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Proof Blocks is a novel software tool which enables 

students to write mathematical proofs by dragging and 

dropping prewritten lines into the correct order, rather 

than writing a proof completely from scratch. We used 

Proof Blocks problems as exam questions for a discrete 

mathematics course with hundreds of students, allowing us 

to collect thousands of student responses to Proof Blocks 

problems. Using this data, we provide statistical evidence 

that Proof Blocks are easier than written proofs, which 

are typically very difficult. We also show that Proof Blocks 

problems provide about as much information about student 

knowledge as written proofs. Survey results show that 

students believe that the Proof Blocks user interface is easy 

to use, and that the questions accurately represent their 

ability to write proofs.

1.0 INTRODUCTION

Understanding and writing mathematical proofs is one of the 

critical yet difficult skills that students must learn as a part 

of the discrete mathematics curriculum. Proofs and proof 

techniques are included by the ACM curricular guidelines 

as a core knowledge area that should be understood by any 

student obtaining a degree in computer engineering, computer 

science, or software engineering [12, 16, 30]. A panel of 21 

experts using a Delphi process agreed that 6 of the 11 most 

difficult topics in a typical discrete mathematics course are 

related to proofs and logic [9].

There are many aspects of writing mathematical proofs that 

are difficult. Many students fail to produce the basic building 

blocks that proofs have, such as properly declaring variables 

or referencing theorems [23]. Students get stuck working 

through the details of algebraic manipulations. They have a 

tendency to commit certain logical fallacies such as confusing 

a proposition with its converse [23, 27]. Studies have shown 

that even when students have all the prerequisite content 

knowledge to write a mathematical proof, they still struggle 

to construct one [32]. Thus, there is a gap that needs to be 

filled between students having the content knowledge to write 

a proof and the aptitude to actually construct one.

Vygotsky’s theory of psychological development posits that 

between the tasks which a person can and cannot do, there 

is a so-called zone of proximal development: a set of tasks 

which a person cannot perform unaided, but which they can 

perform when given help and support, called scaffolding [31, 

36]. Computer science instructors and researchers have used 

various approaches to scaffolding students learning to write 

code for the first time. Block based programming languages 

such as Scratch and Blockly [8, 15] scaffold students by 

providing them with building blocks from which to assemble 

their programs and guarding against the struggles of syntax 

errors. Research has shown that using block based languages 

can accelerate the student learning process when first learning 

to program [34]. Parson’s problems are a kind of homework and 

exam question where students are asked to assemble prewritten 
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RQ3:  What are students’ perceptions about the fairness, 

usability, and authenticity of being assessed by using 

Proof Blocks problems?

lines of code into a correct program [17]. Researchers have 

shown Parson’s problems to be useful both as test questions 

[4] and as a learning tool for helping to accelerate the learning 

process for beginners learning to write code [7].

Following from the success of Parson’s problem and similar 

approaches to teach programming, we propose Proof Blocks. 

Proof Blocks allows students to construct mathematical 

proofs by dragging and dropping prewritten proof lines into 

the correct order, rather than having to write the entire proof 

from scratch. Figure 1 shows an example of a Proof Blocks 

problem. Proof Blocks provides a scaffolded environment, 

enabling students to construct mathematical proofs without 

needing to worry about coming up with all of the details on 

their own. A Proof Blocks problem may also contain distractor 

lines which are not a part of any correct solution. The design 

of the Proof Blocks grader [20] is flexible in allowing any 

correct arrangement of the lines of the proof. This is enabled 

by the instructor specifying which lines of the proof depend 

on which other lines (the full dependence graph of the lines of 

the proof in Figure 1 can be seen in Figure 2). Students who fail 

to construct a correct proof on their first try can then receive 

automated feedback from the computer, as shown in Figure 3, 

before being given additional attempts at the discretion of the 

instructor.

Proof Blocks problems are also very promising for saving 

time for both students and course staff. Many computer 

science departments are experiencing a huge increase in 

enrollments. This increase in enrollments means course staff 

lose more time to grading, making it more difficult for them to 

spend the time they need helping students individually. Proof 

Blocks helps to alleviate this strain by providing a way to test 

some of students’ proof skills in a way that can be automated, 

saving grading time and allowing course staff more time for 

other activities that help students such as office hours and 

review sessions.

The ability to receive automated feedback is also a boon to 

students. Due to staff time constraints, students in a discrete 

mathematics course may not be able to receive feedback on 

the correctness of proofs they write until long after they have 

completed them. Proof Blocks also helps with this, as it allows 

students to receive feedback instantly, just as they receive 

instant feedback from the compiler and from automated 

testing suites as they write code.

In using a new kind of test question with our students, we 

wanted to ensure that we were testing students on the correct 

set of skills and that we were providing them with a fair and 

equitable learning experience.

In this paper, we seek to answer the following three re-

search questions:

RQ1:  What statistical information about student knowledge 

do Proof Blocks problems provide relative to other 

course content?

