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parameter k, we want to delete k rectangles from R so as to maximize the number of
exposed points. We show that the problem is NP-hard and assuming plausible complexity
conjectures is also hard to approximate even when rectangles in R are translates of two

Keywords: fixed rectangles. However, if R only consists of translates of a single rectangle, we present
Max-exposure a polynomial-time approximation scheme. For range space defined by general rectangles,
PTAS we present a simple O (k) bicriteria approximation algorithm; that is by deleting O (k?)
Densest k-subgraph rectangles, we can expose at least Q(1/k) of the optimal number of points.

Geometric constraint removal © 2022 Elsevier B.V. All rights reserved.

Network resilience

1. Introduction

Let S = (P,R) be a geometric set system, also called a range space, where P is a set of points and each R e R is a
subset of P, also called a range. We are primarily interested in range spaces defined by a set of points in two dimensions
and ranges defined by axis-aligned rectangles. We say that a point p € P is exposed if no range in R contains p. The max-
exposure problem is defined as follows: given a range space (P, R) and an integer parameter k > 1, remove k ranges from
R so that a maximum number of points are exposed. That is, we want to find a subfamily R* C R with |R*| =k, so that
the number of exposed points in the (reduced) range space (P, R \ R*) is maximized.

The max-exposure problem arises naturally in many geometric coverage settings. For instance, if points are the location
of clients in the two-dimensional plane, and ranges correspond to coverage areas of facilities, then exposed points are those
not covered by any facility. The max-exposure problem in this case gives a worst-case bound on the number of clients that
can be exposed if an adversary disables k facilities. Similarly, in distributed sensor networks, ranges correspond to sensing
zones, points correspond to physical assets being monitored by the network, and the max-exposure problem computes the
number of assets exposed when k sensors are compromised.

More broadly, the max-exposure problem is related to the densest k-subgraph problem in hypergraphs. In the densest
k-subhypergraph problem, we are given a hypergraph H = (X, E), and we want to find a set of k vertices with a maximum
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number of induced hyperedges. In general hypergraphs, finding k-densest subgraphs is known to be (conditionally) hard
to approximate within a factor of n'~€, where n is the number of vertices. The max-exposure problem is equivalent to
the densest k-subhypergraph problem on a dual hypergraph, whose vertices X corresponds to the ranges R, and whose
hyperedges correspond to the set of points P. Specifically, each point p € P corresponds to a hyperedge adjacent to the set
of ranges containing the point p. In the rest of the paper, we will use n = |R| for the number of ranges in R and m = |P|
for the number of points. We show that if the range space is defined by convex polygons, then the max-exposure problem is
just as hard as the densest k-subhypergraph problem. However, for ranges defined by axis-aligned rectangles, one can achieve
better approximation. In particular, we obtain the following results.

e We show that the max-exposure problem is NP-hard and assuming the dense vs random conjecture [1], it is also hard to
approximate better than a factor of 0(n'/4) even if the range space is defined by only two types of rectangles in the plane.
For range space defined by convex polygons, we show that max-exposure is equivalent to densest k-subhypergraph
problem, which is hard to approximate within a factor of 0(n!~¢).

e When ranges are defined by translates of a single rectangle, we give a polynomial-time approximation scheme (PTAS) for
max-exposure, The PTAS stands in sharp contrast to the inapproximability of ranges defined by two types of rectangles.
Moreover, as an easy consequence of this result, we obtain a constant approximation when the ratio of longest and
smallest side of rectangles in R is bounded by a constant. However, we do not know if max-exposure with translates
of a single rectangle can be solved in polynomial time or is NP-hard.

e For ranges defined by arbitrary rectangles, we present a simple greedy algorithm that achieves a bicriteria O (k)-
approximation. That is, if the optimal number of points exposed is m*, the algorithm picks a subset of k* rectangles
such that the number of points exposed is at least m*/ck, for some constant c. No such approximation is possible for
general hypergraphs. If rectangles in R have a bounded aspect ratio, the approximation improves to O (+/k). For pseu-
dodisks with bounded-ply (no point in the plane is contained in more than a constant number of ranges), this algorithm
achieves a constant approximation.

The PTAS is obtained by first optimally solving a restricted max-exposure instance where all points are contained in a
unit square using dynamic programming in polynomial time. Next, we carefully combine them to obtain an optimal solution
in (nm)o(hz) time for the case when input points lie in a h x h square. Applying well known shifting techniques on this
gives us the PTAS. Both bicriteria algorithms are obtained by carefully assigning the points to ranges and applying greedy
strategies.

Related work Coverage and exposure problems have been widely studied in geometry and graphs. In the classical set
cover problem, we want to select a subfamily of k sets that cover the maximum number of items (points) [2,3]. For the
set cover problem, the classical greedy algorithm achieves a factor logn approximation for the number of sets needed to
cover all the items, or factor (1 — 1/e) approximation for the number of items covered by using exactly k sets. Similarly,
in geometry, the art gallery problems explore coverage of polygons using a minimum number of guards. Unlike coverage
problems where greedy algorithms deliver reasonably good approximation, the exposure problems turn out to be much
harder. Specifically, choosing k sets whose union is of minimum size is much harder to approximate with a conditional
inapproximability of O(n!'=¢) where n is the number of elements, or 0(m!/4=€) where m is the number of sets [1]. This
so-called min-union problem is essentially the complement of the densest k-subhypergraph problem on hypergraphs [4]. The
densest k-subgraph problem for graphs has a long history [5-8]. The paper [4] also studies the special case of an interval
hypergraph H = (V, E), whose vertices V is a finite subset of N and for each edge e € E there are values a, b, € N such
that e={i € V :a, <i < b,}. That is, vertices are integer points and edges are intervals containing them. They show that this
restricted case can be solved in polynomial time. The corresponding max exposure instance is when ranges R are intervals
R; = (aj, b;) on the real line. As discussed later, this 1-D case can also be solved in polynomial time. Moreover, we show
that good approximations can also be obtained for some geometric objects in two dimensions.

The coverage problems have also been studied for geometric set systems where improved approximation bounds are
possible using the VC dimension [9-11]. Multi-cover variants, where each input point must be covered by more than one
set, are studied in [12,13]. The geometric constraint removal problem [14,15], where given a set of ranges, the goal is to
expose a path between two given points by deleting at most k ranges (a path is exposed if it lies in the exterior of all ranges),
is also closely related to the max-exposure problem. Even for simple shapes such as unit disks (or unit squares) [16,17], no
PTAS is known for this problem.

The remainder of the paper is organized as follows. In Section 2, we discuss our hardness results followed by the
bicriteria O (k)-approximation in Section 3. In Section 4, we study the case when R consists of translates of a fixed rectangle
and describe a PTAS for it. Finally, in Section 5, we use these ideas to obtain a bicriteria O (+/k)-approximation when the
aspect ratio of rectangles in R is bounded by a constant.

