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• Similitude and scaling of dissolved oxygen
(DO) was examined in coastal streams.

• Dimensionless numbers represented the
synergistic process controls of stream DO.

• A process diagram revealed high, transi-
tional, and low stream metabolism re-
gimes.

• DO represented a metabolic scaling law in
streams across the U.S. Atlantic Coast.

• The scaling law led to a generalized em-
pirical model of DO for coastal streams.
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We investigated the hypothesis of emergent ‘biogeochemical’ similitude (parametric reduction) and scaling of dis-
solved oxygen (DO) in coastal streams across the U.S. Atlantic Coast by employing dimensional analysis methodology
from fluid mechanics and hydraulic engineering. Two mechanistically meaningful dimensionless numbers were dis-
covered as the stream ‘metabolic’ number and the fraction of ‘DO saturation’ number. The ‘metabolic’ number repre-
sented the synergistic control on stream DO from various climatic, hydrologic, biochemical, and ecological drivers
(e.g., water temperature, atmospheric pressure, stream width and depth, total phosphorus, pH, and salinity). A graph-
ical exploration of the ‘metabolic’ versus the ‘DO saturation’ numbers led to collapse of data during 1998–2015 from
diverse coastal streams into an emergent process diagram, indicating threemetabolism regimes (high, transitional, and
low). The high and lowmetabolism regimes were, respectively, characterized by themost and least favorable environ-
mental conditions for stream DO depletion—through reduced dissolution and reaeration, as well as increased organic
decomposition, respiration, and nitrification. The emergent process diagram led to a generalized power law scaling re-
lationship of the ‘DO saturation’ number as a function of the ‘metabolic’ number (exponent ~ 1/3; Nash-Sutcliffe Effi-
ciency, NSE = 0.83–0.85). The metabolic scaling law was leveraged to develop a generalized empirical model to
successfully predict DO in diverse streams across the U.S. Atlantic Coast (NSE=0.83). The emergent process diagram,
metabolic scaling law, and prediction model of DO would help understand and manage water quality and ecosystem
health of coastal streams in the U.S. and elsewhere.
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1. Introduction

Dissolved oxygen (DO) is crucial for the proper functioning of aquatic
ecosystems. It is a key indicator to assess and manage the health of stream
ziz).
water quality and ecosystem (Putro et al., 2016; Li et al., 2017; Zhang et al.,
2019; Zhi et al., 2021). However, stream DO is controlled by a multitude of
hydroclimatic and biogeochemical drivers having complex interactions—
especially in the highly dynamic coastal environments. The intricate inter-
actions among the numerous process drivers pose challenges in achieving a
generalized understanding and prediction of stream DO in diverse environ-
mental conditions. Investigations on the synergistic controls of various
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biogeochemical and ecological processes on stream DO can help assess
stream metabolism, environmental regimes, and ecosystem health across
large spatiotemporal scales.

The major processes of enriching stream DO (i.e., sources) are diffusion
and reaeration through air-water oxygen mass transfer and photosynthesis
by the aquatic autotrophs (Correa-González et al., 2014; Dick et al., 2016).
The reaeration rate of DO inwater typically depends on the stream velocity,
width, depth, and cross-sectional area (Chapra, 2008; Hondzo et al., 2013;
Gonçalves et al., 2017). In contrast, themajor processes of depleting stream
DO (i.e., sinks) are stream nutrient enrichment, nitrification, respiration,
and photo-oxidation (Correa-González et al., 2014; Xu and Xu, 2016;
Blaszczak et al., 2019; Gu et al., 2020; Johannsson et al., 2021). High tem-
perature can decrease stream DO as a result of increasing decomposition,
heterotrophic respiration, and nitrification by stimulating microbial activi-
ties (Jabiol et al., 2020). However, temperature effect on streamDOmainly
results from the thermodynamic property of water, which leads to a re-
duced solubility of oxygen gas with an increasing temperature (Chapra,
2008; Ni et al., 2019). The solubility of oxygen decreases with the lower at-
mospheric pressure at the higher elevations (Girard, 2013). High salinity
also leads to an increase of electrolytes (free ions) in streamwater, resulting
in a reduced solubility of oxygen gas (Garcia and Gordon, 1992). Further-
more, salinity can impact stream DO by creating photosynthetic stress
and controlling biogeochemical reactions in aquatic environments (Zhang
and Huang, 2011; Berger et al., 2019; Entrekin et al., 2019).

The production and consumption of DO by various stream processes are
inherently linked with stream metabolism (Bernhardt et al., 2018; Appling
et al., 2018). Previous studies provided important insights into the effect of
various environmental drivers on stream metabolism at different spatio-
temporal scales (Appling et al., 2018; Bernhardt et al., 2018; Koenig
et al., 2019; Savoy et al., 2019; Kindley, 2021; Ledford et al., 2021;
Segatto et al., 2021). Appling et al. (2018) presented site-specific models
to estimate ecosystemmetabolism and DO changes in 356 streams and riv-
ers across the U.S. Ledford et al. (2021) analyzed DO data and reported a
high spatiotemporal variability in metabolic regimes of an urban stream
receiving effluent discharges fromwastewater treatment plants in Philadel-
phia, USA. Further research is needed to develop a generalized understand-
ing, characterization, and prediction of stream DO, metabolism, and
ecosystem health amid the high spatiotemporal variability within and
across regions.

Coastal streams provide a wide range of ecosystem services and eco-
nomic benefits. Apart from flood control, tourism, and recreation, coastal
streams provide crucial habitats for diadromous fish species which migrate
between the sea and freshwater during their lifecycle (Thuesen et al., 2011;
Mitsuo, 2017). Further, coastal streams offer important habitat areas for the
growth of certain salmonid species (Rosenfeld et al., 2002; Mitsuo, 2017).
However, these streams are at a high risk of water pollution and subsequent
deoxygenation due to their highly dynamic nature under a rapidly
expanding development pressure (Mahaffey et al., 2020). Much research
has reported excess nutrient-driven eutrophication and high temperature
as the primary causes for depletion of DO in coastal streams and bays. Pre-
vious studies underlined the predominant negative control of water tem-
perature on coastal stream DO in various parts of the world
(e.g., Shrestha and Kazama, 2007; Jacobs et al., 2009; Schaefer and
Hollibaugh, 2017; Diamantini et al., 2018). Tyler et al. (2009) found that
the longest periods of severe hypoxia in the Delaware Coastal Bays had
been linked with the higher temperature alongside other abiotic factors
(e.g., low insolation, high streamflow). Diamantini et al. (2018) reported
increasing temperature as an important factor of DO depletion in various
coastal rivers of Europe. Furthermore, increased phosphorus in stream
may cause eutrophication (Wang and Linker, 2009; Abdul-Aziz and
Ahmed, 2017; Wurtsbaugh et al., 2019; Poikane et al., 2021), which typi-
cally results in higher turbidity and oxygen demanding waste to reduce
DO (Järvenpää et al., 2019; Mahaffey et al., 2020). Dodds (2006) reported
that the nutrient (nitrogen, phosphorus)-enriched runoff from the Missis-
sippi River Basin had been a potential cause of DO depletion in the northern
Gulf of Mexico, USA. Wan et al. (2014) reported a strong negative linkage
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of DO with nutrients (PO4–P, NH4–N, and total phosphorus) in the canals
of the southern Indian River Lagoon Watershed, Florida. Overall, the
existing studies on coastal stream DO mostly focused on local scale, and
often did not incorporate the gradients and varying interactions of biogeo-
chemical and hydroclimatic drivers across a large spatial scale.

