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Abstract— A hybrid filtered basis function (FBF) approach is
proposed in this paper for feedforward tracking control of linear
systems with unmodeled nonlinear dynamics. Unlike most
available tracking control techniques, the FBF approach is very
versatile; it is applicable to any type of linear system, regardless
of its underlying dynamics. The FBF approach expresses the
control input to a system as a linear combination of basis
functions with unknown coefficients. The basis functions are
forward filtered through a linear model of the system’s dynamics
and the unknown coefficients are selected such that tracking
error is minimized. The linear models used in existing
implementations of the FBF approach are typically physics-
based representations of the linear dynamics of a system. The
proposed hybrid FBF approach expands the application of the
FBF approach to systems with unmodeled nonlinearities by
learning from data. A hybrid model is formulated by combining
a physics-based model of the system’s linear dynamics with a
data-driven linear model that approximates the unmodeled
nonlinear dynamics. The hybrid model is used online in receding
horizon to compute optimal control commands that minimize
tracking errors. The proposed hybrid FBF approach is shown in
simulations on a model of a vibration-prone 3D printer to
improve tracking accuracy by up to 65.4%, compared to an
existing FBF approach that does not incorporate data.

I. INTRODUCTION

Tracking control is important in a wide range of automated
systems. It aims at forcing a system’s output to follow a
defined reference by minimizing the tracking error, i.e., the
error between the output and the reference. Tracking control
can be performed using either feedforward (FF) or feedback
(FB) approaches. Compared to FB approaches, which perform
compensation after measuring errors, FF methods have the
advantage of being able to pre-emptively cancel out the
tracking errors using the system’s model, and thus yield
theoretically zero tracking error.

Perfect FF tracking control can be achieved by designing
the controller to be the exact inverse of the system dynamics.
However, exact inversion of system dynamics is usually
problematic due to the uncancellable zeroes in the system
dynamics [1]-[3]. Therefore, various FF controllers have been
proposed in the literature to realize approximate model
inversion. They include the zero magnitude error tracking
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controller (ZMETC), zero phase error tracking controller
(ZPETC) [4], [5], extended bandwidth ZPETC [6], model
matching [7], and the filtered basis functions (FBF) approach
[81, [9], etc. Of the existing methods, the FBF approach stands
out because of its versatility. It can handle any linear dynamics
with excellent tracking performance [8]; it is also capable of
minimizing control effort and enhancing robustness by
choosing or designing different basis functions [10]-[12]. The
FBF approach expresses the control input as a linear
combination of basis functions with unknown coefficients.
The basis functions are forward filtered through a linear model
of the system’s dynamics, and the unknown coefficients are
selected such that tracking error is minimized [8]. A version of
FBF, named filtered B-spline (FBS), uses B-splines as the
basis to enable the implementation of the FBF approach in
small batches (via receding horizon) [9]. This reduces the
computational burden of the FBF approach and allows its
online implementation for tracking lengthy reference signals.
The FBS approach was implemented on a 3D printer in [9],
leading to significant reductions in vibration-induced tracking
errors. However, the existing FBF approaches, like other linear
FF controllers, cannot handle nonlinearity or other unmodeled
dynamics. The nonlinearity and unmodeled dynamics are
prevalent in practical applications, such as friction in 3D
printers. Hence, when applied to systems with significant
unmodeled nonlinearity, the performance of the FBF
controller degrades significantly.

With the growing availability of data in automated
systems, methods that combine physics-based and data-driven
(e.g., machine learning) approaches are gaining attention [13],
[14]. For example, low-cost accelerometers could be added to
the 3D printer studied in [9] to gather data online about its
vibration. When data is available, a common approach used in
tracking control is to tune or adapt the parameters of a linear
physics-based model online using the data [15]-[18].
However, these approaches are unable to incorporate
unmodeled dynamics that are non-parametric. Besides, several
of these methods are based on iterative learning [16], [17], and
hence, are not applicable to non-repeating trajectories.

