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Abstract— Delta 3D printers have the potential to signifi-
cantly increase throughput in additive manufacturing because
they enable faster and more precise motion when compared
to traditional serial-axis 3D printers. Further improvements
in motion speed and part quality can be realized through
model-based feedforward vibration control, as demonstrated on
several serial-axis 3D printers. However, delta 3D printers have
not benefited from model-based controllers due to their coupled
nonlinear dynamics which vary as a function of position. In
this paper, we propose a framework to obtain linear models of
delta 3D printers as functions of position. We decompose the
dynamics into two sub-models: (1) an experimentally-identified
sub-model containing decoupled vibration dynamics; and (2) an
analytically-derived sub-model containing coupled rigid-body
dynamics. These two sub-models are combined into one using
receptance coupling. Employing the proposed approach, experi-
ments are used to demonstrate reasonably accurate predictions
of the position-dependent vibration dynamics of a delta 3D
printer across its workspace using only two frequency response
measurements at one location.

I. INTRODUCTION

A delta 3D printer uses three actuators connected in

parallel to move the end-effector (nozzle) of the printer.

As a result, it boasts higher speeds and accelerations than

equivalent 3D printers with serial kinematics [1]. Further-

more, delta 3D printers command identical speeds in all

three Cartesian axes, whereas the speed of serial 3D printers

vary–with the vertical (z) axis usually having speeds much

lower than the lateral (x,y) axes. Accordingly, they have

expanded the capabilities of fused filament fabrication (FFF)

and, for example, have been shown to improve the quality

of Curved Layer FFF [2], which varies the z-axis position

within layers, whereas in traditional FFF, the z-axis position

is static in each layer.

However, much like serial 3D printers, delta 3D printers

experience vibration when they travel at high speeds due

to structural flexibilities in their kinematic chain. Model-

based feedforward control techniques have been used to

compensate vibration in serial 3D printers, resulting in one

order of magnitude increase in achievable acceleration and

up to 2x reduction in print time without sacrificing quality

[3], [4], [5]. Unfortunately, accurate model-based vibration

compensation is challenging for delta 3D printers due to their

position-dependent and coupled nonlinear dynamics. One

would need accurate models at every location in a delta 3D

printer’s workspace to accurately compensate its vibration.

The challenge of controlling delta robots due to their

complex dynamics is well-documented [6]. It has been
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addressed by using various techniques to estimate servo

errors, such as sophisticated observers [7], [8] and neural

networks [9]. These techniques usually deal with the dy-

namic variations of delta robots as disturbances which are

suppressed using feedback control [10], [11], [12]. However,

most commercial delta 3D printers cannot benefit from such

approaches because they utilize stepper motors for actuation,

which have no feedback sensors. Therefore, they must rely

on models that accurately capture their position-dependent

coupled dynamics for feedforward vibration compensation.

Receptance coupling is an approach used to combine

analytical models and measurements of sub-assemblies of

a system, in order to model the full assembly’s frequency

response function (FRF) [13]. It simplifies modeling by

providing flexibility in circumstances where it may be diffi-

cult or impossible to obtain measurements that describe the

system, such as the position-dependent dynamics of the delta

3D printer. It requires careful selection of sub-assemblies that

can be accurately modeled analytically as well as those for

which measurements can be easily obtained. Hence, as its

primary contributions, this paper:

1) Proposes an efficient approach for modeling the

position-dependent and coupled dynamics of delta

3D printers that decomposes the printer’s dynamics

into experimentally-identified vibration dynamics and

analytically-derived rigid body dynamics, which are

combined via receptance coupling, and

2) Demonstrates the effectiveness of the proposed ap-

proach on a delta 3D printer by predicting the

printer’s vibration dynamics at arbitrary locations in

its workspace based on only two system identification

experiments at one location.

The rest of the paper is as follows: Section II describes

the construction of the delta 3D printer and motivates our

modeling problem with an example; Section III describes

the proposed methodology to decompose the delta model into

two sub-models combined to form the full nonlinear dynamic

model, which is linearized to obtain a linear parameter

varying (LPV) model; Section IV uses a commercial 3D

printer as a case study to validate the model’s accuracy; and

Section V presents our conclusions and future work.

