Inroads  2022 March • Vol. 13 • No. 1

Evaluating Proof Blocks Problems as Exam Questions

have answered that item correctly. The dotted item is an easier

item with a difficulty of -0.5, meaning that students who are half

a standard deviation below the mean in ability level answer that

item correctly at a rate of 50%, and students with mean ability

level answer that item correctly at a rate greater than 50%. A good

assessment will have questions with a variety of difficulty levels to

assess student knowledge at all relevant levels of ability.

The discrimination of an item manifests in the item response

function as the slope, with a higher positive discrimination lead-

ing to a more strongly positive slope. For example, the dashed

line in Figure 4 denotes an item that has the same difficulty as

the solid-line item, but with a higher discrimination, so that the

probability that a student gets the questions correct rises more

quickly for students above mean-ability level, and decreases

more quickly for students below mean-ability level. Questions

with high discrimination allow assessments to measure student

knowledge with high accuracy and less error, so it is always de-

sirable for items to have high discrimination.

5.1.2 Item Information Functions. The item information

function for an item is the derivative of the item response func-

tion for that item. It shows how much information that item

gives about students taking the test at each level of ability. Figure

4 shows example item information curves for the same items as

it shows item response functions. The solid item collects more

information about higher performing students than the dotted

item, due to having higher difficulty. The high discrimination

of the dashed item allows it to provide much more information

across a range of ability levels than either of the other two items.

Summing together multiple item information functions

gives the combined information that can be gained about a giv-

en student from a set of items. To better understand the quality

of information that Proof Blocks problems provide about stu-

dents in a discrete mathematics course, we calculate the average

item information curve for each category by summing the in-

formation curves for all the items in each category (i.e., Proofs,

Proof Blocks, Other), and then dividing by the total number

The distribution of student ability parameters θn is normal-

ized to a mean of 0 and standard deviation of 1. In this case,

because the students were learning across the course of the se-

mester in between these test questions, the difficulty measure-

ment of the questions is relative to the student knowledge at the

time they took that particular exam, rather than absolute.

After fitting the 2PL model, we test two null hypotheses:

1. The distribution of difficulties of Proof Blocks problems

is the same as for written proof problems. (We desire for

Proof Blocks to be easier.)

2. The distribution of discriminations of Proof Blocks

problems is the same as for written proof problems. (We

desire for Proof Blocks to be comparably discriminatory.)

After using a Shapiro-Wilk test to confirm the normality of

these distributions, we use a t-test to test the hypotheses.

In order to fit the dichotomous response requirement of 2PL,

we converted all problems to binary responses: 1 for full points

and 0 for anything less than full points (See Section 4.1). To en-

sure robustness of our results, we also fit our data to a graded

response model, a type of polytomous item response theory

model that accounts for assignment of partial credit. This model

supported our conclusions just as well as the 2PL model, so we

present the simpler model for ease of presentation. As a further

robustness check, we also used a standard classical test theory

model, which again supported the same conclusions.

5.1.1 Item Response Functions. Inserting the difficulty and

discrimination parameters for each test item into Equation 1

gives the item response functions, which help us visualize the dif-

ficulty and discrimination of test items, and the probability that a

student with a given ability level will answer the question correct-

ly. The difficulty of the item determines the ability level at which

a student will have a 50% probability of getting the question cor-

rect. For example, in Figure 4 the solid line describes an item

with difficulty 0, meaning that if we choose a random student

with mean ability level, there is a 50% chance that student would

Figure 4: Left: Three example item response functions with varying discrimination (ai) and difficulty (bi). Right: Item information curves for the same
example items.

acm Inroads • inroads.acm.org  47

1. The assignment of partial credit for Proof Blocks was fair.

2. The assignment of partial credit for written proofs was fair.

Again, we used a Mann-Whitney U test to determine if stu-

dents’ responses to these two questions were significantly dif-

ferent, this time with the null hypothesis that students believed

that the assignment of partial credit was equally fair for Proof

Blocks problems and written proofs. To understand students’

perceptions of the usability of Proof Blocks, we had them rate

their agreement to:

1. The Proof Blocks user interface was easy to use.

We do not apply any statistical tests for this construct be-

cause the user interface for Proof Blocks is incommensurate

with the interface for writing proofs.

