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Abstract—In joint communications and sensing (JCS), the same
electromagnetic (EM) wave is used for both functions, in the
forward (incident) and backward (scattered) channels, respectively.
The communication channel is determined by scatterers (also as
sensing targets), thus coupling the performances of communica-
tions and sensing. More scattering targets generate more degrees of
freedom (DoFs) for communications, thus improving the channel
capacity given sufficient antennas. Meanwhile, they also result in
more sensing errors due to the increasing complexity of EM field.
The complexity analysis of EM field, in terms of DoFs, is applied
to analyze the trade-off between communications and sensing, as
the complexity of scattering targets increases. Numerical results
are calculated to demonstrate the performance trade-off between
communications and sensing.

I. INTRODUCTION

The technology of joint communications and sensing (JCS)
has received substantial attentions in recent years, due to its
expected improvement of spectral and power efficiencies [1]–
[5]. As illustrated in Fig. 1, a JCS transceiver sends an electro-
magnetic (EM) wave, which is modulated by communication
data. When there is no significant scatterer or obstacle, the
EM wave arrives directly at a communication receiver and
thus delivers the information. No detection of scattered EM
wave at the JCS transceiver (which is also equipped with
receive antennas) implies the nonexistence of scattering targets.
When there are significant scatterers, the incident EM wave is
scattered; a portion of the scattered wave (possibly in addition
to the line-of-sight (LOS) wave) is received by the communica-
tion receiver, thus accomplishing the task of communications.
Meanwhile another portion of the scattered wave is received by
the JCS transceiver, from which the information of scatterers
(such as distance, velocity and reflectivity) can be inferred,
thus completing the task of radar sensing. Since the same
waveform is used for both functions, the spectrum bandwidth
is substantially saved, which benefits the development of cyber
physical systems (CPSs) that need communications and sensing
simultaneously.

A major concern in JCS is the interdependency between com-
munications and sensing. In particular, it is critical to identify
their conflict of interests, from various viewpoints such as the
different power spectral densities (PSDs) (studied by the author
in [6]) and the waveform uncertainty (studied by the author
in [7]). In this paper, we focus on the performance conflict
due to the complexity of the scatterers, assuming that both the
JCS transceiver and communication receiver are equipped with
antenna arrays. On one hand, more scatterers tend to generate
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Fig. 1. System setup: scatters and receiving manifolds.

a higher rank for the communication channel matrix, which
benefits communications; on the other hand, more scatterers,
as radar sensing targets, make the received signal at the JCS
transceiver more complex, thus increasing the mean square error
(MSE) of sensing.

To study the complexity of the EM field generated by
scatterers, we adopt the framework of degrees of freedom
(DoFs) for harmonic EM field subject to scatterings [8], [9].
The DoF of EM field essentially describes the complexity that
the EM field could result in over a given manifold, in terms of
image reconstruction errors using a set of functions with limited
spatial bandwidth. The higher the DoF is, the more information
the communication could deliver through more independent
channels, while more sensing errors could be incurred due to
the limited number of antennas at the JCS transceiver. Existing
studies have shown that the DoF of EM field is dependent on
the spatial radius of the scatterers [8], [9]. Therefore, we can
leverage the existing theory of EM field DoF, with substantial
modifications for the context of JCS, to study the trade-off
between communications and sensing due to the complexity of
the environmental scattering. To our best knowledge, this is the
first study on the conflict between communications and sensing
in JCS from the viewpoint of EM field DoF.

The remainder of the paper is organized as follows. The
related work, including the state-of-the-art of JCS and the theory
of EM field DoF, is introduced in Section II. The system model
and problem formulation are given in Section III. The EM field
DoF and the performance trade-off are analyzed in Sections IV
and V, respectively. Numerical results are provided in Section
VI, while conclusions are given in Section VII.



II. RELATED WORK

In this section, we introduce related studies.

A. JCS: State-of-the-Art

Comprehensive surveys for the JCS technology can be found
in [1]–[5]. There have not been many studied on the theoretical
aspect of JCS. In [10], information theoretic analysis is carried
out similarly to the rate-distortion theory. An EM field analysis
for JCS has been carried by the author in [11], which uses
the eigen-decomposition of EM fields, instead of the DoF of
fields. Most studies have been focused on the JCS algorithms,
in particular the co-existence of communication and sensing,
such as the spatial separation via beamforming [2], [4], [5] the
time/frequency separation [12], [13], as well as nonlinear and
inseparable integration [14], [15].