An important research question is whether the complex interactions of
the major process drivers of DO in coastal streams can be combined to-
gether to discover emergent similitudes (parametric reductions) and
scale-invariant patterns. How is stream DO relatively and collectively con-
trolled by the interacting source versus sink processes? Similitude and di-
mensional analysis from fluid mechanics and hydraulic engineering
(Kundu and Cohen, 2004) can help formulate a small set of dimensionless
numbers and achieve emergent similitude by combining important hydro-
climatic, biochemical, and ecological drivers of DO in coastal streams
(Abdul-Aziz and Ahmed, 2019). The dimensionless numbers can then
lead to generalized scaling of DO in coastal streams across space and time
(Miragliotta, 2011; Hondzo et al., 2013; Gonçalves et al., 2017). Our cur-
rent study is motivated by the knowledge gaps in potential similitude,
emergent patterns, and generalized scaling of stream DO under diverse
coastal environments across a large spatiotemporal scale.

Classical examples of similitude-based generalized process diagrams
and scaling relationships are the ‘Moody diagram’ for pipe flow design
(Finnemore and Franzini, 2002) and ‘Shields diagram’ for characterizing
river sediment transport (Hager, 2018). Several studies have employed si-
militude and dimensional analysis to investigate the interactions of various
environmental process components (both biotic and abiotic) in aquatic en-
vironment and modeling of stream water quality. For instance, Abdul-Aziz
and Ahmed (2019) employed dimensional analysis to evaluate the domi-
nant environmental controls of water quality in coastal-urban streams of
southeast Florida. Schwefel et al. (2017) formulated dimensionless num-
bers and scaling relationship to estimate the dissolved oxygen flux and dis-
tribution at the sediment-water interface of Lake Geneva. Warnaars et al.
(2007) investigated the interactions of stream biotic and abiotic factors
employing similitude and dimensional analysis in various streams and riv-
ers across North America. Hondzo et al. (2013) applied dimensional analy-
sis to study the control of photosynthesis, respiration, advection,
dispersion, and aeration processes on dissolved oxygen mass balance in
the Minnehaha Creek, Minnesota. Zeleňáková et al. (2013) formulated
water quality model by employing dimensional analysis to estimate nutri-
ent concentrations from the hydrologic and climatic drivers in the River
Laborec of eastern Slovakia.

The aim of this study is to investigate similitude (parameter reduction),
emergent pattern, and metabolic scaling of DO in coastal streams. The un-
derlying research hypothesis is that DO represents emergent ‘biogeochem-
ical’ similitude and scaling relationship across diverse coastal streams.
Dimensional analysis was employed to formulate meaningful dimension-
less numbers, incorporating various environmental processes. The dimen-
sionless numbers were computed using observational data and scatter-
plotted to unravel the emergent patterns and a characteristic process dia-
gram. A generalized scaling relationship of DO was then estimated for di-
verse coastal streams, incorporating gradients across the Atlantic Coast of
USA.

2. Materials and methods

2.1. Study sites and datasets

We included 31 stream water quality monitoring sites located in
NOAA's coastal watersheds across the Atlantic Coast of USA (Percy
Pacheco, personal communications, 2016) (Fig. 1, Tables S1 and S2). The
study sites and period (1998–2015) were selected based on the availability
of reliable data, incorporating seasonal and multi-year temporal gradients
of stream water quality variables. The large geographical extent encom-
passed eight U.S. states: (i) Connecticut (CT), (ii) New Jersey (NJ), (iii)
Maryland (MD), (iv) Virginia (VA), (v) North Carolina (NC), (vi) South Car-
olina (SC), (vii) Georgia (GA), and (viii) Florida (FL). The study area



Fig. 1. Locations of 31 stream water quality stations across the U.S. Atlantic Coast.
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incorporated diverse ecoregions ranging from the ‘northeastern coastal
zone’ to the ‘southern coastal plain’—representing gradients in climate, hy-
drology, land uses, soils, and geology (Omernik and Griffith, 2014; USGS,
2018). Drainage area of the monitoring sites ranged from approximately
1 to 25,443 km2, whereas site-specific average stream flow varied from ap-
proximately 0.06 to 210 m3/s (Table S3 in Supplementary materials). The
corresponding land uses (see details in Text S1 of the Supplementary mate-
rials) represented varying amounts of agricultural land (approximately 0 to
92%), built-up land (4 to 87%), vegetated land (0 to 83%), wetland (0 to
46%), waterbody (0 to 5%), and open land (0 to 1%), draining into the
stream monitoring locations.

Grab samples for the stream water quality variables and concurrent
stream flow (Q) during 1998–2015 were obtained for the 31 streams
from the National Water Quality Monitoring Council (NWQMC) database
(NWQMC, 2017). The stream water quality dataset included DO, total
phosphorus (TP), temperature of water (Tw), specific conductance, and
pH. Salinity (S) was estimated from the specific conductance following
Schemel (2001). The water quality data represented monthly to quarterly
sampling frequencies across the stations and years, with samples collected
at various hours (6:00 to 18:00), incorporating the productive phase of
3

the 24-hour diel cycle. DO observations during the remaining nighttime
hours (19:00 to 24:00 h) were not available for many of the stations. Fur-
ther, data for TP, S, and pHduring the 19:00 to 24:00 h of the diurnal cycles
were in general not available.

Data for the stream top width (W) and depth (D) were not available in
the NWQMC database. Concurrent (at the sampling time of water quality
variables) data of W and D were estimated from their power law regression
relationshipswith streamflow (Q) (r2=0.53 to 0.96). The regression equa-
tions were estimated based on the available data fromUSGS (2017) (see de-
tails in Text S2 and Fig. S1 of the Supplementary materials). Concurrent
atmospheric pressure (Pa) data were collected from the 4 × 4 km grid
cells of National Solar Radiation Data Base (NSRDB) (NSRDB, 2017). Satu-
rated concentration of dissolved oxygen (DOsat) was estimated as a function
of Tw, S, and Pa by using the nonlinear regression equations of the American
Public Health Association (APHA; see Chapra, 2008).