Finally, to see if student’s perceptions of Proof Blocks’ diffi-

culty aligned with the empirical evidence about question diffi-

culty, we had students to rate their agreement to:

1. Proof Blocks problems are easier than written proofs.

Again, there were no statistical test for this item, but we felt

it would be desirable to know if the students’ perception of the

difficulty of Proof Blocks questions aligned with the empirical

evidence.

We also asked three optional open ended questions, mainly

with the goal of giving students the opportunity to voice any

major concerns they may have had with Proof Blocks:

1. How do you think we could improve Proof Blocks

Questions?

2. Given more practice problems, what do you think Proof

Blocks would help you learn?

3. Do you have any other feedback about Proof Blocks?

No major concerns were raised. While we did not have

enough responses to the open ended questions to do a qualita-

tive analysis, we will use some of them to help us interpret the

results of the quantitative survey questions.

6.0 RESULTS AND DISCUSSION

6.1 PSYCHOMETRICS
6.1.1 Results. We will now examine the fit of the 2PL model to

answer RQ1. The full model fit of the 2PL is shown in Table

2, with the test questions divided by category. It is important

to recall that in this case, because the students were learning

across the course of the semester in between these test ques-

tions, the difficulty measurement of the questions is relative

to the student knowledge at the time they took that particular

exam, rather than absolute.

Figure 5 is a box and whisker plot that compares the difficulty

of the different types of questions. We first used a Shapiro-Wilk

normality test to show that the distributions of difficulty of

proof problems (W = 0.92, p = 0.39) and Proof Blocks problems

(W = 0.99, p = 0.99) are both close enough to normal

of items in that category. We compare the average amount of

information each problem category provides to further explore

the relative utility of Proof Blocks problems.

5.2 CORRELATION
In order to examine the overlap between the skills needed for

different question types (RQ2), we calculated the correlation

between students’ average scores in each question category. By

design, Proof Blocks problems are scaffolded proof problems, and

so we expect that only some of the skills required to solve proof

problems are also required to solve Proof Blocks problems. Thus,

we expect to find a correlation between students’ scores across

these question types, but not a correlation so strong that it would

imply the questions are assessing the exact same knowledge. This

shows one of the limitations of our study: based on our current

data, we can take a broad look at the closeness of the association

between Proof Blocks problems and proof problems, but without

further data we are not yet able to comment on which exact skills

are required to answer one type of question but are not for the other.

After using a Shapiro-Wilk test and finding that the data

were non-normal, we used the Spearman correlation to cal-

culate the correlation between students’ scores in the different

question categories.

5.3 SURVEY
We used an anonymous survey to help us answer RQ3: What are

students’ perceptions about the fairness, usability, and authenticity

of being assessed using Proof Blocks problems? We asked these

questions because we wanted to create a scaffolded learning tool

that students would readily engage with during their learning

process. We asked about fairness and usability, because a negative

response to these issues would reveal student affect which may

cause students to disengage from Proof Blocks problems. Likewise,

when students feel that scaffolded learning environments are

inauthentic, as some students feel about block-based programming

languages [34], they may disengage. We asked the students Likert

scale questions with 5 possible responses: strongly disagree,

somewhat disagree, neutral, somewhat agree, and strongly agree.

Out of the 325 students included in the psychometric analysis,

only 51 responded to the survey (15.7%).

To evaluate student’s perceptions of authenticity, we had

students rate their agreement to the following:

1. Proof Blocks accurately represent my understanding of how

to write proofs.

2. Written proofs accurately represent my understanding of

how to write proofs.

We converted these items to numeric scales of 1-5 so that

we could use statistical tests to help us answer RQ3. We used

a Mann-Whitney U test to determine if students’ responses to

these two questions were significantly different, with the null

hypothesis that students have the same perception of how well

Proof Blocks problems and written proofs represent their un-

derstanding of how to write proofs. To evaluate students’ per-

ceptions of fairness, we had them rate their agreement to:

48  acm Inroads  2022 March • Vol. 13 • No. 1

Evaluating Proof Blocks Problems as Exam Questions

ten proofs (W = 0.96, p = 0.77) and Proof Blocks questions

(W = 0.96, p = 0.80). A t-test shows that the two distributions

are indistinguishable (p = 0.40), so we do not reject the null

hypothesis that written proofs and Proof Blocks problems mea-

sure knowledge with the same discrimination. The mean of the

discriminations is 1.08 (95% CI [0.84, 1.32]) for written proofs,

and 0.95 (95% CI [0.68, 1.21]) for Proof Blocks problems.