2. Hardness of max-exposure

We show that the max-exposure problem for geometric ranges is both NP-hard, and inapproximable. We begin by
reducing the densest k-subgraph on bipartite graphs (bipartite-DkS) to the max-exposure problem; the known NP-hardness
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Fig. 1. Reducing bipartite-DkS to max-exposure with axis-aligned rectangles.

of bipartite-DKS then implies the hardness for max-exposure. Moreover, we show that bipartite-DkS is hard to approximate
assuming the dense vs random conjecture, thereby establishing the inapproximability of max-exposure.

In the bipartite-DkS problem, we are given a bipartite graph G = (A, B, E), an integer k, and we want to compute a set
of k vertices such that the induced subgraph on those k vertices has the maximum number of edges. Given an instance
G = (A, B, E) of bipartite-DkS, we construct a max-exposure instance as follows.

Let Ry =[O0, €] x [0, n] be a thin vertical rectangle and R, = [0, n] x [0, €] be a thin horizontal rectangle. For each vertex
vi € A, we create a copy R; of Ry, and place it such that its lower-left corner is at (i, 0). Similarly, for each vertex v; € B,
we create a copy R; of Ry, and place it such that its lower-left corner is at (0, j). These |A| + |B| rectangles create a
checkerboard arrangement, with |A| x |B| cells of intersection. For each edge (v;, vj) € E, we place a single point in the cell
corresponding to intersection of R; and Rj. It is now easy to see that G has a k-subgraph with m* edges if and only if we
can expose m* points in this instance by removing k rectangles: the removed rectangles are exactly the k vertices chosen in
the graph, and each exposed point corresponds to the edge included in the output subgraph. (See also Fig. 1.) We will later
make use of this reduction, and therefore state it as the following lemma.

Lemma 1. The max-exposure problem is at least as hard as bipartite-DKS.
Since bipartite-DkS is known to be NP-hard [18], we have the following.
Theorem 1. Max-exposure problem with axis-aligned rectangles is NP-hard.

2.1. Hardness of approximation

The construction in the preceding proof shows that max-exposure with rectangles is at least as hard as bipartite-DkS
problem. Moreover, the geometric construction uses translates of only two rectangles R1, R». In the following, we show that
even with such a restricted range space, the problem is also hard to approximate. To that end we prove that bipartite-DkS
cannot be approximated better than a factor 0 (n'/4), where n is the number of vertices in this graph. More precisely, if
the densest subgraph over k vertices has m* edges, it is hard to find a subgraph over k vertices that contains Q(m*/n%*f)
edges in polynomial time. This hardness of approximation is conditioned on the so-called dense vs random conjecture [1]
stated as follows.

Given a graph G, constants 0 < «, 8 < 1, and a parameter k, we want to distinguish between the following two cases.

1. (RaNDOM) G = G(n, p) where p =n®~1, that is, G has average degree approximately n®.
2. (DENSE) G is adversarially chosen so that the densest k-subgraph of G has average degree k?.

The conjecture states that for all 0 < « < 1, sufficiently small € > 0, and for all k < /n, one cannot distinguish between the
dense and random cases in polynomial time (w.h.p.), when 8 <« — €.

In order to obtain hardness guarantees using the above conjecture, one needs to find the ‘distinguishing ratio’ r, that is
the least multiplicative gap between the optimum solution for the problem on the dense and random instances. If there
exists an algorithm with an approximation factor significantly smaller than r, then we would be able to use it to distinguish
between the dense and random instances, thereby refuting the conjecture. We obtain the following result for densest k-
subgraph problem on bipartite graphs.

Lemma 2. Assuming that dense vs random conjecture is true, the densest k-subgraph problem on bipartite graphs is hard to approx-
imate better than a factor O (n'/4) of optimum.

Proof. Let G’ = (V'/, E’) be a graph sampled either from the dense or from the random instances. We construct a bipartite
graph G = (A, B, E) as follows. For every vertex v € V’, add a vertex vq to A and v, to B. For every edge e = (u, v) € E/, we
add the pair of edges e = (uq, vp) and e = (vq, up) to E. That is, every edge e € E’ is mapped to two copies e, e; € E and
we define e to be their parent edge as par(e;) = par(e;) = e. Similarly, for a vertex u € V’ and its two copies ug, u, € V, we
define par(u,) = par(up) = u. We say that G is dense if the underlying graph G’ was sampled from the dense case, otherwise
we say that G is random.
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Fig. 2. Reducing densest k-subhypergraph problem to max-exposure. Hypergraph vertices A, B shown as convex ranges.
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Consider a set of k* = 2k vertices in G. If G came from the dense case, there must be a set of 2k vertices that have 2kA+!
edges between them. So the number of edges in dense case m} > 2kP+1. Otherwise, we are in the random case. Consider
the optimal set of k* = 2k vertices V* that maximizes the set E* of edges in the induced subgraph G[V*]. Now consider
the corresponding set of vertices V, = {par(v) | v € V*} of the original graph G’ and the set of edges E, in the induced
subgraph G'[Vp]). We have that |V,| <|V*| =2k and |E,| > |E*|/2 because for each edge e = (u, v) € E*, we will have the
edge par(e) = (par(u), par(v)) € Ej,. Since |V,| <2k and we are in the random case, we can upperbound the number of
edges in E, as the number of edges in the densest subgraph of G(n,n®"1) over 2k vertices. This is O (max(2k, 4k?n®=1))
w.h.p. where O ignores logarithmic factors. Therefore the optimum number of edges in the random case is m = |E*| <
2|Ep| = O (max(k, k>n*~1)) w.h.p.

1 1 3-2¢

Choosing k =n'2, a = 1, p =1 — €, gives us m¥ = 0(n'/?) wh.p. and m} = Q"7 ). If we could approximate this

problem within a factor 0 (n'/4=¢€), then in the dense case, the number of edges computed by this approximation algorithm
is Q(n#) which is strictly more than the maximum possible edges in the random case. Therefore, we would be able to
distinguish between dense and random cases, and thereby refute the conjecture for these values of «, 8 and k. O

Using the same construction as in Lemma 1, we obtain the following.

Corollary 2. Assuming the dense vs random conjecture, max-exposure with axis-aligned rectangles is hard to approximate better than
factor O (n'/%) of optimum.

2.2. Hardness of max-exposure with convex polygons

We now show that the max-exposure problem is equivalent to the densest k-subhypergraph problem for general hy-
pergraphs when the range space (P, R) is defined by convex polygons. In one direction, the max-exposure instance (P, R)
naturally corresponds to a hypergraph H = (R, P) whose vertices are the ranges and the edges correspond to points and are
defined by the containment relationship. Clearly, the densest k-subhypergraph corresponds to the set of k ranges deleting
which exposes maximum number of points. For the other direction, we have the following lemma. (See also Fig. 2.)