RQ2:  What is the relationship between the knowledge 

required to complete Proof Blocks problems and other 

types of problems in a discrete mathematics course?

Figure 1: An example of the Proof Blocks user interface used by students. 
Individual lines of the proof start out shuffled in the light-blue starting 
zone, and students attempt to drag and drop them into the correct order 
in the yellow target zone. The instructor wrote the problem with 1, 2, 
3, 4, 5, 6 as the intended solution, but the Proof Blocks autograder will 
also accept any other correct solution as determined by the dependency 
graph shown Figure 2. For example, both 1, 2, 5, 4, 3, 6 and 1, 2, 4, 5, 3, 6 
would also be accepted as correct solutions.

Figure 2: The dependency graph of the statements in the proof shown 
in Figure 1. The Proof Blocks grader will accept any topological sort of 
this directed acyclic graph as a correct solution. For more details of the 
implementation of the Proof Blocks grader, see [20]. 
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edge in other types of questions, they were still unable to write 

a proof [32], thus highlighting the need to scaffold students 

through the proof-writing process.

On the other hand, there is little research on concrete edu-

cational interventions for improving the proof learning process 

[11, 27]. Indeed, a recent review of the literature on teaching 

and learning proofs concluded: “more intervention-oriented 

studies in the area of proof are sorely needed” [27]. Hodds et al. 

[11] showed that training students to engage more with proofs 

through self-explanation increased student comprehension of 

proofs in a lasting way. Proof Blocks problems similarly force 

deliberate engagement with proof content, as close reading is 

necessary to determine the correct arrangement of lines. Proof 

Blocks also shows promise as a tool that can provide scaffolding 

that students are so in need of when learning to write proofs.

2.3 EDUCATIONAL THEOREM PROVING SOFTWARE
A few other software tools have been created to enable students 

to create proofs in the computer in such a way that they can 

receive automated feedback. Some use text-based representa-

tions, while others use visual representations of proofs.

Polymorphic Blocks [13] is a novel user interface which 

presents propositions as colorful blocks with uniquely shaped 

connectors as a signifier of which types of propositions can be 

connected in a proof. While the user interface has been shown 

to engage students in learning proofs, it supports only proposi-

tional logic. The Incredible Proof Machine [3] guides students 

through constructing proofs as graphs. As with Polymorphic 

Blocks, the user interface is engaging, but the formality of the 

system limits the topics which can be effectively covered.

Jape [2] is a “Proof calculator,” which guides students through 

the process of constructing formal proofs in mathematical nota-

tion with the help of the computer. While Jape can allow students 

to construct proofs in arbitrary logics, it requires the instruc-

tor to implement these logics in its own custom programming  

language before students can use them to construct proofs.

2.0 RELATED WORK

Anecdotally, we have heard of instructors using scrambled proofs 

to assess student knowledge both in Euclidean geometry and in 

higher-level mathematics. In theory, instructors may have offered 

such questions on paper even before the advent of computers, 

though we can find no explicit record of this. Additionally, to our 

knowledge there has been no research into the merits of these 

questions either for learning or for assessment.

We will give a brief overview of related work including Par-

son’s problems, research on teaching and learning proofs, and 

software tools for constructing mathematical proofs in an edu-

cational context.

2.1 PARSON’S PROBLEMS
The use of scrambled code problems was first documented by 

Parsons [17]. They have since been studied for their desirable 

properties both in assessment and learning [4, 5, 7]. The desir-

able properties of Parson’s problems were a major inspiration 

for the creation of Proof Blocks.

Denny et al. [4] showed that Parson’s problems are easier to 

grade than free-form code writing questions, and yet still offer 

rich information about student knowledge. We will show the 

same to be true with Proof Blocks problems in relation to free-

form proof writing questions. Ericson et al. [7] showed that stu-

dents learning to write code using Parson’s problems learn at 

an accelerated rate in the early stages of learning compared to 

students being taught to fix code or write code from scratch.

2.2 RESEARCH ON TEACHING AND LEARNING PROOFS
There are many threads of research in seeking to illuminate 

students’ understandings and misunderstandings about proofs 

[24, 26, 27]. One thread establishes that, as they learn, students 

go through different phases in the complexity of ways they are 

able to think about solving proof problems [33]. Another study 

demonstrated that even when students had all of the knowledge 

required to write a proof and were able to apply that knowl-

Figure 3: Example of feedback given to students working on Proof Blocks problems. To avoid giving 
students so much information that we are not actually testing their knowledge, they are only told at 
which line their proof fails, not the reason why or what the solution is. One area of future research is to 
investigate what kind of feedback is best for students to receive when using Proof Blocks as a tool for 
learning to write proofs. 
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In lieu of a final exam, students were given the opportunity 

to retake any three of the exams. A full listing of the topics on 

each exam, as well as the number of each type of question on 

each exam, can be seen in Table 1. While the distribution of 

question types among tests may not be ideal for measuring the 

qualities of types of questions, it gives the study a large degree 

of ecological validity. That is, in the discrete mathematics class 

examined in this study, Proof Blocks problems were not used at 

an artificially inflated rate, but rather were used as one would 

want to use any type of test question—intermixed with other 

types of test questions, at times when they were appropriate.

