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The delivery of accurate and timely information is crucial to improve situational awareness of the affected communities. But the effec-
tiveness of such information depends on the perceived credibility of the information sources and household response to such informa-
tion, which further depend on the socio-economic and demographic characteristics of a household and their prior hazard experiences
[4–6]. Natural disasters like flooding/hurricanes are likely to increase in severity and frequency for a variety of reasons including (but
not limited to): climate change, increases in population, increasing land-use development in high-risk areas. Thus, understanding the
evacuation decision making process is increasingly important in the context of new digital era where information can be received
from many different sources.

The desired outcome of an evacuation scenario is high evacuation compliance (received a mandatory evacuation order and evacu-
ated) and low shadow evacuation (defined as evacuation without any mandatory order).1 Because of the heterogeneities in household
risk perceptions and the differences in credibility of information sources, the outcome of an evacuation scenario may become differ-
ent than expected. For example, during Hurricane Irma the state of Florida had an overall 31% non-compliance and 46% shadow
evacuation rates [7,8]. Hence, evacuation response to warnings should be evaluated considering multiple information sources and
their perceived credibility among households from different socio-demographic groups. Previous studies, including statistical and
agent-based models, have considered multiple information sources [4,9,10]. Among these models, the statistical models [4,11] could
not capture the dynamics of these information sources and the agent-based models are mostly based on synthetic data without consid-
ering household socio-economic and demographic characteristics.

The most relevant studies [12–15] that used agent-based models to understand evacuation behavior and risk perceptions have at
least one of the following gaps – 1) have created agents in a synthetic space or an aggregated space (census tract, blocks, etc.) that lim-
its the understanding of spatial effects among neighbors, 2) have not integrated flood risk and corresponding risk perception consider-
ing a spatially aware model, 3) have not considered the credibility of information sources and how it affects risk perception, 4) have
not considered shadow evacuation separately.

In this study, we develop an agent-based model that combines hydrologic characteristics, socio-demographic characteristics, and
multiple information sources to understand risk perception and evacuation behavior of the households of an area. Previous studies
suggested that people from Miami-Dade area are more concerned about inland flooding from heavy rainfall than storm surge despite
living in a coastal area [16]. We use simulated runoff depth prediction as an indicator of potential flooding considering the climatic,
land uses/cover, and hydrological aspects of a region. Then we use the predicted runoff depth to generate the initial risk perception of
a household, which solves the requirement of initial seed generation. The novelty of our study is that we integrate detailed runoff
depth information, actual neighborhood (with the spatial distribution of households), and social network to model risk perception
and evacuation decision of a household. We also model how multiple information sources (runoff predictions, neighbor observation,
and opinion in social network) and household's trust in these information sources are linked to evacuation compliance and shadow
evacuation. This study contributes to the literature by answering the following research questions:
• How to develop an agent-based model (ABM) considering how a household perceives flood risk and makes evacuation decisions.

In the ABM model, we integrate runoff predictions from a process-based hydrologic model, parcel level land use characteristics,
household socio-demographic characteristics, and information sources to model risk perception dynamics and evacuation decisions.
• What is the effect of a household's trust on forecasts on evacuation participation?

We use a locally relevant, block level (1 km × 1 km
)

rainfall-induced runoff predictions to model the perception of potential flood
risk and corresponding evacuation decision of a household.
• What is the effect of social networks on a household's evacuation decision, and how does a household's trust on opinion dynamics

of social networks affect the overall evacuation participation?
We construct social networks among the households and model the influence of opinion dynamics (circulating over the social net-

works) on household evacuation decisions.
• How does observing neighbor activities affect a household's evacuation decision in an actual neighborhood setting, and how

a household's trust on neighbors' observation affect the overall evacuation dynamics?
Past studies have created agents in a synthetic space or an aggregated space (census tract, blocks, etc.) that limits the understand-

ing of spatial effects among the neighbors. We capture the influence of an actual neighborhood and household locations on evacua-
tion decisions by assigning household agents at a building footprint level.