Lemma 3. Given a hypergraph H = (X, E), one can construct a max-exposure instance with convex ranges ‘R and points P such that
the densest k-subhypergraph of H corresponds to a solution of max-exposure.

Proof. For each edge e € E of the hypergraph, add a point p, € P. We place all the points of P in convex position. Let
v € X be a vertex and E, be the set of hyperedges adjacent to v. Since points in P are in convex position, any subset of P
forms a convex polygon. Therefore, for every v € V, we can draw a convex polygon R, € R whose corners are the point set
corresponding to the hyperedges E,. The polygons will likely overlap in the convex region but for every point p. € P, the
polygons containing p. are precisely the ones that have p. as its corner. Therefore, p. is exposed if and only if all vertices
of the hyperedge e are selected. O

3. Abicriteria O (k)-approximation algorithm

In this section, we present a simple approximation algorithm for the max-exposure problem that achieves bicriteria
O (k)-approximation for range spaces defined by arbitrary axis-aligned rectangles. Specifically, if the optimal number of
points exposed is m*, the algorithm picks a subset of k? rectangles such that the number of points exposed is at least
m* /ck, for some constant c. In fact, the results hold for any polygonal range with O (1) complexity.

This bicriteria approximation should be contrasted with the fact that no such approximation is possible for the densest
k-subhypergraph problem: that is, one cannot compute a set of O (k®) vertices for any constant b such that the number of
edges in the induced subhypergraph is at least optimal. Thus the geometric properties of the range space have a significant
impact on the problem complexity. In particular, if R consists of rectangle ranges, we show that the following strategy picks
a subset of ok ranges such that the number of points exposed is at least m*/(ck?), for a parameter 1 <« <k and constant
¢ that will be fixed later. Choosing o =k gives us the claimed bound.
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Our algorithm is essentially greedy. We divide the points into maximal equivalence classes, where each class is the
maximal subset of points belonging to the same subset of ranges. We define R(p) as the set of ranges that contain a
point p € P, and remove all points that are contained in more than k ranges, since they can be never exposed in the
optimal solution. Therefore, without loss of generality, we can assume that |R(p)| <k for all points p € P. The rest of the
algorithms is as follows.

Algorithm 1 Greedy-Bicriteria.

1. Partition P into a set G of groups where each group G; € G is an equivalence class of points that are contained in the same set of ranges. That is, for
any p € G, p’ € Gj, we have R(p) =R(p’) if i = j and R(p) # R(p’), otherwise.

2. Sort the groups in G by decreasing order of their size |G;| and select the ranges in first & groups for deletion.

3. Return m’ = )", _;, |Gi| as the number of points exposed.

In Algorithm 1, observe that every point in the ith group G; is contained in the same set of ranges, which we denote
by R(G;). Moreover, we have |R(G;)| < k. Therefore, the total number of ranges that we delete in Step 2 is at most ak. It
remains to show that the number of points exposed m’ is at least ozm™ /ck?.

Lemma 4. Let m’ be the number of points exposed by the algorithm Greedy-Bicriteria, and let m* be the optimal number of exposed
points, then, m’ > am* /ck?.

Proof. Consider the optimal set R* of k ranges that are deleted, and let P* be the set of exposed points. We partition the
set of points P* into groups G* as before, such that each group Gj € G* is identified by the range set R(G}) = R(p), for
any p € Gf. Since P* C P, we must have that G* C G. This holds because for every group G} € G* there must be a group
Gj € G such that R(G}) = R(G;). Moreover since P* is the maximum set of points that can be exposed, we must have that
G} = G;. Finally, we note that the number of groups |G*| is bounded by the number of cells in the arrangement of ranges
in R* which is at most ck? for some fixed constant c, for all O(1)-complexity ranges. If the groups in G are arranged by
decreasing order of their sizes, we have that

m = Y Gl > IGl= Y G

1<i<|G*| 1<i<|G*| 1<i<ck?
ck? ck?
< — IGi| = —-m" O
o - o
1<i<«a

The parameter o« can be tuned to improve the approximation guarantee with respect to one criterion (say the number
of exposed points) at the cost of other. With o =k, the algorithm exposes at least (m*/k) by removing k? ranges. As
for the running time, a simple implementation of the algorithm can be made to run in O(mnlogm) time: we can build
the point-range containment relation in O (mn) time, partitioning the point set into groups takes an additional O (mnlogm)
time.

3.1. Constant approximation for pseudodisks with bounded-ply

If the range space R consists of pseudodisks of bounded-ply (no point in the plane is contained in more than a constant
number p pseudodisks), then the algorithm Greedy-Bicriteria achieves a constant approximation. Due to the bounded-
ply restriction, we have that the number of pseudodisks containing the points of group G; is |R(G;)| < p, and therefore
number of pseudodisks that are removed in Step 2 of the algorithm is also at most «p. Moreover, the number of cells in
an arrangement of k pseudodisks with depth at most p is O(pk) [19]. Therefore, we can bound the number of groups of
the optimal solution |G*| in the proof for Lemma 4 to be at most cpk. This gives us that the number of points exposed
m’ > am*/cpk, where m* is the number of points exposed by the optimal solution.

Lemma 5. If the range space R consists of pseudodisks of bounded-ply p, then algorithm Greedy-Bicriteria exposes at least om™* /cpk
points by deleting at most op pseudodisks, where 1 < o <k.

Choosing o =k, the algorithm achieves a bicriteria O (p)-approximation. With o =k/p, the algorithm exposes at least
1/cp? fraction of the optimal number of points by deleting k ranges.

4. A PTAS for unit square ranges

We have seen that max-exposure is hard to approximate even if the ranges are translates of two types of rectangles.
We now describe an approximation scheme when the ranges are translates of a single rectangle. In this case, we can scale
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Fig. 3. Max-exposure in a unit square C. Type 0 ranges are drawn with solid lines, Type 1 ranges are dash-dotted.

the axes so that the rectangle becomes a unit square without changing any point-rectangle containment. Therefore, we can
assume that our ranges are all unit squares. The problem is non-trivial even for unit square ranges, and as a warmup we
first solve the following special case: all the points lie inside a unit square. We develop a dynamic programming algorithm to
solve this case exactly, and then use it to design an approximation for the general set of points.

4.1. Exact solution in a unit square

We are given a max-exposure instance consisting of unit square ranges R and a set of points P in a unit square C.
Without loss of generality, we can assume that the lower left corner of C lies at origin (0,0) and all ranges in R intersect
C. We classify the ranges in R to be one of the two types: (see also Fig. 3).

Type-0: Unit square ranges that intersect x = 0.
Type-1: Unit square ranges that intersect x = 1.

(A unit square range coincident with both x =0 and x =1 is assumed to be Type-0 .) We draw two parallel horizontal
lines £p:y =0 and ¢ : y =1 coincident with bottom and top horizontal sides of C respectively. We say that a range R € R
is anchored to a line ¢ if it intersects £. Note that every R € R is anchored to exactly one of ¢¢ or £1. (When R is coincident
with both £¢ and ¢1, we say that it is anchored to £g.)

