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Abstract—In joint communications and sensing (JCS), the
performance metrics belong to the areas of information theory
and estimation theory, respectively. The lack of unified design cri-
terion prohibits gaining intuitions and unifying the mathematical
structure in the analysis and design of JCS. This paper endeavors
to unify both performance metrics of communications and
sensing in either information-theoretic or estimation-theoretic
framework. In the information-theoretic framework, the mutual
information between the target and received signal, conditioned
on the transmitted signal, is maximized while that of clutter
and signal is minimized, which is formulated as an optimization
problem. For the estimation-theoretic framework, the differential
relationship between mutual information and minimum mean
square error (MMSE) is leveraged to unify both communications
and radar sensing in terms of MMSE. Both criteria are evaluated
and compared using numerical simulations.

I. INTRODUCTION

In recent years, the technique of joint communications and
sensing (JCS) has attracted substantial attentions in academia
and industry, due to its potential applications in various cyber
physical systems, such as autonomous driving and unmanned
aerial vehicular networks in which both communications and
sensing are essential [1]-[5]. As illustrated in Fig. 1, a JCS
transceiver sends electromagnetic (EM) wave modulated by
data, and delivers the information to the destined commu-
nication receiver in the forward propagation. When the EM
wave is reflected by certain target(s), the JCS transceiver
infers the target information from the backward propagated
EM wave. Both functions are accomplished in the same round
of transmission, using the same waveform and sharing the
same bandwidth and power. Therefore, a joint design for both
communications and sensing in JCS will substantially improve
the efficiency of spectrum and power.

However, communications and sensing have different goals,
namely ‘pushing’ data to the destination and ‘pulling’ informa-
tion from the environment, thus making the joint optimization
incoherent. Moreover, the two technologies, communications
and sensing, are based on different theories: information theory
is the corner stone of communications, while radar sensing is
based on estimation theory. Despite many intrinsic relations
between information theory and estimation theory [6], they use
different performance metrics (e.g., mutual information and
mean square error (MSE)) and different arguments (e.g., ran-
dom coding and Cramer-Rao bound). Therefore, it is desirable
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Fig. 1: Illustration of JCS mechanism.

to integrate the two distinct tasks in the same framework, either
information theory (Shannon) or estimation theory (Cramer-
Rao). Note that in the rate-distortion theory [7], information
in terms of Shannon entropy and estimation error in terms of
distortion are coherently related. A framework similar to the
rate-distortion theory has been proposed in [8] for the theoretic
analysis of JCS. However, the results are highly abstract, due
to the simplified model, and cannot be applied to practical JCS
system directly.

In this paper, we discuss integrated frameworks incorporat-
ing communications and sensing:

o Information theoretic framework: It is in [9] that informa-
tion theory is first applied in the design of radar sensing
waveforms, by maximizing the mutual information of
the received signal and the radar target information.
Using this framework, JCS can be considered as a pure
communication system (JCS transceiver to communica-
tion receiver, and radar target to JCS transceiver), thus
facilitating unified analysis and design.

o Estimation theoretic framework: A bridge between com-
munications and estimation has been disclosed in [10]: in
additive noise channels the derivative of mutual informa-
tion I(X;Y') between variables X and Y with respect
to the signal-to-noise ratio (SNR) equals the minimum
mean-square error (MMSE) of estimating X given Y.
Therefore the MMSE of estimation indicates the marginal
utility of SNR for increasing the mutual information. By
using MMSE metrics in JCS, the system performance is
measured by the estimation error of radar sensing and the
SNR efficiency of communications.

In this paper, we will consider both unified frameworks and
make comparisons. The trade-off between communications
and sensing, as well as the mitigation of clutters, will be
formulated as optimization problems, using unified metrics in



information theory or estimation theory. The performance will
be demonstrated and compared using numerical simulations.