The extreme outliers in data were detected and removed for each vari-
able and site separately (see details in Table S1) by setting P25 − 2 ×
IQR and P75 + 2 × IQR as the lower and upper thresholds, respectively
(Tukey, 1977); here P25 = 25th percentile, P75 = 75th percentiles, and
IQR = interquartile range. The outliers were removed to avoid any biases



Table 1
Data summary of the water quality, climatic, and hydrologic variables during 1998–2015 in 31 streams located across the U.S. Atlantic Coast.

Variables Mean Standard deviation Minimum 25th percentile 50th percentile 75th percentile Maximum

Pa (mbar) 1009.8 8.7 976.9 1004.7 1010.4 1015.6 1035.4
Tw (°C) 15.4 8.0 0.1 8.5 15.6 22.2 32.3
TP (mg/l) 0.09 0.15 0.004 0.03 0.05 0.10 1.74
S (mg/l) 93.5 112.0 0.1 36.5 54.6 111.8 1219.9
pH 7.2 0.6 4.6 6.8 7.2 7.6 9.3
W (m) 55.23 52.02 0.81 20.14 36.55 68.11 200.30
D (m) 1.41 1.36 0.03 0.49 1.04 1.81 8.14
DO (mg/l) 9.3 2.4 1.6 7.5 9.1 11.2 16.0
DOsat (mg/l) 10.2 1.8 7.3 8.6 9.9 11.7 14.7

Note: Sample size= 2429. Pa, Tw, TP, S,W, D, DO, and DOsat, respectively, refer to atmospheric pressure, water temperature, total phosphorus, salinity, streamwidth, stream
depth, dissolved oxygen, and saturated dissolved oxygen.
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from unusually high or low values in our analyses and model estimation.
The final dataset (sample size = 2429) was obtained by pooling data
from all sites to incorporate wide ranges of water quality, climatic, and hy-
drologic conditions in the coastal streams (Table 1). The final dataset repre-
sented grab samples (and not their averages) of stream water quality
variables (including DO) at monthly to quarterly sampling frequencies
across the stream sites and the productive hours of diurnal cycles in various
months of the year (Fig. S2 in the Supplementary materials).

2.2. Formulation of dimensionless numbers using Buckingham pi theorem

We formulated the dimensionless numbers using Buckingham pi theo-
rem (Finnemore and Franzini, 2002; Kundu and Cohen, 2002) following
the principle of dimensional homogeneity. Accordingly, if n dimensional
variables have r fundamental dimensions, then the variables can be com-
bined to form n-r dimensionless (i.e., pi or Π) numbers. The set of n vari-
ables (including stream DO) was determined by incorporating
mechanistically relevant and important stream water quality variables
and their drivers. Specific heat ofwater (cp=4184 J kg−1 °C−1) was incor-
porated to facilitate the formulation of dimensionless numbers involving
Tw. Further, pH was converted to the concentration units of hydrogen ion
(H). A functional relationship can be expressed by involving stream DO
and the environmental drivers as follows:

f DO,DOsat , TP,H, S,W,D,Pa, Tw, cp
� � ¼ 0 (1)

Here, the total number of variables, n= 10. Based on the units and di-
mensions of the variables (Table 2), the number of fundamental dimen-
sions, r = 4 (mass: M; length: L; time: T; temperature: K). Therefore, six
(n-r = 6) dimensionless (Π) numbers could be formulated and expressed
in a functional form as follows:

φ Π1,Π2,Π3,Π4,Π5,Π6ð Þ ¼ 0 (2)

Based on the pi theorem, four (r=4) ‘repeating variables’were selected
in a way to involve all fundamental dimensions, without allowing
Table 2
Units and dimensions of variables involved in the dimensional analysis of stream
DO.

Variables Units Dimensions

Dissolved oxygen (DO) kg m−3 [ML−3]
Saturated concentration of dissolved oxygen (DOsat) kg m−3 [ML−3]
Total phosphorus (TP) kg m−3 [ML−3]
Hydrogen ion (H) kg m−3 [ML−3]
Salinity (S) kg m−3 [ML−3]
Stream width (W) m [L]
Stream depth (D) m [L]
Atmospheric pressure (Pa) kg m−1 s−2 [ML−1 T−2]
Stream water temperature (Tw) °C [K]
Specific heat of water (cp) J kg−1 °C−1 [L2 T−2 K−1]

4

formulation of dimensionless numbers among the repeating variables. A di-
mensionless number was then formulated by including one of the remain-
ing variables with the repeating variables. For example, combining TP
with the repeating variables of Tw, W, Pa, and cp, the first pi number was
formulated as follows:

Π1 ¼ Ta
w �Wb � Pc

a � cdp � TP (3)

According to the principle of dimensional homogeneity:

M0L0T0K0 ¼ Kð Þa Lð Þb ML−1T−2� �c
L2T−2K−1� �d

ML−3
� �

(4)

Through simplification, we get the following expression:

M0L0T0K0 ¼ Mcþ1Lb−cþ2d−3T−2c−2dKa−d (5)

Equating the exponents of M, L, T, and K on both sides of Eq. (5), a sys-
tem of equations can be obtained as follows:

cþ 1 ¼ 0 (6)

b−cþ 2d−3 ¼ 0 (7)

−2c−2d ¼ 0 (8)

a−d ¼ 0 (9)

The system of equations (Eqs. (6)–(9)) can be expressed in a matrix-
vector format as follows:

0 0 1 0

0 1 −1 2

0 0 −2 −2
1 0 0 −1

2
6664

3
7775

a

b

c
d

2
66664

3
77775 ¼

−1

3

0
0

2
66664

3
77775 (10)

Solving the system of equations, we get a=1, b=0, c=− 1, and d=

1. This led to cp �Tw �TP
Pa

as the first pi number (Π1). However, any dimension-
less number can be inversed for convenience of interpretations. For exam-

ple, cp �Tw �TP
Pa

was inverted to Pa
cp �Tw �TP, which is the ratio of a positive driver

(Pa) of stream DO to the negative drivers (Tw, TP). Π1 was then expressed
as follows:

Π1 ¼ Pa

cp � Tw � TP (11)
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Similarly,Π2 toΠ6 for the chosen set of repeating variables were formu-
lated as follows:

Π2 ¼ Pa

cp � Tw � H

Π3 ¼ Pa

cp � Tw � S

Π4 ¼ Pa

cp � Tw � DO

Π5 ¼ Pa

cp � Tw � DOsat

Π6 ¼ W
D

TheΠ4 andΠ5 were combined to form the dimensionless DO number as
follows:

Π5

Π4
¼ Pa

cp � Tw � DOsat
� Pa

cp � Tw � DO ¼ DO
DOsat

(12)

The derived set of five dimensionless numbers was expressed in func-
tional form as follows:

φ
DO
DOsat

,
Pa

cp � Tw � TP ,
Pa

cp � Tw � H ,
Pa

cp � Tw � S ,
W
D

� �
¼ 0 (13)