Moreover, for the rest of our discussion, let x = x; be a vertical line and define P; C P to be the set of points that have
x-coordinate at least x;. In other words, P; is the set of active points at x = x;. Similarly, define R; C R to be the set of active
ranges that have at least one corner to the right of x = x;. That is, R € R; either intersects x = x; or lies completely to the
right of it.

In order to gain some intuition, we will first consider the following two natural dynamic programming formulations for
the problem.

DP-template-0 Suppose that the points in P are ordered by their increasing x-coordinates and let x; be the x-coordinate
of the ith point p;. We define a subproblem as S(i, k', R4) which represents the maximum number of points in P; that can
be exposed by removing k' ranges from the range set R; \ Rgy. If we define xo =0, then S(0, k, @) gives the optimal number
of exposed points for our problem.

Let ki = |R(p;i) \ Rq| be the number of new ranges in R; that contain p;. Then, we can express the subproblems at i in
terms of subproblems at i + 1 as follows.

SU+1, K —ki, RegUR(pi)) + 1 €Xpose pj

S, k', Ry) = max
( @) S(i+1, kK, Ry) p; not exposed

Roughly speaking, at x = x; which is the event corresponding to a point p; € P, we have two choices: expose p; or do not
expose p;. If we expose p;, we pay for deleting the ranges in R; \ R4 that contain p; and mark them as deleted by adding to
the deleted range set R 4. It is easy to see that this correctly computes the optimal number of exposed points since we charge
for every deletion exactly once. However, there is one complication: a priori it is not clear how to bound the number of
range subset R4 used by this dynamic program. We later argue that the geometry of range space for Type-0 ranges allows
us to use only a polynomial number of choices.

DP-template-1 An alternative approach is to consider both point and begin-range events. That is, x = x; is either incident
to a point p; € P or to the left vertical side of a range R; € R. Then, we can define a subproblem by the tuple S(i,k’, Pf)
which represents the maximum number of points in (P; \ Ps) that can be exposed by removing k' ranges in R;. If we
define xo =0, then S(0, k, ¥) gives the optimal number of exposed points. Let P(R;) C P be the set of points contained in
the range R;, then we have the following recurrence.

Si+1, k=1, Py) delete range R;

S(, k', Py) = max ] ,
Si+1,k, PrUP(Ry)) R; not deleted

(event x = x; was beginning of a range R; € R;)

6
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Fig. 4. An example of closer relationship. Point p is closer to £1 than p’. R is closer to £y than R’.

Si+1,Kk,Pp) if p; € Py, cannot expose p;
Si+1,kK,Pp)+1 otherwise, expose p;

(otherwise, event x = x; was a point p; € P;)

In the above formulation, at each begin-range event for some R; € R;, we have two choices: delete R; or do not delete R;. If
R; was deleted, we reduce the budget k’ by one. Otherwise, if R; was not deleted, we can never expose the points in P(R;),
and therefore we add P(R;) to the forbidden point set P ¢. The correctness of the dynamic program follows from the fact that
for every point p;, all the ranges containing it must begin before x = x;, and we expose p; only if those ranges were deleted.
Again, it is not obvious how many different subsets P, are needed by the dynamic program. However, we will later show
that by keeping track of polynomial number of sets Py, we can solve max-exposure with Type-1 ranges.

We note that the Type-0 and Type-1 ranges may superficially seem symmetric but once we fix the order of computing
subproblems, they become structurally different. Therefore, we would need slightly different techniques to handle each
type. For the ease of exposition, we present dynamic programs for Type-0 and Type-1 ranges separately and finally combine
them. Also note that if the ranges in R are intervals on the real line (max exposure in 1D), then both DP-template-O and
DP-template-1 can be easily applied to obtain a polynomial time algorithm.

We will now define the following ordering relations that will be useful later. Let £ be a horizontal line, and let d(p, ¢)
denote the orthogonal distance of p € P from £. If p, p’ € P are two points, we say that p is closer to ¢ than p’ if d(p, ¢) <
d(p’, £). Similarly, for a range R € R that is anchored to ¢, let d(R, £) be the vertical distance inside the unit square C between
¢ and the side of R parallel to ¢. If R, R’ € R are two ranges, we say that R is closer (or equivalently R’ is farther) from ¢ if
both R, R’ are anchored to ¢ and d(R, £) <d(R’, ¢). (See Fig. 4.)

4.1.1. Max-exposure with Type-0 ranges

Recall that Type-0 ranges intersect the vertical lines x = 0 and are anchored to either ¢y or ¢1. We will apply the
formulation discussed in DP-template-0. The key challenge here is to bound the number of possible deleted range sets R.
Towards that end, we make the following claim. Recall that R; is the set of active ranges at x = x;.

Lemma 6. Let qo, qq be the two exposed points strictly to the left of x = x; that are closest to £o and €1 respectively. Then our dynamic
program only needs to consider the set of deleted ranges Rq = Ri N (R(qo) U R(q1)) at x = x; conditioned on qo, q1.

Proof. Observe that since R consists of Type-0 ranges, every range in /R; must intersect the vertical line x = x;. Suppose we
partition R; into ranges R? that are anchored to ¢y and Ril that are anchored to ¢1. Let P’ C P be the set of all exposed
points strictly to the left of x = x;. Observe that for all p € P/, any range R € R? that contains p must also contain qp.
Therefore, we must have R? NR(p) C R? N R(qo), for all p € P’. Similarly, R,] NR(p) < Rll N7R(qq), for all p € P’. This
gives us Upep/ RiNR(p) =Ri N (R(qo) U R(q1)). Therefore, the set R4 consists of all the active ranges that contain at
least one exposed point and were therefore deleted to the left of x=x%;. O

Therefore, if our dynamic program remembers the exposed points qg, g1, then we can compute the deleted range set
Ra=RiN(R(Go) UR(q1)) at x =x;. There are 0(m?) choices for the pair qg, g1, so the number of possible sets Ry is also
0(m?). We can therefore identify our subproblems by the tuple S(i, k', qo, q1) which represents the maximum number of
exposed points with x-coordinates x; or higher using k' rectangles from the set R; \ Rq4. With k; = |R(p;) \ Rq|, we obtain
the following recurrence:

S@, K, qo, q1) =
S(i+1, K —k;, closer(qo, p;), closer(qi,p;)) + 1  expose p;
S(i+1, K, qo. q1) pi not exposed

where the function closer(qg, p;) returns whichever of qg, p; is closer to £g, and closer(qq, p;) returns whichever of q1, p;
is closer to ¢1. The optimal solution is given by S(0, k, g5, q7), where q§ = (0,1) and g7 = (0, 0) are two artificial points
with R(qg5) = R(q7) =¥ (not contained in any range). The base case is defined by the rightmost event at vertical line x =1
and is initialized with zeroes for all qo, g7 and k' > 0. Any subproblem with k’ < 0 has value —oo.