To address these weaknesses of existing FF techniques, the
authors have recently proposed a linear hybrid model,
comprising a physics-based and data-driven model, for linear
systems with unmodeled nonlinear dynamics [19]. The linear
portion of the system’s dynamics was modeled using the
physics-based component of the hybrid model, while the
unmodeled nonlinear portion was derived from its data-driven
component. The hybrid model was shown in simulations and
experiments to provide significantly improved predictions of
servo errors in motion systems with unmodeled nonlinearity.
However, the hybrid model was only used for error prediction
but not for control. Therefore, as its primary contributions, this
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1. Proposes a hybrid FBF controller that uses a combination
of physics-based and data-driven linear models (i.e., a
linear hybrid model) to minimize tracking errors via FF
control performed online in receding horizons.

2. Demonstrates in simulations (using a model of a 3D
printer) up to 65.4% improvement of tracking accuracy
using the proposed hybrid FBF compared to a standard
FBF controller that does not incorporate data.

The outline of the paper is as follows: In Section II, an
overview of the linear hybrid model from the authors’ prior
work is presented. Section I1I reviews the FBF controller and
its receding horizon implementation and introduces the overall
framework of the proposed hybrid FBF approach. Improved
tracking performance using the proposed hybrid FBF
controller is demonstrated via simulations in Section IV,
followed by the conclusions and the future work in Section V.

II. OVERVIEW OF THE LINEAR HYBRID MODEL

Consider a stable and causal SISO dynamic system H
containing linear dynamics H; and unmodeled nonlinear
dynamics Hyz, as shown in Fig. 1. The system is sampled at
interval T; u(k) and y(k), where k=0, 1, 2, ..., are the input
and output of H at time step £, respectively. Also, the inputs
and outputs are fed into and measured from the system in small
batches, denoted by the superscript ()), i.e.,

=BG G ). v (G0N, = )]

where N, is the number of time steps in one batch and j =0, 1,
2, ... is the batch index.
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Fig. 1 General framework of the linear hybrid model [19]

Assume that H; is accurately modeled by a physics-based
model G, which can be a transfer function, a state space
model, or a lifted system representation, with its prediction
denoted by y,», while Hy; is unmodeled. Note that the hat
accent on y means the prediction of the response by models.
To account for the prediction error due to Hyz, a more accurate
hybrid model G;, was introduced in [19]. The hybrid model G,
linearly cascades the physics-based model G, and a data-
driven model Guq to enhance the prediction, as shown in Fig. 1.
The data-driven model makes use of the past batch of system
outputs (obtained online), as well as the past and the current
predictions of G,». Accordingly, the prediction of the linear
hybrid model in the j-th batch, denoted as 7, is given by

~0) — U= S0 (-1

yh - Gdd (ypb » Yoy y(] ))
— Gdd(pru(l—l)’pru(l)’y(l—l)) 2)
= Gh(u(/—l)’ u(/),y(/_l)).

Fig. 2 Detailed structure of the data-driven model G4, [19]

The detailed structure of Ggs is shown in Fig. 2. Its
adoption of linear regression keeps G linear. The linear
regression model aims to estimate the physics-based model
prediction error ey, £ y — yp. Accordingly, in batch j, the
prediction of Gy is recursively obtained by applying

5,00 =5,,0) + 2,(0) = ,,(k) + 3" p(b) (3)

where the time step k is defined within the j-th batch as in
Eq. (1), Y is the weight vector for the linear operator at the
corresponding j-th batch, and ¢(k) is the feature vector for time
step k, which contains the elements in $,,Y", $,,¥ and e, "
(note that e,,Y"" includes $,,Y"P and yV D due to e,p £ y — Ppp).
Vector ¢(k) is formulated as

() =[1,9,k=q+1),...5,®,
ey (k= p), ek — DI,

where g and p are design parameters that determine the number
of time steps of y,» and ey included in ¢. The selection of ¢
and p depends on the dynamics of the system and the length of
the prediction horizon. Note that e, requires measured data
obtained online in batches; therefore, e,(k) is not available for
k>jN,. Accordingly, e,(k) in Eq.(4) is replaced by an
estimated physics-based predicted error é,,(k), as in Eq. (3),
when k> jN,. The training of ' is performed recursively by
solving a regularized least squares optimization problem. It is
designed to minimize the difference between the measured
epp(k) and the predicted é,5(k) for all time steps before the
current prediction batch using the following loss function

~(7 . iN,—1 2
#)=argmin T, 0 (ep(k) — who(k)) Alwld,  (5)

4)

where A > 0 is the regularization factor that prevents
overfitting. Note that Eq. (5) is solved using the analytical
solution of ridge regression for £ = 0 and is updated using
recursive least squares (RLS) for £> 0.

