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Abstract

We study a dynamical system defined by a repeated game on a 1D lattice, in which the players

keep track of their gross payoffs over time in a bank. Strategy updates are governed by a Boltzmann

distribution which depends on the neighborhood bank values associated with each strategy, relative

to a temperature scale which defines the random fluctuations. Players with higher bank values are

thus less likely to change strategy than players with lower bank value. For a parameterized rock-

paper-scissors game, we derive a condition under which communities of a given strategy form with

either fixed or drifting boundaries. We show the effect of temperature increase on the underlying

system, and identify surprising properties of this model through numerical simulations.
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I. INTRODUCTION

Traditional Darwinian evolution asserts that natural selection is driven by competition

and mutation repeated over deep time, producing species mutually adapted to their envi-

ronments and each other. Evolutionary game theory represents this process via (e.g.) the

replicator or replicator-mutator equation, considering instantaneous reward from interac-

tion as the measure of fitness. This approach, however, neglects the ability of organisms

to store energy thereby insulating themselves from negative interactions. That is, fitness

is (in some sense) measured by overall historical success as well as instantaneous success.

In this paper, we study a spatial evolutionary game mechanism that incorporates mutation

via a Boltzmann distribution but is mediated by stored (gross) winnings, or wealth. We

derive conditions where communities form with high probability and study the resulting

community structures theoretically and empirically in one dimension.

II. INTRODUCTION

Evolutionary games have been studied extensively since Taylor and Jonker’s original work

[1]. In particular, the replicator equation and its variants have been studied extensively [2–

13]. The replicator equation does not admit natural mutation. Consequently, there has

been investigation of the replicator-mutator variant [14–17]. While both the replicator and

replicator-mutator equations operate in continuous time, there have also been several related

studies of evolutionary dynamics in discrete time [18, 19]; see the thorough (but dated)

survey by Sigmund [20]. Spatial evolutionary games have also been extensively studied

[21–30]. Forming a subset of this literature, rock-paper-scissors games, which we focus

on in this paper, have been studied extensively in both the spatial and aspatial contexts

[27, 31, 32, 32, 33, 33–42]. In examples of very recent generalizations, Kabir & Tanimoto

study pairwise evolution in RPS with noise [27]; Postlethwaite & Rucklidge study a five-

strategy cyclic game [42]; and Griffin et al. study generalized Hamiltonian chaos in RPS in

network replicators [41].

In this paper, we model both evolution and mutation processes in the rock-paper-scissors

game by taking a Boltzmann distribution approach, in which players are most likely to

imitate local competing strategies associated with higher accumulated winnings (wealth),
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and the temperature defines random fluctuations relative to this scale. As a result, players

who accumulate wealth are less likely to change, effectively decreasing the importance of

temperature locally in their region. We recently showed that an imitation dynamic based on

wealth could lead to fairness in the Ultimatum Game [43]. Our model here is most related

to the work in [23, 44] with follow-on analysis in [45, 46]. In the rock-paper-scissors (RPS)

game, we observe in numerical simulations the formation of spatial communities, in which all

players use the same strategy. These results are consistent with those in [23], however they

occur for very different reasons. We derive payoff matrix conditions under which a clear

phase transition occurs leading to the formation of communities, and provide conditions

where communities cannot form. We also discuss scenarios in which drifting communities

emerge. These are distinct communities that slowly migrate spatially as their boundaries

continuously change. These results are shown to depend on the payoff matrix structure and

the Boltzmann distribution governing strategy evolution.

The remainder of this paper is organized as follows: In Section III we discuss the model

formally. Theoretical results are presented in Section IV. In Section V we provide numerical

examples of the possible behaviors identified in Section IV. Conclusions are presented in

Section VI.

III. MODEL

Let G = (V,E) be a graph with vertex set V and edge set E. For a given vertex (player)

x ∈ V , we denote by N [x] the graph neighborhood of x including x, i.e., the set of vertices

adjacent to x in G and x itself. We also denote by N (x) the graph neighborhood of x,

excluding x - the difference being square vs round brackets. For a symmetric game with m

strategies, each vertex at time t is described by its strategy index σ(x, t) ∈ {1, 2, . . . ,m} = S

and the sum of the total payoffs, the bank value B(x, t). For convenience, we will use the

indicator function:

I(s, k) =

⎧⎪⎨⎪⎩1 if k = s

0 otherwise.

which we use to define a neighborhood bank value for each strategy s ∈ S

Ns(x, t) =
∑︂

u∈N [x]

I(s, σ(u, t))B(u, t).
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This local sum of bank values in the neighborhood of player x will be used to evaluate the

preference for each strategy s in our model.