The remainder of this paper is organized as follows. In
Section II the related works are introduced. The signal model
for JCS is given in Section III. Then, the unified information-
theoretic and estimation-theoretic frameworks are discussed in
Sections IV and V, respectively. Finally, numerical results and
conclusions are provided in Sections VI and VII, respectively.

II. RELATED WORKS

For the technique of JCS, comprehensive surveys can be
found in [1]-[5]. Theoretical studies have been carried out for
JCS in [8], which integrates both information and estimation
theoretic metrics similarly to the rate-distortion theory [7].
The relationship between information-theoretic measures and
estimation-theoretic metrics has been explored by statisticians
for a long time (see Chapter 12 of [7]), e.g., the Stein’s Lemma
that relates the asymptotic performance of hypothesis testing
to the Kullback-Leibler’s distance that is of more informa-
tion theoretic flavor. In particular, the relationship between
mutual information and MMSE is established in the Guo-
Shamai-Verdu identity [11]. A comprehensive introduction
to information-theoretic signal processing has been given in
[6]; e.g., using information-theoretic metric to explain data
sufficiency, or leveraging the maximum entropy principle for
estimating parameters. It provides motivation but not direct
solution to the design of JCS. The application of Kullback-
Leibler’s distance in statistical inference is also discussed
in [12]. An alternative bridge between information-theoretic
measure and statistical inference (including estimation) is the
information geometry [13]; however, there has not been a clue
for how to apply information geometry in JCS. Moreover,
most studies on JCS have not taken clutters that are of critical
importance in radar sensing into account. The corresponding
formulation of waveform diversity subject to clutter has been
studied in [14].

III. SYSTEM MODEL

In this section, we introduce the JCS system model, which
includes the models of the signal, and the channels of radar
sensing and communications.

A. Signal Model

We denote by z(t) the transmitted signal, and by y.(¢) and
ys(t) the received signals at the communication and sensing
receivers, respectively. For simplicity of analysis, we consider
scalar signals, namely single-antenna systems. The extension
to the multi-antenna case will be non-trivial and is left to our
future study.

We further assume that the transmitted signal is a wide-
sense stationary process (WSS) within each information sym-
bol (radar pulse) period. Therefore, the transmitted signal has
the following spectral representation (pp.109, [15]):

x(t) = / eI 7, (dw), t €10,T,], (D
R

where T}, is the pulse duration, Z, is the stochastic measure
of real number. We further assume that Z, is absolutely
continuous with respect to the Borel measure pp of complex
numbers. The corresponding Radon-Nikodym derivative (‘iif;
at w is the random frequency spectrum of x(¢), which is
denoted by X (jw). Moreover, X (jw) is mutually independent
at different frequencies. The WSS modeling of waveform
covers two practical waveforms:

e Orthogonal frequency division multiplexing (OFDM):
When X (jw) is supported at discrete frequency points
and assumes discrete complex numbers, such as quadra-
ture amplitude modulation (QAM), at each frequency
point (subcarrier), it is essentially an OFDM waveform.

o Noise waveform: When X (jw) is supported in all the
frequency band and each X (jw) is Gaussian distributed
with possibly different variances, the waveform is colored
noise in the time domain, It can be used to model the
code division division multiplexing (CDMA) waveform
and noise radar [16].

The total power of the waveform is denoted by F;.

B. Radar Sensing Channel

We consider a single radar target, whose state is denoted by
T, which may have different physical meanings, depending on
the specific applications of radar sensing':

« Detection: The existence of target is indicated by a binary
T: T = 0 for nonexistence and 7" = 1 for existing target.
The received signal is given by

ys(t) = aTxz(t — 7) 4+ ns(t), 2)

where 7 is the round trip time if the target exists, « is the
signal attenuation, and ng is the noise at the JCS receiver.

o Ranging: The target has been detected and is considered
as a point in the space. The received is given by

ys(t) = az(t — 1) +ns(t), (3)

and T is the roundtrip time 7.

o Inference: The target is no longer a simple point and
needs to be characterized by an impulse response h;.
Therefore, the received signal is given by

ys(t) = hy x 2(t) + ns(t). 4)

The target state T is then the impulse response h;. Note
that the range information determined by the roundtrip
time 7 is incorporated in the impulse response h; (e.g.,
for single-point target h:(t) = ad(t — 7)).

