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Abstract—Joint communications and radar (JCR), which use

the same waveform for both functions, provide an efficient

scheme of spectrum access and find various applications in

practice such as autonomous driving. A convenient signaling

framework is the orthogonal frequency-division multiplexing

and multi-in-multi-out (OFDM-MIMO) structure, which cor-

responds to the spatial-frequency spectrum resulted from high-

dimensional Fourier transform. The key challenge of JCR is

how to resolve the interest conflict between communications

and radar sensing, when they share the same waveform in an

inseparable manner. The corresponding trade-off is formulated

as constrained optimization problems for the cases of analog

and digital beamformings. Numerical results show that the

proposed schemes are effective in the spatial-frequency spectrum

management and achieve good performance trade-offs between

communications and radar sensing.

I. INTRODUCTION

Communications and radar are two major applications
of electromagnetic (EM) waves. In the history, they were
developed, designed and operated independently, although
they share many common characteristics and benefit from
the design principles of each other. In recent years, due
to the congestion of frequency spectrum, particularly in
the sub-6GHz band, there have been significant studies on
the integration of communications and radar. One effective
approach is independent operation with the mitigation of
mutual interference for co-existence. A more efficient scheme
is the dual-function radar and communications (DFRC) [1]–
[3], in which communication and radar signals are linearly
superimposed to each other and can be separated in time
(time multiplexing), frequency (frequency multiplexing), or
space (beamforming). In this paper, we consider a tighter
integration, called joint communications and radar (JCR),
in which the two functions share the same waveform in
an inseparable manner (namely any piece of radio resource
is not dedicated to a single function). A simple illustrative
example is given as follows: a JCR transceiver sends out
EM waves, over which the data packets are modulated; the
communication receiver intercepts the EM wave through its
aperture and then decodes the information; meanwhile, the
EM waves reflected by targets are received by the JCR

transceiver and used for inferring the information of the
targets. The two functions are realized in the forward and
backward propagations of the same EM wave.

For integrating communications and radar in the same hard-
ware and waveform, it is beneficial to incorporate common
signaling techniques. Although the frequency modulation
continuous waveform (FMCW) is popular in modern radar
systems, it is difficult to embed high-throughput data in the
FMCW waveform. A better scheme is to use the signaling
framework of orthogonal frequency -division multiplexing
(OFDM) plus multi-in-multi-output (MIMO), which have
been studied in both communications and radar. In this
paper, we also propose to use the framework of Fourier
transform to analyze and design the OFDM-MIMO JCR,
namely exploiting the Fourier transform (thus the spatial-
frequency spectrum) relationship between the source charge
and generated fields.

A critical step for the design of JCR is to identify the
conflict between communications and radar, which results in
the corresponding performance trade-off. In this paper, we
focus on the following two conflicts that exist in systems
with analog and digital beamformings, respectively:

• Conflicting preference on power spectral density (PSD):
The performances of communications and radar ranging
are given by [4], [5]
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width, C is the communication channel capacity, E is
the pulse energy, N0 is the noise PSD, B is the frequency
band, �d is the ranging error, c is the light speed, and
S(f) is the signal PSD. Then, in frequency-flat channels,
communications prefer a uniform PSD, while radar likes
a PSD with more power in the higher frequency band
(as FMCW radar does). A trade-off is needed between
the preferences of communications and radar.

• Conflicting preference on signal subspaces: For the dig-
ital beamforming case, communications desire to place



power in the subspaces of greater eigenvalue of the
channel matrix; meanwhile, multi-target radar prefers to
enhance the signature vectors of different targets. The
allocation of power over the subspaces needs to be Pareto
efficient1 for the two objectives.

The remainder of this paper is organized as follows. The
researches related to this paper are introduced and compared
in Section II. The system model and Fourier framework are
introduced in Section III. Then, the waveforms are optimized
in the contexts of analog and digital beamformings, in Sec-
tions IV and V, respectively. The corresponding numerical
results are provided in Section VI. Finally the conclusions
are drawn in Section VII.