7
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Fig. 5. Undeleted ranges Qo and Q; farthest from ¢p and ¢; respectively.

4.1.2. Max-exposure with Type-1 ranges

Next we consider the case when we only have Type-1 ranges in R. Unfortunately in this case, our previous dynamic
program does not work and we need to remember a different set of parameters. More precisely, we will apply the formu-
lation discussed in DP-template-1, and bound the number of possible forbidden point sets Py. Recall that P; is the set of
active points at x = x; (with x-coordinate x; or higher).

Lemma 7. Let Qg, Q1 be two ranges that begin to the left of x = x; and were not deleted. Moreover, Qg is anchored to and is
farthest from £o. Similarly Q1 is anchored to and is farthest from £1 (Fig. 5). Then the forbidden point set at x = x; is given by Py =
P;iN(P(Qp) U P(Q1)), where P(Q) is the set of points contained in range Q.

Proof. Recall that the set R; consists of ranges that have at least one corner to the right of the vertical line x = ;. Since
we are dealing with Type-1 ranges, every range that begins to the left of x = x; lies in R;. Now let R’ C R; be the set of
ranges that begin to the left of x = x; and were not deleted. Here P; is the set of points in P that have x-coordinate x; or
higher. Now consider any range R € R'. Recall that R must be anchored to either ¢¢ or ¢1. If R was anchored to £y, then
every point of P; that lies in R also lies in Qg. Otherwise R was anchored to ¢1, so every point of P; that lies in R also lies
in Q1. Therefore, | Jgcrs (PiNP(R)) = P; N (P(Qo) U P(Q1)), which is precisely the forbidden point set Pr. O

Therefore, if our dynamic program remembers the ranges Qo and Q1, we can compute the forbidden point set Py =
PiN(P(Qg) UP(Qq)) at x =x;. Since there are O(n?) choices for the pair Qg, Q, the number of possible sets Py is also
0(n?). We can now identify the subproblems by the tuple S(i, k', Qo, Q1) which represents the maximum number of
points in P; \ Py that are exposed by deleting k' ranges that begin on or after x = x;. This gives us the following recurrence.

S, k', Qo, Q1) =

Si+1, kK -1, Qo, Q1) delete range R;
S@{i+1, k', farther(Qo, R;), farther(Q1, R;)) R; not deleted

max

(event x = x; was beginning of a range R; € R)

Si+1, kK, Qo, Q1) if pj e Py, cannot expose pj

max . .
S+1, kK, Qo, Q1) +1 otherwise, expose pj

(otherwise, event x = x; was a point p; € P)

Here, the function farther simply updates the ranges Qg, Q1 with R; if needed. More precisely, if R; is anchored to ¢¢ and
is farther from ¢¢ than Qg, then farther(Qg, R;) returns R;, otherwise it returns Qg. Similarly, if R; is anchored to ¢, and
is farther from ¢; than Qq, then farther(Q1, R;) returns R;, otherwise it returns Q1.

The optimal solution is given by P(0,k, Qj, Qf), where Qg, Q} are two artificial ranges of zero-width: Qg is anchored
to £o and is defined by corners (0,0) and (0, 1); similarly, Q is anchored to ¢; and is defined by corners (0, 1) and (1, 1).

Remark 1. We note that remembering a constant number of exposed points qp,q1 (DP-template-0) or a constant number
of undeleted ranges Q1, Q; (DP-template-1) by themselves cannot solve both Type-0 and Type-1 ranges. For instance, in
Fig. 6(a) with Type-0 ranges, if R1, R, were both not deleted but we remembered one of them, then we will incorrectly
expose one of p, p’. Similarly in Fig. 6(b) with Type-1 ranges, if py, p, were both exposed but we only remembered one of
them, we will pay for one of the ranges R, R’ again when we expose ps3. However, since both the dynamic programs for
Type-0 and Type-1 ranges express subproblems at event i in terms of subproblems at event i + 1, we can easily combine
them with minor adjustments.

4.1.3. Combining them together
In the following, we will combine the dynamic programs for Type-0 and Type-1 ranges to obtain a dynamic program for

max-exposure in a unit square C. We will need a couple of changes. First, the events at x = x; are now defined by either a

8
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Ry . R

e p |
(a) (b)

Fig. 6. Remembering one of Rq, Ry in (a) or one of py, p2 in (b) is not sufficient.

Table 1
A table of commonly used notations and their explanations.
Notation Explanation
R(p) ranges containing point p
P(R) points contained in range R
qo, q1 exposed points closest to £g, £1
Qo, Q1 undeleted ranges farthest from £g, €1
P; points with x-coordinate at least x; (active points)
Ri ranges with at least one corner to the right of x = x; (active ranges)
Rio subset of R; that are Type-0 (active Type-0 ranges at x = x;)
Py forbidden point set given by Py = P; N (P(Qo) U P(Q1))
Ry deleted range set given by Ry = Rio N (R(qo) U R(q1))

point p; € P or beginning of a Type-1 range R;. Next, the deleted range set R4 at x = x; will only consist of Type-0 ranges
and is defined as Ry = Rio N (R(qo) U R(q1)) where Rijp € R; is the set of Type-0 ranges that intersect the vertical line
x = x;. The forbidden point set Py = P; N (P(Qo) U P(Q1)) stays the same. Here qo,q1, Qo, Q1 are same as defined before.
(For the sake of convenience, Table 1 lists these notations with explanation.)

The subproblems represent the maximum number of points in P; \ Py that can be exposed by deleting k' ranges from
Ri\ Rq. If ki = [(R(p;i) N Rio) \ Rql|, then we obtain the following combined recurrence.

S, k', g0, g1, Qo, Q1) =

S@i+1, kK, qo. q1. Qo. Q1) if p; € Py, cannot expose p;
max 4 S@i+1, K, qo, q1, Qo, Q1) choose to not expose p;
S@i+1, k' —k;, closer(qo, pi), closer(qq, pi), Qo, Q1)+ 1 expose p;

(event x = x; was a point p; € P;)

Si+1, k-1, qo, g1, Qo, Q1) delete Type-1 range R;

max Si+1, kK, qo, q1, farther(Qo, R;), farther(Q1, Ry)) R; not deleted

(event x = x; was beginning of a Type-1 range R; € R;)

The optimal solution is given by S(0, k, g3, q7, Qg Q7). The correctness of the above formulation follows from the
fact that when we choose to expose p;, we are guaranteed that all Type-1 ranges in R(p;) have already been deleted, and
the expression k; only charges for Type-0 ranges containing p;. As for the running time, for each event x = x;, we compute
0 (kn’>m?) entries and computing each entry takes constant time. Since there are O (n+ m) events, we obtain the following.

