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Abstract A generalized model is presented to estimate the
diurnal cycle of hourly net ecosystem exchange (NEE) based
on a corresponding single reference-time observation from the
Florida Everglades freshwater wetlands. The year-round diur-
nal cycles of NEE for two different (short vs. long hydroperi-
od) marsh sites were normalized by the corresponding day-
and site-specific reference observations of NEE to obtain a
common dimensionless cycle. An extended stochastic har-
monic analysis (ESHA) was utilized to calibrate and validate
the model with hourly eddy-covariance observations of NEE
during 2008—13. The model involved five parameters, which
exhibited spatiotemporal robustness by collapsing into narrow
ranges among different days, years and sites. The daily esti-
mates were averaged over all calibration days to calculate the
site-specific ensemble parameter sets. The site-specific en-
semble parameters were further averaged over four mid-day
reference times (11 A.M. to 2 P.M.) across sites to obtain a
generalized ensemble parameter set. Estimated hourly NEE
using the site-specific and the generalized parameter sets in-
dicated a good performance of the model (e.g., Nash-Sutcliffe
Efficiency, NSE = 0.66-0.89). The model is represented in
three standalone formats, including an Excel spreadsheet, to
simulate the hourly NEE for the desired Julian days and years
from the respective single reference observations.
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Introduction

Wetlands play an important role in the regional and global
carbon dynamics due to their high rates of carbon sequestra-
tion and storage (Bridgham et al. 2006; Nahlik and Fennessy
2016). The net ecosystem exchange (NEE) of CO, between
the vegetated wetlands and the atmosphere typically repre-
sents a concave diurnal cycle due to the daytime photosynthe-
sis and nocturnal respiration. However, the diurnal NEE cy-
cles of wetland ecosystems vary among different days (both
intra- and inter-annually) at the same and/or different sites due
to the variation in climatic, hydrological, and biological attri-
butes and drivers (Moore et al. 2002; Sagerfors et al. 2008).
The collection of high resolution, time-series NEE data (e.g.,
hourly) is often hindered by interference such as instrument
failure and unfavorable weather, which lead to gaps in the data
(Falge et al. 2001). These incomplete data sets ultimately re-
duce confidence in the scaled-up estimations of NEE (e.g.,
daily, weekly, monthly, seasonal, annual). A modeling ap-
proach can, however, compensate for limited or incomplete
data collection, thereby providing more robust estimations of
continuous fine-resolution NEE data.

The Florida Everglades is one of the largest subtropical
wetlands in North America, encompassing an area in excess
of 6000 km? (Jimenez et al. 2012). The wetland form and
function is greatly influenced by wet and dry seasons, storm
activity, fluctuations in water quality and quantity (water
depth and flow rate), and forest fires. Previous research (e.g.,
Schedlbauer et al. 2010, 2011, 2012; Jimenez et al. 2012;
Malone et al. 2014a, b) extensively focused on elucidating
the hydroclimatic controls and inter-annual variability of
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NEE in the Everglades freshwater wetlands. Regression-based
models were developed to explore the driver-response link-
ages without delving much into the predictive domain.
Further, various empirical models were used to fill gaps in
the continuous (e.g., half-hourly) time-series of observed
NEE from Everglades wetlands as a part of the AmeriFlux
network (Moffat et al. 2007). These empirical gap-filling
methods include the site- and time-specific applications of
mean diurnal variation (Falge et al. 2001), ambient environ-
mental conditions based ‘look-up’ tables (Falge et al. 2001),
and parametric/non-parametric statistical approaches such as
the artificial neural networks and non-linear regressions (e.g.,
Papale and Valentini 2003; Hui et al. 2004; Stauch and Jarvis
2006; Moftat et al. 2010). However, applications of the cur-
rent gap-filling models require a large set of observations for
environmental variables and/or NEE as inputs, posing a chal-
lenge in estimating NEE with limited information.

Harmonic modeling offers a solution to the current
shortcomings primarily because it only requires input
data for the predictant itself. Further, a parsimonious
harmonic model can provide predictions with a small
set of parameters, thereby reducing the inherent model
uncertainty (e.g., Abdul-Aziz et al. 2007; Abdul-Aziz
and Ishtiaq 2014). Although the classical harmonic anal-
ysis (Priestley 1981) has been widely used to develop
empirical models in numerous applications of environ-
mental sciences and engineering (e.g., Nestler and Long
1997; Meyers et al. 2001; Dyar and Alhadeff 2005;
Kumar et al. 2006), only a few studies applied harmon-
ic functions for modeling NEE. However, the cyclic
pattern of ecological/environmental variables such as
NEE lends itself to the development of relatively sim-
ple, predictive empirical models from the Fourier
(harmonic) series expansion (Priestley 1981). Griffis
and Rouse (2001) utilized the fast Fourier transforma-
tion and power spectral analysis to predict the inter-
annual variability of NEE for a northern peatland.
Other studies (Hollinger et al. 2004; Richardson and
Hollinger 2005) developed second order harmonic re-
gression models to predict the nocturnal CO, fluxes
from terrestrial ecosystems.

A common limitation of empirical modeling, however, is
the time- and site-specificities of the estimated parameters.
Spatial and temporal differences among datasets mean a mod-
el trained with data for one reference time and/or site cannot
be directly applied to a different time and/or site, unless the
model is recalibrated for the new scenario. The non-
uniqueness of parameters remains as the major gap in empir-
ical modeling of ecosystem carbon fluxes (Beer et al. 2010).
Scaling has been widely used in environmental sciences and
engineering to develop robust models by leveraging the un-
derlying similarity among different references (e.g., Milne
et al. 2002; Enquist et al. 2003; O’Connor et al. 2006;
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Warnaars et al. 2007; Hondzo and Warnaars 2008). Abdul-
Aziz et al. (2007) presented a novel scaling approach to de-
velop an extended stochastic harmonic analysis algorithm
(ESHA), which can estimate stream dissolved oxygen (DO)
at a chosen reference time (e.g., noon) from a single or multi-
ple grab samples collected at any time of the diurnal cycle.
Abdul-Aziz and Ishtiaq (2014) expanded the ESHA to devel-
op a scaling-based empirical model that can robustly predict
the entire diurnal cycles of stream DO for different days and
sites from the corresponding single reference observations.