Figure 6 shows the relative information given by the types

of questions, normalized by the number of questions in each

category. In the information curves, the height and area under

the curve are influenced by the discrimination of the questions

(with more area meaning more information about student

knowledge and a more accurate measurement), and the loca-

tion of the peak of the curve shows the difficulty.

distributions to justify using a standard t-test. The t-test

shows that proof questions are significantly more difficult

than Proof Blocks problems (p = 0.003). Proof questions had

a mean difficulty of 0.64 (95% CI [0.025, 1.27]), meaning that

students who had an ability level of 0.64 standard deviations

above the mean had a 50% chance of receiving full credit on

a proof problem, with students at mean ability level having a

lower chance of receiving full credit. Proof Blocks problems

had a mean difficulty of -0.68 (95% CI [-1.22, -0.134]), meaning

that students with ability level 0.68 standard deviations below

the mean had a 50% chance of receiving full credit on a Proof

Blocks problem, on average.

A Shapiro-Wilk normality test showed that the distribution

of discrimination parameters was also normal for both writ-

Table 2: Difficulty (Diff.) and Discrimination (Disc.) parameters for all items in the 2PL model fit. Topic names have
been shortened to save space. For the full names, refer to Table 1.

Type Question Topic Diff. Disc. Question Topic Diff. Disc.

Proof 1 Logic and Proofs -0.54 1.04 2 Sets, functions -0.28 1.68

3 Sets, functions 0.55 0.84 4 Cardinality 1.66 0.67

5 Directed graphs 0.24 0.93 6 Undirected Graphs 2.41 0.64

7 Induction 0.75 1.19 8 Induction 0.87 1.18

9 Recursive sets 0.54 1.45 10 Number Theory 0.27 1.20

ProofBlocks 11 Logic and Proofs -1.18 0.80 12 Logic and Proofs -0.99 1.16

13 Cardinality -0.52 1.38 14 Cardinality -0.28 1.26

15 Directed graphs -0.34 0.49 16 Undirected Graphs 0.38 0.90

17 Algorithm analysis -1.76 0.57 18 Algorithm analysis -0.71 1.04

Other 19 Logic and Proofs -2.54 0.91 20 Logic and Proofs -4.97 0.39

21 Logic and Proofs -3.32 0.73 22 Sets, functions 0.02 0.64

23 Sets, functions -6.75 0.37 24 Sets, functions -2.06 0.83

25 Cardinality -2.85 1.06 26 Cardinality -3.77 0.61

27 Cardinality -1.79 0.66 28 Directed graphs -0.01 0.58

29 Directed graphs -2.33 0.45 30 Directed graphs 0.54 0.78

31 Directed graphs -1.97 0.99 32 Undirected Graphs -0.45 0.64

33 Undirected Graphs -0.35 0.44 34 Undirected Graphs -1.72 0.88

35 Undirected Graphs 0.25 0.27 36 Induction -1.44 1.37

37 Induction -0.29 1.69 38 Induction -1.06 1.29

39 Recursive sets -0.12 0.87 40 Recursive sets -1.42 0.91

41 Recursive sets -2.48 1.14 42 Recursive sets -2.33 1.58

43 Recursive sets -2.22 0.90 44 Number Theory -2.03 0.88

45 Number Theory -1.91 0.92 46 Number Theory -1.20 1.01

47 Number Theory -1.31 1.10 48 Probability -1.31 0.93

49 Probability -0.70 1.11 50 Probability 1.95 1.11

51 Probability -1.29 0.95 52 Probability -0.72 0.96

53 Probability -0.02 1.24 54 Series sums 0.22 1.47

55 Series sums 0.46 1.49 56 Series sums -0.18 0.82

57 Series sums 0.38 1.84 58 Series sums 0.16 1.00

59 Algorithm analysis -1.39 1.03 60 Algorithm analysis -4.12 0.43

61 Algorithm analysis 0.42 0.87 62 Algorithm analysis -0.06 0.79

acm Inroads • inroads.acm.org  49

6.2 CORRELATIONS WITH OTHER QUESTIONS
6.2.1 Results. Table 3 gives the correlations between students’

performance on different types of exam questions. All ques-

tions types were highly correlated.