Let π : S × S → R be the non-negative symmetric payoff function for the two-player

game under study. Starting from randomly chosen initial strategies σ(x, 0) and B(x, 0) ≡ 0,

the evolution of σ(x, t) and B(x, t) are defined for t > 0 by the following:

1. All players play their neighbors, and update their bank values as:

B(x, t) = B(x, t− 1) +
∑︂

u∈N (x)

π[σ(x, t− 1), σ(u, t− 1)].

2. All players update their strategies probabilistically according to a (modified) Boltz-

mann distribution with constant β:

Pr [σ(x, t) = s] =
eβNs(x,t)∑︁
s∈S e

βNs(x,t)
. (1)

Analogously with statistical mechanics in physics, we define

β =
1

kT
, (2)

where T is an ambient temperature quantifying the fluctuation scale, and k would be the

Boltzmann constant (we use k = 1 throughout). The absence of a negative sign in the

distribution does not indicate a negative temperature, but rather corresponds to the fact

that, while in a thermodynamic system the lower energy states are more likely, choices in

a game theoretic context will naturally favor the higher payoff (or higher wealth) states.

In our model, the neighborhood bank values Ns(x, t) influence the time evolution of the

probability distribution for each player’s strategy choice s. This formulation is consistent

with the bounded rationality formulation of game theory [47].

While the analysis presented in this paper can be similarly applied to general non-negative

payoff functions, we focus here on the symmetric, positive payoff generalized rock-paper-

scissors (RPS) game, with payoff matrix defined as:

A(δ, ϵ) =

⎡⎢⎢⎢⎣
1 + δ 0 2 + ϵ

2 + ϵ 1 + δ 0

0 2 + ϵ 1 + δ

⎤⎥⎥⎥⎦ , (3)

where ϵ ≥ 0 is the “winning bonus”, which allows us to study the role of larger payoffs for

playing against a losing strategy, and δ ≥ 0 is the “tie bonus”, which we use to increase the
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reward for playing against the same strategy. With the additional condition δ < 1 + ϵ, the

matrix retains the relative payoff inequalities of a generalized RPS game; when ϵ = δ = 0,

A becomes the standard RPS matrix given in Weibull [6].

For the remainder of this paper, we will focus on lattice graphs without boundaries in

one dimension; this is a cycle, and as such every player has two neighbors. In this case, we

can associate the vertices of our graph with the finite group Z/nZ for an appropriate choice

of n. The neighborhood function becomes:

Ns(x, t) =
1∑︂

i=−1

I(s, σ(x+ i, t))B(x+ i, t).

Here, the dependence of σ on vertex x + i is taken modulo n. That is, x + i is computed

in the group Z/nZ. This allows the expression to model the cycle graph. The bank update

function is then:

B(x, t) = B(x, t− 1) + π[σ(x, t− 1), σ(x− 1, t− 1)]+

π[σ(x, t− 1), σ(x+ 1, t− 1)].

All other model definitions remain the same. An example of the dynamic behavior in this

FIG. 1: Examples of community formation in our model: (Left) communities that become

stationary (δ = 0.5, ϵ = 0), (Right) communities that exhibit boundary drift

(δ = 0, ϵ = 16).

model is shown in Fig. 1 for two different classes of (δ, ϵ) values. Strikingly, we see that single
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strategy communities have formed along the lattice. In the left image, these communities

are stationary while in the image on the right, they exhibit drift. We discuss community

formation in detail in the following sections and provide numerical evidence showing the

impact the relative values of ϵ and δ have on these communities.

IV. THEORETICAL ANALYSIS

We now derive the probability that a given vertex v on a cycle graph (a 1D lattice without

boundary) will have the same strategy at time t and t + 1. We define a community as a

group of two or more adjacent vertices that (i) share a strategy and (ii) have high probability

of retaining that strategy over long time periods. For every community there are boundary

members; i.e., those vertices that are adjacent to a vertex with a different strategy. We

study how these boundary members evolve as a by-product of our analysis. We note that

this dynamical system does not reach a strict equilibrium as there is always a probability

of switching to any strategy, but if the probability to play the same strategy tends to 1 for

each player, we can infer that the game tends toward stability over time.