The objective of this study is to develop a scaling-based
harmonic (i.e., ESHA) model to estimate the different diurnal
cycles of hourly NEE for the Florida Everglades freshwater
marshes using the day- and site-specific single or multiple
reference measurements. The study builds on the hypothesis
that scaling of the diurnal NEE cycles by the corresponding
day- and site-specific single reference observations would
lead to a general, dimensionless NEE cycle for all days and
sites. Estimation of the generalized NEE cycle is expected to
involve a single and parsimonious set of parameters, requiring
only single reference observations to estimate the respective
hourly NEE for different days, years, and sites. The empirical
model is presented in user-friendly formats to aid the wetland
scientists and managers in estimation and gap-filling of hourly
NEE data for the Everglades freshwater wetlands.

Materials and Methods
The Scaling-Based Harmonic Model Theory

A conceptual illustration of the scaling-based harmonic
modeling theory is made by using a schematic of several hy-
pothetical diurnal cycles of NEE to represent different (1, 2,
....., N) days for a single or multiple wetland sites (Fig. 1a).
An un-scaled harmonic model would ideally require N unique
sets of parameter values to represent the N diurnal cycles of
NEE. In contrast, the scaling-based ESHA can lead to a single
set of model parameters across different days and sites. The
ESHA scales (i.e., normalizes) each diurnal cycle by a corre-
sponding reference time (¢, single observation, NEE,; The
scaling would lead to a collapse of different NEE cycles on a
generalized, dimensionless diurnal NEE cycle (VEE™) with a
value of NEE:ef at t,.r(Fig. 1b). The scaled NEE cycle flips to
a convex shape since the original (concave) diurnal cycles
(Fig. 1a) are normalized by a daylight time, negative reference
NEE. The scaled model (VEE™) is then estimated with the
ESHA parameterization framework (see ‘Estimation of the
ESHA Model Parameters’ for details) using observed
time-series of NEE. The dimensionless model is ideally
robust because it represents all (i.e., N) predicted days at the
same or similar sites with a single set (instead of N sets) of
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Fig. 1 Conceptual framework for (a) development and (b) application of the scaling-based net ecosystem exchange (NEE) model for Everglades

freshwater wetlands

parameters. The different day-specific NEE cycles are then
obtained by multiplying the estimated dimensionless NEE™
model by the corresponding single reference observations,
NEE, ..

Estimation of the ESHA Model Parameters

The mathematical framework of ESHA was originally devel-
oped and presented in details by Abdul-Aziz et al. (2007).
Therefore, the ESHA framework is briefly but adequately
stated here for parameter estimations. A stochastic Fourier
series, y(f) (Priestley 1981) is defined as

y(t) =ao + % [akcos(2mf 1) + bsin(2mf £)] + (1)
k=1

= h(1) +&(t) (1)
where y(f) = periodic response variable = NEE™ () (see Fig. 1b),
t = predictor variable = time, k£ = harmonic number, W = opti-
mum number of harmonics necessary to represent the wave
frequencies and components of a diurnal cycle of NEE, a =
non-oscillatory (k=0) model component, a; and b; = Fourier
coefficients associated with the oscillatory components of the
harmonic series, f, = % = k ™ harmonic frequency, 7 = total
number of observations within a 24-h diurnal cycle (i.e.,
n =24), At = sampling interval (e.g., 1 h), () = random error,
and A(¢) = y(t) — £(¢) is the harmonic process. Unlike a classical
harmonic analysis (Priestley 1981), the ESHA forces the har-
monic process /A(f) to pass through a known value «, which is
the NEE"observation at the reference time (). This forcing
leads to a “zero” prediction error at #., for individual cycle;
i.e., e(tye) =0, and h(try) = y(try) = Kk = NEE" (tyer)
= NEE Z,f. The non-oscillatory model component parameter,
ay 1s then derived from Eq. (1) as follows:

ap = K— g [ac0s (27f itrer) + bysin (2f 4y ) | @

k=1

First, the parameters of the oscillatory model components (y,

by, k=1,2, ... , W) are estimated using a least-squares error
minimization method from a system of equations as follows:

(3)

where P = parameter (i.c., dk,Bk for k#0 with ‘hat’
representing estimation) vector of length 2W, O = 2W x2W
non-singular transition matrix, and R = vector of length 2W
with terms associated with any observations y(f) = NEE™(2)
and the reference-time observation x = NEE™(t,,). The param-

P=0Q'R

eter a is then computed from Eq. (2). An explicit form of
Eq. (3) for two harmonics (i.e., W=2) is presented in the
Supplemental notes (Eq. S1) as examples.

The main difference between a classical harmonic analysis
and the ESHA is in their parameter estimations. ESHA provides
the correct parameter estimation framework to force the har-
monic model through a reference-time normalized observation.
The forcing, in turns, allows a proper estimation of the entire
diurnal cycle of NEE from a single reference observation.

The ESHA Modeling Steps
Step 1:

Collection of hourly NEE data, NEE(t) for multiple
24-h diurnal cycles

Development of the scaling-based ESHA model requires
continuous (e.g., hourly) NEE data for at least one (and pref-
erably for multiple) 24-h diurnal cycle(s) for a single or mul-
tiple wetland sites. The model application requires at least a
single reference-time observation to predict the corresponding
diurnal cycle. The hourly NEE for two Everglades wetlands
were collected from AmeriFlux (2016), which represents flux
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tower based eddy-covariance measurements (see ‘Case Study
Wetlands’ and ‘Datasets’ for details).