II. RELATED WORK

In this section, we introduce the existing studies related
to this paper. Comprehensive surveys on the coexistence or
DFRC of communications and radar can be found in [1], [2],
[7], [8]. Waveform design has been a long-lasting research
topic in radar systems [9], which becomes a major issue
in JCR. In many existing studies, the DFRC waveform is
sent by the same hardware using a linear superimposition of
traditional communication and radar signals, which can be
separated by time, frequency or space. Although the spatial
separation of the two functions via beamforming [1]–[3]
achieves higher spectral efficiency than the time/frequency
separation, due to the reuse of the frequency, the mutual
interference of communication and radar beams is still sig-
nificant in practice [10], [11]. There are some nonlinear
and inseparable designs of shared waveform: the fractional
Fourier transform is employed for the waveform design [12];
in the millimeter wave band, the joint waveform design
has been analyzed from the signal processing perspective
in [13]. However, these studies did not exploit the spatial-
frequency spectrum, and failed to analyze the conflict between
communications and radar.

III. SYSTEM MODEL

In this section, we introduce the system model used in
this paper. In particular, we adopt the Fourier transform
relationship between the source and EM field, which will be
used in the subsequent sections.

A. System

We consider a JCR transceiver, whose center is set as the
coordinate origin. The JCR transceiver is equipped with N
antennas, whose positions are not specified unless mentioned
otherwise. We assume that a multi-carrier structure, the same
as in OFDM systems, is used for the transmit waveform. The
subcarrier frequencies are given by fk = f0 + (k � 1)�f ,

1Pareto efficiency, or Pareto optimality, is a state at which resources cannot
be reallocated to make one individual better off without making at least one
individual worse off [6].

k = 1, ...,K, where f0 is the initial frequency, �f is the spac-
ing of subcarriers, and K is the number of subcarriers. The
corresponding wavenumbers are denoted by {ki}i=1,...,K .
The time is slotted; within each time slot the baseband signals
can be considered as constants. We denote by Xnk(t) the
complex baseband signal sent at the k-th subcarrier and the
n-th antenna at time slot t. The complex waveform within
one OFDM symbol period is given by

sn(t) =
KX

k=1

Xnk exp(j(2⇡fkt+ �kn)), (2)

where �kn is the corresponding phase. We assume that
{Xnk}nk are quadrature amplitude modulation (QAM) sym-
bols. The following two cases of spatial processing will be
discussed in this paper:

• Analog beamforming: Each antenna sends the same
baseband signal with shifted phases, namely Xnk =
Xkej�n .

• Digital beamforming: Different antennas may have arbi-
trary values of Xnk.

B. Fourier Framework

The Fourier transform relationship between the source
charges and the corresponding EM fields is of key importance
in the development of radar imaging. We adopt this frame-
work and provide a brief introduction subsequently. Consider
a region ⌦ of source charges harmonically oscillating with
frequency f . The origin is within ⌦. The charge density
at position r 2 ⌦ is denoted by ⇢(r), which is complex.
Consider the field at position r

0, which is far away from the
source charges such that the field is a far field. Under the
assumption of far field, the field is determined by the Fresnel
approximation (Chapter 4.2 in [14])

E(r0) ⇡ e�jk|r0|

kr0k2

Z

⌦
⇢(r)e�jkr0·rdr, (3)

where k is the wavenumber of the EM wave.
We define the wavevector k0 = kr0 and define the normal-

ized field x as

x(k0) = E(r0)ejk|r
0|kr0k2. (4)

By assuming that the approximation in (3) is exact, we have

x(k0) =

Z

⌦
⇢(r)e�jkk0·rdr, (5)

which indicates that the normalized far field and the source
charge form a Fourier transform pair.
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Fig. 1. An illustration of the spatial-frequency spectrum

IV. FIELD OPTIMIZATION: ANALOG BEAMFORMING

In this section, we discuss the case of analog beamforming,
namely the inputs to all antennas are the same waveform,
except for the amplitude and phase. Note that the beam-
forming in JCR has been discussed in [15]. In a contrast,
communications and radar use different waveforms and are
separated by distinct beams in [15], while the functions of
communications and radar are inseparable in our proposed
waveforms.