We now focus on the long-run probability of strategy fixation for the dynamical system

we have described in Section III. To do a thorough analysis on this game, we will study

perturbations of the parameters in the payoff matrix given in Eq. (3).

In general, we assume δ and ϵ are small, but this isn’t necessarily required. Note that when

ϵ = 2δ, we have a scaling of the original RPS form. We can break down the probabilities into

cases based on what the neighbors of a focal vertex play with respect to that vertex; since

the graph is a cycle, all vertices have exactly two neighbors. To focus on the probabilities of

continuing to play the same strategy, extended for n rounds into the future, we fix an initial

time t0 and define Ns(t0) as the bank value corresponding to the focal player’s strategy.

First, when both neighbors play the same strategy as the focal player (tie), the general

form of the probability of repeating the same strategy next round is

PR =
e4n(1+δ)+nϕeNs(t0)

e4n(1+δ)+nϕeNs(t0) + 2
,

where ϕ is specified by how the neighbors perform against their other neighbor. There are
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six different possibilities

ϕ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 both neighbors lose

2(2 + ϵ) both neighbors win

2(1 + δ) both neighbors tie

(1 + δ) one ties, one loses

(2 + ϵ) one wins, one loses

(3 + δ + ϵ) one wins, one ties.

Now that we have a complete expression of this case, we can give a description of what it

represents. If n = 0, the expression gives the probability of playing the same strategy in

next round, given Ns(t0). When n is nonzero, the value is the probability of playing the

same strategy in the n+1th round given Ns(t0) and assuming that locally no player changes

strategy over the first n rounds.

We can use this expression to study how this probability behaves as n → ∞. If it tends

to 1, we can conclude it becomes increasingly likely that the focal player continues to play

this strategy, but there is always a nonzero probability that the player will choose a different

strategy. If it tends to 0, we can say with probability 1 that the player will eventually

choose a different strategy. As noted previously, this is only one case. The other situations

are described below.

The previous case described a setting when both neighbors played the same strategy as

the focal player. When that isn’t the case, there are many different variations which can be

grouped into five cases around how the focal player performs: (a) lose on both sides, (b) win

on both sides, (c) win on one and lose on the other, (d) win and tie, and (e) lose and tie.

The case of a tie on both sides was the case just considered. Let PR denote the probability

that the focal player repeats. Then we have:

a. Case 1: The focal individual loses on both sides. The general form of the probability

to play the same strategy is

PR =
e−2n(2+ϵ)+nϕe∆N(t0)

e−2n(2+ϵ)+nϕe∆N(t0) + 1 + e−Nc(t0)e−2n(2+ϵ)+nϕ
,

where again ϕ is the contribution of the secondary neighbors. Here, and for the following

cases, we will define

∆N(t0) = Ns(t0)−Nc(t0),
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where Nc(t0) is the total bank value corresponding to the (complementary) strategies that

the focal player isn’t playing. Similar to the previous case, ϕ is then

ϕ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 both neighbors lose

−2(2 + ϵ) both neighbors win

−2(1 + δ) both neighbors tie

−(1 + δ) one ties, one loses

−(2 + ϵ) one wins, one loses.

−(3 + δ + ϵ) one wins, one ties

(4)

These cover all potential situations in the case of loss on both sides.

b. Case 2: Win on both sides. This case is fortunately very similar to the previous one,

except now the focal individual gets a payoff on each play. Thus the general form becomes

PR =
e2n(2+ϵ)+nϕe∆N(t0)

e2n(2+ϵ)+nϕe∆N(t0) + 1 + e−Nc(t0)enϕ
,

with the form of ϕ given by Eq. (4).

c. Case 3: Win on one side, lose on the other. This is the most complicated of the

different cases as each neighbor is playing a different strategy, so we cannot write the general

form simply. Instead, we will leave it in the general form, and denote NW (t0) as the bank

of the winning neighbor and NL(t0) as the bank of the losing neighbor. We then have the

general form as

PR =
en(2+ϵ)eNs(t0)

en(2+ϵ)eNs(t0) + eNW (t0)en(2+ϵ)+nϕW + eNL(t0)enϕL
.