6.2.2 Discussion. The high correlation between all types

suggests that the types of skills assessed by the different types

of questions are not dissimilar. By engaging students with Proof

Blocks problems, which require similar skills to written proofs,

but are easier, we hope to bridge the gap from students having

the content knowledge required to understand proofs, to actu-

ally being able to write proofs.

6.3 SURVEY
6.3.1 Results. Only 51 of the 325 students included in the psy-

chometric analysis responded to the survey (15.7%). The results

of the Likert scale survey questions are show in Figure 7.

A Mann-Whitney U test fails to show significant difference

(p =.087, W = 1058) between student agreement with to the

statement “Proof Blocks accurately represent my understanding

of how to write proofs” (mean = 3.67) and the statement “Written

proofs accurately represent my understanding of how to write

proofs” (mean = 3.98). As with all hypothesis tests, this could

mean either that there is no difference, or that the effect size was

small enough that our sample wasn’t large enough to detect it.

A Mann-Whitney U test also shows no significant difference

(p = 0.75, W = 1255) between student agreement with the state-

ment “The assignment of partial credit for Proof Blocks was

fair” (mean = 3.64) and student agreement with the statement

“The assignment of partial credit for written proofs was fair”

(mean = 3.75). No students disagreed that the user interface

was easy to use.

6.3.2 Discussion. We find it very encouraging that 71% of

respondents agreed that Proof Blocks problems did accurately

represent their ability to write proofs, giving support to the au-

thenticity of Proof Blocks—nearly as many as the 75% who be-

lieved that written proofs problems accurately represented their

ability. It is difficult to have a scaffolded activity feel as authen-

tic as the real thing. For example, some students have concerns

over the authenticity of writing code using block based languag-

es [34]. We also find it encouraging that students felt that the

assignment of partial credit for Proof Blocks problems was just

as fair as the partial credit assignment for written proofs.

Some students gave answers to the free response questions

that helped give more meaning to the quantitative survey

results. One student elaborated on the benefits of the scaffolding

provided by Proof Blocks:

6.1.2 Discussion. The statistical evidence is clear: Proof

Blocks problems were easier than proof problems, and on aver-

age, Proof Blocks problems provided a similar amount of infor-

mation about student knowledge as did written proof questions.

This makes Proof Blocks problems ideal test questions: they are

straightforward to write, give substantial information about stu-

dent knowledge, and can be graded fully automatically.

Figure 5: : Box and whisker plot showing the relative difficulty of Proof,
Proof Blocks, and Other questions. There is a clear separation between
the difficulty level of proof problems and Proof Blocks problems, with
Proof Blocks problems being slightly easier (p = 0.003).

Figure 6: Information given by each type of test question, normalized by
number of questions of that type. This plot can be viewed as a summary
of the psychometric results: the large amount of area under the curve for
both Proof Blocks problems and written proofs showed that they give a
substantial amount of information about student knowledge, while the
location of the peaks shows that Proof Blocks problems are easier than
written proofs.

Table 3: Correlations between question types. Student grades are highly
correlated between all types of questions given to students on their
exams. Each of the correlations is significant at p < 0.001.

Correlation Low. 95% C.I. Up. 95% C.I.

Proof-Proof Blocks 0.65 0.58 0.71

Proof Blocks-Other 0.75 0.68 0.80

Proof-Other 0.72 0.65 0.77

50  acm Inroads  2022 March • Vol. 13 • No. 1

Evaluating Proof Blocks Problems as Exam Questions

comment on the usefulness of Proof Blocks problems for learn-

ing to write proofs. Since nearly all of the data we collected was

quantitative, we are largely unaware of students thought pro-

cesses and affect as they work through Proof Blocks problems.

Furthermore, as distractors for questions were chosen in an

ad-hoc manner, we are not able to comment on what types of

distractor lines do or don’t work well in Proof Blocks problems,

or what their impact is on learning or assessment. Another lim-

itation is that our survey sample was a small percentage of the

course (15.7%), and because the survey was completely anony-

mous, we have no way of knowing any demographic informa-

tion about those who chose to complete the survey.