We also consider clutters that form interference to the
signal reflected from the target. We denote by h.; the impulse
response of the clutters. Therefore, the received signal at the
JCS transceiver is given by

Ys(t) = (he + her) * 2(t) + ng(t). 5)

'In this paper we consider static radar targets and thus exclude the
possibility of Doppler shift.
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Fig. 2: Information-theoretic formulation for waveform opti-
mization.

C. Communication Channels

We assume additive Gaussian noise fading channel, such
that the received signal is given by

Ye(t) =z * he(t) + ne(t), (6)

where h. is the impulse response of the communication
channel, which includes the case of multi-path propagation,
and n. is the communication noise.

D. Sampling

For facilitating the subsequent analysis, we assume that the
continuous-time signals are sampled with sufficient sampling
rate. The frequency spectrum and time domain signal are
approximately related by Discrete Fourier Transform (DFT).

IV. SHANNON

In this section, in the spirit of Shannon, we use the unified
framework of information theory for both communications and
sensing in JCS. It is a natural selection for communications.
When applied to radar sensing, we consider the information on
the radar target fetched by the reflected EM wave, instead of
the estimation error. Note that the information-theoretic design
criterion for radar sensing waveform design was originally
proposed in [9].

A. Optimization Formulation

As illustrated in Fig. 2, we consider the environment includ-
ing the radar target and clutter as the communication and sens-
ing channels, whose outputs are Y and Z, namely the signals
received by the communication receiver and JCS transceiver,
respectively. The outputs are ruled by the conditional prob-
ability distribution P(Y'|X,T,C) and P(Z|X,T,C), where
C is the status of clutters. We further assume that the prior
distributions of T and C' are known in advance, which could
be provided by the target tracking procedure such as Kalman
filtering, as well as historic statistics.

Then, we formulate the information-theoretic waveform
synthesis as the following optimization problem:
max I(X;Y)

P(X)
I(Z;T|X) >, I1(Z;C|1X) < e,
Var(X) < P,

s.t.
@)

where the objective function is to maximize the mutual infor-
mation between the communication channel input and output,
namely the constrained channel capacity, while the first two
constraints are to guarantee the information of target in the
reflected signal Z while preventing the interference from the
clutters, and the last constraint is on the transmit power. Note
that the conditions on X in the mutual informations in the
constraints are due to the full knowledge of X at the JCS
transceiver.

To facilitate the solution to (7), we consider the frequency
domain analysis, by sampling the random spectrum X (jw)
and obtaining M samples x = (Xi,...,Xps). Then, the
corresponding frequency samples of the outputs are denoted
by M-vectors y and z, respectively. This frequency domain
analysis is especially valid for systems with OFDM signaling.
The optimization depends on the realizations of conditional
probabilities P(Y|X,T,C) and P(Z|X,T,C). For the fre-
quency domain signals, we consider

{ y=Hx+n,

z=H;x+Hyx+n, ’ ®)

where H., H; and H.; are M x M diagonal matrices whose
diagonal elements are the frequency responses of the com-
munication channel, target reflection and clutter, respectively,
and n, and ng are the frequency-domain noises received
at the communication receiver and JCS transceiver, whose
variances are denoted by {07, }r—1,...as and {02, }n1, . a1
respectively. The relations in (8) are determined by the time-
domain convolutions in (5) and (6). For exploring solutions in
practical systems, we have the following assumptions:

e We assume that H,. is known, which is valid due to
channel estimation in practical communication systems.
The diagonal elements are {02 ,,02,,...,02 5/ }.

e We assume that H; is tandom with variance
{071,079, ;07 5} We model the elements in H; as
circular symmetric complex Gaussian random variables
with different variances {ng)l,.‘.,ofl} vt We assume
that the variances are known to the JCS transceiver.
This is valid since the variances are determined by the
corresponding scenario (sea waves or clouds) while the
realizations are random due to the random positions and
scattering surfaces of the clutters.