III. HYBRID FILTERED BASIS FUNCTIONS (FBF) APPROACH

This section briefly discusses the standard FBF approach
[8], [9], followed by a detailed discussion of the proposed
hybrid FBF approach.

A. Overview of the FBF Approach

Consider a linear system H; aiming to track the desired
reference trajectory ys. In the filtered basis function (FBF)
controller, the input u is expressed as a linear combination of
a set of basis functions w; (=0, 1, ..., n), i.e.,

u= 2720 Y,»‘/’,- = q’}’) (6)

where vy; is the coefficient of the linear combination, ¥ = [,
Wi, ..., wa and ¥ = [yo, Y1, ..., Ya]T. Due to the property of
linearity, the output y is also a linear combination of the basis
functions filtered through G, i.e.,
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where ¥, = Gpy; are the filtered basis functions and ¥ = [i,
Wi, ..., W, is the filtered basis function matrix. The FBF
method minimizes the tracking error e, which is defined as

2
» @®)

A

) . N2 . =
minllell3 2 min[ly, — 3, =min]ly, - ¥y

where the optimal v is obtained by the pseudoinverse of ¥
-1
y=Fy, = (‘I’T‘T’) Py, ©9)
and thereby the input to the system is u = Wy.

A limited-preview (or receding horizon) version of the
FBF method using B-spline, called limited-preview filtered B-
spline (LPFBS), was proposed in [9]. It partitions the
trajectories into overlapping windows and then minimizes the
tracking error window-by-window. The overlapping window,
denoted by the superscript [/], has length N, > N, starting at
the same time step as the non-overlapping batches described
in Eq. (1), i.e.,

W=[y(N,), yGN,+1), ... y(iN,+N,, = 1)] . (10)

Note that the round bracket (j) in the superscript in Eq. (1)
represents the non-overlapping batches for prediction, while
the square bracket [;] in Eq. (10) represents the overlapping
window for control. Fig. 3 shows the differences between the
batches and the windows.

time step &k
Ny |
i Overlapping window
batch / ~ I |
window 4
index j [ ] ]

Non-overlapping batch [ ] |
Fig. 3 The pictorial view of the definition of batches and windows

To implement LPFBS, j is decomposed into past, current, and
future sections with respect to the interested window J, i.e.,

= [, y(1), ... yGN, = 1]

U =[(N,), y(GN,+1), oo (N, N, — D] =57, (1)
W =[(N, +N,), y(N, +N,+1), ... |,
Accordingly, Eq. (7) is rewritten as
AL R A
W \=|whe w0 (v (12)
VI O

where the subscripts P, C, F in ¥ respectively represent the
past, current, and future input-output effects, while PC in ¥
means the effects of the past inputs on the current outputs; PF
and CF are similarly defined. Also, since it is assumed that the
system is causal, ¥ in Eq. (12) is a lower triangular matrix.

Unlike the full-preview version proposed in [8], the
LPFBS minimizes the tracking error in every local window j,
ie., el =yl — PVl is to be minimized, where y/! represents

the desired trajectory in the j-th window and § is as defined
in Eqgs. (11) and (12). Thus, the objective is formulated as
NP & inllW! s

min||eP]]] 2 min[ly’ = 37|

e e (13)
(b0 el i ||
—nylbl.]n ||yd - (‘I’Pc Yy +¥c vc)||2,

C

where ycU! are the coefficients for the current (j-th) window,
v#" represents all coefficients calculated before ycl, while
¥pcll and ¥ ! are the corresponding operators, as defined in
Eq. (12). Since yd! is the only term in Eq. (13) that is
unknown, it is computed by

1T &l
W= (o) - ). 14

And then the optimal control inputs for j-th window, u, are
given by

(15)

For continuity, only the first N, inputs from the total N,, are
updated and fed into the system. Therefore, the input vector
for the current batch, %, is given by

ul) = [INp 0] ull, (16)

where Iy, represents the N, X N, identity matrix, and 0 is a zero
matrix of appropriate dimension.