B. DoF of EM Field

We briefly introduce the theory of DoF in scattered EM field
[8], [9]. Consider an EM field of wavenumber �, with a set of
scatterers all within a ball B of radius ↵. The scattered field
E is measured over a manifold M. The DoF of the scattered
field means the complexity of the possible EM fields over the
manifold M. Denote by Bw the set of functions on M with
spatial bandwidth w. Then, we consider the error of using the
functions in Bw to represent the field over M:

�w = sup
E

inf
B2Bw

kE�Bk, (1)

namely the maximum error for the representation using Bw.
The major conclusions in [8] consist of

• There exists a critical bandwidth W0 ⇡ ↵�.
• For w < W0, �w ⇡ 1.
• For w > W0, �w is very small, namely

�w ⇡
exp

⇣
� 2

3�
2
3

⌘

p
2⇡�

3
2

, where � ⇡ w �W0
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The DoF analysis of EM field is then applied to multi-input-
multi-output (MIMO) communications [16]. Then, the relation
between the DoF theory of EM field and information theory
is identified in [17]. The conclusions are used to analyze the
capacity of wireless networks in [18], which results in a physics-
based scaling law of data throughput. However, it has not been
applied in the context of JCS.

III. SYSTEM MODEL

For simplicity of analysis, we omit the impact of noise by
assuming high signal-to-noise ratio (SNR), thus focusing on
the impact of DoF. Different from the setup in the theory of
EM field DoF, it is assumed that a set of scatterers within
N disjoint balls {Bn}n=1,...,N of radius {↵n}n=1,...,N . This
change of setup is more suitable for the context of JCS, since
the significant targets of sensing are usually sparse. Therefore,
the purpose of sensing is to sense or image the significant targets
(as scatterers). Moreover, the targets could be widely dispersed,
thus making the radius ↵ in the DoF analysis very large and
meaningless. We further assume that all the N balls are within
a ball B with radius ↵. The center of B is defined as the origin
of the coordinate system.

We consider two receiver manifolds Mc and Ms in Fig. 1,
corresponding to communication and sensing, respectively. We
ignore the details of the incident EM wave emitted by the JCS
transmitter and thus consider only the scattered waves. The field
at position r is given by

E(r) =
NX

n=1

Z

Bn

G(r, r0)J(r0)dr0, (3)

where J is the source current density at the scatterers and G is
the Green function of EM field, which is given by [8], [9]

G(r, r0) =
�j!µ

4⇡R
exp(j�(r �R)), (4)

where ! is the radian frequency, µ is the magnetic perme-
ability, R = kr � r0k is the distance, r = krk and � is
the wavenumber. Notice that, compared with traditional Green
function G(r, r0) = �j!µ

4⇡R exp(�j�R), there is an extra term
exp(j�r) in (4). The purpose is to compensate the factor
exp(�j�R) when R ! 1, which makes the subsequent
analysis convenient.

We assume that Ns and Nc antennas are used at the receivers
of sensing and communications, respectively. The correspond-
ing spatial densities of antennas (in terms of antenna number
per square meter) are denoted by ⇢s and ⇢c, respectively.

IV. EM FIELD DOF ANALYSIS

In this section, we analyze the DoF of the EM field with
JCS, based on which we obtain bounds for the sensing error.

A. Spatial Bandwidth

We focus on the sensing manifold Ms and assume that Ms

is one-dimensional for the simplicity of analysis, without loss
of generality. As shown in [8], the extension to practical 2-
or 3-dimension manifolds is straightforward. Similarly to the
analysis in [8], we consider the set of signals Bw of spatial
bandwidth w. Each point r is parameterized by the curve length
s normalized by the minimal distance from the origin to Ms

(denoted by rm). The EM field on Ms is then denoted by E(s).
Since the spatial bandwidth of Bs is limited, the estimated field
needs to be projected into Bw, thus resulting in the spatial-
spectrum-truncated measurements:

Ew =
w

⇡
sinc(ws) ⇤ E(s), (5)

where the sinc function is defined as sin(x)/x and stems from
the Fourier transform of the rectangular function, and ⇤ is
convolution. Therefore, the projected field estimation Ew is
given by

Ew(s) =
NX

n=1

Z

Bn

Ḡ(s, r0)J(r0)dr0, (6)

where the modified Green function is given by

Ḡ(s, r0) =
w

⇡
sinc(ws) ⇤G(s, r0). (7)

Hence, the measurement error �E(s) = Ew(s)�E(s) can be
written as the following convolution form:

�E(s) =
NX

n=1

Z

Bn

�G(s, r0)J(r0)dr0, (8)



where �G = Gw � G is the error Green function. It is given
by (ref. Eq. (16) in [8])

�G = � !µ

8⇡2

Z

C+

exp (j (⇠, r0) + jw(⇠ � s)))

(⇠ � s)R(⇠, r0)
d⇠

+
!µ

8⇡2

Z

C�

exp (j (⇠, r0)� jw(⇠ � s)))

(⇠ � s)R(⇠, r0)
d⇠, (9)

where C
+ is the path of increasing s and C

� is the opposite,
and the phase factor  in the Green function is given by

 (s, r0) = �(r(s)�R(s, r0)). (10)

According to the Cauchy-Schwartz inequality, we have

k�Ek2 
NX

n=1

Pn max
r02Bn

✓Z 1

�1
|�G(s, r0)|2ds

◆ 1
2

(11)

where Pn =
⇣R

Bn
|J(r)|2dr0

⌘ 1
2

is the root mean square (RMS)
of the current density in the n-th ball. Then the challenge is how
to bound the integral of �G.

Suppose that �↵n is large for every n, namely the size of each
scatter is of a higher magnitude of order than the wavelength,
which is obviously true for typical wireless communications
(e.g., the wavelength is 5mm for 60GHz millimeter wave).
Therefore, the maximum of the integral

R1
�1 |�G(s, r0)|2ds

can be obtained from the Laplace method [19]. To this end, we
compute the stationary points for the phase factor j (⇠, r0) ±
jw(⇠ � s)) in (9), which is given by

±w +
d

d⇠
 (⇠, r0) = ±w + �

d

d⇠
(r(⇠)�R(⇠, r0)) = 0. (12)

We define the spatial bandwidth w0, which is a function of r0:

w0 = max
⇠

����
d

d⇠
 (⇠, r0)

���� . (13)

Then, when w > w0, �G drops quickly as w increases; while
�G is large when w < w0, which implies large measurement
errors. Therefore, the signal spacial bandwidth w is required
to be less than the critical bandwidth w0. Following the same
derivation in [8] for each n, we obtain the upper bound for the
error k�Ek2:

k�Ek2  !µ

4⇡d

NX

n=1

����
Z

B
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where Wn = maxr02Bn w0(r0), d = mins,r0 R(s, r0) and

�m,n = min
r02Bn
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(w � w0(r
0)), (15)

where the function  is defined in (10),
...
 is the third order

derivative of  , and ⇠0 is the solution to (12).
For small errors in (14), we require w � W , where W =

maxn Wn. Therefore, a major challenge is how to calculate Wn

for each n. Note that in [19], W is calculated for a single ball
B. For the case of multiple balls of scatters in this paper, we
need modifications in the analysis. To this end, we evaluate the
derivative of  (dependent on r0) in Bn in (13), which is given
by

 ̇n = �rn(r̂� R̂) · v̂, (16)
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R

!
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Fig. 2. Geometry for deriving (17).

where rn is the closest distance from the ball Bn to Ms, r̂ and
R̂ are the unit direction vectors of r and R, respectively, and
v̂ is the unit vector of tangent at r0.

For simplicity, we assume that Ms is a straight line, which
is reasonable for linear antenna arrays. The corresponding
equation is given by r = r0 + vt, where t is the arc length
parameter and ⇠ = rmt. Moreover, we consider only the center
of Bn, denoted by r0

n
, by assuming that Bn is sufficiently small.