Step 2: Selection of a reference-time (t,.) observation,
NEE, ;= NEE(t,.) for each cycle

In theory, the ESHA framework allows the selection of any
diurnal hour as #,,rand the corresponding NEE observation as
the reference observation for scaling the respective diurnal
cycle. However, a negative NEE (i.e., daylight time net uptake
flux) has to be chosen as reference observation to obtain a
consistently convex shape of the scaled NEE (see Fig. 1). To
select the optimum reference time-window, a user needs to test
model performance (e.g., explanation of variance in NEE da-
ta) by estimating the diurnal cycles using different daytime
hours as a reference time. It is recommended to test the opti-
mization for each hour between 8:00 A.M. and 4:00 P.M.
since this time-window typically represents the peak photo-
synthesis and the maximum magnitude of negative NEE. The
daytime hours showing a superior model performance within
the tested time-window should be used as the reference times.

Step 3:  Normalizing (i.e., scaling) of individual NEE cycles

Each NEE cycle is then normalized by the corresponding
day-specific reference observation (NVEE,) to obtain a dimen-
sionless NEE cycle as follows (see ‘The Scaling-Based
Harmonic Model Theory’ and Fig. 1): NEE™(f) = NEE(f)/
NEE, ..

Step 4:  Estimating the normalized diurnal cycles of NEE by
employing ESHA

Each normalized NEE cycle, NEE"(¢) is then fitted by ap-
plying the ESHA parameter estimation framework (see
‘Estimation of the ESHA Model Parameters’) to force each
cycle through the reference-time normalized observation,
NEE"(t,.) = NEE(t,.)/NEE, ;= 1.0 = . In case of multiple di-
urnal cycles, such fitting should result in a set of estimate
parameters, where each parameter set represents a diurnal
cycle.
Step 5:  Obtaining a generalized (i.e., robust) scaled model,
NEE 04(1)

The estimated parameters of the scaled, dimensionless cycles
for all available days should ideally be robust in space and time.
Ensemble averages of the model parameters over time are com-
puted for each site to obtain the temporally generalized model for
that site. A spatiotemporally generalized model is then obtained
by averaging the parameters from different sites and days.

Step 6: Estimating the individual diurnal cycles
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The individual 24-h diurnal cycles, NEE,,,q(?) is then esti-
mated by multiplying the generalized scaled model, NEE,
(t) — developed from the site-specific temporally ensemble
and/or spatiotemporally ensemble parameter set — by the
corresponding single reference observations (NEE,.,) as

follows (see Fig. 1):

NEEmoa(t) = NEE, .y x NEE, 4(t) (4)

Quantification of Model Sensitivity and Uncertainty

Mathematical modeling and parametrizations of environmen-
tal and ecological systems is inherently uncertain. Therefore, a
quantification of the model sensitivity and uncertainty is use-
ful to determine confidence associated with the predictions.
The ESHA model sensitivity to any changes in an individual
parameter was determined by analytically deriving dimen-
sionless sensitivity coefficients (see Eqgs. S2—S4 and details
in Supplemental notes). Model uncertainty to simultaneous
changes in all parameters by their respective standard devia-
tions was quantified by deriving the corresponding standard
deviation of predicted NEE (Eq. S5).

Case Study Wetlands

The study wetlands are located inside the Everglades National
Park and represent the sites of the Florida Coastal Everglades
Long Term Ecological Research (FCE LTER 2016). Subject to
the availability of year-round hourly eddy-covariance observa-
tions, two oligotrophic freshwater marshes were selected for
model evaluations: a short-hydroperiod marsh located in Taylor
Slough (25°26'16.50"N, 80°35'40.68"W), and a long-
hydroperiod marsh located in Shark River Slough (25°33'6.72"
N, 80 °46'57.36"W) (Fig. 2). Much details into the hydrological,
ecological, biogeochemical, and biological characteristics of the
two marshes can be found in Schedlbauer et al. (2012). In gen-
eral, Florida Everglades is characterized by a subtropical climate,
well-defined wet and dry seasons (wet: November—May; dry:
June—October), and year-round productivity (Obeysekera et al.
1999; Ewe et al. 2006). Hydrology of the two wetlands is exten-
sively managed (USACE and SFWMD 1999), with water flows
controlled by a combination of pumping and constructed levees.
The Taylor Slough marsh site experiences seasonal flooding for
approximately four to six months (June — November) per year
(Malone et al. 2014a, b). Sawgrass (Cladium jamaicense) and C4
muhly grass (Muhlenbergia capillaris) are the prevailing vegeta-
tions and primary producers at this site; periphyton and sub-
merged macrophytes are also known to geochemically fix CO,
(as CaCOj3) during flooding seasons (Schedlbauer et al. 2010,
2012). In contrast, the Shark River Slough marsh site experiences
year-round inundation due to a ridge-slough topography. The
vegetation is dominated by Cladium jamaicense, Eleocharis
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sp., emergent Panicum sp., and submerged Ultricularia sp. The
soil type is marl at Taylor Slough and deposited pit at Shark
River Slough, as characterized with overlying limestone bedrock
in both sites.

Datasets

The hourly ‘with-gap’ (i.e., un-filled) NEE (umol/mz/s) obser-
vations (level — 2) for the two Everglades wetlands were collect-
ed from AmeriFlux (2016). The hourly data were subsampled
from the 30-min average time-series for 24-h diurnal cycles
(starting at 1:00 AM) during 2008-2013 (Taylor Slough:
2008-13, and Shark River Slough: 2009-13). In addition, the
corresponding data for photosynthetically active radiation (PAR,
umol/mz/s), air temperature (TA, °C), water level (WL, cm),
total nitrogen (umol/l), and total phosphorous (pmol/l) were
obtained from AmeriFlux (2016) and FCE LTER (2016) to in-
vestigate any relationships between the model parameters and

the major ecohydrological and environmental drivers of wetland
NEE at the study sites.. We followed the standard AmeriFlux
sign conventions, where negative NEE indicates the downward
(atmosphere to wetland) fluxes and positive NEE represents the
upward (emissions to the atmosphere) fluxes.