1 — wll Ul b1, Ul
ull =¥pcv, t¥o 1o

B. Implementation of Hybrid FBF Approach using Linear
Hybrid Model

As mentioned in Sections I and II, the tracking
performance of the FBF controllers may deteriorate when the
unmodeled Hy; in the system is significant. Therefore, an FBF
with the correction of measurement data is proposed. More
specifically, the proposed FBF approach aims to enhance the
LPFBS framework using the linear hybrid model. Since the
proposed approach combines both physics-based and data-
driven models, it is called hybrid FBF.

The general idea of the proposed hybrid FBF is to obtain a
more accurate but still linear input-output relationship using
the linear hybrid model Gy. In other words, in addition to the
linear model, the linear regression model is also used within
the FBF framework. As in the LPFBS, the desired trajectory is
partitioned into several overlapping windows of length N,, for
optimization, but only the first N, time steps are packaged in
one batch and sent to the system for control. In contrast to the
prediction aspect of the linear hybrid model that is performed
recursively to obtain the predicted outputs, for control, the
linear hybrid model requires a window-to-window mapping.
That is, Eq. (2) and Eq. (3) are combined as

|
N

01 _ o 4 40 N W
Yh = pb+epb=Gdd(ypb By W ])=de »
l-1]

€,

., (17)

where Ly is the matrix representation of G for the j-th
window. The rows of L are constructed based on W' in
Eq. (3), and the details of constructing L4/ are presented in
the Appendix.
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Fig. 4 Architecture of the proposed Hybrid FBF

Besides, $,,V"! and e,V are defined as

=11 2

U

P a (- ~ (. T 18
[ypb(INP _q+1)’ ypb(/Np _q+2)’ ""ypb(]NP - 1)] (1%
and

U=[e,s (N, = )N, = p+1). s (N, = D] (19)

respectlvely; P is defined similar to $cV in Eq. (11) as

, T
3= [, GN,). 3, (N, 1), 3, (N, + N = 1] - (20)

Furthermore, Eq. (17) is decomposed into an alterable part
(Y7 and an unalterable part (p,7) as

€2y

where Lgzq”' and Lag,/' respectively represent the linear
operators for alterable terms and the unalterable terms,
extracted from the columns of L. Vector ¢,/ comprises all
the unalterable terms for the j-th batch, i.e.,

il — =11
ol = [1 o

Vector .Ul in Eq. (21) is rewritten, according to Eq. (12), as

EN T V] N /AN ]
Vi _de,aypb + Lyg 01,

T
V1

v (22)

Al Ul U &l U
W =Frer) +¥e v, (23)
where, as in Bq. (12), ycV! represents the coefficients that
affect J,» starting from j-th window, ypU! represents the
coefficients prior to ycVl, while ¥pcl! and ¥V represent the
linear effects of ypV and V! on $,,11, respectively. Combining
Eq. (21) and Eq. (23), the final prediction y; is given by

~ & Gl . i 7

W= LG Foer) + LGB AL o0 29
To minimize the tracking error for the j-th window, ycVl is the
only optimization variable and is used to minimize the

objective function given by

2 2
mg.lnllemllz—mmllyd -3l
C

(25)
The optimal control points ycV! are calculated as

1 gl & 1y
/= (Lc[llc]l'.a\l’c) (y[/] _Lc[zlda‘l'PcY[]] Ly, (051), (26)

Yo =

and then the inputs for the j-th batch, ', are calculated by the
exactly same method as the LPFBS, i.e. by Egs. (15) and (16).

With " fed into the system and the corresponding output
»¥ measured, the linear hybrid model is also updated by
training W recursively, i.c.,

~( 2
#=argmin T (e,00) = wTo(h)" el 27)
where e, is obtained by
) o o) 50) = 0 )
e =y =30 =y — (B v? + Fy?). (28)

The hybrid FBF approach is summarized in Fig. 4.