2. Literature review
Evacuation behavior models can be divided into two broad categories: (i) statistical models [17–19] that use empirical data col-

lected by a survey to understand contributing factors of evacuation behavior; (ii) computational models [12,15,20] that use behav-
ioral theories to simulate evacuation behavior. The statistical modeling approach includes different types of logit models, most fre-
quently a binary logit model where evacuation is modeled as a binary decision process (evacuate or not) [8,21]. These studies have
found that socioeconomic, demographic factors, social ties, etc., play an important role on evacuation decisions [19,21]. The statisti-

1 Shadow evacuations: did not receive a mandatory evacuation order but evacuated (it should be noted that shadow evacuations typically refer only to mandatory
evacuation orders, not voluntary evacuation orders).
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cal modeling approach, however, cannot capture the dynamics of the collective evacuation behavior that evolves from the social in-
teractions among households; because it is very challenging to collect such empirical data [10,22]. A computational model such as an
agent-based model allows incorporating the findings from the statistical models and other phenomena (risk propagation, dynamic
forecast, social interaction) where heterogeneous agents (households) interact with each other and take decisions, and hereby affect
the collective evacuation behavior [23]. Studies have found that the households reliability on weather forecast increases the likeli-
hood to evacuate [4]; but the forecast might be less reliable and overblown for some households depending on the conveyed message
[6,16], and they might look for other information sources/channels such as community, peers, internet, etc. [24,25].

Many studies have used agent-based models to understand evacuation behavior under the influence of social networks [12–15].
Widener et al. [14] found that social influence increases evacuation participation using a random subset of the population on a case
study of Bay County, Florida. Yang et al. [12] proposed a home-workspace based social network for Florida-key regions to simulate
the effect of social networks on evacuation decisions. This study has the following limitations: it considered neighbors as a part of so-
cial networks and did not consider that households can observe their spatially close neighbors' activity (evacuating or not) without
having a social link between them; Florida Key is a unique geographic location that might not be representative to other location.
Moreover, all of these ABMs have simulated the social network influence as a factor of evacuation decision without considering other
information sources and did not consider the credibility/trust of peer pressure (or information from their connections). Thus, it is un-
known what is the relative effect of social network, neighbor observation, and forecast accuracy for varying degree of trust on the in-
formation sources in the risk perception dynamics and evacuation decisions.

Du et al. [9] used an agent-based model to simulate the effect of online social networks and neighbor observations separately on
flood evacuation behavior considering the trust on multiple information sources. However, this study is based on a hypothetical space
and hazards; thus, representativeness of the results on actual social and neighbor effect is unknown.

In this study, we develop an agent-based model by incorporating flood risk and household's trust on multiple sources of influence
(forecast, social networks, and neighbors' influence) to understand the dynamics of risk perception and evacuation behavior. We gen-
erate realistic runoff data of Miami-Dade County and create households using the most recent census data. We present our results on a
case study created for the households located in a zip code of Miami-Dade County.

3. Data description
To simulate evacuation behavior in a geographical area, we collect data from multiple sources such as runoff predictions, socio-

demographic distributions, building footprint, and property data.
The building dataset contains total 12,982 properties/buildings and 80.4% of them are residential buildings. The residential build-

ings have total 10,583 floors and 15,291 units. We generate synthetic runoff depth data using a process-based hydrologic model at the
1 km × 1 km block resolution (details on the hydrologic model and runoff depth predictions are given in the supporting informa-
tion). We collect building footprint and property type from Miami-Dade County website [26]. The building data provide the location
of a building and the type of its use (e.g., residential, commercial, unit count, floor count, etc.). We collect the 2018 5-year American
Community Survey (ACS 5) [27] data for Miami-Dade County. We combine the data at a block group level, which is the smallest geo-
graphical unit for which census bureau publishes sample data [28]. We include data for the following table ids: B01001 (population),
B19001 (household), B09019 (sex), B09020 (age), B19001 (income), B02001 (race), and B15002 (education).