Various sets of dimensionless numbers were formulated by itera-
tively changing the ‘repeating variables’ (see Table S7 in Supplementary
materials). However, the derived numbers from different iterations
could be combined to obtain the mechanistically meaningful set of
five dimensionless numbers (Eq. (13)). The dimensionless DO number,
DO
DOsat

represented the fraction of in-stream DO saturation value, and
was termed the ‘DO saturation’ number. The other four dimensionless
numbers represented the interactive controls of various climatic, hydro-
logic, biochemical, and ecological drivers on stream DO. However, each
of the remaining numbers represented a ratio of a positive driver (Pa,
W) to the negative drivers and correlates (Tw, TP, S, D, H) of stream
DO. To reflect these interactive ratio of positive control (i.e., source)
to the overall negative control (i.e., sink) of stream DO, the four dimen-
sionless numbers were combined together (by multiplications) in the
following form for further analyses:

Pa

cp � Tw � TP� Pa

cp � Tw � H � Pa

cp � Tw � S�
W
D

¼ P3
a �W

c3p � T3
w � TP � H � S � D (14)

The new dimensionless number, P3a �W
c3p �T3

w �TP�H�S�D was termed the stream

‘metabolic’ number, which represented the contrasting (sources versus
sinks) as well as the collective (overall interactive) controls of themajor en-
vironmental drivers on streammetabolism (Bernhardt et al., 2018). The re-
markable parametric reduction of 10 original variables to only two
dimensionless groups (‘DO saturation’ and ‘metabolic’ numbers) was de-
fined as the stream ‘biogeochemical similitude’ in this study. Based on the
pi theorem, the ‘DO saturation’ number was expressed as a function (ψ) of
the ‘metabolic’ number as follows:

DO
DOsat

¼ ψ
P3
a �W

c3p � T3
w � TP � H � S � D

 !
(15)
5

2.3. Investigation of emergent pattern and environmental regimes

We scatter-plotted the ‘DO saturation’ number (on the vertical axis)
with the ‘metabolic’ number (on the horizontal axis) to identify any appar-
ent emergent pattern between the two dimensionless numbers. The emer-
gence would be indicated by a potential collapse of observational data
from diverse streams across the U.S. Atlantic Coast on a generalized charac-
teristic curve or process diagram. The generalized diagram could indicate
environmental regimes of stream metabolism, with mechanistically mean-
ingful thresholds for separation and transition among the regimes. Any
boundaries (e.g., breakpoints) between the metabolic regimes were deter-
mined by visually apparent points of inflection on the generalized charac-
teristic process diagram. These boundaries were further corroborated by
identifying mechanistically meaningful thresholds of the environmental
drivers (i.e., original variables) near the breakpoints. Further, the null hy-
pothesis of no significant difference in DO and the environmental drivers
among the potential metabolic regimes were tested at the 95% confidence
level with ANOVA for linear mixed-effects models. This method of ANOVA
was chosen based on the possibility of repeated measures of variables in
time from stream sites across the environmental regimes. We applied the
‘residual’method for computing degrees of freedomwith the F-test. All var-
iableswere examined for approximate normality and log10-transformed, as
necessary (see Figs. S3 and S4 in Supplementary materials), for the ANOVA
analysis. The analysis was performed in MATLAB version R2020b.

2.4. Development of scaling relationship

The potential scaling of ‘DO saturation’ number with the ‘metabolic’
number was investigated as an emergent power law function as follows:

Y ¼ 1−αXβ (16)

where Y ¼ DO
DOsat

, X ¼ P3a ∙W
c3p ∙T3

w∙TP∙H∙S∙D, α is the location parameter, and β is scal-
ing exponent (i.e., shape parameter). The emergent scaling model
(Eq. (16)) was estimated with the observed data (binned-averaged data if
a large scatter was apparent in the original data) from streams across the
U.S. Atlantic Coast by using the Levenberg-Marquardt non-linear least
squares algorithm. The prediction efficiency and accuracy of the scaling
model were measured, respectively, by the Nash-Sutcliffe Efficiency
(NSE) and the ratio of root-mean-square-error to the standard deviation
of observations (RSR). NSE= 1.0 and RSR= 0 indicate a perfectly predic-
tive model (Moriasi et al., 2007; see Text S3 in Supplementary materials).

The model parameters (α, β) were robustly estimated by performing
cross-validations (80% data for calibration and 20% data for validation)
with a bootstrap Monte-Carlo resampling of the dataset 1000 times. The
final estimates of individual parameters and model performance metrics
(NSE, RSR) were obtained by averaging the corresponding 1000 estima-
tions. The model exponent (β) indicated the potential scaling relationship
between the response and predictor dimensionless numbers. Standard devi-
ation and coefficient of variation (CV) of the parameters were also com-
puted to indicate the associated uncertainties in the estimation process.
The estimated scaling relationship was then rearranged by bringing DOsat

on the right-hand-side of Eq. (16) to develop a generalized nonlinear
model for predicting DO in diverse streams across the U.S. Atlantic Coast.

3. Results

3.1. Emergent pattern and metabolic regimes

A semi-logarithmic plot of ‘DO saturation’ number DO
DOsat

� �
with the ‘met-

abolic’ number P3a �W
C3
p ∙TW

3∙TP∙H∙Sal∙D

� �
led to collapse of observations from vari-

ous coastal streams into a unique dimensionless curve—suggesting an
emergent process diagram (Fig. 2a). Given the scatter in the original data,
observations of the ‘metabolic’ number were binned and averaged for
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Fig. 2. Plot of the ‘DO saturation’ number DO
DOsat

� �
with the ‘metabolic’ number

P3a �W
c3p �T3

w �TP�H�S�D

� �
with the (a) original data (sample size = 2429) and (b) bin-

averaged data (sample size = 341), indicating collapse of observations from
diverse coastal streams on a generalized characteristic process diagram. Original
observations of the ‘metabolic’ number were binned and averaged for each

log 10
P3a �W

c3p �T3
w �TP�H�S�D

� �
¼ 0:02, and plotted with the corresponding averages of DO

DOsat
.

The solid red lines indicate the conceptual characteristic process diagram. The
hashed (vertical) black lines separate the three regimes. The hashed (horizontal)
magenta arrows indicate the thresholds of DO

DOsat
in regime transitions.
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each log 10
P3a �W

c3p �T3
w �TP�H�S�D

� �
¼ 0:02, and plotted with the corresponding aver-

ages of DO
DOsat

(Fig. 2b).
The ‘DO saturation’ number nonlinearly increased with the increasing

‘metabolic’ number up to the vicinity of complete saturation, and then
turned into a nearly horizontal line. Visually apparent points of inflection
on the generalized characteristic process diagram indicated two contrasting
environmental regimes separated by a ‘transitional’ regime (Fig. 2a, b).
When the stream ‘metabolic’ number≥ 1016 on the characteristic diagram,
DO remained close to full saturation (e.g., DO

DOsat
≥0:97)—indicating an envi-

ronmental regime with a low rate of metabolic consumption of DO. This
stream environmental condition was termed the ‘low metabolism’ regime.
In contrast, ‘metabolic’ number ≤ 1013 represented an environmental re-
gimewhere the ‘DO saturation’was relatively low ( DO

DOsat
≤0:72) and dropped

at a faster rate with the decreasing ‘metabolic’ number. This regime indi-
cated a highly favorable environmental condition for metabolic
6

consumption of DO, and was termed the ‘high metabolism’ regime. The
two regimes were connected by a ‘transitional’ regime (1013 < ‘metabolic’
number < 1016, and 0.72 < ‘DO saturation’ number < 0.97), where the ‘DO
saturation’ gradually decreased with the decrease of ‘metabolic’ number,
transforming the stream condition from low to high metabolism regime.