We further assume the far field case, namely ||rk and kRk are
much greater than the size of Ms. Then, we have the following
approximation based on (16) and the geometry in Fig. 2:

 ̇n ⇡ �rm sin ✓r̂0
n
· v̂ ⇡ �r0

n
· v̂  �↵. (17)

Therefore we have

W = max
n

�r0
n
· v̂  �↵. (18)

B. Field Measurement Error

Given the spatial bandwidth analysis, we obtain the following
proposition for an upper bound of the field measurement
error, which is incurred by the limited bandwidth of function
representation.

Proposition 1. Given the above system setup and definitions,

the 2-norm of the field measurement error over Ms is upper

bounded by

k�Ek2  !µ

4⇡d

NX

n=1

����
Z

B

|J(r0)|2dr0
����

1
2 exp

⇣
� 2

3�
3
2
m,n

⌘

2(w �W )
, (19)

C. Source Estimation Error

Now, we analyze the sensing error, namely the error of
estimating the source current densities J at the scatterers, based
on the measurement error analysis. For simplicity, we assume
that all scatters are located within a ball B (N = 1).

1) Finite Expansion: For simplicity, we consider a single
scatterer within a ball B. The analysis follows the following
argument. If a current density J0(r0), r0 2 B, results in

Z

B

G(r, r0)J0(r
0)dr0 = 0, 8r 2 Ms, (20)

namely the current density J0 generates a zero field over the
sensing manifold Ms, then the estimation error could be an
arbitrary multiple of J0, since
Z

B

G(r, r0)(J0(r
0) + J(r0))dr0 =

Z

B

G(r, r0)J(r0)dr0, (21)

namely the radar sensing cannot distinguish J0 + J and J

using the limited measurement over Ms. Therefore, the worst
estimation error could be arbitrarily large.



Fig. 3. Examples of spherical harmonic functions.

To bound the estimation error, we need the following two
stages of analysis: (1) Decompose the Green function into
patterns, namely carrying out an eigen decomposition. (2) Limit
the source J to a subset of the patterns, thus making (20)
impossible.

To this end, we consider the following spherical decomposi-
tion of Green function [20]:

G(r, r0) = �jk

1X

l=0

lX

m=�l

jl(kr<)h
+
l
(kr>)Y

m

l
(r̂)Y m⇤

l
(r̂0), (22)

where the notation is as follows:
• k = 2⇡

�
is the wavenumber. r = |r|, r̂ = r

r
, r< =

min{r, r0}, r> = max{r, r0}.
• jl is the l-th order spherical Bessel function given by

jl(kr) =
p

⇡

2krJl+ 1
2
(kr), where J

l+ 1
2

is the ordinary
Bessel function.

• hl is the spherical Hankel function and is defined as
hl(z) = jl(z) + jnl(z), where nl(z) is the spherical Neu-
mann function and is defined as nl(kr) =

p
⇡

2krNl+ 1
2
(kr)

(N is the ordinary Neumann function).
• Y

m

l
is the spherical harmonics function, defined as

Y
m

l
(✓,�)

= (�1)m

s
2l + 1

4⇡

(l �m)!

(l +m)!
P

m

l
(cos ✓)ekm�

, (23)

where P
m

l
is the Legendre polynomial. Examples of the

spherical harmonic functions are shown in Fig. 3, with
l = 0, ..., 3 and 0  m  l. We observe that the spacial
pattern becomes more complex when l increases.

For simplicity of analysis and without loss of generality, we
assume that Ms is a portion of spherical surface with constant
distance r to the origin. Moreover, we assume that directional
angle of Ms is within [✓1, ✓2] ⇥ [�1,�2]. We can rewrite the
Green function G(r, r0) as

G(r, r0) = G(✓,�, r0, ✓0,�0)

/
1X

l=0

lX

m=�l

jl(r
0)Y m

l
(✓,�)Y m⇤

l
(✓0,�0), (24)
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Fig. 4. Observable region and sensing manifold.

where (r0, ✓0,�0) is the polar coordinates of r0.
Due to the completeness of the family of spherical harmonics,

the current density J(r0) can also be expanded as the series
of spherical harmonics. As mentioned above, higher order
spherical harmonics mean more rapid change in the space. Due
to the smoothness of targets, it is reasonable to assume that the
order of spherical harmonics in J is limited to L with negligible
residual errors, where L can be determined using experiments.
Moreover, we assume that the currents are located on the sphere
surface. Hence, the current density can be written as

J(r0) =
LX

l=0

lX

m=�l

c
m

l
Y

m

l
(✓0,�0), (25)

where c
m

l
is the coefficient of the (l,m)-harmonics.