A. Fourier Formualtion

We first assume a continuous distribution ⇢i(·) of charges
with harmonic oscillating frequency fi in the region ⌦ of
the JCR transceiver. The continuous charge distribution can
then be approximated by multiple transmit antennas as spatial
samples. Note that there are K distributions {⇢i}i=1,...,K ,
each corresponding to a subcarrier. Then, according to the
Fourier relationship in (6), the field at wavevector ki is given
by

xi(ki) = F(⇢i)(ki), (6)

where F denotes the Fourier transform. Therefore, the fields
resulted from the transmitted signal can be represented by
a K-fold field {xi(r)}i=1,...,K . Now, we consider only the
fields on the unit circle. Hence, the field is a function of the
angle and frequency (wavenumber). The K-fold field, called
the spatial-frequency spectrum, can be represented by the 2-
dimensional lattice illustrated in Fig. 1. Each dot represents
the field associated with the corresponding direction and
wavenumber.

B. Waveform Design

For simplicity, we assume a communication beam and a
radar sensing beam, as illustrated in Fig. 1. Moreover, we
consider only the task of ranging for radar sensing. Then, the
conflict between communications and radar consists of the
power split and the different preferences of PSD.

1) Fixed Power Allocation: We first fix the power alloca-
tions to radar and communications, denoted by P1 and P2,
respectively, and consider the two functions as two agents,
whose utility functions are given by the sum channel capacity

Uc(P1, P2,x) =
KX

k=1

log
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where {xk}i=k,...,K are the power proportions on the subcar-
riers, {gk}k=1,...,K are the channel gains of the subcarriers
and N0 is the noise power, and the approximated effective
bandwidth (see Eq. (1)) of radar ranging

Ur(P1, P2,x) = P1

KX

k=1

f2
k
xk, (8)

respectively, subject to the constraints P1 + P2 = P ,P
K

k=1 xk = 1, and Pi, xk � 0, i = 1, 2, k = 1, ...,K.
Then, we optimize the following linear combination:

max
x

aUc(P1, P2,x) + (1� a)Ur(P1, P2,x), (9)

where 0  a  1 is a weighting factor. By taking derivative
with respect to xk and consider the constraints, we have

aP1f
2
k
+

1� a

xk + N0
gkP2

= �0 + �k, (10)

where �0 is the Lagrange multiplier for the constraint of total
power, and �k is that of the constraint xk � 0. When xk > 0
and �k = 0, we have

xk =
1� a

(�0 � aP1f2
k
)
� N0

gkP2
. (11)

When 1�a

�0�aP1f
2
k

 N0
gkP2

, we have xk = 0. Thus, we
observe that the optimal solution tends to allocate more power
to xk for greater k (namely higher frequency subcarrier).
The preference is determined by the weighting factor a.
When a = 0, the solution is the standard water-filling in
communications.

We notice that (11) is similar to the conventional water-
filling in multi-channel communications, except that the water
surface increases with the frequency, as illustrated in Fig. 2.

2) Pareto Optimum: Recall that we have fixed the powers
P1, P2 and the weighting factor a. However, it is not
necessary for an arbitrary combination (P1, P2, a) and the
corresponding optimal {xk}k=1,...,K to be a Pareto optimum.
We also need to check P1 and P2. Taking derivative for (9)
with respect to P1 and P2, we have the equilibrium condition
for P1:

a
KX

k=1

xkf
2
k
= �0, (12)
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and the equilibrium condition for P2:

(1� a)
KX
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gkxk

N0

1 + gkxkP2

N0

= �0, (13)

where �0 is the Lagrange multiplier of the constraint P1 +
P2 = P . Therefore, the selection of weighting factor a
should guarantee that the left hand sides of (12) and (13) are
identical. We notice that the left hand side of (12) increases
linearly with a and equals 0 when a = 0, while that of (13)
equals 0 when a = 1. Therefore, there must exists an a (not
necessarily unique) such that (12) and (13) are identical, thus
guaranteeing the existence Pareto optimum.