The discrete mathematics course was taught by multiple in-

structors, some of whom had reservations about putting un-

proven problem formats onto the exams. Consequently, we

could not include Proof Blocks problems and traditional proofs

on every relevant exam, limiting the types of analyses we could

perform. However, we believe that our study has very high eco-

logical validity—we demonstrated that Proof Blocks problems

are useful in flow of a normal discrete mathematics course,

without special changes being made and without emphasizing

Proof Blocks problems during instruction or assignments.

8.0 ADOPTING PROOF BLOCKS

Documentation, instructions, and more examples for Proof

Blocks and PrairieLearn can be found online in the PrairieLearn

documentation and example courses [28, 29]. PrairieLearn is

integrated with Learning Tools Interoperability [25] to enable

easier sharing of student data across learning platforms. Au-

thors may be contacted with questions.

Usually my biggest struggle when it comes to writing

proofs is finding a place to start and using concrete

wording/reasoning to do so. With Proof Blocks, I get

the skeleton and concrete wording given to me so I can

focus on applying theorems and having a coherent train

of thought.

Another student gave more insight into why they felt that

Proof Blocks were easier than written proofs, a sentiment that

most students seemed to share based on the Likert scale data:

I think they’re much easier than written proofs because

of how much information the problem gives. There were

a lot of proof block questions that I would have no clue

how to do as a written proof but I got full credit on them

through simple process of elimination. For example, some

proofs have multiple sets of “consider” where you pick the

function f and corresponding next steps based on which

function was picked. It’s very easy to tell which blocks

go with which “set” of steps go together, which effectively

makes the question multiple choice (with fewer choices)

because the last step of the proof is obvious.

7.0 LIMITATIONS

The primary limitation of our study is the fact that our data set

allows us only to answer certain questions about Proof Blocks

problems and not others. For example, we are able to make a

strong claim that Proof Blocks problems function well as test

questions, assessing student knowledge of discrete mathemat-

ics in an accurate and useful way, but we are not yet able to

Figure 7: Responses to the Likert scale questions on the survey. Notable highlights of the survey are that no students disagreed
that the user interface was easy to use, 71% felt that Proof Blocks accurately represented their understanding of how to write
proofs (versus 75% for written proofs), and 57% felt that the assignment of partial credit for Proof Blocks problems was fair
(versus 63% for written proofs).

acm Inroads • inroads.acm.org  51

Cynthia Lee, and Michael Clancy. 2019. BDSI: A validated concept inventory for
basic data structures. In Proceedings of the 2019 ACM Conference on International
Computing Education Research. 111–119.

 19. Seth Poulsen, Geoffrey L. Herman, Peter A.H. Peterson, Enis Enis Golaszewski,
Akshita Gorti, Linda Oliva, Travis Scheponik, and Alan T. and Sherman. 2021.
Psychometric Evaluation of the Cybersecurity Concept Inventory. ACM Transactions
on Computing Education (TOCE) In press (2021).

 20. Seth Poulsen, Mahesh Viswanathan, Geoffrey L. Herman, and Matthew West. 2021.
Proof Blocks: Autogradeable Scaffolding Activities for Learning to Write Proofs.
arxiv:2106.11032 [cs.CY]

 21. R Core Team. 2020. R: A language and environment for statistical computing. R
Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

 22. Dimitris Rizopoulos. 2006. LTM: An R package for latent variable modelling and
item response theory analyses. Journal of Statistical Software 17, 5 (2006), 1–25.
http://www.jstatsoft.org/v17/i05/

 23. Annie Selden and John Selden. 1987. Errors and misconceptions in college level the-
orem proving. In Proceedings of the second international seminar on misconcep-
tions and educational strategies in science and mathematics, Vol. 3. ERIC, 457–470.

 24. Annie Selden and John Selden. 2008. Overcoming Students’ Difficulties in Learning
to Understand and Construct Proofs. In Making the Connection, Marilyn P. Carlson
and Chris Rasmussen (Eds.). The Mathematical Association of America, Washington
DC, 95–110. https://doi.org/10.5948/UPO9780883859759.009

 25. Charles Severance, Ted Hanss, and Josepth Hardin. 2010. Ims learning tools
interoperability: Enabling a mash-up approach to teaching and learning tools.
Technology, Instruction, Cognition and Learning 7, 3-4 (2010), 245–262.