II. BACKGROUND AND MOTIVATION

A. Description of Delta 3D Printer

The three pairs of forearms on the delta 3D printer are

connected to a carriage on one end, an end-effector on the

other end, and are allowed to rotate freely about universal
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Fig. 1. From left to right: A commercial delta 3D Printer (Monoprice
Delta Pro) with labeled components, a schematic of the belt-driven carriage
system, and the delta robot configuration showing the connections between
joints and links. The print volume dimensions are 270 × 270 × 300 mm.

joints (see Fig. 1). Each carriage translates vertically on

linear guideways and is mounted to a timing belt, which

is, in turn, connected to a base-mounted stepper motor via a

motor pulley, forming a prismatic joint. The relative position

of each carriage (i.e., the joint space) determine the Cartesian

position of the 3-DOF end-effector (i.e., the task space),

which holds a nozzle that heats and deposits melted filament

onto a stationary bed. The parallelogram formed by each

pair of forearms guarantees that the end-effector and fixed

base remain co-planar. In the case of the Monoprice (MP)

Delta Pro 3D printer shown in Fig. 1 (as well as several

commercial printers), the universal joints are iron balls which

allow the magnetized ends of the forearms to be detached

and reattached by the user.

As will be discussed in Sec. III, the kinematics of the

delta robot are characterized by a set of nonlinear, holonomic

spherical constraint equations that relate the task and joint

space, such that the motion of one carriage may have an

effect on the other carriages and vice versa. As a result, the

dynamics of the printer vary from location to location as

demonstrated in the following motivational example.

B. Motivational Example

Figure 2 depicts the variability of the FRF from com-

manded (i.e., desired) to actual position of one carriage,

measured with the end-effector at three separate locations

of the printer’s workspace. These FRFs demonstrate the dif-

ficulty in modeling the system through only measurements,

as one would have to measure the FRF of all three carriages

at several locations to accurately represent the dynamics.

Naive modeling of the dynamics with, for example, one

measurement may lead to poor vibration compensation due

to dynamic variation at other locations. Hence, a simpler and

more efficient modeling approach is needed.

III. PROPOSED MODELING APPROACH

We assume that the vibration dynamics of the delta printer

is dominated by the spring-mass-damper behavior between

the stepper motor, elastic timing belts, and the carriage.

Therefore, the vibration dynamics can be lumped at the

Fig. 2. Motivating example of one carriage’s frequency response functions,
from commanded to actual position, measured at three different (x,y) loca-
tions (all at z = 30 mm). This example shows the position varying dynamics
and demonstrates the need for a framework for estimating dynamics without
having to measure at several locations.

carriage and the exogenous dynamics is dominated by rigid

body effects beyond the carriage. Thus, we can decompose

the model of the assembly into two sub-models. Sub-model 1

describes the carriage output position qi as a function of two

inputs: the commanded position of the carriage qdi and the

forces Fqi imposed on the carriage due to the end-effector’s

motion where i ∈ {A,B,C} denotes the carriages labeled A,

B, and C (see Fig. 3). Sub-model 2 models the relationship

between the end-effector position X = [x y z]T and Fqi .

Sub-model 1 is decoupled and assumed to be linear.

The relationships between the inputs and qi are given by

continuous-time linear time invariant (LTI) single input sin-

gle output (SISO) systems Gqdi
(s) and GFqi(s), which are

measured from experiments (or modeled analytically) as a

summation of vibration modes, such that:

qi(s) = Gqdi
(s)qdi(s)+GFqi(s)hi(X,s) (1)

where s is the Laplace variable and hi describes the rela-

tionship between X and Fqi . Note that due to symmetry,

we can assume the FRFs are equal for each carriage, i.e.,

Gqdi
(s) = Gqd (s) and GFqi(s) = GFq(s) for all i.

Sub-model 2 assumes rigid body motion of the forearms

and end-effector, which may include damping, and, for

simplicity, neglects the rotation of the forearms [6], [14]. The

mass of the forearms are assumed to be split equally between

the carriage and the end-effector. The relationship between

X and Fqi are characterized by the Jacobian matrix, which

relates the joint space velocities to the task space velocities

[6] as

Ẋ = Jq̇ (2)

where q = [qA qB qC]
T is the joint space coordinate

vector, X = f (q) is the direct-geometric model of the robot,

and J ∈ R
3×3 is the Jacobian matrix, which is composed of

partial derivatives of f .
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Fig. 3. Overhead view of the delta 3D printer showing the (x,y)-coordinate
locations of carriages A, B, and C, the end-effector’s location in task space
X, and the length of the forearms L.