Since the spherical harmonics function is orthogonal, namely
(Eq. (3.31) in [20])

Z

B

Y
m

l
(✓,�)Y m

0⇤
l0 (✓,�)d✓d� = �l,l0�m,m0 , (26)

the integral in (3) is then simplified to

E(r) =
1X

l=0

lX

m=�l

jl(r
0)Y m

l
(✓,�)

⇥
1X

l0=0

l
0X

m0=�l0

c
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Z

B

Y
m⇤
l

(✓0,�0)Y m
0

l0 (✓0,�0)d✓0d�0

= jl(r
0)

LX

l=0

lX

m=�l

c
m

l
Y

m

l
(✓,�) = jl(r

0)J(r). (27)

An interesting observation is that the field E(r) is proportional
to the current density at the same direction, as illustrated in
Fig. 4. When L is infinite, we can only estimation the current
densities within the same angle range of the sensing manifold,
thus leaving unbounded errors beyond this range. Thanks to the
assumption of finitely many modes of spherical harmonics in
the source current density, we can use the observations E(r),
r 2 Ms, to estimate the finite dimensional mode coefficients
{cl

m
}l=0,...,L,m=�l,...,l and interpolate the directly observable

J(r0) over Ms to the entire sphere.



Meanwhile, we also notice that the expansion of G can also
be limited to the first L terms, namely

G(r, r0) /
LX

l=0

lX

m=�l

jl(r
0)Y m

l
(✓,�)Y m⇤

l
(✓0,�0), (28)

due to the limited modes of J (the higher order modes in G

cannot be triggered by the source).
2) Discretization and Conditioning: To this end, we consider

the samples of fields on Ms. When M measurements are taken
at positions {(✓m,�m)}m=1,...,M on Ms, we can rewrite (27)
in the matrix form:

e = Yc, (29)

where e = (E(✓1,�1), ..., E(✓M ,�M )), c = (c00, c
�1
1 , ..., c

L

L
)

and Yij = jl(r0)Y
m(j)
l(j) (✓i,�i), where l

2 +m = j.
According to the linear relationship between the errors of

current density and field measurement, denoted by �J and �E,
we have

Z

B

G(r, r0)Je(r
0)dr0 = �E(r), (30)

which implies the linear equation similar to (31):

ee = Yce, (31)

where the subscript e indicates the error in the estimation or
measurement. Therefore, we have

kcek
kck  (Y)keek, (32)

where (Y) = kY†kkYk is the generalized condition number
of Y and Y† is the generalized inverse. It is difficult to evaluate
the condition number (Y) analytically. Numerical results will
be shown in Section VI.

3) Bounds via Cauchy-Schwartz Inequalities: An alternative
approach to derive bounds for the sensing MSE is to leverage
the forward and inverse Cauchy-Schwartz Inequalities. Consider
r⇤ = argmaxr �E(r), namely the point at which the measure-
ment error is the maximal. Then, we have

Z

B

G(r⇤, r
0)�J(r0)dr0 = �E(r⇤). (33)

Using the Cauchy-Schwartz inequality, we have
Z

B

|G(r⇤, r
0)|2r0

Z

B

|�J(r0)|2dr0

�
����
Z

B

G(r⇤, r
0)�J(r0)

����
2

dr0 = |�E(r⇤)|2 . (34)

Therefore, we can obtain a lower bound for the estimation
error:

Z

B

|�J(r0)|2dr0 � |�E(r⇤)|2R
B
|G(r⇤, r0)|2r0

. (35)

For obtaining an upper bound, we consider the following
Pólya-Szegö’s inequality, as an inverse of the Cauchy-Schwartz
inequality.

Lemma 1. Consider continuous functions a and b defined over

a ball O. Define m1 = minx a(x), m2 = minx b(x), M1 =
maxx a(x), M2 = maxx b(x). Then we have

R
O
a
2(x)dx

R
O
b
2(x)dx

�R
O
a(x)b(x)dx

�2  1

4

 r
M1M2

m1m2
+

r
m1m2

M1M2

!2

. (36)

Given (36), we obtain the upper bound for the sensing MSE:
Z

B

|�J(r0)|2dr0  |�E(r⇤)|2R
B
|G(r⇤, r0)|2r0

⇥ 1

4

 r
M1M2

m1m2
+

r
m1m2

M1M2

!2

,(37)

where the constants M1, M2, m1 and m2 are obtained from
the EM field setup.