3.2. Comparison of regime-specific stream DO and the environmental drivers

The differences in DO and the environmental drivers among the three
metabolic regimes were apparent from the results of ANOVA for linear
mixed-effects model (Tables S8, S9, and S10). The hypothesis of no signifi-
cant difference in DO was rejected between the ‘high metabolism’ and the
‘low metabolism’ regimes (F1,672 = 453.33, p value < 0.001), between
the ‘high metabolism’ and the ‘transitional’ regimes (F1,1860 = 172.59, p
value < 0.001), and between the ‘transitional’ and the ‘low metabolism’ re-
gimes (F1,2320 = 1333.60, p value < 0.001). Stream TP, Tw, pH, W, Pa, and
DOsat were also significantly different between and among the regimes
(F1,672 to 2320 = 4.27 to 1433.20, p value < 0.05). Further, there were sig-
nificant differences in S (F1,672 to 1860 = 6.7 to 35.48, p value < 0.01) and
in D (F1,672 to 1860 = 8.3 to 11.3, p value < 0.01) between the ‘high metab-
olism’ and ‘low metabolism’ regimes, as well as between the ‘high metabo-
lism’ and ‘transitional’ regimes. However, S (F1,2320 = 0.002, p value =
0.97) and D (F1,2320 = 3, p value = 0.08) were not significantly different
between the ‘transitional’ and ‘low metabolism’ regimes.

The characteristic differences of the threemetabolic regimes were dem-
onstrated in the regime-specific original (unsmoothed) data summary of
DO and the environmental drivers (Table 3; Fig. S5 in Supplementary mate-
rials). The ‘low metabolism’ regime was characterized by relatively low
stream temperature (mean Tw = 7.4 °C), low nutrient (mean TP = 0.04
mg/l), high DO (mean = 12.1 mg/l), and high DOsat (mean = 12.2 mg/l).
Conversely, the ‘high metabolism’ regime corresponded to high values of
stream temperature (mean Tw = 25 °C) and nutrient (mean TP = 0.31
mg/l), and substantially lower values of DO (mean = 5.2 mg/l) and DOsat

(mean = 8.3 mg/l). Further, the ‘high metabolism’ regime corresponded to
relatively lower values of stream width (mean W = 46.65 m) and pH
(mean = 6.7) than that of the ‘low metabolism’ regime (mean W = 73.51
m, and mean pH = 7.5). The ‘high metabolism’ regime was also character-
ized by higher values of stream depth (mean D = 2.83 m) and salinity
(mean S = 227 mg/l) than the ‘low metabolism’ regime (mean D = 1.17
m, mean S=72.5mg/l). In contrast, the ‘transitional’ regime had intermedi-
ate values of DO (mean = 8.7 mg/l), DOsat (mean = 9.7 mg/l), and the en-
vironmental drivers (e.g., mean Tw=17.4 °C,mean TP=0.10mg/l, mean S
= 92.10 mg/l, mean pH = 7.1, mean D = 1.4 m, mean W= 49.85 m).

3.3. Emergent scaling relationship

Given the large scatter in the original data (Fig. 2a), we estimated the
proposed scaling relationship (Eq. (16)) of the ‘DO saturation’ number as
a function of the ‘metabolic’ number based on the binned-average data
(Fig. 2b) as follows:

DO
DOsat

¼ 1−6024:04
P3
a �W

c3p � T3
w � TP � H � S � D

 !−1
3

(17)

Themodel (Eq. (17)) efficiency and accuracy from bootstrapMonte-Carlo
resampling suggested very good prediction performance (Moriasi et al.,
2007) in both training (i.e., calibration; NSE = 0.85 and RSR = 0.39) and
validation (NSE= 0.83 and RSR=0.40). We presented the observed versus
predicted ‘DO saturation’ number plot and the associated residual plot based
on all binned-average datawithout resampling (Fig. 3a, b). Themodel param-
eters, scale factor (α = 6024.04, p value < 0.01) and exponent (β ¼ − 1

3, p
value< 0.01), were significant at the 95% confidence level. The standard de-
viations (and coefficients of variation) of the scale factor and exponent were
279.63 (5%) and 0.02 (6%), respectively. The relatively small standard devi-
ations and coefficients of variation emphasized the stability and low



Table 3
Data summary of the stream water quality variables and their drivers during 1998–2015 in the ‘low metabolism’, ‘transitional’, and ‘high metabolism’ regimes, as shown in
Fig. 2.

Variables Mean Standard deviation Minimum 25th percentile 50th percentile 75th percentile Maximum

‘Low metabolism’ regime
Pa (mbar) 1010.3 9.3 976.9 1004.9 1010.6 1016.6 1035.4
Tw (°C) 7.4 6.2 0.1 3.3 5.6 9.8 30.7
TP (mg/l) 0.04 0.04 0.004 0.02 0.03 0.04 0.40
S (mg/l) 72.5 51.2 0.1 37.9 51.8 97.1 467.7
pH 7.5 0.6 5.8 7.1 7.5 7.9 9.1
W (m) 73.51 64.07 2.28 24.93 49.72 118.32 198.63
D (m) 1.17 0.78 0.07 0.54 1.07 1.66 4.34
DO (mg/l) 12.1 1.6 6.9 11.3 12.3 13.1 16.0
DOsat (mg/l) 12.2 1.6 7.4 11.3 12.5 13.3 14.7

‘Transitional’ regime
Pa (mbar) 1009.6 8.6 980.4 1004.4 1010.3 1015.5 1031.5
Tw (°C) 17.4 6.8 1.9 11.8 17.6 22.8 32.3
TP (mg/l) 0.10 0.13 0.01 0.04 0.06 0.11 1.56
S (mg/l) 92.1 110.3 12.1 35.5 55.1 114.1 1219.9
pH 7.1 0.6 5.3 6.8 7.1 7.5 9.3
W (m) 49.85 46.77 0.92 19.36 33.33 62.96 200.30
D (m) 1.40 1.35 0.04 0.47 1.02 1.86 8.14
DO (mg/l) 8.7 1.8 2.9 7.4 8.6 10.0 14.4
DOsat (mg/l) 9.7 1.4 7.3 8.5 9.5 10.8 13.9