Modeling with AmeriFlux data can be significantly impacted
by measurement errors and uncertainty (Williams et al. 2009;
Schmidt et al. 2012). We applied five data-screening steps to
ensure a good quality of data used for this research. First, the
nighttime friction velocity (u*) threshold for each year was de-
termined based on Aubinet et al. 2012 (see Supplemental notes
for details), and the hourly NEE representing lower u* values
(i.e., low turbulence conditions) were removed. Second, the
extreme values or outliers in NEE were identified and removed
based on thresholds obtained by using year-specific 1st and 99th
percentile values of NEE. The extreme percentiles criteria was
found to be the most effective and realistic (least exclusive)
method in detecting outliers of the hourly NEE time-series
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among other acceptable statistical methods (e.g., inter-quartile
range, confidence intervals). Third, unreasonable spikes in the
hourly time-series were filtered by using a variant of the central
difference method described in Papale et al. (20006) (see Egs. S6-
S8 and details in Supplemental notes). Fourth, occasional diur-
nal cycles were excluded when NEE, > — 1 pmol/m?/s for a
chosen reference time (¢, to ensure a consistently convex
shape of the scaled diurnal cycle (see Fig. 1b; details are given
in ‘Choice of Reference Time’). Fifth, to avoid model bias to-
ward any outlying diurnal cycles, the outlying daily estimates of
each parameter were identified by applying the respective inter-
quartile range (IQR) criteria (Tukey 1977). Any daily parameter
value outside the range between Q;—2*IQR and Q; + 2*IQR
(here, Qq = first quartile, Q3 = third quartile, and IQR = Q5-Q,)
were removed from further analysis along with the correspond-
ing diurnal cycle of NEE.

As ESHA model parameterization requires all 24 hourly
observations of NEE for a day, the screened calibration data
sets were gap-filled using linear interpolations (from interpl
command in Matlab). However, we considered only those
diurnal cycles for interpolations that had four or less consec-
utive hourly gaps to limit any biases arising from the gap-
filling. Finally, the QA/QC methods provided up to 55 and
69 complete diurnal cycles for model parameter estimations
and calibrations, respectively, for Taylor Slough during 2008—
11 and for Shark River Slough during 2009—11 (see Table 1
and 2). The remaining, independent two years (2012—13) of
filtered data were used for model validations at each site.
However, it was not necessary to filter the validation datasets
for any outlying diurnal cycles based on the outlying param-
eters, which had already been estimated with the calibration
data. Further, unlike the calibration datasets, the validation
data were not gap-filled as model validation does not require
24-h continuous measurements of NEE. Consequently, a larg-
er number of incomplete diurnal cycles (173-262; see Table 3)
were available during 2012—13 for model validations, com-
pared to the number of complete cycles for calibrations
(Table 2) during 2008—11. A successful validation will, there-
fore, indicate the utility of the calibrated models to estimate
the entire diurnal cycles from the limited available data, which
is often the case for most sampling days.

Results and Discussion

Model Optimization

Optimal Number of Harmonics

Selection of the optimal number of harmonics (W) provides a
crucial balance between model parsimony (a minimum num-

ber of parameters) and accuracy. Following Abdul-Aziz and
Ishtiaq (2014), a dimensionless Akaike Information Criterion
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Data summary of NEE, and the climatic and environmental variables used for model calibrations at the two Everglades wetlands. Statistics of NEE and the associated years for validations are

given in parenthesis

Table 1

Total Nitrogen

Total Phosphorous

Water Level

(cm)

Air Temperature

O

PAR (pmol/m*/s)

Years Statistics NEE (umol/mz/s)

Sites

Concentration (umol/l)

Concentration (pmol/l)

51.63
37.82
215.26
11.81

0.20
0.21
2.1

23.12 55.51

408.59

~0.18 (~0.85)

Mean

Calibration: 2008—11

Taylor Slough short

527 32.62

139.94
656.03

1.44 (1.62)
2.50 (2.53)

Standard deviation

(2012-13)

hydroperiod marsh

102.78

31.45
9.48

Maximum

139.55
418.85

—4.42 (-5.56)
~0.13 (-0.28)

Minimum

123.91

0.25
0.13

45.54

21.27
7.20

Mean

Shark River Slough long  Calibration: 2009—11

119.60

11.72
78.56
25.43

136.52
700.75

112 (1.01)
2.36 (1.90)

Standard deviation

(2012-13)

hydroperiod marsh

1005.89
13.85

1.02
0.03

32.54
8.01

Maximum

151.08

—3.98 (-3.18)

Minimum
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Table 2 Site-specific and generalized sets (temporal and spatiotemporal averages, respectively) of estimated parameters over the calibration periods
(2008-11) for the two Everglades wetlands

Site Reference time Number of . . . . NSE  RSR
(hour of the day)  predicted days 40 a1 az b, by
Taylor Slough short hydroperiod 8 24 0.35 -1.32 0.19 0.02 —0.08 0.77 0.47
marsh (2008-11) 0.100  (0.50) (019  (0.19)  (0.13)
9 42 0.22 -1.02 0.24 —0.01 —-0.07 0.84 0.40
0.09) (025 (0.16) (0.16)  (0.12)
10 47 0.16 -0.84 0.27 —0.06 -0.01 0.85 0.38
0.08) (0.16) (0.13) (0.14)  (0.10)
11 55 0.11 -0.74 0.23 —0.06 0.03 0.87 0.36
0.09)  (0.11) 0.11)  (0.11) (0.10)
12 55 0.09 -0.71 0.20 -0.07 0.02 0.88 0.36
(0.11)  (0.10)  (0.11)  (0.12)  (0.09)
13 52 0.08 -0.74 0.20 —-0.06 0.02 0.88 0.36
0.12)  (0.10)  (0.12)  (0.11) (0.09)
14 46 0.12 —-0.80 0.25 —0.06 0.03 0.89 0.33
0.11)  (0.09  (0.13) (0.12)  (0.10)
15 44 0.17 -0.96 0.28 —0.13 0.06 0.88 0.34
0.12)  (0.15  (0.17)  (0.10)  (0.12)
16 35 0.23 -1.11 0.22 —0.21 0.16 0.87 0.37
(0.13)  (022)  (0.17)  (0.11) (0.14)
Shark River Slough long hydroperiod 8 27 0.23 —-1.02 0.04 0.12 —-0.20 0.65 0.59
marsh (2009-11) (0.18)  (031) (0.18)  (022)  (0.12)
9 44 0.19 —0.98 0.17 0.01 —-0.10 0.67 0.58
(0.15)  (030) (0.22) (024)  (0.15
10 63 0.12 —0.86 0.22 —0.03 —0.04 0.71 0.54
(0.15) (0200  (0.22)  (0.25)  (0.16)
11 64 0.12 —0.76 0.21 —0.08 0.02 0.76 0.49
0.11)  (0.15)  (0.16)  (0.21)  (0.14)
12 69 0.10 -0.72 0.18 —0.09 0.02 0.76 0.48
0.12)  (0.14)  (0.14)  (021)  (0.13)
13 54 0.12 —0.69 0.19 -0.12 0.03 0.80 0.45
(0.12)  (0.13)  (0.13)  (0.16)  (0.12)
14 43 0.14 -0.71 0.22 —-0.14 0.07 0.84 0.41
(0.10)  (0.12)  (0.11)  (0.14)  (0.10)
15 43 0.18 —0.84 0.23 —0.18 0.10 0.82 0.42
(0.100  (0.17)  (0.13)  (0.15)  (0.13)
16 44 0.23 —0.99 0.20 -0.29 0.14 0.75 0.50
(0.13) (024 (021) (0.16)  (0.14)
Generalized 11-14 0.11 -0.74 021 -0.09  0.03