3.1. Study area
We focus on zip code 33147 of Miami-Dade County as the area of interest for our simulation (see Fig. 1). We choose this zip code

because the predicted runoff depth varies over the block-groups present in it and the area has socio-demographic diversity (see sec-
tion 4.2.1). In our study area, the runoff depth varies from approximately 16 inch–25 inch. Hence, this study area will capture evacua-
tion behavior on different level of flood risk and heterogeneity in household risk perceptions. The study area has 46,933 population,
7.25 sq. Mile of land area, 49% male population, and 34.4% white people. The centroid of our study area is about 4.5 miles from the
coast. Although the study area has relatively low to moderate risk of coastal flooding and hurricane, it has relatively moderate to high
risk of riverine flood [29]. According to FEMA [29], the community resilience score of the study area is around 53.4 indicating that it
has relatively moderate ability to prepare for anticipated natural hazards, adapt to changing conditions, and withstand and recover
rapidly from disruptions when compared to the rest of the U.S. Furthermore, the community has a relatively high susceptibility to the
adverse impacts of natural hazards when compared to the rest of the U.S [29].

Fig. 1(a) shows the runoff depth over Miami-Dade County – the runoff depth of zip code 33147 ranges from 13 to 26 inches. Fig. 1
(b) shows the spatial distribution of the building/property inventory of zip 33147. It has 40 block groups where 32 are completely in-
side and 8 are partially inside the boundary of the zip code. Some block groups have a high density of residential buildings and some
have a low density of residential buildings among these 40 block groups. The lowest density is 1 residential building per block group,
highest is 538 residential buildings per block group and the mean density value is 254.4. Hence, the selected study area is well-suited
to capture the effects of flood risk and socio-demographic and neighborhood density on evacuation behavior.

4. Methodology
Our study has three main methodological parts: (i) creating synthetic households, (ii) creating social network among households,

and (iii) modeling risk perception dynamics and evacuation behavior. Grimm et al. [30] proposed a standard protocol, also known as
ODD (Overview, Design concepts, and Details) protocol, for describing agent-based models to make model descriptions more under-
standable and reproducible. Given below is the description of the model following the seven elements – purpose, state variables and
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where, i = 1,2,3, − − − ,n equal interval and πui,πli are the upper limit and lower limit of the interval i, respectively, and
𝜋
ui
− 𝜋

li is constant . In our study, we have used ten (n = 10) equal intervals. We predicted the evacuation tendencies for the 15,291
synthetic households in our study area and later assigned the risk tolerance threshold based on equation (2). Table 2 shows equal in-
terval values of evacuation tendencies and the corresponding risk tolerance threshold. Third column of Table 2 shows the percentage
of households (total 15,291) that falls within the specified risk tolerance threshold.

4.2.2. Creating social network and neighborhood
The evacuation decision of a household does not only depend on its characteristics but also on the surrounding neighborhood and

social network [36]. Studies suggest that the connections among households are most likely to work as a small world network [12],
proposed by Watts and Strogatz [37]. We create small world network between the synthetic households generated in the previous
step. A household is more likely to connect with its nearby connections during an emergency. As our study area is a zip code with di-
agonal distance of around 6.4 km, all households are equally likely to be connected with each other. For each household, we create a
small world undirected (i.e., communication can happen both ways) network with average degree, ka of n. Here, average degree, n
means on average each household will be connected with n different households in the network. Where value of n can be 2 to 15
based on previous studies [12,14]. While creating the social network we assumed that there exists some sort of friendship (relatives,
family members, or social media friends, etc.) between the households. However, we assigned neighbors only based on spatial prox-
imity and no friendship is required. We assign neighbors based on the spatial proximity of the households ranging from 300 m to
1 km for different simulation setup.

4.3. Process overview and scheduling
At every time step, the risk perceptions of the households are updated based on their previous risk perceptions and the following

information sources: risk perception from social network, neighbor's evacuation activity and hazard forecasts. If the updated risk per-
ception is greater than its risk tolerance threshold, the evacuation status is set as evacuated for the rest of the simulation. The fre-
quency of risk perception updating decision of a household is decided based on a random probability distribution. However, the up-
dating is synchronous for the households who decide to update their risk perceptions.