‘High metabolism’ regime
Pa (mbar) 1011.6 5.4 996.2 1009.2 1011.7 1015.5 1026.0
Tw (°C) 25.0 3.8 12.8 22.0 26.2 28.0 32.0
TP (mg/l) 0.31 0.39 0.03 0.10 0.14 0.24 1.74
S (mg/l) 227.0 226.6 12.1 40.9 82.4 428.8 745.8
pH 6.7 0.8 4.6 6.1 6.5 7.4 8.0
W (m) 46.65 39.14 0.81 21.07 34.06 60.93 162.52
D (m) 2.83 2.61 0.03 0.54 1.68 5.24 7.41
DO (mg/l) 5.2 1.8 1.6 4.1 5.5 6.5 9.1
DOsat (mg/l) 8.3 0.6 7.3 7.8 8.1 8.7 10.7

Note: Pa, Tw, TP, S, W, D, DO, and DOsat, respectively, refer to atmospheric pressure, water temperature, total phosphorus, salinity, stream width, stream depth, dissolved
oxygen, and saturated dissolved oxygen.
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uncertainty in the scaling parameters. The model exponent (β ¼ − 1
3) indi-

cated an emergent power law scaling relationship of ‘DO saturation’ number
with the ‘metabolic’ number across diverse coastal streams.

The developed equation between the dimensionless numbers (Eq. (17))
was further rearranged by bringing DOsat on the right-hand-side and
expressed as a generalized predictive model of DO for diverse streams
across the U.S. Atlantic Coast as follows:

DO ¼ DOsat 1−6024:04
P3
a �W

c3p � T3
w � TP � H � S � D

 !−1
3

2
4

3
5 (18)
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Fig. 3. Plots of predicted ‘DO saturation’ number (DO/DOsat) with (a) the smoothed
1998–2015 for streams across the U.S. Atlantic Coast.

7

The model (Eq. (18)) was used to predict DO in streams of the U.S. At-
lantic Coast and compared with all the original (i.e., unbinned) data. Not-
withstanding the visible over- and under-predictions, the efficiency and
accuracy (NSE = 0.83 and RSR = 0.41; Fig. 4a, b) of the similitude-
based power law model demonstrated very good performance in predic-
tions of DO (Moriasi et al., 2007). This indicated the substantial generality
(i.e., robustness) of the model to predict DO in diverse streams and meta-
bolic regimes across the Atlantic Coast of USA. The state-specific color
codes on the observed versus predicted DO and the associated residual
plots (Fig. 4a, b) showed that the over- and under-predictions of DO were
distributed in the streams across the states.
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4. Discussion

4.1. Stream biogeochemical similitude and emergent scaling law

The research involved stream DO and the environmental drivers within
a dimensional analysis framework, and unraveled a remarkable stream ‘bio-
geochemical similitude’ (reductions of 10 original variables into two di-
mensionless numbers) and functional convergence. The unique curve of

the ‘DO saturation’ number DO
DOsat

� �
with the ‘metabolic’ number

P3a �W
c3p �T3

w �TP�H�S�D

� �
indicated a collapse of data from diverse coastal stream eco-

systems on an emergent characteristic process diagram. The ‘metabolic’
number included the drivers of DO sources (e.g., reaeration, atmospheric
diffusion) in the numerator and sinks (organic decomposition, respiration,
and nitrification) in the denominator. It represented the contrasting
(sources versus sinks) as well as the collective (overall interactive) controls
of various environmental drivers on streamDO. The developed scaling rela-
tionship of ‘DO saturation’ number as a function of the ‘metabolic’ number
(with an exponent of 1

3) indicated the emergence of interactive processes
and the underlying organizing principles of metabolism in coastal streams.
This emergence of processes, in turn, led to the generalized scaling law and
robust empirical model (Eq. (18)) to predict (NSE= 0.83 and RSR= 0.41)
stream DO in diverse streams located across the U.S. Atlantic Coast.

4.2. Stream metabolism regimes and the characteristics of environmental drivers

Streammetabolism is directly linkedwith stream DO, and any variation
in the pattern of stream DO reflects the variation in the rates of gross pri-
mary production (GPP), ecosystem respiration (ER), and reaeration
(Bernhardt et al., 2018). In the existing literature, stream metabolism has
been referred to any characteristic temporal patterns of DO, GPP, and ER
in response to the stream stressors (Bernhardt et al., 2018; Koenig et al.,
2019; Savoy et al., 2019). For example, Bernhardt et al. (2018) identified
river metabolism regimes based on the temporal patterns of DO (% satura-
tion) and GPP for four rivers from the contrasting U.S. states of Wisconsin,
Alabama, Texas, and Oregon. Accordingly, in our study, the term ‘metabo-
lism regime’ has been defined based on any mechanistically meaningful
transition on the characteristic process diagram of the ‘DO saturation’ num-

ber DO
DOsat

� �
in response to the stream biogeochemical processes.

A novel contribution of our study is the achievement of stream ‘biogeo-
chemical similitude’, which resulted in a remarkable parametric reduction
of 10 original ecosystem variables to only two dimensionless groups (‘DO
saturation’ and ‘metabolic’ numbers). The similitude inherently contributes
to the reduction of uncertainty and equifinality in estimating a predictive
model of stream DO using the two dimensionless numbers. However, it is
worth mentioning here that equifinality is a classical issue mainly for a
parameter-rich process-based model (Beven and Binley, 1992; Beven and
8

Freer, 2001; Arsenault and Brissette, 2014). In contrast, our scaling-based
empirical model used only one dimensionless variable (‘metabolic’ num-
ber) to predict the response (‘DO saturation’), involving two parameters
(α, β) that were robustly estimatedwith low uncertainty (coefficient of var-
iation = 5 to 6%).

Another unique contribution of our study is that we classified the me-
tabolism regimes in terms of the dimensionless ‘metabolic’ number,
which synthesizes the interactions of major hydroclimatic and biochemical
drivers of stream DO. The characteristic process diagram suggested low,
transitional, and high streammetabolism regimes, which had distinct envi-
ronmental characteristics (Table 3). Apart from the occasional exceptions
for S and D, stream DO and the corresponding environmental drivers
were significantly different among the three metabolism regimes. Overall,
the negative and positive drivers of stream DO tended to increase, respec-
tively, from low to high and high to lowmetabolism regimes. Furthermore,
being dimensionless, the ‘metabolic’ number led to a scale-invariant and
generalized classification of stream metabolism—which is apparent from
the collapse of diverse stream ecosystems on the emergent characteristic
process diagram (Fig. 2a, b). This significantly contributes to fill in the
existing knowledge-gaps and resolves the barrier of variable biogeochemi-
cal controls on stream DO to develop a generalized understanding, scaling
relationship, and predictive model for diverse coastal streams across a
large spatial scale.