(1) Values in parentheses are the standard deviations of the estimated parameters. (2) NSE = Nash-Sutcliffe Efficiency; RSR = ratio of root-mean-square

error (RMSE) to the standard deviations of observations. NSE and RSR, respectively, indicate the goodness-of-fit and accuracy of the model

Table 3 Results of model
validation using the site-specific
parameters and the generalized
parameters (in parentheses) for
the different reference times (11
AM. to 2 PM.) during 2012-13

Sites Reference time Number of NSE RSR
(hour of the day) validation days

Taylor Slough 11 253 0.77 (0.78) 0.48 (0.47)
12 255 0.77 (0.78) 0.48 (0.47)
13 262 0.76 (0.78) 0.49 (0.47)
14 241 0.76 (0.76) 0.49 (0.49)

Shark River Slough 11 209 0.66 (0.67) 0.58 (0.58)
12 184 0.71 (0.71) 0.54 (0.54)
13 177 0.74 (0.74) 0.51 (0.51)
14 173 0.72 (0.72) 0.53 (0.53)

NSE = Nash-Sutcliffe Efficiency; RSR = ratio of root-mean-square error (RMSE) to the standard deviations of

observations. NSE and RSR, respectively, indicate the goodness-of-fit and accuracy of the model
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(AIC) (Akaike 1974) (see Eq. S9 and details in Supplemental
notes) was computed by incorporating up to 12 harmonics
using the calibration data assuming mid-point of the day (12
P.M.) as the reference time (Fig. 3a). The minimum AIC indi-
cated the most accurate and optimal model. For Shark River
Slough, a total of two harmonics (W = 2) apparently resulted
in the minimum AIC, leading to a five parameter model (num-
ber of parameter, P=2W + 1). For Taylor Slough, W = 2 in-
creased the model accuracy (decreased AIC) by 15% com-
pared that for W = 1. However, W = 3 increased the model
accuracy by only 3% for a 40% increase in the number of
parameters compared to that for W = 1. Therefore, W = 2
was selected as the optimal number of harmonics for both sites
as a compromise between model parsimony and prediction
accuracy, leading to the estimation of five model parameters
(do, ap, 51, a,, and 52 ) for each wetland. The two-harmonic
model also reflects a mechanistic basis. The @ represents the
daily quasi-mean of NEE*; the first harmonic parameters (a1,
by ) represent the primary frequency components of the diur-
nal oscillations, whereas the second harmonic parameters (d 2,
ba) incorporate the secondary (e.g., seasonal) frequency com-
ponents embedded in a diurnal cycle.

Choice of Reference Time

Based on the calibration datasets (Table 1), the impact of using
different reference times on the two-harmonic model perfor-
mance was shown for a set of daytime hours (e.g., 8:00 A.M.
to 4:00 P.M.) (Fig. 3b). For each reference time, occasional
diurnal cycles were excluded if the corresponding NEE, - >
—1 umol/m?/s to preserve the convex shape of the scaled NEE
model, while including all NEE > —1 umol/mz/ s values for the

—_
Q0
~

—6—Shark River Slough —A—Taylor Slough

-1.8 ¢

I N

Normalized AIC
(o]
[3S]

2.6
3.0 T
1 2 3 4 5 6 7 8 9 10 11 12
Number of harmonics, W
(b)
0.9
e " ——a
08 /
4
207 M
0.6 1
0.5 T T T T T T T
8 9 10 11 12 13 14 15 16

Reference time, trer (hour of the day)

Fig. 3 Selection of the optimal (a) number of harmonics and (b)
reference time for the harmonic NEE model. Akaike Information
Criteria (AIC) indicates model accuracy and Nash-Sutcliffe Efficiency
(NSE) indicates the goodness of model fitting
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other 23 h. The model performance was measured by Nash-
Sutcliffe Efficiency (NSE) that is similar to the coefficient of
determination (R2) (Eq. S10 in Supplemental notes), where
NSE = 1.0 indicates a perfect model. As shown (Fig. 3b),
the 8-16 h time-window (i.e., 8:00 A.M. to 4:00 P.M.) pro-
vided an acceptable model performance (NSE > 0.65) for both
study sites — indicating the flexibility for selecting any time
between 8 and 16 h of a diurnal cycle as the reference time.
However, model performance was stronger for choosing a
reference time between 10 A.M. and 4 P.M. (NSE > 0.70 for
Shark River and NSE > 0.80 for Taylor Slough).