4.4. Design concepts
Risk perception dynamics and evacuation decision at a community level evolves from household's own perception about informa-

tion reliability and interaction among social networks and neighbors. Fig. 3 shows the overall design concept of the model. Each
household form its own risk perception of hazard and then update the risk perception over time after communicating with the social
network and neighbors. If the social connections have high risk perception, household risk perception will be higher. Similarly, if a
household observe that most of its neighbor is evacuating its risk perception will increase. However, households put different weight
(α,β,γ) to these information sources with stochastic weights (to capture the heterogeneity among households). At each time step, a
household evaluates the updated risk with its risk tolerance and decides whether to evacuate or not. The details are discussed in the
Submodels section.

4.5. Initialization
We implemented the simulation in Java programming-based Repast Simphony agent-based modeling framework [38]. In Repast

Simphony, an ABM consists of three main components: agents, projections, and context. Context works as a container of agents and
projections and defines the behavior of agents, interactions between agent and projection. Projection on the other hand imposes
structure of the agents. More details about Repast Simphony can be found here [39]. In our simulation, synthetic households are the
agents; social network and location of the households are two different projections. We implemented a Repast Simphony context that
performs the following main tasks: a) assigns household agents to the residential buildings (or location projection), b) assigns house-
hold agents to the social network and sets neighbors, c) defines rules for risk perception dynamics and evacuation decision. Simula-
tions are initialized with 15,291 synthetic households with the following attributes: a) risk tolerance thresholds based on socio-
demographic characteristics, b) information credibility sampled from a normal distribution ranging from 0 to 1, where 1 means com-
pletely trust the information source, 0 means no trust, c) initial risk perception value (ratio of forecasted runoff depth at household's

Table 2
Assignment of Risk Tolerance Thresholds based on Evacuation Tendency.

Evacuation Tendency, (𝝅) Risk Tolerance Threshold (τ) Percentage of Households

0–0.1 1.0 –

0.1–0.2 0.9 44.11
0.2–0.3 0.8 23.76
0.3–0.4 0.7 18.80
0.4–0.5 0.6 8.91
0.5–0.6 0.5 3.52
0.6–0.7 0.4 0.83
0.7–0.8 0.3 0.065
0.8–0.9 0.2 –

0.9–1.0 0.1 –
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greater than its risk tolerance threshold. Let, Rj,t, τj are the perceived risk of a household and the risk tolerance threshold of household
j at time t, respectively. If Rj,t > τj household j will evacuate (Ej,t = 1), otherwise the household will stay (Ej,t = 0) at time t.

Ej,t =

{
1 if Rj,t > 𝜏 j or Ej,t−1 = 1

0 if Rj,t ≤ 𝜏 j
(3)

At any given time t, a household forms its risk perception based on the influence It received from multiple sources of information and
the perceived time difference from landfall (see Equation (4)). Hurricane landfall time plays a crucial role in shaping household risk
perception and each household perceives the risk differently with respect to the time difference from landfall [10] as follows:

Rj,t = Ij,t × e
−

(t−C)2

2𝜎2 (4)

where, C is the mean and σ is the standard deviation of the time difference from landfall when the risk perception is maximum. A
household may not collect new information at every time step. Thus, we model the risk perception dynamics as a stochastic process
where the parameter pj,t

(
update = 1

)
determines whether a household j will search for new information or not. If a household chooses

not to collect any new information, then Ij,t = Ij,t−1. At time t, if a household j chooses to collect new information it will look for 3 in-
formation sources: (i) hazard risk forecast )(𝐼𝐻

𝑗,𝑡 , (ii) social network/media
(
IS
j,t), (iii) neighborhood activity

(
IN
j,t

)
.

INewj,t = 𝛼jI
H
j,t + 𝛽 jI

S
j,t + 𝛾 jI

N
j,t (5)

where, 𝛼j, 𝛽 j, and 𝛾 j are the trust (or weight) parameters on building household j′s influence on new information and αj + βj + γj = 1.
We also consider that a household is likely to be skeptic about the new influence and may only partially accept the new influence.