To derive the Jacobian (based on work from [6]), we

assume, without loss of generality, that the origin of the

task space coordinate system is located at the center of the

bed, the x-axis is aligned with the center of carriage A, and

carriages B and C are spaced 120◦ apart from A (Fig. 3). All

six forearms are identical and have length L and we locate X
at the center of the end-effector, on the xy-plane intersecting

the forearm/end-effector joints, such that the vertical distance

from this plane down to the tip of the hot-end is given by Hez
(see Fig. 4). The spherical constraint equations that govern

the kinematics are given by

(x−Ax)
2 +(y−Ay)

2 +(z+Hez −qA)
2 = L2 (3)

(x−Bx)
2 +(y−By)

2 +(z+Hez −qB)
2 = L2 (4)

(x−Cx)
2 +(y−Cy)

2 +(z+Hez −qC)
2 = L2 (5)

where (Ax,Ay) are the x- and y-axis coordinates of carriage

A, (Bx,By) are the x- and y-axis coordinates of carriage B
and so on. We can write Eqs. 3-5 as

sT
i si −L2 = 0 (6)

where

si =

⎡
⎣

x− ix
y− iy

z+Hez −qi

⎤
⎦=

⎡
⎣

x
y
z

⎤
⎦−

(⎡⎣
ix
iy

−Hez

⎤
⎦+

⎡
⎣

0

0

1

⎤
⎦qi

)
(7)

Taking the time derivative of Eq. 6 yields

sT
i ṡi + ṡT

i si = 0 (8)

which, from the commutative property of the vector product,

can be rewritten as

sT
i ṡi = 0 (9)

where

ṡi =

⎡
⎣

ẋ
ẏ
ż

⎤
⎦+

⎡
⎣

0

0

−1

⎤
⎦ q̇i = Ẋ+pq̇i. (10)

Rearranging Eq. 9, with the definition of p, we have
⎡
⎣

sT
A

sT
B

sT
C

⎤
⎦ Ẋ+

⎡
⎣

sT
Ap 0 0

0 sT
Bp 0

0 0 sT
Cp

⎤
⎦ q̇ =

⎡
⎣

0

0

0

⎤
⎦ . (11)

From Eq. 11, we can obtain the relation in Eq. 2 where

J =−
⎡
⎣

sT
A

sT
B

sT
C

⎤
⎦
−1⎡

⎣
sT

Ap 0 0

0 sT
Bp 0

0 0 sT
Cp

⎤
⎦ . (12)

After another time derivative of Eq. 11 and some transfor-

mations, we find the task space acceleration Ẍ as

Ẍ =

⎡
⎣

sT
A

sT
B

sT
C

⎤
⎦
−1(⎡⎣

ṡT
A

ṡT
B

ṡT
C

⎤
⎦J+K

)
q̇+Jq̈ = Jq̈+ J̇q̇ (13)

where

K =

⎡
⎣

ṡT
Ap 0 0

0 ṡT
Bp 0

0 0 ṡT
Cp

⎤
⎦ .

The inertial forces in task space are given by

Fe = mntẌ+bntẊ, (14)

respectively, where mnt and bnt are the mass and damping

coefficient of the end-effector and forearm assembly, respec-

tively. The contribution of these forces to the joint space can

be determined by multiplying them by the transpose of the

Jacobian matrix [6]:

Γe = JT Fe = mntJT Ẍ+bntJT Ẋ
= mntJT (Jq̈+ J̇q̇)+bntJT Jq̇

(15)

We can linearize the forces about an equilibrium position

denoted by X̄ = [x̄ ȳ z̄]T , q̄ = [q̄A q̄B q̄C]
T such that

Γe becomes

Γ̄e = mnt J̄T J̄q̈+bnt J̄T J̄q̇ (16)

where J̄ = J(X̄, q̄) is the Jacobian evaluated at X̄ and q̄.

Hence, from Eq. 1, we have

q(s) = Gqd (s)qd(s)+GFq(s)[mnts2 +bnts]J̄T J̄q(s) (17)

where Gqd (s) and GFq(s) are 3× 3 diagonal matrices that

contain Gqd (s) and GFq(s), respectively, as diagonal entries.

Let

NFq(s) = mnts2 +bnts (18)

then, we can write the coupled dynamics of the combined

assembly as

q(s) = G(s)qd(s) (19)

where

G(s) = [I−GFq(s)NFq(s)J̄T J̄]−1Gqd (s). (20)

In Section IV, we present an example where Gqd (s), GFq(s),
and NFq(s) are determined from measurement data at one

location and used to predict the FRFs at other locations.
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Fig. 4. Modeling schematic for delta 3D printer with the belt-carriage
system modeled as a mass-spring-damper system, and the forearm and end-
effector modeled as a rigid body mass with a damping coefficient.

IV. EXPERIMENTAL VALIDATION

A. System Identification

The modular nature of commercial delta 3D printers is an

advantage in determining the FRFs because we can detach

one of the forearms and the end-effector to measure Gqd .