The substantially different values of the negative drivers likely resulted
in the contrasting stream DO concentrations among the three metabolism
regimes. The lower DO concentrations (mean= 5.2 mg/l) in the ‘high me-
tabolism’ regime were largely caused by the warmer stream temperature
(mean = 25 °C) and higher concentrations of total phosphorus (mean =
0.31 mg/l). This combination of temperature and nutrient presumably pro-
vided a favorable environment for algal bloom (Dodds and Smith, 2016)
and a subsequent higher decomposition of organic matter and nitrifica-
tion—leading to a stronger microbial consumption of DO (Schaefer and
Hollibaugh, 2017; Poikane et al., 2021). Stream DO in the ‘high metabo-
lism’ regime was also substantially impacted by the reduced solubility of
oxygen in water due to the high temperatures (Chapra, 2008; Ni et al.,
2019). In contrast, the higher DO concentrations in the ‘lowmetabolism’ re-
gime were mainly caused by the cooler stream temperature and lower con-
centrations of total phosphorus. These combinations apparently led to a
higher oxygen solubility in stream water, apart from the unfavorable envi-
ronmental condition for microbial consumption of stream DO. The moder-
ate level of dissolution and microbial consumption, driven by the
intermediate (i.e., in-between high and low metabolism) stream tempera-
ture and total phosphorus, resulted in the intermediate DO concentrations
for the ‘transitional’ regime.

Relative variations of other drivers among the three regimes also con-
tributed to their contrasting DO concentrations (Table 3). For example,
the lower stream DO of the ‘highmetabolism’ regimemay also partly be at-
tributed to its higher salinity (mean = 227 mg/l), which contributed
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electrolytes and resulted in a reduced oxygen solubility in stream water
(Garcia and Gordon, 1992; Chapra, 2008). However, lower values of both
pH and DO in the ‘high metabolism’ regime than that of the other regimes
(Table 3) suggested a positive interrelation of DO and pH, whichmay be at-
tributed to the increased organic matter and microbial decomposition due
to the elevated stream temperature and total phosphorus. Higher microbial
decomposition concurrently reduces DO and pH by consuming oxygen and
producing carbon dioxide, leading to an increase in stream acidity
(Romeijn et al., 2019). The reaeration potential was high in the ‘lowmetab-
olism’ regime due to the higher stream width to depth ratio (mean
W
D ≈62:83), which likely contributed to the elevated stream DO (van Dael
et al., 2020; Bennett and Rathbun, 1972). The higher W

D ratio also increased
stream exposure to photosynthetically active radiation to boost DO through
photosynthesis (Hondzo et al., 2013; Zhi et al., 2021). In contrast, the lower
DO in the ‘high metabolism’ regime might be further impacted by the low
reaeration potential due to a lower width to depth ratio (mean W

D ≈16:48).
The effect of stream geometry was further corroborated by an intermediate
reaeration potential (mean W

D ≈35:61) and DO concentrations in the ‘transi-
tional’ regime. Notably, the mean W

D of the ‘low metabolism’ regime was
1.76 (~2) times higher than that of the ‘transitional’ regime, whereas the
mean W

D of the ‘transitional’ regime was 2.16 (~2) times higher than that
of the ‘high metabolism’ regime.

4.3. Critical environmental thresholds separating the metabolism regimes

The critical threshold separating the ‘low metabolism’ and the ‘transi-
tional’ regimes was 1016 for the ‘metabolic’ number and 0.97 for the ‘DO
saturation’ number (Fig. 2a, b). In contrast, a ‘metabolic’ number of 1013

and ‘DO saturation’ number of 0.72 separated the ‘transitional’ and ‘high
metabolism’ regimes. Given the scatter in the original data (Fig. 2a), we ex-
plored possible boundary values of stream DO and the environmental
drivers among the three metabolism regimes based on the respective quar-
tiles (i.e., pseudo-thresholds) of the original variables. For example, the
lower quartile (25th percentile) of DO in the ‘low metabolism’ regime
(11.3 mg/l) was close to the upper quartile (75th percentile) of DO in the
‘transitional’ regime (10 mg/l). The average of the two values (DO ≈ 11
mg/l) could be considered a pseudo-threshold between the two regimes.
However, the upper quartile of total phosphorus in the ‘low metabolism’
was 0.04 mg/l, which also represented the lower quartile of total phospho-
rus in the ‘transitional’ regimes (Table 3). Further, the upper and lower
quartiles of stream temperature, respectively, in the ‘low metabolism’ and
‘transitional’ regimes, were ~9.8 °C and 11.8 °C (average≈ 11 °C). There-
fore, 0.04 mg/l, and 11 °C could be considered as the pseudo-thresholds of
total phosphorus and water temperature, separating the ‘low metabolism’
and ‘transitional’ regimes. Similarly, the pseudo-thresholds of DO, total
phosphorus, and water temperature between the ‘transitional’ and ‘high
metabolism’ regimes were, respectively, ~7 mg/l, ~0.10 mg/l, and ~22
°C (Table 3).

No boundary values (thresholds)were found in the other environmental
drivers (S, pH, Pa,W, D), although these driverswere overall (with some ex-
ceptions for S and D) significantly different among the three streammetab-
olism regimes. It is worth stating here that majority of the environmental
drivers were not strongly correlated, as apparent in the regime-specific cor-
relation matrices (see Table S11 in Supplementary materials). The absence
of thresholds in the other drivers reemphasized the scope and usefulness of
the stream ‘biogeochemical’ similitude and dimensionless numbers.
Nevertheless, we posit that a stream ecosystem would likely be in the
‘high metabolism’ regime if Tw ≥ 22 °C, TP ≥ 0.10 mg/l, and DO ≤ 7
mg/l. In contrast, a stream ecosystem would represent a ‘low metabo-
lism’ regime when Tw ≤ 11 °C, TP ≤ 0.04 mg/l, and DO ≥ 11 mg/l.
Otherwise, the stream metabolism would represent a ‘transitional’ re-
gime (i.e., 11 °C < Tw < 22 °C, 0.04 mg/l < TP < 0.10 mg/l, and 7 mg/
l < DO < 11 mg/l). However, the quartile-based pseudo-thresholds of
Tw, TP, and DO did not include 25% data in each regime. The pseudo-
thresholds may still be used to classify a stream regime if the outcome
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is consistent with that obtained by using the thresholds of the ‘meta-
bolic’ and ‘DO saturation’ numbers.

The pseudo-thresholds of total phosphorus (~0.04 and ~0.10 mg/l)
and stream temperature (~11 and ~22 °C) among the three regimes were
comparable to their limiting thresholds reported in literature. For instance,
Poikane et al. (2021) reported a multitude of studies that investigated the
effect of nutrients on stream ecology. Majority of the studies found exces-
sive stream algal growthwhen total phosphorus exceeded the threshold be-
tween 0.03 and 0.06 mg/l, which was comparable to 0.04 mg/l in our
study. Further, the identified threshold of ~0.10 mg/l for total phosphorus
was equal to the total phosphorus limit recommended by the U.S. EPA to
control eutrophication in flowing waters (USEPA, 1986; Wang et al.,
2015; Jalali and Jalali, 2017). Efficiency for majority of the organic waste
decomposing microorganisms (e.g., mesophilic and thermophilic bacteria,
fungi) is substantially decreased below ~10 °C temperature (Ferreira and
Chauvet, 2011; Keenleyside, 2019), which was comparable to the identi-
fied threshold of ~11 °C for stream temperature in our study. Further, our
identified threshold of 22 °C corresponded to the optimum temperature
range (20 to 35 °C) for microbially mediated reactions in aquatic ecosys-
tems (Kadlec and Reddy, 2001; Yuan et al., 2019).