Because of this opinion adherence tendency, households do not completely abandon their past information influence [9,41]. The pa-
rameter θj dictates what percentage of newly formed influence will be added to form the latest information influence It. Here, θj also
serves as the learning rate of a household j in a Widrow-Hoff learning rule [9,42].

= = − ) =𝐼𝑗,𝑡 + Δ𝐼𝐼𝑗,𝑡−1 𝜃𝑗 𝑗,𝑡 + (𝐼𝐼𝑗,𝑡−1 𝜃𝑗

𝑁𝑒𝑤

𝑗,𝑡
𝐼𝑗,𝑡−1 (1 − ) + 𝐼𝜃𝑗 𝐼𝑗,𝑡−1 𝜃𝑗

𝑁𝑒𝑤

𝑗,𝑡
(6)

We represent the hazard risk primarily in terms of flood risk due to heavy rainfall during a hurricane. Since our study area is less likely
to face storm surge (not within the storm surge zone) and significant wind gust variation (because of small geographical area), we as-
sume that a household will consider only the inland flooding to form its hazard related influence on risk perception. Here, we intro-
duce a threshold runoff depth τrd that will dictate whether emergency officials will declare evacuation or not. At time t, a household
will form a hazard related risk by the amount of the ratio of the forecasted runoff depth at the home location at household j and τrd.

IHj,t =
runoff depth at j′s home location

maximum permissible runoff depth
(
𝜏rd

) (7)

A household is also likely to collect information from its social network. At time t, the collected information is modeled as a linear
combination of the information obtained from its connected households following the setting of previous studies [9,43]. A household
may not collect information from all the connected households of its social network. Here, we assume that a household is more likely
to collect information from the connected households who live closer to that household.

ISj,t =
n∑

i=1

wi,jIi,t−1 =
n∑

i=1

aij,t
n∑

i=1

aij,t

Ii,t−1 (8)

where aij,t represents whether household j has read or collected the opinion of household i (aij,t = 1) or not (aij,t = 0) and the probabil-
ity of aij,t = 1 depends on the distance, dij between household iand household j and the maximum considerable distance dmax. The
probability of exchanging opinion between two households reduces with increasing distance (di,j) between them. Here, dmax controls
the upper bound of the distance di,j and p(aij,t = 1) = 0, for di,j ≥ dmax + 1.

p
(
aij,t = 1

)
= 1 −

dij
d
max

+ 1
(9)

We simulate the information obtained from the neighbors as the observed action of the neighbors (whether a neighbor has evacuated
or not) [9,44]. We assume that households living in proximity may not necessarily know each other – thus cannot share opinion – but
the households can easily observe their neighbors whether they have evacuated or not. The obtained information of a household is
the weighted average of the observed action of the neighbors (see Equation (10)).
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INj,t =
n∑

i=1

bij,t
n∑

i=1

bij,t

Ei,t−1 (10)

where, bij,t represents if household i is a neighbor of household j (bij,t = 1
)

or not (bij,t = 0
)

based on a threshold distance τN.

bij,t =

{
0 if dij > 𝜏N

1 if dij ≤ 𝜏N
(11)

5. Results
In our experiment of risk perception dynamics and evacuation behavior, we run all the simulation for 120 h. The simulation fol-

lows discrete time-steps, where at each step, time is increased by 1 h. We implemented the simulation in Repast Simphony agent-
based modeling framework [38]. In our simulation, we create an agent's (household's) risk tolerance threshold based on the socio-
economic and demographic heterogeneity. To represent heterogeneity in behavior, we assign household parameters (learning rate,
trust on information source, information seeking behavior, etc.) sampled from a distribution. We represent the influence of informa-
tion sources through three separate scenarios as presented in Table 3.