Estimation and Generalization of Model Parameters
in Time and Space

The five parameters (ao, ay, l;l ,dy, and l;z ) of the ESHA model
were estimated with the calibration datasets for individual diurnal
cycles by using each hour from 8§ A.M. to 4 PM. (816 h) as the
reference time, separately. The spatiotemporal trends of model
parameters were explored by plotting their day-specific estimates
with the corresponding Julian days for the two Everglades
marshes. For example, the plots of Julian days versus model
parameters across sites for the mid-day (12 P.M.) reference time
(i.e., t,r= 12 h) were shown (Fig. 4). The model parameters did
not show any predictable increasing or decreasing trends (NSE
and slope of linear regression of parameters with the Julian days
ranged from 0.005 to 0.023, and 0.000007 to 0.0002, respective-
ly) over the calibration period, despite the slight sag of @; and a»
during the summer-growing season (Julian days = 130-273) —
indicating the temporal robustness of the model parameters. The
plots also suggested a spatiotemporal robustness of the model
parameters as they collapsed into comparable ranges between
the two sites. The closeness of the parameters among different
days and sites were further evaluated by computing the index of
dispersion, D, which is the ratio of the parameter variance to the
respective absolute mean (Cox and Lewis 1966; Upton and
Cook 2006). D = 0 indicates a perfectly constant variable,
0 < D < 1 indicates under-dispersion, and D > 1 indicates over-
dispersion. The relatively small D values (0.13, 0.02, 0.09, 0.38,
and 0.52 forag, a,,b,,az, and by, respectively) clearly indicated
an under-dispersion of the parameters among the different days
and sites.

The relationships between the model parameters and the
major drivers of wetland NEE were investigated to achieve
further insights into the spatiotemporal robustness of estimat-
ed parameters. As examples, the daily estimates (for #.., =
12 h) of the principal parameter, @, were plotted with the
corresponding daily average of photosynthetically active radi-
ation, air temperature, and water level for both study sites
(Fig. 5). The plotted parameters did not display any predict-
able trends with the ecohydrological drivers across the two
wetlands. Further, the non-oscillatory parameter, do did not
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Fig. 4 Daily estimates of the 0.8
model parameters with the Julian
days of the calibration period
(2008-11) for the Everglades
wetlands, using noon (12 P.M.) as
the reference time (i.e., £, =

a0

O Shark River Slough A Taylor Slough
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show any apparent sensitivity to the daily fluctuations of total
nitrogen and phosphorus concentrations (see Fig. S1 in
Supplemental notes).

Given the notable invariance of model parameters in time,
the site-specific (temporal) ensemble sets of parameters for each
t,.r were obtained by averaging the respective daily estimates
over all seasons and years of the calibration periods (Table 2).
The temporal ensembles suggested comparable parameter
values within the reference time window of 11 A.M. to 2
P.M. (i.e., t,,y= 11 to 14 h) across the two marshes. For example,
the temporal means of the major model parameter @ for Taylor
Slough ranged from 0.08 to 0.12, which were similar to that of
ao (0.10 to 0.14) for Shark River Slough. The corresponding
ranges of the first harmonic parameters (a; =—0.69 to —0.80; b
= —0.06 to —0.14) and the second harmonic parameters (ap =

50

bz =0.05-0.0001*Julian day (NSE = 0.023)

100 150 200 250 300 350 400

Julian day

0.18 to 0.25; 152 =0.02 to 0.07) were also similar between the
two sites. A generalized, single set of model parameters in time
and space was, therefore, obtained by averaging the respective
parameters estimated with each reference time during 11-14 h
for both sites (Table 2, last row).

The observed robustness of estimated model parameters in
time and space was achieved by the application of scaling;
normalization of each diurnal NEE cycle by the corresponding
single reference observation brought parameters of different
days, years and sites into comparable ranges. The temporal
robustness of the model parameters suggests that the site-
specific ensemble (temporally averaged) sets of parameters will
result temporally robust estimations of hourly NEE from a ref-
erence time observation made during 8 A.M. to 4 P.M.
(Table 2). Based on the similarity of parameters among the four
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Fig. 5 Daily estimates of the 0.8
principal model parameter, ao 0.4 -

with the corresponding mean
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radiation, air temperature, and
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reference times across the two marshes (Table 2), the general-
ized single parameter set would also lead to good quality (i.e.,
spatiotemporally generalized) estimations of NEE cycles from
any reference observation made during 11 A.M. to 2 PM.

Evaluation of the Site-Specific Models

The site-specific temporally averaged (over the calibration
period) parameters (Table 2) for different reference times dur-
ing 11 A.M. to 2 P.M. were used to simulate the hourly NEE
cycles from the corresponding day-specific reference observa-
tions for both study wetlands. Model evaluation with the cal-
ibration data sets showed very good fitting efficiency
(NSE = 0.87-0.89) and accuracy (ratio of root-mean-square-
error to the standard deviation of observations, RSR = 0.33—
0.36) with different #,,, for Taylor Slough (Table 2) (see Egs.
S10-S11 in Supplemental notes for details on NSE and RSR).
The model also showed good performance for the Shark River
Slough (NSE = 0.76-0.84; RSR = 0.41-0.49). The observed
versus predicted hourly NEE (using #,.,= 12 h as an example)
for both wetlands were shown in scatter-plots (Fig. 6).

The temporally averaged site-specific parameters of each
reference time during 11 A.M. to 2 P.M. were used to validate
the harmonic model for the corresponding site with 173-262
incomplete diurnal cycles of hourly NEE observations from
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two independent years (2012—13). The site-specific model
validations showed acceptable prediction performance
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Fig. 6 Hourly observed vs. predicted NEE for calibrations during 2008—
11 at the Everglades wetlands using the temporally ensemble means of
site-specific model parameters for the noon (12 P.M.) reference time.
Dotted line indicates the 1:1 line
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Fig. 7 Hourly time-series of 6
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(NSE =0.66-0.77; RSR = 0.48-0.58) across the two wetlands
(Table 3; Fig. 7). Furthermore, parameters estimated for one
site (e.g., Shark River) were used to predict the hourly NEE
for the other site (e.g., Taylor Slough) and vice versa to per-
form inter-site cross-validations during 2012—13. The valida-
tion results were similar to the site-specific validations
(Table S1 in Supplemental notes). Overall, the model calibra-
tions and validations demonstrated a unique ability of the
scaling-based ESHA model to estimate the entire diurnal cy-
cles of hourly NEE from the day- and site-specific single
reference observations.