B. Optimal Solution without Clutter

When the first two constraints are omitted, it is well known
that Gaussian distribution for X maximizes the objective
function I(X;Y) given the linear channel in (8) [7]. For
the constraint of I(Z;T|X) without clutter, the following
proposition shows the optimal distribution of X for statistical
radar inference:

Proposition 1. When the elements in H; are independent
and Gaussian distributed and H, = 0, the optimal X
to maximize the mutual information 1(Z;T|X) satisfies the
following classical water-filling power allocation:

2 +

g
X:P=(A—=") .n=1,..

O-tq,n

M, (€))



where the constant \ guarantees Z X2 =

Proof. For the mutual information between Z and 7', we have

I(Z;T|X) = H(Z|X)-H(Z|T,X)
= H(Z|X) - H(N,),

where the second term is the entropy of the noise and thus
being independent of the input X and target information 7.
Therefore, to maximize I(Z;T|X), we simply maximize the
conditional entropy H (Z|X). Due to the linear channel model
in (8), we have that the maximal entropy is achieved by Gaus-
sian distributions with variances {|X,,(H¢)nn|*}ne1.. -
Then, we consider X,,(H;),, as the received signal with
Gaussian input of power |X,|* and channel gain o7,. It
concludes the proof by applying the classical water-filling for
the multi-channel power allocation. O

(10)

From the above conclusion, we observe that the optimal
power spectrum of X for sensing is deterministic and the
maximal mutual information I(Z;T|X) is given by

IXI n
Imax(Z; T X) = Zlog 14— bn,

However, when the mutual information for communications
(the object function) is taken into account, there exist conflicts
between communications and sensing. When the subcarriers
with large variances or gains are diffierent for communication
and sensing channels, a compromise is needed for the two
functions.

According to Prop. 1, the optimal distribution of X, is
Gaussian. Considering the variable x,, = 2n=1,..M
and taking derivative for the generalized objective function:

I(X5Y) + M

(1)

Z;T)X) + A Var(X), (12)

where A\; and \q are the Lagrange multipliers, we obtain

2

Jc,n

2
P
2
ntos

=X, n=1,...M, (13)

2 2 2
Tnog, TpOip, + 0%

when z,, > 0, and when the solution to (13) is negative, we set
, = 0. By scanning different values of A\; and Ay, we obtain
feasible solutions that maximize the objective function, if there
is any. We notice that when the radar sensing constraint does
not exist, the solution is simply the water-filling one. However,
the addition of the radar sensing function complicates the
solution.

C. Optimal Solution with Clutter

When clutters are taken into account, the Gaussian dis-
tribution of the frequency-domain signal is not necessarily
optimal, since it also maximizes the information of the clutter
I(Z;C|X). The optimal distribution is difficult to obtain,
which requires numerical computations. To simplify the anal-
ysis, we assume that the distribution of each dimension of x
is Gaussian. Then it is easy to verify

) ; (14

tnzn
I(Z;T|X) = Zlog<l+ T

and

clynn
I(Z;C|X) = Zlog<1+amxn+ 2n> (15)

since the clutters can be considered as Gaussian noise, while
the powers are determined by the transmitted signals. In
(14), the mutual information I(Z;T|X) is dependent on the
signal-to-interference-and-noise ratios (SINRs) over different
subcarriers, while in (15), the mutual information I(Z; C|X)
is determined by the corresponding interference-to-signal-and-
noise ratios (ISNRs).
We consider the sum of I(Z;T|X) and I(Z;C|X):

(Z-T\X) +1(Z;C|X)

2 2 2 2
Ut n + acl n)xn + On (Jt,n + O—clm)xn + 0'57

>
cln
Zl ( O'tn +0-020l n)2> ’

tn cln

2
Tn + Jg,n Jct,n‘rn + U?,n

IN

which becomes tight as z, — oo (namely high SNR).
Therefore, the sum of I(Z;T|X) and I(Z;C|X) is upper
bounded by (16). Maximizing I(Z;T|X) can limit the upper
bound of I(Z; C|X). Therefore, for practical applications, we
can reduce the constraints to the first one (on [(Z;T|X)).