In this particular case, we denote ϕW and ϕL separately, so we can express them simply as

ϕW , ϕL =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 lose

2 + ϵ win

1 + δ tie.

In special cases this equation does simplify.

d. Case 4: Win on one side, tie on the other. The general form is given by

PR =
en(4+2δ+ϵ)+nϕe∆N(t0)

en(4+2δ+ϵ)+nϕe∆N(t0) + 1 + e−Nc(t0)e−nµ
.
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This case is more delicate than the previous cases because anything won by the neighbor

playing the same strategy contributes positively to the probability, while anything won by

the other neighbor contributes negatively. Thus we must have cases for each potential

combination and can no longer appeal to symmetry. For utmost clarity, a teammate will

refer to the neighbor playing the same strategy as the focal player, and we will specify what

is happening to this teammate. In the previous three cases, all ϕ counted against the focal

player’s strategy. Since one of the neighbors now plays the same strategy, this must be

accounted for. The defined ϕ will still treat both neighbors, but we now introduce µ to

handle only the portion which is contributed by the other, non-teammate strategy. The

different ϕ are

ϕ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 both lose, win, or tie

1 + ϵ− δ teammate wins, other ties

δ − 1− ϵ teammate ties, other wins

2 + ϵ teammate wins, other loses

−2− ϵ teammate loses, other wins

1 + δ teammate ties, other loses

−1− δ teammate loses, other ties,

(5)

with µ being

µ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 lose

1 + δ tie

2 + ϵ win.

(6)

Note that µ can be discerned from ϕ and the other information, but notationally this is

simpler.

e. Case 5: Lose on one side, tie on the other. This case is very similar to the previous,

with a slightly different general form given by

PR =
en(2δ−ϵ)+nϕe∆N(t0)

en(2δ−ϵ)+nϕe∆N(t0) + 1 + e−Nc(t0)e−n(2+ϵ)−nµ
.

Here ϕ and µ are still given by Eqs. (5) and (6), the same as in the previous case.

We have given a complete characterization of every potential case that can arise on a

cycle (1D lattice with no boundary), which also allows for the study of limit probabilities
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under the assumption that nothing changes. The logic used to arrive at these formulae can

easily be extended to the 1D lattice with boundary by considering the cases where the focal

individual has only one neighbor. In what follows, we see how the asymptotic convergence

manifests, and which situations will never be stable in the limit.

Asymptotic Behavior

Studying the system numerically suggests that as bank accounts increase, communities

begin to form (see Section V below). For the sake of the analysis, we will assume that

communities have already formed, and will focus on players at the boundary between two

communities. As we are studying the RPS game, one of these players must be winning

against the other. We focus on the losing player, as their bank value grows the slowest out

of all players around them. If the two communities are large enough, then the probability

for this losing player to play the same strategy next round is given by

PR =
en(2δ−ϵ)e∆N(t0)

en(2δ−ϵ)e∆N(t0) + 1 + e−Nc(t0)e−n(3+ϵ+δ)
. (7)

We focus on this case because it is the “worst case”, and thus will reveal how stability

depends on the relationship between ϵ and δ.

First, suppose 2δ > ϵ. Then, if nothing locally changes each round, we can study the

limit of this probability, which is

lim
n→∞

en(2δ−ϵ)e∆N(t0)

en(2δ−ϵ)e∆N(t0) + 1 + e−Nc(t0)e−n(3+ϵ+δ)
= 1. (8)

There is some difficulty with this result, as any change during play breaks it, and there is

always a positive probability for such a change to occur. What we do see is that the proba-

bility converges exponentially to 1, so even though we don’t have convergence in finite time,

in practice the probability to change quickly approaches extremely small values. Considering

the alternate case, that is ϵ > 2δ, then the limit goes in the other direction. We have

lim
n→∞

en(2δ−ϵ)e∆N(t0)

en(2δ−ϵ)e∆N(t0) + 1 + e−Nc(t0)e−n(3+ϵ+δ)
= 0. (9)

The conclusion we can derive from this is much more precise than in the previous case.

Since the probability tends to 0 exponentially, we know for certain that the focal player will

eventually change their strategy as the product of these probabilities converges even more
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FIG. 2: Distributions of the probability of at least one player changing from round 800 to

round 801. (Left) Stationary matrix, (Middle) standard RPS matrix, (Right) Transient

matrix.

quickly to 0. How this manifests in practice is through transient community boundaries.