For the MP Delta Pro 3D printer, we assume Gqd can be

represented (mechanically) as a mass-spring-damper system

with stiffness k, belt damping coefficient c, guideway friction

b, and mass

m = mc +
1

2
m f (21)

where m f is the mass of a pair of forearms and mc is the

lumped mass of the carriage (see Fig. 4).

We obtained the vibration dynamics Gqd , from accel-

eration data measured using ADXL335 accelerometers on

the MP Delta Pro 3D printer. We used a dSPACE Mi-

croLabBox and Pololu stepper motor drivers (DRV8825)

to command vertical sine sweep perturbations around

q corresponding to the task space locations (x,y,z) =
(0,0,30),(0,0,50),(0,0,70) mm. Our measurements indi-

cated that Gqd was very similar at the three locations,

independent of the z-axis position, so we used data from

(0,0,30) mm (see Fig. 5) to fit a 4th-order FRF of the form

Gqd (s) = Gqd,m(s)Gqd,e(s), (22)

where Gqd,m(s) and Gqd,e(s) represent the mechanical and

electrical dynamics, respectively. The electrical dynamics are

created by the electrical circuitry that generates stepper motor

commands. Hence, we have

Gqd,m(s) =
cs+ k

ms2 +(c+b)s+ k
(23)

=
(c/m)s+ω2

n

s2 +2ζ ωns+ω2
n

(24)

and

Gqd,e(s) =
d1s+d0

s2 +d2s+d0
(25)

where

2ζ ωn = (c+b)/m, (26)

ω2
n = k/m, (27)

and d0, d1, and d2 are the coefficients of the electrical FRF.

We can obtain the additional equations needed to find c, b,

k, and m by first measuring the mass of the end-effector, mn,

and m f while the machine is disassembled to obtain

mnt = mn +3(
1

2
m f ), (28)

then reattaching the end-effector assembly and measuring a

new carriage FRF at the same location, as shown in Fig.

6. When (x,y) = (0,0), the whole assembly undergoes pure

translation. Therefore, we can assume that the added weight

and damping from the end-effector is equally distributed to

each of the carriages. The measured FRF is also fit with the

form of Gqd (s), and the new mechanical FRF is given by:

G′
qd,m

(s) =
cs+ k

m′s2 +b′s+ k
(29)

=
(c/m′)s+ω ′2

n

s2 +2ζ ′ω ′
ns+ω ′2

n
(30)

where m′ = m+ 1
3 mnt , b′ = c+b+ 1

3 bnt ,

2ζ ′ω ′
n = b′/m′ (31)

and

ω ′2
n = k/m′. (32)

From Eqs. 27 and 32, we can determine m as

m =
ω ′2

n

3(ω2
n −ω ′2

n )
mnt (33)

which can be used to determine c, b, bnt , and k from the

other equations. Table I gives the fitting parameters as well

as the identified physical parameters of the delta model. It

is also clear in this example that, since all the rigid body

parameters are included in NFq(s),

GFq(s) =− 1

ms2 +(c+b)s+ k
(34)

where the negative sign indicates that the forces involved are

disturbance forces.

B. Validation

To validate the proposed modeling technique, we use the

joint space FRFs identified in Section IV-A to predict the

task space FRFs from commanded to output position and

compare our predictions with FRFs measured directly in the

task space of the MP Delta Pro 3D printer. From Eqs. 2

and 19, we can predict the commanded position to output

position FRFs in the task space using the joint space FRFs:

X(s) = J̄G(s)qd(s) = J̄G(s)J̄−1Xd(s) (35)

where Xd is the commanded end-effector position.

Using the predicted dynamics and Eq. 35, we discov-

ered task space locations where the end-effector’s FRFs are

expected to vary from the FRFs at the origin. We found

that (x,y) = (−110,0) and (0,−110) mm showed significant

variation for the x-to-x and y-to-y FRFs, respectively. To

verify our model, we measured the same FRFs on the

MP Delta Pro 3D printer. Figures 7-9 show the predicted

and measured FRF comparison for the x-, y-, and z-axis,

respectively. When the task space is at the origin, the modes

168

Authorized licensed use limited to: University of Michigan Library. Downloaded on October 07,2022 at 15:13:36 UTC from IEEE Xplore.  Restrictions apply.



Fig. 5. Position-to-position frequency response functions of the carriage
without the end-effector dynamics, Gqd . The data was measured for each
carriage at the carriage locations (qA,qB,qC) corresponding to (x,y,z) =
(0,0,30) mm, and a linear fit of one of the of the frequency response
functions shown as the black dashed line.