In scenario 1, we assume that a household relies on hazard forecast only, without considering any influence from social network
and neighbor observation (𝛼 = 1, 𝛽 = 0, 𝛾 = 0). In scenario 2, a household relies on hazard forecast [α∈N(0.5,0.1)] and information
from social network [β∈N(0.5,0.1)], without any neighbor observation (γ = 0). Similarly, in scenario 3, a household considers hazard
forecast [α∈N(0.5,0.1)] and neighbor observation [γ∈N(0.5,0.1)], without considering any information from social network (β = 0).

Fig. 4(a) and (b) and 4(c) show the results of the scenarios in terms of spatial distribution of evacuation compliance and
shadow evacuation. Fig. 4(d) shows the temporal variation of evacuation participation in the simulated scenarios. The temporal
dynamics shows that the evacuation started early, and the participation rate is higher for scenario 1 followed by scenario 2. In
scenario 3, evacuation participation is significantly low, and evacuation started late compared to scenarios 1 and 2. Among the
three scenarios, scenario 1 has the highest evacuation participation rate (40.29%) including evacuation compliances and shadow
evacuation (see Fig. 4(a)). However, reliance on hazard information also increases shadow evacuation which is less desirable for
managing evacuation traffic [45]. Shadow evacuation is likely to increase if households with less risk tolerance (or high evacua-
tion tendency) evacuate despite living in a low-risk zone. The influence of social network information decreases overall evacua-
tion participation (both compliance and shadow evacuation) compared to scenario 1 (see Fig. 4(b)). We also observe in scenario
3 that relying on neighbor behavior significantly lowers evacuation participation (see Fig. 4(c)). Compared to scenarios 1 and 2,
evacuation participation significantly decreases for all threshold distances, τN (parameter that controls whether a household is
neighbor or not) between 300 m and 1000 m. Similar findings have also been observed in a previous study [9]. In summary,
we found scenario 1 (residents making evacuation decisions based on hazard forecast only) has the highest evacuation and
other influences create confusion about evacuation decisions. Mathematically, we assumed the trust value upper bounded to 1.
For scenario 1, because residents have full trust on hazard forecast only, residents will have the right amount of risk percep-
tions. For the other influences (neighbor or social network), there are mixed (some residents will evacuate and other will not)
risk perceptions and the net risk perception can be considered as confused (if there is large difference between the resulted risk
perception and expected risk perception based on hazard forecast).

The scenarios shown in Fig. 4 combines influences of two information sources where the trust is equally divided between those
sources. Next, we run the simulation for different combinations of trust values of the three information sources (hazard risk + social
network + neighbor observation) and the results are shown in Fig. 5. We run simulation for trust values with a 0.1 interval and plot
the contour map over the resulted evacuation rate by linearly interpolating the intermediate evacuation rate. Fig. 5(a) shows how to
interpret the trust values with respect to the three axes showing trust values for hazard forecast, social network, and neighbor obser-
vation. We find similar trends in the effects of information sources on overall evacuation participation (Fig. 5(b)), evacuation compli-
ance (Fig. 5(c)), and shadow evacuation (Fig. 5(d)). We divided each contour map in three zones: A, B, and C, representing high,
medium, and low evacuation rates, respectively.

Simulation result shows that evacuation participation is likely to be higher when a household has higher trust on hazard forecast.
It also shows that when evacuation participation increases, it increases in both evacuation compliance and shadow evacuation rates
(see Fig. 5(c) and d). Evacuation participation is almost zero when households have very low (≤ 0.1) trust on hazard forecasts. The in-
fluences of neighbor observation or social network depend on the trust values of the remaining two information sources (sum of trust
values is 1 at any point in the contour, 𝛼j + 𝛽 j + 𝛾 j = 1