Students took their exams using PrairieLearn, an open-

source online homework and exam platform [35]. Especially 

for a course of this size, Proof Blocks’ fully automated grading 

was a big advantage in saving course staff time which could 

be reallocated in other ways. In total, students were given 9 

Proof Blocks problems on exams and 3 on practice exams. 

Students received immediate correctness feedback on each 

Proof Blocks problem on their exams and were given up to 4 

or 5 attempts at each question, with a decreasing number of 

points awarded depending on the number of attempts used. 

Students were typically given 3 attempts for multiple choice 

questions, and 4 or 5 attempts for fill-in-the-blank compu-

tation questions, also with a decreasing number of points 

awarded depending on which attempt they successfully an-

swered correctly. In all cases, the students were only award-

ed full points if they completed the question correctly on the 

first attempt. Students wrote free response proof questions in 

text entry box which supported markdown and LaTeX, but 

were told that using plain text (for example, spelling out “and” 

instead of using ∧ and spelling out “intersection” instead of 

using  ∩ ) was acceptable as we did not expect them to learn 

LaTeX for the course.

MathsTiles [1] is a block-based programming interface for 

constructing proofs for the Isabelle/HOL proof assistant. In 

theory, having an open-ended environment where students 

could construct arbitrarily complex proofs seems like it could be 

a huge advantage. However, in user studies, the authors found 

that students only had a chance at being successful while using  

MathsTiles if they were provided a small instructor-procured subset 

of blocks, namely, those needed to complete the problem at hand.

Ensley and Winston offer some scrambled proofs in a JavaS-

cript applet as supplementary material to their discrete mathe-

matics textbook [6]. However, their tools are restricted in only 

supporting grading by simple ordering, greatly restricting the 

types of proofs that students can construct using the tool. The 

directed acyclic graph-based grading that the Proof Blocks au-

tograder uses enables assessing proofs which are more complex 

and use a greater variety of writing styles.

Most of these tools cover only small subset of the material 

typically covered in a discrete mathematics course, and those 

that are more flexible require learning complex theorem prover 

languages. In contrast, Proof Blocks enables instructors to eas-

ily provide students with proof questions on any topic. To our 

knowledge, no research has been published on using any of the 

above tools as part of student assessments.

3.0 COURSE CONTEXT

We evaluated Proof Blocks problems by using them for exams 

in a discrete mathematics course at the University of Illinois at 

Urbana-Champaign. At the University of Illinois, the discrete 

mathematics course in the computer science department is 

taught every semester (including during the summer) and is 

taken by hundreds of students each semester, across multiple 

sections. Most students are freshmen and take the course as 

part of their computer science major, computer science minor, 

or computer engineering major. The listed prerequisites for the 

course are introductory programming and introductory calcu-

lus. The course is designed to prepare students for the theory 

track in the computer science department and usually covers 

logic, proofs, functions, cardinality, graphs and trees, induction, 

recursion, number theory, probability, basic algorithm analy-

sis, and sometimes additional topics as time permits. Though 

taught in the computer science department, it is solely a theory 

class, with no programming assignments.

In Fall 2020, the course was taught completely online due to 

the COVID-19 pandemic. The course was split into 3 sections, 

each with a unique instructor, with a total of 404 students. Each 

week’s content consisted of a video lecture and small group as-

signments completed over video conferencing with teaching 

assistant guidance and support. Students were then assigned 

homework to provide additional practice with the material. At 

the beginning of each week, students took a short exam on the 

material covered the previous week. Some weeks, the students 

were also given a practice exam to assist in studying. If a stu-

dent had to miss an exam for some reason, they were allowed 

to make up the exam the following week.

Table 1: The breakdown of question types on each exam. Proof Blocks 
problems were used on exams throughout the semester as and when 
the instructors felt that they would be useful. They were not used at an 
artificially inflated rate for the purposes of this study. 

Exam 
Number

Topics Proof
Proof 
Blocks

Other

1 Logic and Proofs 1 2 3

2 Sets, functions, and Relations 2 7

3 Cardinality 1 2 3

4 Directed Graphs 1 1 4

5 Undirected Graphs and Trees 1 1 4

6 Induction 2 3

7
Recursive sets and Structural 
Induction

1 5

8 Number Theory 1 1 4

9 Probability and Counting 6

10
Series Sums and Solving 
Recurrences

5

11 Algorithm Analysis and Big O 2 4
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With the anonymity restrictions placed by our Institutional 

Review Board, we are unable to know which students in our 

data set formally dropped the course before the end, so for our 

analysis we only kept students who attempted at least 10 of 

the 11 exams (325 of 404 students). In some cases, different 

questions were used between primary exams and make up 

exams, so we do not have a response from every student for 

every question, even for students who took every exam. Our 

final data set consisted of 325 students over 62 questions. A 

complete data set would have been  20,150 answers, but we 

had 569 missing data points, giving us a total of 19,581 student 

answers.