 26. Andreas J Stylianides, Kristen N Bieda, and Francesca Morselli. 2016. Proof and
argumentation in mathematics education research. In The second handbook of
research on the psychology of mathematics education. Brill Sense, 315–351.

 27. GJ Stylianides, AJ Stylianides, and K Weber. 2017. Research on the teaching
and learning of proof: Taking stock and moving forward. In Compendium for
Research in Mathematics Education, Jinfa Cai (Ed.). National Council of Teachers of
Mathematics, Chapter 10, 237–266.

 28. PrairieLearn Team. 2021. pl-order-blocks Documentation. https://prairielearn.
readthedocs.io/en/latest/elements/pl-order-blocks-element

 29. PrairieLearn Team. 2021. PrairieLearn Documentation. https://prairielearn.
readthedocs.io/en/latest/

 30. Association for Computing Machinery (ACM) The Joint Task Force on Computing
Curricula and IEEE Computer Society. 2016. Curriculum Guidelines for Undergraduate
Degree Programs in Computer Engineering. Technical Report. New York, NY, USA.

 31. Lev Semenovich Vygotsky. 1978. Mind in society: The development of higher
psychological processes. Harvard university press.

 32. Keith Weber. 2001. Student difficulty in constructing proofs: The need for strategic
knowledge. Educational Studies in Mathematics 48, 1 (Oct. 2001), 101–119. https://
doi.org/10.1023/A:1015535614355

 33. Keith Weber and Lara Alcock. 2004. Semantic and Syntactic Proof Productions.
Educational Studies in Mathematics 56, 2 (July 2004), 209–234. https://doi.
org/10.1023/B:EDUC.0000040410.57253.a1

 34. David Weintrop and Uri Wilensky. 2015. To block or not to block, that is the
question: students’ perceptions of blocks-based programming. In Proceedings of
the 14th international conference on interaction design and children. 199–208.

 35. Matthew West, Geoffrey L. Herman, and Craig Zilles. 2015. PrairieLearn: Mastery-
based Online Problem Solving with Adaptive Scoring and Recommendations
Driven by Machine Learning. In 2015 ASEE Annual Conference & Exposition. ASEE
Conferences, Seattle, Washington, 26.1238.1–26.1238.14. https://peer.asee.org/24575.

 36. David Wood, Jerome S Bruner, and Gail Ross. 1976. The role of tutoring in problem
solving. Journal of child psychology and psychiatry 17, 2 (1976), 89–100.

 37. Benjamin Xie, Matthew J. Davidson, Min Li, and Amy J. Ko. 2019. An item response
theory evaluation of a language-independent CS1 knowledge assessment.
In Proceedings of the 50th ACM Technical Symposium on Computer Science
Education(SIGCSE ’19). Association for Computing Machinery, Minneapolis, MN,
USA, 699–705. https://doi.org/10.1145/3287324.3287370

Seth Poulsen
Department of Computer Science
University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801
sethp3@illinois.edu

Mahesh Viswanathan
Department of Computer Science
University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801
vmahesh@illinois.edu

Geoffrey Herman
Department of Computer Science
University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801
glherman@illinois.edu

Matthew West
Department of Computer Science
University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801
mwest@illinois.edu

DOI: 10.1145/3514213 Copyright held by authors/owners.

9.0 CONCLUSION

We have shown that Proof Blocks problems have many proper-

ties that instructors desire when writing tests. First, they have

high discrimination and thus provide a substantial amount of

information about student knowledge—comparable to written

proofs. They are also easier than written proof problems, and

thus may be appropriate for scaffolding students from content

knowledge to writing proofs. Proof Blocks decrease the grading

burden on course staff, allowing more time for office hours and

other activities that help students learn. Furthermore, students

felt that the Proof Blocks interface was easy to use, that the

questions accurately represented their understanding of how to

write proofs—almost as well as actually writing proofs. 

Acknowledgements
We acknowledge the Computers of Education research group at the University of Illinois
at Urbana-Champaign for much helpful feedback on earlier versions of this work. We
also acknowledge Benjamin Cosman and Patrick Lin for their work as instructors of the
course we obtained data from, including writing many of the test questions. Mahesh
Viswanathan was partially supported by NSF CCF 1901069 and NSF CCF 2007428.