Taking derivative with respect to the generalized objective
function in (12), we obtain

[Hen|®

n A1(0't2,n + ggl,t)
Tp|Hep|? + 02

A2
2 2 2
xn(gt,n + Ucl,t) + Os,n

2
Alo—cl,t

., n=1,..,M (17)

xno—gl,t + Jg,n
The corresponding solution is obtained by searching different
values of A\ and Ao.

V. CRAMER-RAO

In this section, we unify the performance metrics of com-
munications and sensing in JCS as MMSE, which is of critical
importance in estimation and whose bound is provided by the
the Cramer-Rao bound.

A. Bridging Mutual Information and MMSE

MMSE is natural for radar sensing, but indirect for com-
munications. To unify the performance metrics, we need the
following theorem for bridging the estimation performance
metric and communications:

Theorem 1 ( [11]). For random variable X of arbitrary
distribution and variance P, and the outcome of additive
Gaussian noise channel Y = X + N, where N is Gaussian
distributed with variance o2, the mutual information between
X and Y, namely I(X; Y) is related to the MMSE of
estimating X from'Y via

d

— I (X;Y

d'y ')’( ) )
where v = 0% is the SNR of X, and I is considered as a
Sunction of . "

= MMSE(y), (18)

)

(16)



From (18), we observe that the MMSE of estimating X
from Y (as a metric of sensing) represents the marginal utility
of mutual information (as a metric for communications) in
terms of SNR. Therefore, a low value of MMSE indicates that
the performance improvement has saturated and thus causes
inefficient utilization of transmit power.

When MMSE is used as the unified metric for communi-
cations and sensing, we observe that the conflict of interest
between communications and sensing falls in the selection
of distribution of {|X,|?},=1.. . According to [11], the
Gaussian distribution maximizes the MMSE of estimation,
given a fixed SNR. For communications, it is desirable to use
Gaussian distribution since it improves the increasing rate of
mutual information; meanwhile, the Gaussian distribution also
maximizes the sensing MMSE. Therefore, a trade-off in terms
of the signal distribution is needed.

B. Optimization Formulation

Based on the above relationship between mutual informa-
tion and MMSE, we can formulate the estimation-theoretic
waveform synthesis in the following optimization problem:

min MMSE(X|Y)
P(X)

st.  MMSE(T|Z,X) < ~s and Var(X) < P,. (19)

The rationale of the optimization formulation includes

o The performance of sensing is more stringent. Therefore,
we set the MMSE of target information 7' (conditioned
on the transmitted signal X and received signal Z), as
the constraint of the optimization. Note that this is valid
only when 7' is continuous (e.g. the matrix Hy).

o The communication performance is usually more flexible.
Therefore, we set the MMSE of transmit signal x, which
indicates the increasing slope, as the objective function,
for the best-effort performance. The reason for minimiz-
ing the objective function is to minimize the marginal
utility of SNR.

o The impact of clutter is incorporated in the constraint on
MMSE(T|Z, X).

For simplicity of analysis, we assume that the sensing noise

has the same power o2 over different subcarriers. We cite the
following lemma for the analytic expression of MMSE:

Lemma 1 (Eq. (6.27) [17]). For received signal y = SAx+n,
where A is diagonal, S is a generic matrix, and n consists of

independent elements with identical power o2, the MMSE of
X is given by
MMSE(x) = trace [T+ o, 2ARA] ", (20)
where R = SHS.
Based on Lemma 1, we obtain
MMSE(X|Y) = trace [T+ 0, °R,] ", @1)

where R, = H.H, and

MMSE(T|X, Z) = trace [T+ W' R,W~] ",

where W = H,; + 021 and R, = diag({|X,|*}n=1...