To keep all questions on the same scale, remove effects 

of un-validated grading rubrics, and to remove the effects of 

guessing on additional submissions after feedback, we re-grad-

ed all questions on a dichotomous scale (1 for fully correct, 0 

for not fully correct) and graded only the first submission. This 

decision aligns our data more closely with the two-parameter 

logistic model of item response theory (See Section 5.1).

5.0 METHODS

We use the two-parameter logistic model (2PL) from item re-

sponse theory [14] to answer RQ1 and correlation analysis to 

answer RQ2. To answer RQ3, we administered a survey.

5.1 PSYCHOMETRICS
To answer RQ1, we want to understand what level of student 

knowledge Proof Blocks questions assess, and how accurately 

it assesses that knowledge. 2PL has been used widely in 

psychometrics and has been used within computer science 

education mostly for validation of concept inventories [10, 18, 

19, 37]. 2PL is a good fit for our needs because it provides a 

way to model the probability of each student answering each 

question correctly as a function of a question’s difficulty and 

discrimination.

The difficulty is how hard it is to answer a question correct-

ly, and the discrimination is how well a question differentiates 

between students of lower and higher ability levels. In the case 

of difficulty, we want to explore whether Proof Blocks problems 

have lower difficulty than written proofs, giving evidence that 

they may provide scaffolding. For discrimination, higher is al-

ways better in the sense that if a question’s discrimination is 

higher, it will provide more information about student knowl-

edge. We would like to explore if Proof Blocks problems have 

comparable discrimination to written proof problems.

We used the R programming language and the package ltm 

to clean the data and fit item response theory models  [21, 22]. 

In 2PL, we assume that the probability of student n correctly 

responding to item i can be modeled as a function of the 

student’s ability, θn, the discrimination of the item, ai, and the 

difficulty of the item, bi, as follows: 

In order to combat student cheating efforts, almost all ques-

tions had multiple variants. Many questions had three or four 

static variants, one for each of the three course sections on the 

primary test day, and the fourth being used the following week 

for the make up exams. Other questions had variants generated 

uniquely for each student based on a random number gener-

ator. Questions randomized values such as elements of a set, 

edges in a graph, and other question properties which could be 

easily randomized and then computer graded.

All multiple choice, fill in the blank computation, and Proof 

Blocks problems were automatically graded by PrairieLearn as 

soon as the student completed them, and they were immedi-

ately shown their grade on these questions. An overview of the 

workings of the Proof Blocks autograder can be seen in [20]. 

Written proof questions were then hand graded by one of the 

course’s 8 teaching assistants, based on rubrics created collab-

oratively between the instructors and teaching assistants. The 

rubrics were different for each exam, but generally students 

were awarded points for following the correct proof structure, 

properly declaring variables, knowing and correctly applying 

definitions, and logical flow from one step to another. Points 

were not awarded for style. The first author of this paper was 

a teaching assistant for the course, and the second was one of 

three faculty instructors for the course, with the other authors 

having no affiliation with the course.

4.0 DATA HANDLING

All submissions to exam questions were automatically saved to 

a database by PrairieLearn. With approval from our university’s 

Institutional Review Board, the course data was accessed by an 

instructional technology specialist employed by the engineer-

ing college, and then fully anonymized before being delivered 

to the research team for analysis. All research team members 

handling the data were trained in proper student privacy and 

human subjects research protocols.

4.1 DATA PREPARATION
For our analysis, we treat all variants of a question as the same 

question. Though there are small differences in difficulty be-

tween question variants, we concluded that these small differ-

ences were not relevant to the research questions we are ad-

dressing with this study.

Because the final exam involved retaking exams which may 

have contained questions overlapping with questions that students 

had already seen, and we are focusing only on students’ first 

interactions with a given question, we exclude the final exam from 

our analysis, focusing only on the 11 exams given to the students 

throughout the semester. Two questions on Exam 2 had user 

interface bugs in them, causing the course staff to award everyone 

in the course full points on those questions for fairness, so they 

were also excluded from the analysis. The Proof Blocks question 

given on Exam 8 was nearly identical to a question given on a 

practice exam, so we omit it from the analysis to avoid the analysis 

being skewed due to students knowing the answer in advance.
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have answered that item correctly. The dotted item is an easier 

item with a difficulty of -0.5, meaning that students who are half 

a standard deviation below the mean in ability level answer that 

item correctly at a rate of 50%, and students with mean ability 

level answer that item correctly at a rate greater than 50%. A good 

assessment will have questions with a variety of difficulty levels to 

assess student knowledge at all relevant levels of ability.