)
. For example, for a given trust value of hazard forecast, as the influence of

neighbor observation (γ) increases, the overall evacuation, compliance, and shadow evacuation rates decrease (zone A to B to C in Fig.
5). Similarly, for a given trust value of social network, as the influence of neighbor observation (γ) increases, the overall evacuation,
compliance, and shadow evacuation rates decrease. Higher trust in neighbor's observation is likely to lower evacuation participation
(e.g., for γ ≥ 0.4 see zone C in Fig. 5). In zone C, a lower trust in hazard forecast reduces the perceived risk for some neighbors which
further influences other households not to evacuate. On the other hand, for a given trust value of hazard forecast, as the influence of
social network (β) increases, the overall evacuation, compliance, and shadow evacuation rates increase (see Fig. 5 from right to left).
However, for a given trust value of neighbor's observation, evacuation rate is not same for all zones (zone A, B, and C in Fig. 5). For ex-
ample, at zone A and above for a given trust value of neighbor's observation, the trust value of social network has no effect (or same)
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Table 4
Summary of Key Findings and Recommendations based on the research questions of the study.

Research Question Findings Recommendations

How to develop an agent-based model
(ABM) considering how a household
perceives flood risk and makes
evacuation decisions?

We developed an ABM integrating forecasted run-
off depth to simulate flood risk and considering
information credibility to model the risk perception
dynamics and household evacuation decisions. We
run the model and presented results for a zip code
in Miami-Dade County.

The proposed framework can be used for any region to
understand the complex dynamics of risk perception of
households considering hazard risk forecast and other factors.
However, we recommend collecting region specific survey data
or established existing evacuation behavior models for that
region to feed into the ABM.

What is the effect of a household's trust on
forecasts on evacuation participation?

Higher trust in hazard forecast increases
evacuation participation- both in evacuation
compliance and shadow evacuation.

Emergency management agencies should ensure the reliability
of hazard forecast and quality of warning information so that
the warning messages are clearly understood. They should also
provide hazard forecast with enough location details so that
households can differentiate between a mandatory and a
voluntary evacuation order.

What is the effect of social networks on a
household's evacuation decision, and
how does a household's trust on opinion
dynamics of social networks affect the
overall evacuation participation?

Size (number of online or offline friends or
relatives) of social network increases evacuation up
to certain point and after that bigger social
network tends to decrease evacuation compliance
or increases shadow evacuation.

Emergency management agencies should increase their
presence in online social media so that households can get
official hazard forecast from social media in addition to
collecting information from their peers.

How does observing neighbor activities
affect a household's evacuation decision
in an actual neighborhood setting, and
how a household's trust on neighbors'
observation affect the overall evacuation
dynamics?

Higher trust on neighbor's evacuation decision
generates low evacuation participations.

Emergency management agencies should provide accurate
information about the risk and should recommend residents to
take decisions based on the official orders.

bigger network will not necessarily increase compliance and rather might increase shadow evacuation. Now-a-days people are in-
creasingly using online social media platforms to collect information during emergencies. Thus, emergency management agencies
should increase their presence in online social media so that households can get official hazard forecast from social media in addition
to collecting information from their peers.

In a neighborhood, not all households will comply with an evacuation order. Although it is suggested that households watch out
for neighbors who need help to evacuate or taking protective measures [47], we find that if households rely more (put higher trust) on
neighbor's behavior, evacuation compliance is likely to be lower. Thus, emergency managers should emphasize on providing accurate
information about the risk and should recommend residents to take decisions based on the official news.

6.6. Limitations and future research directions
Our study has some limitations. We have not considered all aspects of a hurricane hazard scenario such as wind speed, storm

surge, etc. We assume that agents take evacuation decisions based on the perceived risks; however, practical constraints may affect
evacuation decision despite having higher risk perception. For instance, despite perceiving the storm as a high risk, a household that
has no car and nobody to help may downplay the effect of a hurricane. Future studies may consider this aspect given the data avail-
ability of such households. Although we have created households with socio-demographic heterogeneity, some characteristics such as
information search behavior and learning rates are randomly assigned. Our primary concern in selecting the study area (Zip code
33147) is the variation in runoff depths to examine their effects in evacuation decision making. However, the decision-making
process may not be generalizable to other regions because of the less generalizable characteristics of the households of zip code 33147
such as high poverty, lower than average social class membership, and low education and income. We have not considered household
density or multiple families and heterogeneity in their makeup since in poor neighborhoods such as our study area household density
is very high and multiple families, including singles and divorced persons, tend to congregate in single units of a building.