Performance of the Generalized Model

The model with the generalized parameter set was tested for each
reference time between 11 A.M. and 2 P.M. with the validation
datasets of both marshes. The generalized model resulted in sim-
ilar fitting efficiency and accuracy (NSE = 0.67-0.78;
RSR = 0.47-0.58), compared to that of the site-specific valida-
tions (Table 3; Fig. S2 in Supplemental notes). The success in
simulating many independent, incomplete diurnal cycles of hour-
ly NEE during 2012-13 — by using a single parameter set
estimated with much fewer complete diurnal cycles during
200811 (Table 2) — shows robustness of the presented model
across the two different wetlands. The results also indicate the
potential utility of scaling for developing generalized modeling
tools across different ecological and engineering disciplines.

Model Sensitivity and Uncertainty

The dimensionless sensitivity coefficient for @, was 1.0 at all
diurnal hours — indicating a constant and linear rate of change

2000 3000 4000 5000

Hourly observation numbers

in the estimated NEE for any changes of a¢ (Fig. S3 in
Supplemental notes). However, the harmonic parameters (a,
l;l, ay, and l;g ) showed dynamic sensitivities with the diurnal
hours because of the presence of sine-cosine functions in their
formulations. Among the 24 diurnal hours, sensitivity coeffi-
cients of the first harmonic parameters of a, and 51 varied from
0to 2 and —1 to 1, respectively; the second harmonic parame-
ters of @, and b, varied from —2 to 0 and —1 to 1, respectively.

For illustration purpose, the model sensitivity and uncertainty
were calculated by using #,.-= 12 h and the corresponding refer-
ence observations (VEE,,p as examples. The average NEE, . at
12 P.M. over the calibration periods for Taylor and Shark River
Sloughs were —2.39 and —1.85 umol/m?/s, respectively. Based
on Eq. S2, changing a by the corresponding standard deviations
(see Table 2) resulted in a change of 0.22 to 0.26 umol/mz/s in
the predicted NEE across the two sites. Separate changes in a1,
by, as, and b, by their respective standard deviations (Eqs. S3—
S4) led to absolute changes of the predicted NEE by up to 0.48 to
0.52, 0.29 to 0.39, 0.52 to 0.53, and 0.22 to 0.24 umol/mz/s,
respectively. The simultaneous changes in all parameters by their
standard deviations (Eq. S5) resulted in the standard deviations of
the predicted NEE between —0.74 and —0.22 pmol/m?/s for dif-
ferent diurnal hours across the two marshes (Fig. 8). Since the
harmonic model was forced through the reference observation,
the uncertainty was minimum at the example reference time (¢,
= 12 h), while increasing at hours that are farther away from the
reference time.

How to use the Model?

Subject to the users’ preferences, the developed model can be
used to estimate the diurnal cycle of hourly NEE at both
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Fig. 8 Standard deviation of the 0.0
predicted hourly NEE for 02
simultaneously changing all
parameters by their standard
deviations at the Everglades
wetlands. The solid (black) lines
indicate the standard deviations
computed by using the mean
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Taylor and Shark River Sloughs from a corresponding single
reference observation (collected during 11 A.M. to 2 P.M.) by
utilizing any of the following tools: (I) Graphical approach,
(II) the final model equation, or (III) the attached Excel
spreadsheet model. If multiple reference observations of
NEE are available during 11 A.M.-2 P.M. for the same diurnal
cycle, we recommend using each reference observation sepa-
rately to predict the cycle and calculate the ensemble (average)
prediction at each hour.

Graphical Approach

The two-harmonic, generalized dimensionless model, NEE:;lod
() was estimated for all 24 h of a diurnal cycle by using the
spatiotemporally averaged (ensemble) parameter set (last row of
Table 2), which incorporated four reference times (,,,= 11-14 h)
for both marshes. The estimated NEE,, ,(¢) were then plotted
with the corresponding hours of a day (Fig. 9). However, a user

H
o
o
o
o
o
<
o

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Diurnal hours

can plot similar graphs of NEE (¢) using the site-specific set of
parameters for different reference times (Table 2). The general-
ized model plot can be utilized by users to graphically obtain
NEE, 4(t) for all diurnal hours. The users should then multiply
the estimated NEE, ,(¢) by a reference observation of NEE
(NEE, . collected any time during 11 A.M. to 2 PM. to predict
the corresponding diurnal cycle of hourly NEE at any of the two
marshes. Given that NEE;Od(t) is dimensionless (i.e., unitless),
the chosen units of NEE, . will determine the units of NEE for all
24 h. Therefore, any user-defined units (e.g., umo]/mz/s, gC/mZ/
s, tonC/ha/day) can be chosen for NEE,, to obtain the hourly
NEE in the corresponding units.

Using the Final Model Equation

For users keen to using mathematical equations, the final form
of the generalized two-harmonic model may be preferable to

Fig. 9 Diurnal hours vs. the 1.2 1
generalized NEE* model to =
graphically estimate NEE at any < 1.0 ]
hour by multiplying NEE* with a g ]
. . ‘z 0.8 1
single reference observation of g ]
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AM. to 2 PM. The NEE* for S
each hour was calculated by using E 0.4 ]
the generalized parameter set z ]
S i
S 027
3 1
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the graphical approach. Using the spatiotemporally averaged
parameter set (Table 2), Eq. 4 can be rearranged to obtain the
final model of NEE as follows:

Tt . (Tt
NEE(t) = NEE, [0.11-0.74c0s (E) ~0.09sin (E)
Tt

+0.21c0s(Z) +0.03sin (7] .
(5)

where ¢ = any hour of the diurnal cycle (i.e., 1-24 h), and 7 =
3.14159 rad or 180 degrees. However, subject to a user’s
discretion, the parameter values in Eq. 5 can be replaced by
the site-specific parameter sets for different reference times
(Table 2). For any Julian day of a year at any of the two
marshes, the users simply need to provide a single reference
observation (NEE,,) collected anytime during 11 A.M. to 2
P.M. on the right-hand-side of Eq. 5 to predict NEE for all
24 h. The units of NEE will represent the chosen units of
NEE,ssuch as pmol/mz/s, gC/mz/s, tonC/ha/day, and so on.