The discrimination of an item manifests in the item response 

function as the slope, with a higher positive discrimination lead-

ing to a more strongly positive slope. For example, the dashed 

line in Figure 4 denotes an item that has the same difficulty as 

the solid-line item, but with a higher discrimination, so that the 

probability that a student gets the questions correct rises more 

quickly for students above mean-ability level, and decreases 

more quickly for students below mean-ability level. Questions 

with high discrimination allow assessments to measure student 

knowledge with high accuracy and less error, so it is always de-

sirable for items to have high discrimination. 

5.1.2 Item Information Functions. The item information 

function for an item is the derivative of the item response func-

tion for that item. It shows how much information that item 

gives about students taking the test at each level of ability. Figure 

4 shows example item information curves for the same items as 

it shows item response functions. The solid item collects more 

information about higher performing students than the dotted 

item, due to having higher difficulty. The high discrimination 

of the dashed item allows it to provide much more information 

across a range of ability levels than either of the other two items.

Summing together multiple item information functions 

gives the combined information that can be gained about a giv-

en student from a set of items. To better understand the quality 

of information that Proof Blocks problems provide about stu-

dents in a discrete mathematics course, we calculate the average 

item information curve for each category by summing the in-

formation curves for all the items in each category (i.e., Proofs, 

Proof Blocks, Other), and then dividing by the total number 

The distribution of student ability parameters θn is normal-

ized to a mean of 0 and standard deviation of 1. In this case, 

because the students were learning across the course of the se-

mester in between these test questions, the difficulty measure-

ment of the questions is relative to the student knowledge at the 

time they took that particular exam, rather than absolute. 

After fitting the 2PL model, we test two null hypotheses:

1.  The distribution of difficulties of Proof Blocks problems 

is the same as for written proof problems. (We desire for 

Proof Blocks to be easier.)

2.  The distribution of discriminations of Proof Blocks 

problems is the same as for written proof problems. (We 

desire for Proof Blocks to be comparably discriminatory.)

After using a Shapiro-Wilk test to confirm the normality of 

these distributions, we use a t-test to test the hypotheses.

In order to fit the dichotomous response requirement of 2PL, 

we converted all problems to binary responses: 1 for full points 

and 0 for anything less than full points (See Section 4.1). To en-

sure robustness of our results, we also fit our data to a graded 

response model, a type of polytomous item response theory 

model that accounts for assignment of partial credit. This model 

supported our conclusions just as well as the 2PL model, so we 

present the simpler model for ease of presentation. As a further 

robustness check, we also used a standard classical test theory 

model, which again supported the same conclusions.

5.1.1 Item Response Functions. Inserting the difficulty and 

discrimination parameters for each test item into Equation 1 

gives the item response functions, which help us visualize the dif-

ficulty and discrimination of test items, and the probability that a 

student with a given ability level will answer the question correct-

ly. The difficulty of the item determines the ability level at which 

a student will have a 50% probability of getting the question cor-

rect. For example, in Figure 4 the solid line describes an item 

with difficulty 0, meaning that if we choose a random student 

with mean ability level, there is a 50% chance that student would 

Figure 4: Left: Three example item response functions with varying discrimination (ai) and difficulty (bi). Right: Item information curves for the same 
example items.
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1.  The assignment of partial credit for Proof Blocks was fair.

2.  The assignment of partial credit for written proofs was fair.

Again, we used a Mann-Whitney U test to determine if stu-

dents’ responses to these two questions were significantly dif-

ferent, this time with the null hypothesis that students believed 

that the assignment of partial credit was equally fair for Proof 

Blocks problems and written proofs. To understand students’ 

perceptions of the usability of Proof Blocks, we had them rate 

their agreement to:

1.  The Proof Blocks user interface was easy to use.

We do not apply any statistical tests for this construct be-

cause the user interface for Proof Blocks is incommensurate 

with the interface for writing proofs.

Finally, to see if student’s perceptions of Proof Blocks’ diffi-

culty aligned with the empirical evidence about question diffi-

culty, we had students to rate their agreement to:

1.  Proof Blocks problems are easier than written proofs.

Again, there were no statistical test for this item, but we felt 

it would be desirable to know if the students’ perception of the 

difficulty of Proof Blocks questions aligned with the empirical 

evidence.

We also asked three optional open ended questions, mainly 

with the goal of giving students the opportunity to voice any 

major concerns they may have had with Proof Blocks:

1.  How do you think we could improve Proof Blocks 

Questions?

2.  Given more practice problems, what do you think Proof 

Blocks would help you learn?

3.  Do you have any other feedback about Proof Blocks?

No major concerns were raised. While we did not have 

enough responses to the open ended questions to do a qualita-

tive analysis, we will use some of them to help us interpret the 

results of the quantitative survey questions.