It is unclear whether the left hand side of (13) decreases
monotonically with a; if yes, the value of a making (12) and
(13) identical is unique. To explore this, we rewrite (10) as
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Substituting (11) into the right hand side of (14), we obtain
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as an alternative expression for the left hand side of (13).
Taking derivative with respect to a, we have

d
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The derivative d�0
da

is difficult to evaluate. However, we can
verify that it is bounded. Therefore, for sufficiently small N0,

(16) is negative, thus making (13) decrease monotonically
with a. Hence, for each pair P1 and P2, there is a unique
a such that P1, P2 and the corresponding {xk} are Pareto
optimal, when the SNR is sufficiently high.

V. DIGITAL BEAMFORMING: MULTIPLE TARGETS

In this section we consider the case of sensing multiple
targets, which are detected using the signature waveform
of digital beamforming, while still transmitting to a single
communication receiver. The performance of MIMO radar
has been intensively studied. In this paper, we focus on the
identifiability of multiple targets due to the MIMO structure,
which has been studied in [16], [17]. This can be compared
with the multiplexing in MIMO communications by providing
independent channels. Due to the different linear structures
in the communication and radar channels, the corresponding
trade-off will be analyzed and achieved.

A. Signal Subspace

For the discrete antenna arrays and point target, the source
is discrete in the space, thus resulting in the linear relationship
between the transmitted signal and received signal (as N -
dimensional vectors) at subcarrier i:

si =
MX

j=1

 jSi(tj)wi, (17)

where M (the number of targets),  j (the scattering co-
efficient of target j), w is the vector of signals at the N
transmitters and tj (position of target j) are unknown, and
the signature matrix Si(tj) is given by

Si(tj) = ui(tj)v
H

i
(tj), (18)

where vi(tj) is the linear functional that maps the illumi-
nation source to the field at position tj , while ui(tj) is the
linear functional that maps from the field at position tj to the
received signal at the antenna.

When the signal reception reuses the transmit antennas, or
the receive antennas are close to the transmit antennas, we
have ui = vi. We call them signature waveforms. We further
rewrite (17) as

si = S̄ixi, i = 1, ...,K, (19)

where Si is the signature matrix for subcarrier i:

S̄i =
MX

j=1

Si(tj) =
MX

j=1

 jv
H

i
(tj)vi(tj), (20)

where we assume M < N . Notice that (20) is the spectral
decomposition of S̄i, where  j is the eigenvalue and vi(tj)
is the orthogonal eigenvectors.

From the above analysis, we realize that, for each subcar-
rier i, the targets form a subspace {vi(tj)}j=1,..,M . To en-
hance the performance of detecting the targets, it is desirable



to place the transmitted signal in the desired subspaces. When
there are significantly many reflectors in the communication
channel, such that the communication channel matrix is of
high rank, the covariance matrix of transmit signal vector
w needs to be designed using water-filling for the decoupled
channels obtained by the singular value decomposition (SVD)
of the channel matrix. More conflict between communications
and radar could be incurred when the communication channel
matrix is of low rank: the traditional water-filling will allocate
power to a low-dimensional subspace, thus possibly nulling
the signature vectors of many targets.

B. Power Allocation

Now we address the challenge of resolving the conflict in
the power allocation in different signal subspaces.

1) Single Carrier Case: For a single carrier, we denote the
signature vectors of targets by v1, ..., vM , where the subscript
is used to indicate the target. The orthonormal eigenvectors
of HH

T , where H is the communication channel matrix, are
denoted by {zl}l=1,...,N , while the corresponding eigenvalues
are {gi}i=1,...,N . Note that some gi’s could be zero, if the rank
of H is less than N .