IV. VALIDATION BY SIMULATION

Consider a commercial vibration-prone 3D printer as in [9].
Due to the stepper motor dynamics and the flexible structure
of the 3D printer, the print head can suffer from significant
vibration, resulting in vibration marks on the printed parts [9].
Suppose the x- and y-axis of the 3D printer are fully decoupled;
the vibrational dynamics in either axis can be modeled by a
spring-mass-damper system shown in Fig. 5. The system
experiences a disturbance force Hy;, assumed to be created by
unmodeled nonlinear guideway friction and stiffness from the
printer’s cabling system.

|u 1 y
el
c m {:I_]YL

w0

Fig. 5 Spring-mass-damper model representing the dynamics of a motion
axis of a 3D printer with unmodeled nonlinearity from friction and cabling

The motion axis’ dynamics can be written as
my +cy+ky+ Hy (v, y) = cu+ ku, (29)

Let us assume that m = 1 kg, ¢ = 15.7 kg/s, and k= 24674 N/m
such that, without considering nonlinearity, the natural
frequency is 25 Hz and the damping ratio is 5%. Further,
assume that the nonlinear disturbance force is

Hy (v.9) = 0.1 sgn(@) 3 +sgn(») »*.

Accordingly, the combined nonlinear system dynamics is
given by

(30)

my + (c+0.1[p)y + (k+ |yDy = cit + ku, 31
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The physics-based model G,, does not consider the
unmodeled nonlinearity Hy;. It is obtained from the transfer
function Gpi(s):

cs+k
ms? +cs +k
Gpi(s) is converted to lifted form (i.e., a discrete finite impulse
response matrix), yielding Gps.

Gpn(s)= (32)

To compare the performance of the standard FBF and the
hybrid FBF approaches, simulations are conducted by forcing
the system in Eq. (31) to track the desired trajectories y; shown
in Fig. 6(a) and Fig. 7(a). With sampling time 75 = 1 ms, yq in
Fig. 6(a) is a discrete staircase trajectory which travels from 0
mm to 30 mm and then back to 0 mm with an increment of 10
mm, while y; in Fig. 7(a) is a variable-frequency oscillatory
trajectory which is extracted from one axis of a circular spiral
trajectory formulated as

5
r=5+(3-)0.  0<0<sm. (33)

Both trajectories are subject to kinematic limits given by
Vg iim = 80 mm/s, . =8 m/s?, )'/'d,h.m =1000 m/s*>. (34)

For both the standard FBF and the hybrid FBF, the batch
length N, = 100, the window length N,, = 200, and the basis
functions are fifth-order B-spline basis functions with knot
vector spacing equal to 10 (equivalent to 0.01s). For the linear
hybrid model parameters, ¢ = 4 such that it implicitly includes
up to the jerk information, while p = 50, which is half of N,.

(a) Desired trajectory (y ) [mm]
Window

/ length N,

X Batch
N length N,

wwwwwwwwwwwwwwww

0
0 1 2 3 4 5

Initialization (warm-up) .
(b) Tracking error (y 'y:l) [mm]|- - - Standard FBF
——Hybrid FBF

of training
v

0 1 2 3 4 5

Time [s]
Fig. 6 (a) Desired trajectory (staircase); (b) Comparison of the tracking
errors using the standard FBF and the hybrid FBF

(a) Desired trajectory (y ) [mm]
20 Window

/ length N,

wwwwwwwwwwwwwwwwwwwwwwwww

0 1 2 3 4 5
Initialization (warm-up)
of training

0.05 X

----Standard FBF
—Hybrid FBF

T
0

(b) Tracking error (y -y ) [mm]

Time [s]
Fig. 7 (a) Desired trajectory (oscillatory); (b) Comparison of the tracking
errors using the standard FBF and the hybrid FBF

Fig. 6(b) and Fig. 7(b) compare the tracking errors for both
FBF approaches. It is shown that the tracking performance of
the hybrid FBF approach is enhanced compared to the standard
one when the system includes the nonlinearity Hyz(y, ). In
both simulations, the first five batches are employed for
initializing the training of the hybrid FBF approach (i.e.,
warm-up). During the warm-up, G is not used for control, so
the hybrid FBF yields an identical response as the standard
FBF. Beyond these initial training batches, the tracking errors
of the hybrid FBF are significantly lower than the standard
FBF in most portions. When abrupt changes or new
characteristics occur in yg, the performance of the hybrid FBF
deteriorates momentarily since Ggq has not been trained on the
new operating conditions. However, it can quickly recover its
performance upon training with new data. To sum up, the
overall RMS of the tracking errors for the staircase and the
oscillatory trajectories are respectively 20.3 um and 16.8 um
for standard FBF, and are 7.0 um and 6.1 um for the hybrid
FBF, i.e., 65.4 % and 63.8% reductions in RMS tracking error.