Using the Attached Excel Spreadsheet Model

A user-friendly, macro-based Excel spreadsheet model named
“Florida Everglades NEE Model” is presented to simulate the
diurnal cycles of hourly NEE from the day- and site-specific
reference observation (VEE,.) at the two Everglades marshes
(see Florida Everglades NEE Model 2017 to download the
Excel model). The estimated ensemble parameter set along with
the model application algorithm was coded in the Excel file
using Visual Basic. A user can choose any of the parameter sets
(site-specific values or spatiotemporally ensemble values) pro-
vided in Table 2 for estimation of the diurnal cycles. However,
the generalized parameter set (last row in Table 2) was used in
the Excel spreadsheet as a default. A “Readme” sheet is includ-
ed therein to provide an overview and describe the necessary
steps to run the model. An “Example” sheet is also provided to
demonstrate the predictions of different diurnal cycles (random-
ly selected from both marshes) during 2009—-10 using the cor-
responding reference observation (VEE,y). Although all NEE
were expressed in the units of umol/mz/s, any user-defined

units (e.g., gC/m?/s, tonC/ha/day) can be used to input NEE, .,

to obtain the NEE for 24 h in the corresponding units. Upon
enabling the “macros” in the Excel file, the users need to input
the single reference observations (VEE,,) measured during 11
AM. to 2 PM. along with the corresponding Julian days and
years to estimate the respective diurnal cycles of hourly NEE
with a single click on the “RUN".

Model Utility and Limitations
The presented model can be used to successfully estimate the

fine-resolution (e.g., hourly) time-series of NEE from a limit-
ed number of observation for the Everglades freshwater

wetlands. The increasing demand for wetland carbon account-
ing at longer time-scales and the existing gaps in the small-
scale eddy-covariance observations of NEE, therefore, inher-
ently indicate the utility of the harmonic model. Furthermore,
a generalization of parameters across time and the two differ-
ent marshes indicates an existence of similitude in ecosystem
functions and overall response. The presented scaling-based
method can, therefore, be potentially applied (upon re-
calibrations) to estimate hourly NEE time-series at different
wetlands and other ecosystem types (e.g., deciduous forests,
evergreen needleleaf forests, mixed forests) using the avail-
able database (e.g., AmeriFlux, FluxNet). The harmonic mod-
el algorithm can also be applied to predict different
ecohydrological and environmental variables (e.g., net radia-
tion, latent heat flux, sensible heat flux, ground heat flux) that
represent a cyclic pattern.

The scaling-based harmonic model cannot estimate a diur-
nal cycle of hourly NEE if no corresponding reference-time
observation of negative NEE (i.e., uptake) is available for the
day. Further, the model is not applicable for sites/time that do
not show a periodic diurnal pattern in NEE. However, math-
ematical modeling in general is an abstraction of reality, and
much details can inherently be lost in the abstraction methods
— which contribute uncertainty in model predictions. The use
of filtered and gap-filled data for the harmonic model calibra-
tions (that required complete diurnal cycles) could introduce
bias and uncertainty in parameter estimations and model pre-
dictions. The possible gap-filling bias was minimized by cal-
ibrating the model with only those diurnal cycles that had four
or less consecutive hourly gaps. The estimated parameters did
not show any notable seasonal trend or bias among the differ-
ent Julian days, years, and sites (Fig. 4). Further, the success-
ful model validations (site-specific, inter-site, and generalized
levels) (Table 3, Table S1, Fig. 7, Fig. S2) with the larger sets
of un-filled data indicated no discernable effects of data-
filtering and gap-filling on model predictions. Nevertheless,
if extreme noise (e.g., frequent spike) exists in a diurnal cycle
perhaps due to large floods and/or nutrient pulses, the model
may not perform as good as for the days that represent a more
stable ecosystem response. However, the model parameters
were insensitive to the large ranges of daily variation in
PAR, temperature, water level, and nitrogen and phosphorous
concentrations at the two Everglades marshes (Fig. 5, and Fig.
S1 in Supplemental notes). The parameter robustness ulti-
mately led to the successful predictions of different diurnal
cycles of NEE, representing a considerable variation in the
hydroclimatic and water quality drivers.

Conclusions

A generalized empirical model was developed to estimate the
diurnal cycle of hourly NEE based on a corresponding single
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reference observation from the Florida Everglades freshwater
wetlands. The model was evaluated with AmeriFlux data col-
lected during 2008—13 from the Taylor Slough and Shark
River Slough marshes, representing a short vs. long hydro-
period, respectively. The study validated the hypothesis that
scaling of the diurnal cycles of NEE by the corresponding
day- and site-specific single reference observations would
lead to a general, dimensionless NEE cycle for all days and
sites. The model involved five parameters, which exhibited
spatiotemporal robustness by collapsing into narrow ranges
among the different days and years across the two marshes.
Estimated hourly NEE using the site-specific ensemble (aver-
aged over all days) and the generalized (averaged over all days
and sites) parameter sets indicated a good performance of the
model (NSE = 0.66-0.89; RSR = 0.33-0.58). The empirical
model only requires a single reference observation of negative
NEE, collected anytime during 11 A.M. to 2 P.M., to predict
the corresponding diurnal cycle. The model is represented in
three standalone formats: (1) a simple final equation for direct
calculation, (2) a single dimensionless cycle of hourly NEE
for graphical estimation, and (3) a user-friendly Excel spread-
sheet. Subject to the users’ preferences, any of the three tools
can be applied to estimate fine resolution (e.g., hourly) NEE
time-series for the desired Julian days and years from the
respective single reference observations. The harmonic model
can, therefore, be applied as an empirical gap-filling method to
estimate missing data in observed, continuous (e.g., hourly)
time-series of NEE at the Everglades freshwater wetlands.
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