For the single carrier case, we formulate the problem of
power allocation as

max
P1,...,PN

NX
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P1 + P2 + ...+ PN = P, (21)

where Vij = |vT

i
zj |2, Pi is the power placed on the singular

vector zi, and � is the performance threshold for the radar
sensing. The solution is given by

Pj =
1

�c +
P

M

i=1 �
r

i
Vij + �0

j

� N0

gj
, (22)

when Pj � 0, where �c, �r
i

 0 and �0
j

 0 are the
Langrange multipliers for the total power constraint, the
radar performance constraint and the nonnegative power,
respectively. When the powers {Pi}i=1,...,N are obtained,
the powers {Qi}i=1,...,N allocated to each antenna can be
obtained from p = Zq, where p and q are the vectors of
powers allocated to different singular vectors and different
antennas, respectively, and Z = (z1, ..., zN ).

To obtain the Lagrange multipliers and thus the solution in
(22), we begin from pure water filling for the communications
by setting �r

i
to be zero. Then, we increase the value of �r

i

for the target whose performance deficiency is the maximal.
This iteration will be repeated until convergence.
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Fig. 3. Power allocation for different trade-offs in analog beamforming

2) Multicarrier Case: The above single-carrier case can
be easily extended to multicarrier case. We simply have
MN signature vectors and NK decoupled channels. The
same optimization can be formulated for optimizing the NK
transmit powers. The details of formulation are omitted due
to the limited space.

VI. NUMERICAL RESULTS

In this section, we provide numerical simulation results for
demonstrating the proposed algorithms.

A. Analog Beamforming

We first implemented the proposed algorithm of finding
Pareto front. We consider the 60GHz band with 256 subcar-
riers and spacing of 1MHz. The noise PSD is -174dBm/Hz.
We assume that both the target and communication receiver
are 50 meters away. The path loss exponent is set to 3.5.
The pulse duration is set to 100us. The transmit power is
assumed to be 20mW. For simplicity, we assume that the
communication channel is frequency-flat, namely the channel
gains are identical for all subcarriers.

Figure 3 shows the power spectrum obtained from the
water-filling, with P1

P
= 0.15 and P1

P
= 0.85. The correspond-

ing weighting factor a is obtained at the Pareto optimum. We
observe that the PSD is much flatter when P1 is small, namely
more emphasis is placed on communications, thus tending to
the constant PSD desired by the communication task. Another
observation is that, in both typical situations, the PSDs are
approximately linear.

Figure 4 shows the trade-off curve between communica-
tions (channel capacity) and radar ranging (standard deviation
of ranging error). Since the trade-off curve is the boundary of
the feasible region of JCR, only the performance metrics in
the right side of the curve can be achieved. We also observe
that the communication performance saturates when the radar
ranging error becomes substantial. The same saturation is
observed for the radar ranging, when the communication
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capacity significantly drops. Therefore, a reasonable operation
region is the middle part of the curve, which is efficient for
both communications and radar ranging.

B. Digital Beamforming

We also tested the case of multiple targets and sufficient
reflectors in the communication channel, for the digital beam-
forming case. 16 transmit antennas are considered. A single
carrier of 60GHz is assumed. We assume that the channel
gains of the singular vectors of H satisfy the complex Gaus-
sian distribution, and the targets are uniformly distributed on a
circle of radius 100m. We consider a unit transmit power and
assume that the received SNR is 5dB. In the optimization
problem in (21), we set the threshold � of radar received
power to be 0.1.

In Fig. 5, we show the comparison between the power
allocations (to the singular vectors of the channel matrix
H) for pure communications and JCR, respectively, in one
realization of the communication channel and target positions.
The indices of singular vectors are sorted in the order of
increasing eigenvalues (channel power gains). We observe
that the allocated power for pure communications increases

with the index (thus the channel power gain) due to the water-
filling. When radar sensing is taken into account, the power
allocation is significantly changed. Particularly, in singular
vector 4, the power allocation is substantially increased, due
to the requirement of power along the signature vectors of
the radar targets.

VII. CONCLUSIONS

In this paper, we have discussed JCR with inseparable
waveforms, using OFDM-MIMO. A Fourier transform frame-
work has been employed for the analysis and design. We have
studied the power allocations in the contexts of analog and
digital beamformings, respectively. Numerical simulations
have been carried out for evaluating the performances and
disclosing interesting discoveries in the proposed algorithms.
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