4.4. Variation of stream metabolism

The seasonal variation of the site-specific ‘metabolic’ numbers across
the year (Fig. 5) indicated a dynamic nature of stream metabolism, leading
to the transition of a stream site from low to transitional and from transi-
tional to high metabolism regime. The metabolic number was lower in
the warm season (May–October) than that of the cold season (November–
April) across all the stream sites (Yu et al., 2016; Martinez-Villalobos and
Neelin, 2018). Further, majority of the northern (e.g., CT) sites had a higher
metabolic number than the southern (e.g., FL) sites, regardless of seasons.
These suggested strong effects of Tw to control stream metabolism, leading
to a lower metabolic number during the occurrence of warmer stream tem-
peratures. Further, the temporal distribution of the metabolic number var-
ied across the stream sites, as the sites incorporatedwide ranges of climatic,
hydrologic, and biogeochemical conditions (Table S2)—leading to differ-
ing controls from the hydroclimatic and biochemical drivers. Between the
warm and cold seasons, the metabolic number varied mostly from low to
transitional metabolism regime in the southern sites and from transitional
to highmetabolism regime in the northern sites. The lower metabolic num-
ber of the southern sites (Fig. 5) than the northern sites might be caused by
the combined effects of higher Tw and TP in the southern sites (Table S2).
This reiterated that the metabolism status of a stream might change in
time (e.g., season) based on the prevailing environmental conditions. How-
ever, an important caveat of our study is that our findings are mainly based
on the analyses of data collected during the productive phase (6 to 18 h) of
the diurnal cycles. Subject to the availability of diel (24 h) data for DO and
the environmental drivers across a large spatial gradient, future research
should investigate the dynamics of streamDO andmetabolism status across
the diel hours based on the characteristic process diagram and scaling rela-
tionship.

4.5. Implications for water resources management

The emergent similitude, scaling relationship, and predictive model of
stream DO are expected to aid in achieving healthy water quality in diverse
coastal streams. The ‘metabolic’ number and the generalized scaling rela-
tionship can help water managers determine the dynamic response of
stream water quality and ecosystem health under a changing climate,
land uses, and sea level rise. For example, the ‘metabolic’ number and envi-
ronmental regimes can be employed to study how a stream dynamically
changes its metabolism (e.g., Table S12) due to the changes in climate,
stream biogeochemistry, and saltwater intrusion—with or without alter-
ations in stream geometric properties (i.e., width and depth).

The scaling model would also guide the water managers on how the
stream water quality drivers (e.g., temperature, nutrient, salinity, and
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Fig. 5. Boxplots showing the variation of the ‘metabolic’ number in warm season (May–October; red boxes and whiskers) and cold season (November–April; blue boxes and
whiskers) during 1998–2015 for various stream sites located across the U.S. Atlantic Coast. The parentheses alongside the site ID refers to the respective U.S. states. The sites
have been stated according to increasing northern latitude from left to right; the most southern site is stated at the left and the most northern site is stated at the right. The
hashed green and purple lines separate the three (low, transitional, and high metabolism) regimes.
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channel geometry) should bemanaged to recover a stream from low to high
level of DO—facilitating stream restoration. It would enhance their capabil-
ity in selecting the most optimum combination of controlling measures to
restore a hypoxic stream, either by increasing the assimilative capacity of
the stream (e.g., altering channel geometry to increase reaeration) or by re-
ducing pollutant loads. Unlike a locally developed stream water quality
model, the scaling-based generalized model is able to predict DO in diverse
streams across the U.S. Atlantic Coast. This can guide a cost-benefit analysis
of alternative strategies for an efficient management of coastal stream eco-
systems.

5. Conclusions

We investigated the emergent ‘biogeochemical’ similitude (parametric
reduction), characteristic process diagram, and generalized metabolic scal-
ing of DO in coastal streams across a large spatiotemporal scale of the U.S.
Atlantic Coast by employing dimensional analysis. Two mechanistically
meaningful dimensionless numbers were found as the stream ‘metabolic’
number and the fraction of ‘DOsaturation’ number. The ‘metabolic’ number
represented the contrasting (sources versus sinks) as well as synergistic con-
trol on streamDO from various hydroclimatic and biochemical drivers. The
dimensionless numbers led to the development of an emergent process di-
agram, indicating three metabolism regimes (high, transitional, and low).
The ‘low metabolism’ regime was represented by the critical thresholds of
1016 (or higher) for the ‘metabolic’ number and 0.97 (or higher) for the
‘DO saturation’ number. In contrast, the ‘high metabolism’ regime
corresponded to the critical ‘metabolic’ number of 1013 (or lower) and crit-
ical ‘DO saturation’ number of 0.72 (or lower). The coastal streams repre-
sented a ‘transitional’ metabolism regime otherwise (i.e., 1013 <
‘metabolic’ number < 1016, and 0.72 < ‘DO saturation’ number < 0.97).
The contrasting characteristic of the high and low metabolism regimes
was apparent, respectively, by theirmost and least favorable environmental
condition for stream DO depletion—through reduced dissolution and
reaeration, alongside increased respiration. The emergent process diagram
10
led to a generalized power law scaling relationship of the ‘DO saturation’
number as a function of the ‘metabolic’ number (exponent ~ 1/3; NSE =
0.83–0.85, RSR= 0.39–0.40). The metabolic scaling relationship was lev-
eraged to develop a generalized empirical model to successfully predict DO
in diverse streams across the U.S. Atlantic Coast (NSE=0.83, RSR=0.41).
The findings from the study supported the underlying research hypothesis
that DO represents emergent ‘biogeochemical’ similitude and scaling rela-
tionship across diverse coastal streams. The emergent process diagram,
metabolic scaling law, and generalized prediction model of DO would
help understand and manage water quality and ecosystem health of coastal
streams in the U.S. and elsewhere.

Notations

The following notations and symbols were used in this paper:

Pa atmospheric pressure
TW water temperature
cp specific heat of water
TP total phosphorus
S salinity
W stream width
D stream depth
Q stream flow
DO dissolved oxygen
DOsat saturated dissolved oxygen
P25 25th percentile
P75 75th percentile
IQR interquartile range
M, L, T,K dimensions of mass, length, time, and temperature, respectively.
Πi dimensionless numbers (i = 1, 2, 3, 4, 5, and 6)
f, φ, ψ functions
a, b, c, d exponents of power law Eq. (3)
α, β model parameters of Eq. (16)
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