References
 1. William Billingsley and Peter Robinson. 2007. Student proof exercises using

MathsTiles and Isabelle/HOL in an intelligent book. Journal of Automated
Reasoning 39, 2 (2007), 181–218.

 2. Richard Bornat and Bernard Sufrin. 1997. Jape: A calculator for animating proof-on-
paper. In International Conference on Automated Deduction. Springer, 412–415.

 3. Joachim Breitner. 2016. Visual theorem proving with the Incredible Proof Machine.
In International Conference on Interactive Theorem Proving. Springer, 123–139.

 4. Paul Denny, Andrew Luxton-Reilly, and Beth Simon. 2008. Evaluating a new exam
question: Parsons problems. In Proceedings of the fourth international workshop on
computing education research. 113–124.

 5. Yuemeng Du, Andrew Luxton-Reilly, and Paul Denny. 2020. A Review of Research
on Parsons Problems. In Proceedings of the Twenty-Second Australasian
Computing Education Conference(ACE’20). Association for Computing Machinery,
New York, NY, USA, 195–202. https://doi.org/10.1145/3373165.3373187

 6. Douglas E Ensley and J Winston Crawley. 2005. Discrete mathematics: mathemati-
cal reasoning and proof with puzzles, patterns, and games. John Wiley & Sons.

 7. Barbara J Ericson, Lauren E Margulieux, and Jochen Rick. 2017. Solving parsons
problems versus fixing and writing code. In Proceedings of the 17th Koli Calling
International Conference on Computing Education Research. 20–29.

 8. N. Fraser. 2015. Ten things we’ve learned from Blockly. In 2015 IEEE Blocks
and Beyond Workshop (Blocks and Beyond). 49–50. https://doi.org/10.1109/
BLOCKS.2015.7369000

 9. Ken Goldman, Paul Gross, Cinda Heeren, Geoffrey Herman, Lisa Kaczmarczyk,
Michael C Loui, and Craig Zilles. 2008. Identifying important and difficult concepts
in introductory computing courses using a delphi process. In Proceedings of the
39th SIGCSE technical symposium on Computer science education. 256–260.

 10. Geoffrey L. Herman, Craig Zilles, and Michael C. Loui. 2014. A Psychometric
Evaluation of the Digital Logic Concept Inventory. Computer Science Education 24,
4 (2014), 277 – 303.

 11. Mark Hodds, Lara Alcock, and Matthew Inglis. 2014. Self-explanation training
improves proof comprehension. Journal for Research in Mathematics Education 45,
1 (2014), 62–101.

 12. Association for Computing Machinery (ACM) Joint Task Force on Computing
Curricula and IEEE Computer Society. 2013. Computer Science Curricula 2013:
Curriculum Guidelines for Undergraduate Degree Programs in Computer Science.
Association for Computing Machinery, New York, NY, USA.

 13. Sorin Lerner, Stephen R Foster, and William G Griswold. 2015. Polymorphic blocks:
Formalism-inspired UI for structured connectors. In Proceedings of the 33rd Annual
ACM Conference on Human Factors in Computing Systems. 3063–3072.

 14. Frederic M Lord. 1980. Applications of item response theory to practical testing
problems. Routledge.

 15. John Maloney, Mitchel Resnick, Natalie Rusk, Brian Silverman, and Evelyn
Eastmond. 2010. The scratch programming language and environment. ACM
Transactions on Computing Education (TOCE) 10, 4 (2010), 1–15.

 16. The Joint Task Force on Computing Curricula. 2014. Curriculum Guidelines for
Undergraduate Degree Programs in Software Engineering. Technical Report. New
York, NY, USA.

 17. Dale Parsons and Patricia Haden. 2006. Parson’s Programming Puzzles: A Fun and
Effective Learning Tool for First Programming Courses. In Proceedings of the 8th
Australasian Conference on Computing Education - Volume 52 (Hobart, Australia)
(ACE ’06). Australian Computer Society, Inc., AUS, 157–163.

 18. Leo Porter, Daniel Zingaro, Soohyun Nam Liao, Cynthia Taylor, Kevin C Webb,