Future studies may collect survey data focusing on these aspects that will allow assigning information search and track evolution
of risk perception with more granularity. We have used the parameters of a binary logit model developed for Northern Jersey, which
might not be representative of our study area. Because of lack of data, we could not use some factors present in the evacuation related
literature such as previous experience, mobility options, residential ownership, family sizes, pets, medical conditions, etc. Because of
unavailability of ground truth data for our study region we could not validate the risk tolerance values. We used a simulated static to-
tal runoff depth to represent the hazard risk of a household. But hazard forecasts are dynamic and sometimes uncertain. Moreover,
credibility of hazard forecast may vary based on the source of the forecast. Future studies may consider the dynamics of hazard fore-
cast with the associated uncertainty and sources to model the reliability/trust of the information sources.

In our study area and experiment setup, we found scenario 1 (residents making evacuation decisions based on hazard forecast
only) has the highest evacuation and other influences create confusion about evacuation decision. However, theoretically, it is possi-
ble to have highest evacuation rate for scenario 2 (social network) and scenario 3 (neighbor observation) if a resident collects risk per-
ception selectively (we assumed a resident collect information from everyone in his/her social network and neighbor) from social net-
work or a resident is surrounded by neighbors with very low risk tolerance.

We simulated the information collection from social networks based on small-world type random graphs. But the communication
pattern in social networks, especially in an online social network, is still not well understood. Designing appropriate surveys to collect
this information from the affected regions can help find more appropriate network structure and properties. We considered that more
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neighbors evacuating will always add to the information favoring an evacuation decision. But some studies had shown that the fear of
looting can decrease the evacuation intention [36]. We did not consider the effect of likely infrastructure disruptions (e.g., power out-
age) on evacuation decisions. Studies suggested that evacuation is likely to happen even after landfall if the critical infrastructure is
damaged due to a hurricane. Future studies can simulate these effects in a more complicated agent-based system.

7. Conclusions
The focus of the study is to simulate the influence of multiple information sources on households’ risk perception dynamics and

evacuation behavior. While focusing the mentioned objective, this study answers four research questions:
The first research question asks how to develop an agent-based model (ABM) considering how a household perceives flood risk

and makes evacuation decisions. We create household features using the findings from existing literature and census data. We also use
rainfall-induced runoff predictions to create the perception of potential flood risk and model the dynamics of risk perception trans-
mission and evacuation decision through social and neighbor network.

The second research question is about the effect of a household's trust on forecasts on its evacuation participation. We find that in-
formation sources influence similarly to evacuation compliance and shadow evacuation – when evacuation compliance increases
shadow evacuation also increases. Our study shows that increased trust on hazard forecast increases evacuation participation.

The third research question is about the effect of social networks on a household's evacuation decision, and how a household's
trust on opinion dynamics of social networks affect the overall evacuation participation. We find that for a given trust on the hazard
forecast increasing trust on social network is likely to increase evacuation rate. However, for a given trust in neighbor observation, in-
creasing trust in social network creates uncertainty-evacuation increases up to some level of trust on social network then it decreases.
Moreover, we find that a bigger network may increase the overall evacuation, but it may only increase shadow evacuation (i.e., from
areas that are not under mandatory evacuation order).

The fourth research question asks how does observing neighbor activities affect a household's evacuation decision in an actual
neighborhood setting, and how a household's trust on neighbors' observation affect the overall evacuation dynamics. We find that if
the influence of neighbor observation is high, evacuation participation is likely to be lower. The influence of social networks however
depends on the trusts in other information sources and the size of a household's social network.

This study has implications for emergency management practices. Although past studies suggested that the effect of social net-
works increases the likelihood to evacuate, our study finds that the increase may happen in shadow evacuation. Thus, it is important
to increase the flow of accurate forecast information available to a large extent. Now-a-days social media play an important role in
propagating information. Emergency management organizations should increase their presence in social media with accurate and re-
liable information on hazard risk.
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