Lemma 8. Given a set P of m points in a unit square C and a set of n unit square ranges R, we can compute their max-exposure in
0 (k(n + m)n*m?) time.

4.2. A constant factor approximation

We now use the preceding algorithm to solve the max-exposure problem for general set of points and unit square ranges
within a factor 4 of optimum. In particular, we compute a set of 4k ranges in R such that the number of points exposed in
P by deleting them is at least the optimal number of points. Suppose we embed the ranges R on a uniform unit-sized grid
G, and define C as the collection of all cells in G that contain at least one point of P. Then we can solve exactly for each
cell in C and combine them using dynamic programming as described in Algorithm 2 (DP-Approx). See also Fig. 7.
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Fig. 7. Embedding a max-exposure instance with unit square ranges on a unit-sized grid. Optimal solution in each grid cell can be computed exactly using
Lemma 8.

Algorithm 2 DP-Approx.
1. Apply Lemma 8 to solve max-exposure locally in every cell C; € C for all 0 <k; < k. Call this a local solution denoted by local(P(C;), R(C;), ki), where

P(C;) € P is the set of points contained in cell C; and R(C;) is the set of rangeg intersecting C;.
2. Process cells in C in any order Ci,Ca, ..., Cg, and define global(i, k') as the maximum number of points exposed in the cells C; through Cg using k’

ranges. Combine local solutions to obtain global(i, k') as follows.

global(i, k') = On}<axk global(i + 1, k' — ki) + local(P(Cy), R(Ci), ki)
<ki <k’

3. Return global(1, 4k) as the number of exposed points.

Lemma 9. If P* C P is the optimal set of exposed points, then global(1, 4k) > |P*|, that is, the algorithm DP-Approx achieves a
4-approximation and runs in O (k(n +m)n®m?) time.

Proof. Consider the optimal set of ranges R* C R. Observe that each range R € R* intersects at most four grid cells. Let
Ri = RN C; be the rectangular region defined by intersection of R and C;. Clearly, there are at most four regions R; for
each R € R* and therefore 4k in total. At this point, the regions in cell C; are disjoint from regions in some other cell
C;j € C. Therefore, optimal solution exposes |P*| points over a set of cells C* such that the set R* has at most 4k disjoint
components in the cells C*. Since we can solve the problem exactly for each cell and can combine them using the above
dynamic program, we have that global(1, 4k) > |P*| and we achieve a 4-approximation.

For the running time, we observe that solving max-exposure locally in a cell C; takes O (k(n; + m,-)nizmiz) time, where n;
is the number of ranges that intersect C; and m; is the number of points in P that lie in C;. Summed over all cells, we get

the following bound.
Zk(n,- —|—m,~)ni2m,-2 <k Z(ni +mj) an Zmlz
i i i i
<km+m) Y np* (Y _m)?* = 0kmn+mun’m?)
i i

Once the local solutions are computed, the dynamic program that merges them into a global solution has O (k|C|) subprob-
lems and computing each subproblem takes O (k) time. Recall that every cell in C contains at least one point, so |C| <n and
the merge step takes an additional O (k’n) time. O

4.3. Towards a PTAS

In this section, we will show how to extend the exact algorithm for the restricted max-exposure instance where all
points lie inside a unit square (Lemma 8) to obtain an exact solution for the max-exposure instance where all points are
contained in a h x h square C. Without loss of generality, we can assume that the lower left corner of C is at the origin
(0,0) and C is subdivided into h? unit-sized grid cells.

Observe that a major hurdle in generalizing the dynamic program from Section 4.1 for max-exposure in a unit square cell
to the grid C is that a range R can be double counted in multiple cells. Specifically, range R may contain exposed points in at
most four cells of C and can be counted in each one of them. (See also Fig. 8.) Indeed a natural generalization of the earlier
dynamic program to h anchor lines avoids double counting of ranges in the same column of C (vertical neighbors). However,
some additional work is required to avoid double counting in adjacent columns (horizontal and diagonal neighbors).

To handle this, we first apply the following transformation which we call flattening of the grid C.

Flattening the grid C  Intuitively, the flattening process transforms a h x h grid into a h? x 1 vertical slab by shifting the i-th
column and aligning it on top of the (i — 1)-th column. More precisely, we label the cells column by column from left to right
and bottom to top in each column. That is, cells of the column 1 are labeled as 1,2,...,h and the cells of column 2 are
labeled h + 1,...,2h and so on. Then, flattening refers to simply stacking all the cells in their numbered order. In other

10
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(a) (b) (c)

Fig. 8. Examples where a deleted range R can potentially be counted in two cells that are: (a) vertical neighbors (b) horizontal neighbors (c) diagonal
neighbors.

Fig. 9. Flattening a 2 x 2 grid containing one unit square range that is split into Type-0 and Type-1 components.

words, we shift the coordinates of all points and parts of ranges in column i of the grid C by (—(i — 1), (i — 1)h), for all
2 <i<h. (See also Fig. 9.)

After this transformation, all x-coordinates are within the range [0, 1] and y-coordinates are within the range [0, h2].
Moreover, every range R is split into two possibly disconnected half-ranges which preserve the following important property
that follows readily from the fact that the ranges are unit squares.

Lemma 10. Let R be a range and C;, Ci1 be the two consecutive columns of the grid C intersected by range R. Then, R is Type-1 with
respect to cells in C; and Type-0 with respect to cells in C;;1, and after the flattening transformation, the x-coordinate at which R
begins as a Type-1 range in C; is the same as the x-coordinate at which R finishes as Type-0 range in C; 1.

Proof. The range R intersects the vertical line x =i which is coincident with the right (resp. left) boundary of cells in C;
(resp. Cit1). Therefore, R is Type-1 in cells of C; and Type-0 in cells of C; .

Let the x-coordinate of left boundary of R (that lies in i-th column) be (i — 1) 4 §. Therefore, the x-coordinate of right
boundary of R would be (i — 1) +8+1=1i+4, and it will lie in (i + 1)-th column. After the transformation both these
coordinate values would be §.

From the above lemma, it follows that every range R € R has a Type-0 component and a Type-1 component which may
lie in non-consecutive cells. In the rest of the discussion, we will refer to these components by their type as prefix. For
example, Type-0 range R refers to the Type-0 component of R.

Once we have flattened the grid C, our algorithm is an almost straightforward extension of the dynamic program from
Section 4.1 to h®>+1 anchor lines £g, £1, £2. Same as before, we process the two types of events: x = x; is a point p; and x = x;
is beginning of Type-1 range R;. However at every x = x;, we will now need to remember the set q = {qar, do s+ q;g, q;z}
of 0(h?) points consisting of closest exposed points q}L, qa; respectively above and below every anchor line £;. Similarly, we

will need to remember the set Q={Q,, Q. ..., Q;;, Q2} of 0(h?) ranges consisting of farthest undeleted Type-1 ranges
QJ?L, Qj_ respectively above and below every anchor line ¢;.