V. TRADE-OFF ANALYSIS

In this section, we summarize the performances of commu-
nications and sensing for different DoFs of EM fields, based
on which we derive the trade-off between communications and
sensing in JCS. For simplicity, we assume that all scatters are
located within a ball B.

It is assumed that the bandwidth of the EM field due to the
scatterers is W . Then, we have the following conclusions:

• Communications: The area of antenna array is given by
Nc
⇢c

for the communication receiver. Therefore, the DoF
of samples at the communication receive antenna array is
given by

DoF =

⇢
WNc
⇢c

, if W < ⇢c

Nc, if W � ⇢c
, (38)

since the spatial bandwidth W represents the spatial den-
sity of DoF and Nc/⇢c is the approximate area of the
communication manifold Mc.

• Sensing: When W > ⇢s, the measurement error at the
sensing manifold will be large, thus making large errors
in the field estimation of the scatterers. When W < ⇢s,
summarizing (32) and (14), we have

k�Jk2  !µ

4⇡d

����
Z

B

|J(r0)|2dr0
����

1
2 exp

⇣
� 2

3�
3
2
m,n

⌘

2(⇢s �W )
⇥ max(Y). (39)

Then, we denote by Je the upper bound of k�Jk2 in (39),
which satisfies Je =

C

⇢s�W
, where C is the constant given by

C =
!µ

8⇡d

����
Z

B

|J(r0)|2dr0
����

1
2

exp

✓
�2

3
�

3
2
m,n

◆
max(Y) (40)

We define D = DoF

Nc
, namely the communication DoF per

receive antenna. Then, summarizing (38) and (39), we have
8
<

:

C

Je
+D⇢c = ⇢s, if ⇢s, ⇢c � W

D = 1, if ⇢c < W

Je ! 1, if ⇢s < W

. (41)

When there are sufficiently many receive antennas, namely
⇢c � W , we observe that the trade-off between communications
and sensing is given by C

Je
+ D⇢c = ⇢s; i.e., when the DoF

of communications per antenna, namely D, increases, Je (the
upper bound of sensing error) also increases.
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VI. NUMERICAL RESULTS

In this section, we provide numerical results to illustrate the
analytic conclusions in the above discussion.

A. Condition Number

In Fig. 5, we plotted the condition number (Y) for different
angle ranges of sensing manifold Ms. We assume that Ms is an
arc whose angle ranges from 5 to 20 degrees. Different numbers
of antennas on Ms, ranging from 16 to 64, are considered.
The order of spherical harmonics is set to L = 3. Note that
the condition number (Y) is plotted in the dB scale. We
observe that the condition numbers are large, which means that
the sensing error of source currents over the scatterers is highly
sensitive to the measurement error at the sensing manifold Ms.
Therefore, more regularization conditions are needed for the
source current estimation.

B. Trade-off between Communications and Sensing

We plotted in Fig. 6 the trade-off curve between communi-
cations and sensing, based on (41). We assume that there are
sufficiently dense antennas, namely ⇢s, ⇢c � W . It is further
assumed that the antennas are placed with a half-wavelength
spacing. By assuming the 60GHz band, the antenna spacing is
2.5mm. Different values of the constant C in (40) are tested. We
observe the nonlinear increase of sensing MSE when the DoF of
communications becomes large (e.g., greater than 0.8), which

characterizes the conflict of interest between communications
and sensing in JCS.

VII. CONCLUSIONS

In this paper, we have analyzed the DoF of the EM field
of JCS. A higher DoF means more complex scatterers, thus
improving the number of orthogonal communication channels,
while increasing the difficulty of sensing. Therefore, a trade-
off in the EM field DoF has been identified between com-
munications and sensing, which has been characterized in an
analytic manner. We have used numerical results to illustrate
the corresponding trade-off. Our future research will be focused
on the randomness incurred by stochastic scatterers.
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