Fig. 6. Position-to-position frequency response functions of the carriage
with the end-effector mass, G′

qd
. The data was measured for the same

carriage locations as Figure 5.

TABLE I

SYSTEM IDENTIFICATION PARAMETERS

Symbol Value (units)
m 0.177 kg
mn 0.156 kg
m f 0.032 kg
c 5.87 N-s/m
b 18.0 N-s/m

bnt 27.9 N-s/m

k 9.44 ×104 N/m
ωn 730 rad/s
ω ′

n 601 rad/s
ζ 0.092
ζ ′ 0.10

d0 1.43 ×105 s−2

d1 -212.1 s−1

d2 36.2 s−1

TABLE II

GOODNESS OF FIT BETWEEN PREDICTED AND MEASURED FRFS

R2 (x,y) = (0,0) mm (−110,0) mm (110,0) mm

mag. phase mag. phase mag. phase

x-to-x 0.841 0.988 0.746 0.999 0.812 0.981
y-to-y 0.763 0.996 0.866 0.996 0.621 0.999
z-to-z 0.909 0.991 0.203 0.992 0.156 0.996

Fig. 7. Frequency response functions of the x-to-x position at (x,y) = (0,0),
(−110,0), and (0,−110) (z = 30 mm for all) predicted with the linearized
joint space frequency response functions (left) and measured at the end-
effector of the Monoprice Delta Pro 3D printer (right).

from each of the three carriages sum to form one mode in

the task space FRFs. But as the end-effector is moved from

the origin, the modes of each carriage separate as reflected

in the multiple modes in the task space FRFs.

Table II reports the goodness of fit between the measured

and predicted FRFs using the coefficient of determination,

R2, defined as

R2 = 1− ∑ j(v j −g j)
2

∑ j(v j − v̄)2
(36)

where j is the frequency, v j are the measured data, v̄ is the

mean of the measured data across all frequencies, which is

used as the baseline model, and g j are the data from the

predicted model, which is compared to the baseline. The R2

value can be thought of as the proportion of the variance in

the measured FRFs that is captured by the predicted FRFs.

The mean R2 of the magnitude and phase of the measured

FRFs are 0.657 and 0.993, respectively. The proposed LPV

model captures high proportions of the dynamic variations

in the xy-plane. The model also captures z-axis magnitude

and phase variations close to the task space origin. From

Fig. 9, we note that far from the origin the shape of the

z-axis magnitudes are similar, but the frequency of the

resonance peaks differs by about 10 Hz which decreases the

R2 value. Overall, the model provides reasonably accurate

approximations of the measured FRFs, particularly in the x
and y directions which are critical for high-speed motion in

traditional FFF 3D printing.
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Fig. 8. Frequency response functions of the y-to-y position at (x,y) = (0,0),
(−110,0), and (0,−110) mm, predicted (left) and measured (right).

Fig. 9. Frequency response functions of the z-to-z position at (x,y) = (0,0),
(−110,0), and (0,−110), predicted (left) and measured (right).

V. CONCLUSION & FUTURE WORK

The delta 3D printer offers the potential for higher pre-

cision and throughput compared to traditional serial-axis

3D printers. However, it has not benefited from the model-

based feedforward vibration compensation methods that have

improved the accuracy and speed of serial 3D printers

because of the delta’s nonlinear dynamics that vary as a

function of position. Identifying accurate models of the delta

printer was previously difficult because measurements were

needed at several locations in the printer’s workspace. In this

paper, we propose an efficient framework to identify linear

models for delta 3D printers using two measurements from

only one location. The framework decomposes the dynamics

into two sub-models, an experimentally-identified sub-model

and an analytically-derived sub-model, and combines them

using receptance coupling. We demonstrate the modeling

approach using a commercial delta 3D printer and show

that the resulting LPV model captures the position-dependent

dynamic variations with reasonable accuracy, particularly in

the xy-plane which is critical for high-speed control in FFF.

Our modeling framework is presented in the context of

model-based feedforward vibration control of the delta 3D

printer which cannot use the feedback controllers proposed

in the literature due to the lack of feedback sensors. However,

the approach is general and can be used in conjunction with

feedback techniques to further improve tracking controllers.
In the future, we plan to implement a model-based con-

troller on the delta 3D printer using the model derived in

this paper. Given the host of model-based control techniques

available, creative utilization of our model with a controller

that can effectively exploit its ability to capture dynamic

variations may lead to significant improvements in speed and

precision in additive manufacturing using the delta robot.
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