The bank value for the neighbor’s strategy eventually surpasses the bank value for the focal

player’s strategy, and thus the probability tends toward 1 that the focal player will adopt this

strategy. This happens at every boundary, and drives the gradual shifting of communities

in the domain, as seen for example in Fig. 1R.

The remaining case, where 2δ = ϵ, is the most interesting. This case represents the classic

RPS game. Here limit is

lim
n→∞

e∆N(t0)

e∆N(t0) + 1 + e−Nc(t0)e−n(3+ϵ+δ)
=

e∆N(t0)

e∆N(t0) + 1
. (10)

This limit will tend towards a fixed probability which is neither 0 nor 1. So again we conclude

that the focal player will eventually change strategy, as the product of this probability for

each round goes to zero.

However, what is most interesting is the time dependence of the limiting probability PR

for this case. Since we can assume that Nc(t0) is fairly large, then:

e−Nc(t0)e−n(3+ϵ+δ) ≈ 0,

so the probability to play the same strategy is essentially constant, with a value dependent

solely on ∆N(t0). This manifests itself in a surprising way. Unlike the 2δ > ϵ case, here

PR < 1, so there is no tendency toward fixation. And unlike the ϵ > 2δ case, the boundary

probabilities don’t tend toward 0 either, so there is no guarantee that the boundaries will

drift. Instead, we find a combination of the two. Note that ∆N(t0) is simply the difference

in bank values at the beginning time t0 of our analysis. Since the boundary is guaranteed

to move at some point (as PR doesn’t converge to 1), there will be a time t1 when the
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boundary will move. If ∆N(t1) > ∆N(t0) (where note these ∆N are evaluated for different

players, since the boundary has changed), then the probability to play the same strategy has

increased for the losing player at the boundary. Therefore this probability can in fact tend

toward 1, as in the first case, but it only does so by moving the boundary itself, which is

the phenomenon of the second case. Thus the asymptotics of the ϵ = 2δ case is a boundary

case which dynamically combines the other two scenarios.

V. NUMERICAL RESULTS

We now study the three conditions discussed in the previous sections numerically. In all

simulations, we fix T = 100 (β = 0.01), which affects the rate at which communities form.

A. Probability of Stationarity

Consider the pR(v, t), the probability that player (vertex) v maintains its strategy from

round t to round t+ 1. To study this function we used a cycle (domain) of size 300. Payoff

matrices were defined as follows:

1. For the stationary matrix (ϵ < 2δ) we use parameters δ = 0.5 and ϵ = 0.

2. For the standard RPS matrix (ϵ = 2δ) we use parameters δ = ϵ = 0.

3. For the transient matrix (ϵ > 2δ) we use parameters ϵ = 2 and δ = 0.

We ran 100 realizations of each scenario to measure pR(v, t), and used this to compute the

probability that at least one agent would change strategy from time t to t+ 1 as:

p1(v, t) = 1−
∏︂
v

pR(v, t).

The simulation was stopped at Tmax = 800. The numerically determined mean ⟨p1⟩ is shown

in Fig. 3.

We observe the expected decrease in time in the probability that at least one lattice point

will change strategy with ⟨p1⟩ → 0 for the stationary matrix and ⟨p1⟩ > 0 for the transient

matrix at Tmax. This is consistent with the theoretical analysis showing community drift

should occur in the transient case. The RPS matrix exhibits behavior between transient and
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FIG. 3: (Top) The mean probability of at least one player changing over time decreases

the most in games with the stationary matrix as expected. (Bottom) The mean probability

of any player changing over time decreases rapidly to zero.
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FIG. 4: (Left) Average number of communities relative to the domain size. Error bars

represent one standard deviation. (Middle) Average community size relative to the domain

size. (Right) Combined histograms of all community sizes. Note that the histograms for

simulations with the same matrix type but different domain sizes are nearly identical.

stationary cases. Histograms for p1(v, Tmax) over all sample runs are shown in Fig. 2. Again

we see the greatest dispersion in the transient matrix case as the probability of maintaining

strategy should go to zero - see Eq. (9).