6.0 RESULTS AND DISCUSSION

6.1 PSYCHOMETRICS
6.1.1 Results. We will now examine the fit of the 2PL model to 

answer RQ1. The full model fit of the 2PL is shown in Table 

2, with the test questions divided by category. It is important 

to recall that in this case, because the students were learning 

across the course of the semester in between these test ques-

tions, the difficulty measurement of the questions is relative 

to the student knowledge at the time they took that particular 

exam, rather than absolute.

Figure 5 is a box and whisker plot that compares the difficulty 

of the different types of questions. We first used a Shapiro-Wilk 

normality test to show that the distributions of difficulty of 

proof problems (W = 0.92, p = 0.39) and Proof Blocks problems  

(W = 0.99, p = 0.99) are both close enough to normal 

of items in that category. We compare the average amount of 

information each problem category provides to further explore 

the relative utility of Proof Blocks problems.

5.2 CORRELATION
In order to examine the overlap between the skills needed for 

different question types (RQ2), we calculated the correlation 

between students’ average scores in each question category. By 

design, Proof Blocks problems are scaffolded proof problems, and 

so we expect that only some of the skills required to solve proof 

problems are also required to solve Proof Blocks problems. Thus, 

we expect to find a correlation between students’ scores across 

these question types, but not a correlation so strong that it would 

imply the questions are assessing the exact same knowledge. This 

shows one of the limitations of our study: based on our current 

data, we can take a broad look at the closeness of the association 

between Proof Blocks problems and proof problems, but without 

further data we are not yet able to comment on which exact skills 

are required to answer one type of question but are not for the other.

After using a Shapiro-Wilk test and finding that the data 

were non-normal, we used the Spearman correlation to cal-

culate the correlation between students’ scores in the different 

question categories.

5.3 SURVEY
We used an anonymous survey to help us answer RQ3: What are 

students’ perceptions about the fairness, usability, and authenticity 

of being assessed using Proof Blocks problems? We asked these 

questions because we wanted to create a scaffolded learning tool 

that students would readily engage with during their learning 

process. We asked about fairness and usability, because a negative 

response to these issues would reveal student affect which may 

cause students to disengage from Proof Blocks problems. Likewise, 

when students feel that scaffolded learning environments are 

inauthentic, as some students feel about block-based programming 

languages [34], they may disengage. We asked the students Likert 

scale questions with 5 possible responses: strongly disagree, 

somewhat disagree, neutral, somewhat agree, and strongly agree. 

Out of the 325 students included in the psychometric analysis, 

only 51 responded to the survey (15.7%).

To evaluate student’s perceptions of authenticity, we had 

students rate their agreement to the following:

1.  Proof Blocks accurately represent my understanding of how 

to write proofs.

2.  Written proofs accurately represent my understanding of 

how to write proofs.

We converted these items to numeric scales of 1-5 so that 

we could use statistical tests to help us answer RQ3. We used 

a Mann-Whitney U test to determine if students’ responses to 

these two questions were significantly different, with the null 

hypothesis that students have the same perception of how well 

Proof Blocks problems and written proofs represent their un-

derstanding of how to write proofs. To evaluate students’ per-

ceptions of fairness, we had them rate their agreement to:
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ten proofs (W = 0.96, p = 0.77) and Proof Blocks questions  

(W = 0.96, p = 0.80). A t-test shows that the two distributions 

are indistinguishable (p = 0.40), so we do not reject the null 

hypothesis that written proofs and Proof Blocks problems mea-

sure knowledge with the same discrimination. The mean of the 

discriminations is 1.08 (95% CI [0.84, 1.32]) for written proofs, 

and 0.95 (95% CI [0.68, 1.21]) for Proof Blocks problems. 

Figure 6 shows the relative information given by the types 

of questions, normalized by the number of questions in each 

category. In the information curves, the height and area under 

the curve are influenced by the discrimination of the questions 

(with more area meaning more information about student 

knowledge and a more accurate measurement), and the loca-

tion of the peak of the curve shows the difficulty.

distributions to justify using a standard t-test. The t-test 

shows that proof questions are significantly more difficult 

than Proof Blocks problems (p = 0.003). Proof questions had 

a mean difficulty of 0.64 (95% CI [0.025, 1.27]), meaning that 

students who had an ability level of 0.64 standard deviations 

above the mean had a 50% chance of receiving full credit on 

a proof problem, with students at mean ability level having a 

lower chance of receiving full credit. Proof Blocks problems 

had a mean difficulty of -0.68 (95% CI [-1.22, -0.134]), meaning 

that students with ability level 0.68 standard deviations below 

the mean had a 50% chance of receiving full credit on a Proof 

Blocks problem, on average.

A Shapiro-Wilk normality test showed that the distribution 

of discrimination parameters was also normal for both writ-

Table 2: Difficulty (Diff.) and Discrimination (Disc.) parameters for all items in the 2PL model fit. Topic names have 
been shortened to save space. For the full names, refer to Table 1. 

Type Question Topic Diff. Disc. Question Topic Diff. Disc.