V. CONCLUSION AND FUTURE WORK

This paper proposes a hybrid filtered basis functions (FBF)
approach that enables the application of the FBF approach to
feedforward tracking control of systems with unmodeled
nonlinearity. Compared to the standard FBF, which only uses
a physics-based model for control, the proposed hybrid FBF
utilizes a linear hybrid model combining a physics-based
model and a linear data-driven model. The data-driven model
uses measured data to approximate unmodeled nonlinearity in
a linear fashion.

In simulation case studies, the proposed hybrid FBF
showed up to 65.4% improvements in tracking accuracy
compared to the standard FBF because of its ability to
approximate unmodeled nonlinearity from data. However, the
performance of the hybrid FBF approach can degrade if the
training of the data-driven model is insufficient. Thus, a warm-
up period was required to allow for sufficient training. It is
useful to determine the uncertainty of the hybrid model so as
to optimally select the number of initialization batches. Also,
to prevent transient loss of performance when operating
conditions change abruptly, multiple data-driven models can
be created to respectively model different nonlinear behaviors
under various scenarios. Stability analysis and experimental
validation of the hybrid FBF are also needed. These are
subjects for future work.
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APPENDIX

This appendix describes the conversion of the linear hybrid
model from the recursive prediction, as expressed in Eq. (3)
and (4), to the window-to-window mapping, as in Eq. (17).

Suppose the feature vector in Eq. (4) is partitioned into
three different sections: the bias term, j,» , and €. That is,
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o =[1 5,0 enm)], (35)

where p,»(k) includes y,s(k—g+1), ..., Ypp(k) and e,5(k) includes
ep(k—p), ..., epp(k—1). Then, the corresponding weight w in
the é,, part in Eq. (3) can also be decomposed into the
corresponding vectors as

~ N ~ ~ T
w= [wbias: wypb: wepb] . (36)

In order to construct a window-to-window mapping where the
output contains all time steps in one window, say yu(k) to
Vu(k+N,—1), the combined feature vector is given by

[13,,k=q+1), ... §, (k= 1),
9,y 8, § (4N, = 1),

epp(k—p),....epp(k— 1),
épb(k); -~-épb(k+Nw - 2)]T’

(37

and the linear operator Ky, to perform the conversion, which
is an (V)X (2N, +p+q—1) matrix, is constructed as follows. For
each row i, i.e., fori =1 to N,,
[Kaalit =Wpias
(Kaaliis1:ivg) = Wyps (38)
[Kdd]i(i+Nw+q:i+Nw+q+p—1) = ﬂ)epba
where [A]; denotes the element in the i-th row and the j-th

column of the matrix A, and [Ali;» denotes the vector
composed of the j-th to n-th elements in the i-th row of A.

However, since all é, terms in Eq. (37) are dependent on the
other elements, so the independent elements only contain

[1 9,0k = q+1), . 9,k = 1),
j}pb(k),..., j}pb(kJrN, -1),
epp (k= p),nepp (k= DI,
which corresponds to the first N,,+p+g elements in Eq. (37)

Therefore, the linear operator for Eq. (39), denoted as Ly, is
rearranged as follows. Firstly, assign for each row i of Ly,

(39

[Laali= [Kaalia:n, +q+p) (40)

where [A]:: denotes the i-th row of A. Then, for each additional
element between Eqs. (37) and (39), i.e., for j =1 to N1,
recursively perform

Ly = Ly + [Kaal-gn,rqip) Laa 1y »

(41)
where [A]; denotes the j-th column of A. Lastly, since in
Eq. (3), additional term p,, is added, the corresponding
elements of Lyzare further added by 1, i.e., fork=1to N,

[Laa Jeerq) = M Jiaorgy + 1 (42)

The L4y obtained in Eq. (42), and the feature vector in Eq. (39)
are corresponding to the terms in Eq. (17).
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