Then at x = x;, we extend the definitions from Table 1 to obtain the forbidden point set Py = P; N UQEQ P(Q) and
the deleted range set Ry = Rigp N quq R(q). Recall that P; is the set of points with x-coordinate at least x; and R;p is
the set of Type-0 ranges that are active at x = x;. Also recall that P(Q) denotes the set of points contained in range Q and
R(q) denotes the set of ranges containing point q. This gives us the following dynamic program which we will refer to as

DP-FLATTENED. Same as before, we have k; = |(R(p;) N Rio) \ Ral.

S, K. q, Q =
Si+1,kK,q, Q if p; € Py, cannot expose p;
max{Si+1, k, q, Q choose to not expose p;

S@i+1, k' —k;, closer(q, pi), Q +1 expose pj

11
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(event x = x; was a point p; € P;)

Si+1,kK,q, Q if Rj € Ry, already deleted
max{Si+1,k—-1,q, Q delete Type-1 range R;
S@i+1, kK, q, farther(Q, R;)) R;i not deleted

(event x = x; was beginning of a Type-1 range R; € R;)

Here, closer(q, p;) denotes the operation of updating the appropriate closest exposed point in q with point p;. More
precisely, let C; be the cell bounded by anchor lines £;_; and ¢; that contains the exposed point p;. We update q such
that q}ll = closer(q}!,pi) and qJT = closer(qj_, pi). Similarly, let £; be the anchor line intersecting R;, then farther(Q, R;)

denotes the operation of updating Q with the farthest undeleted range on both sides of ¢; as Qj’ = farther(Q 1, R;) and

Qj_ = farther(Qj‘, R;). The optimal solution is given by S(0, k, q*, Q*), where q*, Q* consist of the initial values for each
anchor line.

At any event x = x;, the above dynamic program accounts for the cost of deleting a range R in one of two ways: either
as a Type-0 range included in the term k; or as Type-1 range by paying unit cost. In the next lemma, we show that every
deleted range is counted exactly once and use it to establish the correctness.

Lemma 11. The dynamic program DP-FLATTENED computes an optimal solution for max-exposure instance (R, P, k) inan h x h grid
and runs in 0 (k(nm)° ™)) time.

Proof. The running time bound follows from the number of exposed points and undeleted ranges we need to remember.

To prove correctness, consider an optimal set of deleted ranges R* and its exposed points P*. Let the value of the
solution returned by the dynamic program be the number of points it choses to expose and the cost of the solution is the
total cost of ranges it deletes. First, we claim that there exists a sequence of choices at events x = x; where the dynamic
program selects points and ranges consistent with the optimal solution, that is, chooses to only expose points in P* and to
only delete Type-1 ranges in R*. This is easy to verify because P* N Py =, so the dynamic program can choose to expose
point p; € P* when x = x; is a point-event. Indeed the value of the solution is |P*|. Next we will show that every range in
R* is counted exactly once, and therefore the cost of the solution is also k.

We claim that at every point-event x = x; where we expose the point p; € P*, all ranges in R(p;) are deleted and counted
exactly once. To see this, let R € R(p;) be a range containing p; and let x = x, be the x-coordinate at which R finishes as a
Type-0 range and starts as a Type-1 range. We have two disjoint cases.

1. p; is contained in Type-0 component of R. Let £; be the line to which Type-0 range R is anchored. We have two subcases.
(a) R does not contain any exposed point to the left of x = x;. In this case, we charge for R and remember that R has already
been counted using the closest exposed points q}r, qa; above and below ¢;. Therefore, we will have R € Ry at least
until x = x;, (when it switches from being Type-0 to Type-1). Since R cannot be charged at x > x;, it is charged
exactly once in total.
(b) R contains an exposed point to the left of x = x;. Then we will have R € R4, and as discussed above R was already
counted and would not be charged again.

2. p; is contained in Type-1 component of R. Since p; is exposed, it is not contained in the forbidden point set Py. Therefore,
R must be deleted when it began as a Type-1 event at x = x, or else we would have p; € Py. As discussed above, if R
was deleted as a Type-0 range to the left of x = x;, we must have R € Ry at x = x;, so it would not be charged again. If
R was not deleted as a Type-0 range, then it would be charged at x = x; as a Type-1 range and is never charged again.

Therefore, the solution returned by dynamic program S(0, k, q*, Q*) has value at least optimal. O

4.4. A (1 + €)-approximation algorithm

We will now apply grid shifting technique by Hochbaum and Maas [20] to obtain an (1+¢€)-approximation.® In particular,
if P* is the optimal set of exposed points, then we show how to compute a set of (1+ €)k ranges deleting which will expose
at least |P*| points. Using similar ideas but with small adjustments, we also show how to expose at least (1 — €)|P*| points
by deleting exactly k ranges.

Theorem 3. There exists an algorithm for max-exposure with unit-square ranges running in k(mn)©/ ) time that exposes at least
optimal number of points by deleting (1 + €)k ranges.

3 The PTAS presented here simplifies and corrects an error in the PTAS that appeared in the conference version [21] of the paper.
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Proof. For a given shift value a,b € {0, ..., h — 1}, we compute the optimal solution inside every h x h cell Cj; = [a+ih, a+
(i+ 1)h] x [b+ jh, b+ (j+ 1)h] for all i, j € Z. Using the exact solution in each cell as local solution, we use the algorithm
DP-Approx (from Section 4.2) to combine them into a global solution for the entire grid given by Sg, = global(1, k(1 + €)),
with € = [8/h]. We repeat this for every shift a, b, and return Sy, that achieves the maximum value.

To see why this exposes at least optimal number of points, consider an optimal set of deleted ranges R* and sets
R;. Ry € R* intersected by boundary grid lines x =a +ih and y = b + jh respectively, for all i, j. These grid lines split the
intersected ranges into at most Zg, = 2|Rj| + 2|'R;| disjoint components.

Y Za=2h ) [Ril+2h Y [Rj| < 8hk
0<a,b<h 0<a<h 0<b<h
— min Zg < 8k/h
o<ab<h P = /
The first inequality holds because every range can touch at most two grid lines, so we have ZO§a<h 'Rk <2k and
ZO§b<h IRj| < 2k. Hence there exists a shift value a,b for which the ranges in optimal solution have at most k(1 + €)
disjoint components in cells C;;. Therefore, global(1, k(1 + €)) returns at least an optimal number of points. O

Theorem 4. There exists an algorithm for max-exposure with unit-square ranges running in k(mn)©/ ) time that exposes at least
(1 — €) fraction of optimal number of points by deleting k ranges.