Locality is the key aspect of this spatial system. An individual player sees the strategies

and bank values of their direct neighbors, and is only effected by their neighbors and their

neighbors’ neighbors. This locality leads to an interesting result. Even if one player has a

bank value much larger than all the others, that player’s strategy will only necessarily be

dominant in a small community centered around that player. This results from the lack of

redistribution of bank value, so the dominant player will always be dominant in their local

area, but that local area does not extend far.

Interestingly, while Fig. 3 shows the expected differences between the three matrix condi-

tions, the mean probability that any one individual changes strategy is close to zero as time

goes to infinity. This can be explained because most of the players are within a commu-

nity and so have a very large probability to play the same strategy. The boundary players

probabilities are not extreme enough to influence this average from the dominant majority.

What these curves do show is the community formation rate is largely independent of the

limiting behavior in these three cases, although in the transient case communities do form

faster as the winning bonus ϵ = 2 is large enough to influence this rate. The communities

are then subject to drift while they are stationary when ϵ < 2δ. Surprisingly, it appears that

communities form slowest in the case when ϵ = δ = 0, which is a property of the parameters

themselves. Communities solidify as the bank values increase, and the rate of this increase
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depends on how large ϵ and δ, and thus the entries of the payoff matrix, are. Therefore

the rate of community formation is a function of the magnitudes of the entries of the payoff

matrix, while the long time community behavior is a function of the relationship between

these payoffs.

B. Community Sizes and Scaling

To determine how the domain size affects both the number of communities and the com-

munity sizes, we ran simulations with domain (cycle) sizes ranging from 150 - 1200 vertices.

We ran the simulations 1000 times for each community size for each matrix type. Each

simulation was terminated after 600 rounds, and the number and size of each community

were determined. We define a community to be a set of at least two adjacent vertices in the

domain that all have the same strategy. Single vertices not belonging to a community did

not occur in our sample after ∼600 rounds.

FIG. 5: The effect of a linear temperature ramp on the formation of communities: (Left)

a = 0.8, (Middle) a = 1.5, (Right) a = 2. As a is increased, the more rapidly increasing

temperature causes a melting, in which communities become smaller and more stochastic

in dynamics.

Fig. 4 (Left) and (Middle) show the relationships of domain size with average number of

communities and mean community size, respectively; Fig. 4 (Left) shows a linear relationship

between the average number of communities and the domain size. As a result of this linear

growth, we expect to see a constant mean community size over all domain sizes, as seen in
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FIG. 6: We include two additional values for ϵ and δ in the stationary and transient cases

illustrating their effect on community formation.

Fig. 4 (Middle). Fig. 4 (Right) shows smoothed histograms for all simulations. Note that

the histograms for simulations with the same matrix type are nearly identical but differ

among the matrix classes.

We note in Fig. 4 (Left) that the stationary case has a larger average number of communi-

ties than either standard rock-paper-scissors or the transient case. This is further illustrated

in Fig. 4 (Right) which shows the community sizes are smaller (distribution is more to the

left) with a thinner tail when compared to the other cases. We hypothesize that this is

because the communities in the stationary case solidify earlier, when there are many small

communities from the initial few rounds when the probability to play any strategy is es-

sentially uniform. On the other hand, the transient case has a smaller number of average

communities. This is consistent with our speculation from the previous section, where over

time communities are eliminated, but often none are brought into existence, so in general

we would expect that there would be fewer larger communities.

We tested this empirically using a small (200 replication) simulation with (ϵ, δ) = (18, 0)

and (ϵ, δ) = (0, 9). While this is outside the region we consider for parameters, we note
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the results are consistent with our previous results. Fig. 6 shows the confirmation of the

hypothesis that, as ϵ increases with fixed δ, the number of communities per domain size

increases, while as δ increases with fixed ϵ, the number of communities decreases. Because

each (ϵ, δ) combination seems to lead to a natural mean community size λ (which is the

inverse of the slope shown in Fig. 6), we know that:

lim
ϵ→∞

λ(ϵ, δ) ≥ 2

lim
δ→∞

λ(ϵ, δ) ≤ Ω,

where Ω is the domain size. If λ(ϵ, δ) = Ω, then there is a single monoculture community.

In future work we will attempt to determine the structure of λ(ϵ, δ) and to understand why

a natural community emerges at all, since it is not immediately clear that this should be so

from the model structure.