Proof 1 Logic and Proofs -0.54 1.04 2 Sets, functions -0.28 1.68

3 Sets, functions 0.55 0.84 4 Cardinality 1.66 0.67

5 Directed graphs 0.24 0.93 6 Undirected Graphs 2.41 0.64

7 Induction 0.75 1.19 8 Induction 0.87 1.18

9 Recursive sets 0.54 1.45 10 Number Theory 0.27 1.20

ProofBlocks 11 Logic and Proofs -1.18 0.80 12 Logic and Proofs -0.99 1.16

13 Cardinality -0.52 1.38 14 Cardinality -0.28 1.26

15 Directed graphs -0.34 0.49 16 Undirected Graphs 0.38 0.90

17 Algorithm analysis -1.76 0.57 18 Algorithm analysis -0.71 1.04

Other 19 Logic and Proofs -2.54 0.91 20 Logic and Proofs -4.97 0.39

21 Logic and Proofs -3.32 0.73 22 Sets, functions 0.02 0.64

23 Sets, functions -6.75 0.37 24 Sets, functions -2.06 0.83

25 Cardinality -2.85 1.06 26 Cardinality -3.77 0.61

27 Cardinality -1.79 0.66 28 Directed graphs -0.01 0.58

29 Directed graphs -2.33 0.45 30 Directed graphs 0.54 0.78

31 Directed graphs -1.97 0.99 32 Undirected Graphs -0.45 0.64

33 Undirected Graphs -0.35 0.44 34 Undirected Graphs -1.72 0.88

35 Undirected Graphs 0.25 0.27 36 Induction -1.44 1.37

37 Induction -0.29 1.69 38 Induction -1.06 1.29

39 Recursive sets -0.12 0.87 40 Recursive sets -1.42 0.91

41 Recursive sets -2.48 1.14 42 Recursive sets -2.33 1.58

43 Recursive sets -2.22 0.90 44 Number Theory -2.03 0.88

45 Number Theory -1.91 0.92 46 Number Theory -1.20 1.01

47 Number Theory -1.31 1.10 48 Probability -1.31 0.93

49 Probability -0.70 1.11 50 Probability 1.95 1.11

51 Probability -1.29 0.95 52 Probability -0.72 0.96

53 Probability -0.02 1.24 54 Series sums 0.22 1.47

55 Series sums 0.46 1.49 56 Series sums -0.18 0.82

57 Series sums 0.38 1.84 58 Series sums 0.16 1.00

59 Algorithm analysis -1.39 1.03 60 Algorithm analysis -4.12 0.43

61 Algorithm analysis 0.42 0.87 62 Algorithm analysis -0.06 0.79
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6.2 CORRELATIONS WITH OTHER QUESTIONS
6.2.1 Results. Table 3 gives the correlations between students’ 

performance on different types of exam questions. All ques-

tions types were highly correlated.

6.2.2 Discussion. The high correlation between all types 

suggests that the types of skills assessed by the different types 

of questions are not dissimilar. By engaging students with Proof 

Blocks problems, which require similar skills to written proofs, 

but are easier, we hope to bridge the gap from students having 

the content knowledge required to understand proofs, to actu-

ally being able to write proofs.

6.3 SURVEY
6.3.1 Results. Only 51 of the 325 students included in the psy-

chometric analysis responded to the survey (15.7%). The results 

of the Likert scale survey questions are show in Figure 7. 

A Mann-Whitney U test fails to show significant difference  

(p =.087, W = 1058) between student agreement with to the 

statement “Proof Blocks accurately represent my understanding 

of how to write proofs” (mean = 3.67) and the statement “Written 

proofs accurately represent my understanding of how to write 

proofs” (mean = 3.98). As with all hypothesis tests, this could 

mean either that there is no difference, or that the effect size was 

small enough that our sample wasn’t large enough to detect it.

A Mann-Whitney U test also shows no significant difference 

(p = 0.75, W = 1255) between student agreement with the state-

ment “The assignment of partial credit for Proof Blocks was 

fair” (mean = 3.64) and student agreement with the statement 

“The assignment of partial credit for written proofs was fair” 

(mean = 3.75). No students disagreed that the user interface 

was easy to use.

6.3.2 Discussion. We find it very encouraging that 71% of 

respondents agreed that Proof Blocks problems did accurately 

represent their ability to write proofs, giving support to the au-

thenticity of Proof Blocks—nearly as many as the 75% who be-

lieved that written proofs problems accurately represented their 

ability. It is difficult to have a scaffolded activity feel as authen-

tic as the real thing. For example, some students have concerns 

over the authenticity of writing code using block based languag-

es [34]. We also find it encouraging that students felt that the 

assignment of partial credit for Proof Blocks problems was just 

as fair as the partial credit assignment for written proofs.

Some students gave answers to the free response questions 

that helped give more meaning to the quantitative survey 

results. One student elaborated on the benefits of the scaffolding 

provided by Proof Blocks:

6.1.2 Discussion. The statistical evidence is clear: Proof 

Blocks problems were easier than proof problems, and on aver-

age, Proof Blocks problems provided a similar amount of infor-

mation about student knowledge as did written proof questions. 