Proof. For a given shift value a,b € {0, ..., h — 1}, we first preprocess the input by discarding points so that the set of ranges
intersecting the boundary grid lines x =a + ih and y =b + jh do not contain any point. Specifically, for every shift value
a, b, discard the points that are within a unit distance from grid boundary lines x =a + ih or y =b + jh for all i, j. On
the modified input, we run the exact solution in each cell as local solution, and then use DP-Approx (from Section 4.2) to
combine them into a global solution for the entire grid given by Su, = global(1, k). We repeat this for every shift a, b, and
return Sgp that achieves the maximum value.

Let P* be the optimal set of exposed points. It remains to show that the above algorithm exposes at least (1 — €)|P*|
points. To see this, for the shift value a, b, consider the set of discarded points Pg, P; € P* that are within a unit distance
from x =a +ih and y =b + jh respectively. These |P7| + |P}| will not be exposed by our algorithm

> IPgl+IP;l=h > |Pil+h Y [Pl < 4h|P¥|

0<a,b<h 0<a<h 0<b<h
= min (|P}|+|P;]) < 4|P*|/h
0<a,b<h

The first inequality holds because every point can lie within a unit distance of at most two horizontal (resp. vertical)
lines, so we have ZO§a<h [P} <2|P*| and ZO§b<h |P;| < 2|P*|. Therefore, there exists some a, b for which the number of
remaining points in the input is at most (1 — 4/h)|P*|. Since every h x h cell is mutually independent, global(1, k) returns
at least (1 — €)|P*| exposed points, where € = [4/h]. O

5. Extensions and applications

In this section, we discuss some extensions and applications of our the results from previous section. We say that the
range family R consists of fat rectangles if every range R € R is a rectangle of bounded aspect ratio. Moreover, we say that
R consists of similar and fat rectangles, if ranges in R are rectangles and the ratio of the largest to the smallest side in R is
constant. We show that if R consists of similar and fat rectangles, one can achieve a constant approximation. Moreover, if R
consists of fat rectangles one can achieve a bicriteria O (v/k)-approximation.

5.1. Approximation for similar and fat rectangles

Let a, b be the length of smallest and largest sides of rectangles in R such that b/a = c is constant. Then we can modify
the input instance as follows. Replace each range R € R by covering it with at most c? squares of sidelength a such that
the areas occupied by R and its replacements are the same. Now, we have a modified set of ranges R’ consisting of squares
that have the same sidelength. Consider the optimal solution with k ranges R* that exposes m* points. It is easy to see that
the set R* corresponds to at most c2k ranges in the modified instance, and therefore deleting c’k ranges from R’ exposes
at least m* points. Therefore, we can run the polynomial-time 4-approximation algorithm (Lemma 9) to obtain a set of at
most 4c2k ranges that expose at least m* points.

Theorem 5. Given a set of points P, a set of rectangle ranges R such that the ratio of the largest to the smallest side in ‘R is bounded
by a constant, then there exists a polynomial time O (1)-approximation algorithm for max-exposure.
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5.2. Approximation for fat rectangles

We now consider the case when rectangles in R have bounded aspect ratio. That is for all rectangles R € R, the ratio of
its two sides is bounded by a constant c. We transform the input ranges R to obtain a modified set of ranges R’ as follows.
For each rectangle R € R, let x be the length of the smaller side of R. Then we replace R by at most [c] squares each of
sidelength x. If m* is the optimal number of points exposed by deleting k ranges from R, then there exists a set of O (k)
ranges in R’ deleting which will expose at least m* points. Observe that the set R’ consists of square ranges, of possibly
different sizes. Therefore, if we can obtain an f-approximation for square ranges, we can easily obtain O ( f)-approximation
with fat rectangles.

5.2.1. A bicriteria O (v/k)-approximation for squares

We will describe an approximation algorithm for the case when the set of ranges R consists of axis-aligned squares. We
achieve an approximation algorithm in three steps. First, we partition the point set by assigning the points to one of the
input squares. Next, we solve the problem exactly for a fixed input square. Finally, we combine these solutions to achieve a
good approximation to the optimal solution.

We define A: P — R to be a function that assigns a point in P to exactly one range in R. If R(p;) is the set of squares
that contain p;, then A(p;) is the smallest square in R(p;). This assignment scheme ensures the following property.

Lemma 12. Let R € R be a square and let Pr = A~ 1(R) be the set of points assigned to it. Moreover, let R’ C R be the set of squares
that intersect R and contain at least one point in Pg. Then, every square R’ € R’ must have sidelength bigger than that of R, and
therefore contains at least one corner of R.

Now suppose we fix a square R, and consider a restricted max-exposure instance with the set of its assigned points Pg.
Since, ranges that contain a point in Pg are all bigger then R, this case is essentially the same as points inside a unit square,
and therefore Lemma 8 can be easily extended to solve it exactly. This gives us the following algorithm. Here 1 <« <k is a
parameter.

Algorithm 3 Greedy-Squares.

1. For every square R € R, apply Lemma 8 over the point set Pg to expose the maximum set of points P(R, k) € P by deleting k ranges.
2. Order squares in R by decreasing |P(R, k)| values, and pick the set S C R of first o squares.
3. Return (Jgzcs P(R, k) as the set of exposed points.

Lemma 13. Let m* be the optimal number of points exposed using k squares, then algorithm Greedy-Squares computes a set of at
most ak squares that expose at least am™ /k points.

Proof. It is easy to see that the number of squares is at most ak. To show the bound on number of points exposed,
consider the optimal set R* of k ranges and let the optimal set of points exposed by R* to be P*. We will now use the
same assignment procedure A* : P* — R™* to assign points in P* to a square in R*. That is, A*(p;) is the smallest square in
R* that contains p;. We claim that A*(p;) = A(p;) for all p; € P* since every square that contains p; lies in R*. Moreover,
let P} denote the set of points of P* assigned to R.

Let m’ be the number of points exposed by the algorithm and assume that the squares in R are ordered such that
[P(Ri, k)| = [P(Rj, k)| for all i < j. Then, we have the following.

*

m* = | |J Pkl = D IP;l
ReR* ReR*
k k
= D IPRuBI= — 3 IP(Ri b= —m' O
1<i<k 1<i<«a

For o = +/k, the above algorithm achieves a bicriteria O (v/k)-approximation. Since an f-approximation for square ranges
gives an O (f)-approximation for fat rectangles, we obtain the following.

Theorem 6. Given a set of points P and a set of ranges R consisting of rectangles of bounded aspect ratio, then one can obtain a
bicriteria O (v/k)-approximation for max-exposure in polynomial time.

6. Conclusion

In this paper, we introduced the max-exposure problem, proved its hardness, and explored approximation schemes for
it. We showed that the problem is hard to approximate even when the range space R consists of two types of rectangles.
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When the ranges are defined by translates of a single rectangle, we presented a polynomial-time approximation scheme
(PTAS). Some natural questions to explore in the future include better approximation algorithms, and simpler range spaces
such as those defined by axis-aligned squares. For instance, can one achieve a constant factor approximation for axis-aligned
squares?
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