C. Effects of A Linear Temperature Increase

Because all payoffs in the general RPS games considered here are non-negative, there is

an overall trend for the vertex bank values to increase linearly with time. Thus the impor-

tance of any fixed kT , which defines the scale of fluctuations in the Boltzmann distribution,

diminished with time, which may lead to a “freezing in” of communities. In order to com-

pensate for this, and study systematically the interplay of random fluctuations with spatial

community structure, we impose a linear temperature ramp, of the form

T = T0 + at,

where T0 = 100, consistent with the previous sections. This allows us to adjust the value

of a so that the thermal fluctuations can keep pace with the growth of Ns. As expected,

we observe a kind of “melting” of the communities to different extents, dependent on a, as

illustrated in Fig. 5.

As a is increased from zero, the effect of thermal fluctuations becomes more pronounced,

and communities seem to become smaller. For large values of a, no communities are observed,

as the overall increase of bank values cannot outpace the rate of temperature increase. We

study this in the 2δ > ϵ case, for which stable communities form at a = 0. We ran 100

replications with varying values of a using a fixed domain size of 300, with the matrix

parameters as given in Section VA.

17



FIG. 7: For increasing temperature ramping a, the median number of communities (Top)

and median community size (Bottom) initially decrease (respectively increase), as smaller

communities are annealed and merge into larger ones. As a is further increased, the

community structure disappears (melting). Error bars: the full range of the distribution

(Top), and 40%-60% of the distribution (Bottom).

Results are shown in Fig. 7, in terms of the median number of communities and median

size, with error bars representing the range of the distribution (see caption). We see that that

median community count reaches a minimum at a ≈ 0.8, with a corresponding maximum

in the median community size at the same value of a. Using a Mann-Whitney test we can
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see the size of the communities when a = 0 and when a = 0.8 is statistically different

at well beyond 7σ. We hypothesize that the continued presence of fluctuations due to

the temperature ramp allow smaller communities, which would have otherwise survived, to

merge with other larger communities. This “annealing” effect results in an increased median

community size, and decreased number of communities. It also suggests the possibility that

a linear temperature ramp followed by a fixed temperature could provide a means to control

community sizes.

At larger a values, the relatively larger fluctuations overcomes the stabilization of larger

communities, as the median community size decreases while the number of communities

increases; eventually, the community structure melts entirely (Fig. 5R).

VI. CONCLUSION AND FUTURE DIRECTIONS

In this paper we have studied a dynamical system arising from evolution in a repeated

game on a lattice, where choice of strategy is mediated by a Boltzmann distribution. We

compute the probability of strategy fixation within this dynamical system and use it to

explain the formation of communities in three classes of the rock-paper-scissors matrix. We

show that two of these cases have community boundaries becoming (effectively) fixed as

time goes to infinity, thus leading to stable communities. In the third case we show that the

communities are (slowly) transiting across the lattice domain.

Studying the distributions of the number and size of the communities formed in this

model has revealed some surprising relationships. Future work will focus on explaining why

the average size of the community is independent of the domain size and only depends on

the choice of matrix parameters. Additionally, characterizing how this dependence arises

from the dynamics is of significant interest. Our results may offer new interpretations and

possibilities for modeling species diversity and coexistence in biological systems such as lichen

communities [48]. We have also shown that increasing temperature can cause a decrease in

the number of communities (leading to larger communities) for slow temperature increases.

For larger temperature increases, a larger number of (highly transient) smaller communities

form as a result of temperature effects. Understanding this relationship would be intriguing.

In particular, it would be intriguing to determine whether the system is a glass and if so what

its more specific properties are. Determining other system characteristics and community
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properties, especially in higher dimensions, is also of interest. From the perspective of

the statistical physics of social systems [49], studying wealth redistribution schemes in this

context may also provide additional insights.

A final direction of future research involves adjusting the bank dynamics to incorporate

a time discount factor so that:

B(x, t+ 1) = (1− α)B(x, t) + α
∑︂

u∈N (x)

π[σ(x, t− 1), σ(u, t− 1)].

where α ∈ [0, 1]. This effectively imposes a cost of living equal to αB(x, t) in each round

of play. Cost of living effects on wealth accumulating dynamics are considered by Chen et

al. [43] In this case, preliminary simulations suggest that even a small α cost of living can

destabilize the community formation process. On the other hand, a constant (fixed) cost

of living does not affect community formation. Further study of these effects are clearly

warranted.
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