This makes Proof Blocks problems ideal test questions: they are 

straightforward to write, give substantial information about stu-

dent knowledge, and can be graded fully automatically. 

Figure 5: : Box and whisker plot showing the relative difficulty of Proof, 
Proof Blocks, and Other questions. There is a clear separation between 
the difficulty level of proof problems and Proof Blocks problems, with 
Proof Blocks problems being slightly easier (p = 0.003). 

Figure 6: Information given by each type of test question, normalized by 
number of questions of that type. This plot can be viewed as a summary 
of the psychometric results: the large amount of area under the curve for 
both Proof Blocks problems and written proofs showed that they give a 
substantial amount of information about student knowledge, while the 
location of the peaks shows that Proof Blocks problems are easier than 
written proofs. 

Table 3: Correlations between question types. Student grades are highly 
correlated between all types of questions given to students on their 
exams. Each of the correlations is significant at p < 0.001. 

Correlation  Low. 95% C.I. Up. 95% C.I.

Proof-Proof Blocks 0.65 0.58 0.71

Proof Blocks-Other 0.75 0.68 0.80

Proof-Other 0.72 0.65 0.77
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comment on the usefulness of Proof Blocks problems for learn-

ing to write proofs. Since nearly all of the data we collected was 

quantitative, we are largely unaware of students thought pro-

cesses and affect as they work through Proof Blocks problems. 

Furthermore, as distractors for questions were chosen in an 

ad-hoc manner, we are not able to comment on what types of 

distractor lines do or don’t work well in Proof Blocks problems, 

or what their impact is on learning or assessment. Another lim-

itation is that our survey sample was a small percentage of the 

course (15.7%), and because the survey was completely anony-

mous, we have no way of knowing any demographic informa-

tion about those who chose to complete the survey.

The discrete mathematics course was taught by multiple in-

structors, some of whom had reservations about putting un-

proven problem formats onto the exams. Consequently, we 

could not include Proof Blocks problems and traditional proofs 

on every relevant exam, limiting the types of analyses we could 

perform. However, we believe that our study has very high eco-

logical validity—we demonstrated that Proof Blocks problems 

are useful in flow of a normal discrete mathematics course, 

without special changes being made and without emphasizing 

Proof Blocks problems during instruction or assignments.

8.0 ADOPTING PROOF BLOCKS

Documentation, instructions, and more examples for Proof 

Blocks and PrairieLearn can be found online in the PrairieLearn 

documentation and example courses [28, 29]. PrairieLearn is 

integrated with Learning Tools Interoperability [25] to enable 

easier sharing of student data across learning platforms. Au-

thors may be contacted with questions.

Usually my biggest struggle when it comes to writing 

proofs is finding a place to start and using concrete 

wording/reasoning to do so. With Proof Blocks, I get 

the skeleton and concrete wording given to me so I can 

focus on applying theorems and having a coherent train 

of thought.

Another student gave more insight into why they felt that 

Proof Blocks were easier than written proofs, a sentiment that 

most students seemed to share based on the Likert scale data:

I think they’re much easier than written proofs because 

of how much information the problem gives. There were 

a lot of proof block questions that I would have no clue 

how to do as a written proof but I got full credit on them 

through simple process of elimination. For example, some 

proofs have multiple sets of “consider” where you pick the 

function f and corresponding next steps based on which 

function was picked. It’s very easy to tell which blocks 

go with which “set” of steps go together, which effectively 

makes the question multiple choice (with fewer choices) 

because the last step of the proof is obvious.

7.0 LIMITATIONS

The primary limitation of our study is the fact that our data set 

allows us only to answer certain questions about Proof Blocks 

problems and not others. For example, we are able to make a 

strong claim that Proof Blocks problems function well as test 

questions, assessing student knowledge of discrete mathemat-

ics in an accurate and useful way, but we are not yet able to 

Figure 7: Responses to the Likert scale questions on the survey. Notable highlights of the survey are that no students disagreed 
that the user interface was easy to use, 71% felt that Proof Blocks accurately represented their understanding of how to write 
proofs (versus 75% for written proofs), and 57% felt that the assignment of partial credit for Proof Blocks problems was fair 
(versus 63% for written proofs).
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9.0 CONCLUSION

We have shown that Proof Blocks problems have many proper-

ties that instructors desire when writing tests. First, they have 

high discrimination and thus provide a substantial amount of 

information about student knowledge—comparable to written 

proofs. They are also easier than written proof problems, and 

thus may be appropriate for scaffolding students from content 

knowledge to writing proofs. Proof Blocks decrease the grading 

burden on course staff, allowing more time for office hours and 

other activities that help students learn. Furthermore, students 

felt that the Proof Blocks interface was easy to use, that the 

questions accurately represented their understanding of how to 

write proofs—almost as well as actually writing proofs.  
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