(22)

M)

Thanks to the diagonal structures of H, and H,;, (21) is
further simplified to

M o2
MMSE(X|Y) . 23
Y) Z:j +02 . (23)
and (22) is simplified to
M 2 2
05 + 05 nTn
MMSE(T|Z, X) = . 24
Tl ) Z o2+ (gt nt Ucl n)xn &9

n=1
Then, the optimal solution is determined by the following
equation:
0'20'2

)\ . S c,n
4 = o
(02 + Uz,nxn)2

2

s . n=1,.,M, (25
(03 + (070 + 02, )Tn)?

2
A307 .0

where A3 and A, are Lagrange multipliers.

VI

In this section, we use numerical simulations to demonstrate
and compare the proposed criteria of JCS.

NUMERICAL RESULTS

A. Simulation Setup

We consider 256 samples in the frequency domain. Then, for
the OFDM signaling, this means 256 subcarriers. We assume
64-QAM for OFDM waveform and Gaussian distribution
of signal in the WSS noise waveform. The communication
channel gains are generated from an exponential distribution,
while the clutter frequency response is set to be a rectangular
function between subcarrier 30 and 100. We set the transmit
power P, to be 1, while the thermal noise power is set to 0.01
(thus an SNR of 20dB).

When solving Equations (17) and (25), we range various
values of the Lagrange multipliers. For each combination of
the multipliers, we obtain the solution x,. Only solutions
that satisfies 27];4:1 x, = P, are kept. The solutions whose
performance dominated by other solutions are discarded. The
remaining points of performances (channel capacity and MSE)
form the boundary of feasible performance region. Note that
the performance metric MSE is that of the received sensing
signal, instead of the target parameters. The map from the
target parameter to the received sensing signal is nonlinear,
thus making the design difficult, which will be left to our
next-stage study.

B. WSS Noise Waveform

The performance boundaries obtained from the information-
theoretic and estimation-theoretic criteria are plotted in Fig.
3 for the WSS noise waveform, in which the frequency
spectrum samples are Gaussian distributed. The points above
the boundaries are feasible. We observe that the boundaries
resulting from the two criteria are substantially different. It is
difficult to conclude which criterion is better.

When there is no clutter, namely H.; = 0, the corresponding
boundaries are plotted in Fig. 4. We observe that the pattern
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estimation-theoretic criteria in terms of optimal trade-off
boundary for WSS noise waveform, when there is no clutter.

is completely changed. Unfortunately, we are still unable
to analyze the solutions analytically and cannot explain the
underlying reason for patterns.

C. OFDM Waveform

The corresponding performance boundaries for OFDM
waveforms are plotted in Fig. 5. We observe that the perfor-
mance is worsened, due to the modulation of QAM, instead
of Gaussian distribution of signaling. However, the pattern is
still simular to that of the WSS noise waveforms.

VII. CONCLUSIONS

In this paper, we have proposed two frameworks for uni-
fying the performances of communication and sensing in
JCS in either information-theoretic (Shannon) or estimation-
theoretic (Cramer-Rao) manners. The information-theoretic
one defines sensing objective function based on mutual in-
formation, while the estimation-theoretic framework is based
on the Guo-Shamai-Verdu identity that equalizes the MMSE
and the increasing slope (with respect to the SNR) of mutual
information. Constrained optimization problems have been

Shannon
----- Cramer-Rao

0 5 10 15 20 25 30 35 40
capacity

Fig. 5: Comparison between information-theoretic and
estimation-theoretic criteria in terms of optimal trade-off
boundary for OFDM waveform.

formulated. Numerical computations have been carried out to
compare both schemes in the context of joint communications
and radar ranging. It is still unclear which criterion results in
a better performance of JCS.
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