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ABSTRACT

Urbanization introduces the threat of increased epidemic disease transmission resulting from crowding on mass tran-
sit. The coronavirus disease 2019 (COVID-19) pandemic, which has directly led to over 600,000 deaths in the US as of
July 2021, triggered mass social distancing policies to be enacted as a key deterrent of widespread infections. Social
distancing can be challenging in confined spaces required for transportation such as mass transit systems. Little is pub-
lished regarding the degree to which mass transit system adoption effects impacted the rise of the COVID-19 pandemic
in urban centers. Taking an ecological approach where areal data are the unit of observation, this national-scale study
aims to measure the association between the adoption of mass transit and COVID-19 spread through confirmed cases
in US metropolitan areas. National survey-based transit adoption measures are entered in negative binomial regression
models to evaluate differences between areas. The model results demonstrate that mass transit adoption in US metro-
politan areas was associated with the magnitude of outbreaks. Higher incidence of COVID-19 early in the pandemic
was associated with survey results conveying higher transit use. Increasing weekly bus transit usage in metropolitan
statistical areas by one scaled unit was associated with a 1.38 [95% CI: (1.25, 1.90)] times increase in incidence
rate of COVID-19; a one scaled unit increase in weekly train transit usage was associated with an increase in incidence
rate of 1.54 [95% CI: (1.42, 2.07)] times. These conclusions should inform early action practices in urban centers with
busy transit systems in the event of future infectious disease outbreaks. Deeper understanding of these observed asso-
ciations may also benefit modeling efforts by allowing researchers to include mathematical adjustments or better ex-
plain caveats to results when communicating with decision makers and the publicin the crucial early stages of an
epidemic.
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1. Introduction

Diseases that spread through aerosols, droplets, or fomites are often
transmitted widely in crowded environments. Therefore, social distancing
has been a key feature of prevention strategies for coronavirus disease
2019 (COVID-19). Despite these efforts, as of July 2021 the COVID-19 pan-
demic directly led to over 600,000 deaths in the US according to Johns
Hopkins Center for Systems Science and Engineering’s continually updated
dashboard (Dong et al., 2021). One important aspect of outbreak preven-
tion involves targeting locations with increased transmission rates with in-
formation, testing, and other preventative or assessment measures.
Although transmission rates of novel diseases are generally estimated on
a population level, an emerging epidemic of such a disease can be challeng-
ing to characterize because the key analytic parameters estimated by early
studies are specific to the initial outbreak's population. If ungeneralizable
data are used to model transmission rates, it is possible that inadequate re-
sources will be allocated to locations with greater disease burden (Jewell
et al., 2020).

Early estimates of COVID-19 transmission rates were based on data
from Wuhan, a city with a popular mass transit system (BBC, 2020; Yang
et al., 2014). As soon as the intensity of the local epidemic was acknowl-
edged, transit systems in many major cities were reduced or temporarily
shut down to avoid increased disease spread. Once disease spread was mar-
ginally contained, authorities requested improved ventilation, sanitation,
and social distancing where possible (BBC, 2020; Calvert, 2020; Chan
et al., 2020; Shen et al., 2020). Although similar preventative measures
were taken in many urban centers, COVID-19 was prevalent in many com-
munities before political and public health agencies acted (Carteni et al.,
2020; Jorden et al., 2020; Teixeira and Lopes, 2020). The spread of
COVID-19 on transit can be especially challenging to control due to rapid
spread and asymptomatic carriers who are not aware of their need to self-
quarantine (Chipimo et al., 2020). It became clear as the pandemic un-
folded that transmission rates do vary from population to population, so in-
cluding transit use among other factors including race, age, essential
worker status, and household structure is integral to estimating where dis-
ease prevention and medical resources are needed (Dasgupta et al., 2020;
Grijalva et al., 2020; Lewis et al., 2020; Oster, 2020; Scarpone et al.,
2020; Stephanie et al., 2020).

Researchers have investigated the impact of transit acquired infections
on previous outbreaks and air transmitted endemic diseases such as tuber-
culosis in the literature (Andrews et al., 2013; Zamudio et al., 2015). Be-
cause of challenges involved in contact-tracing large crowds, there have
been few studies that are able to directly estimate the risks of mass transit
use in high disease prevalence areas. Moser and colleagues' work demon-
strated a nearly indisputable instance of a single infectious individual
spreading influenza, another disease that transmits well in close proximity,
to a number of otherriders on an unventilated aircraft (Moser et al., 1979).
The circumstances surrounding this study are rare; however, the various
facets of non-COVID-19 transit disease transmission risks have been illumi-
nated using myriad alternative methods.

Numerous epidemiological study designs have been used to avoid the
challenges posed by contact tracing large crowds to estimate transit adop-
tion's effect on disease spread. Traditional mathematical modeling includes
population dynamics methods to estimate the impact of travel on epidemics
in ways that avoid having to collect specific individual-level ridership data
(Xu et al., 2013). To further address issues of defining ridership habits of
study participants and add granularity to the mathematical approach,
simulation studies explained the impact of transit adoption in major cities
with rail systems using agent-based models that leveraged contact probabil-
ities to estimate spread (Cooley et al., 2011; Yashima and Sasaki, 2014).
Similar computational methods in combination with household surveys
led to simulation-based contact estimation; these studies found that mass
transit acquired infections made up a small but non-negligible proportion
of simulated disease spread in the UK and South Africa respectively
(Johnstone-Robertson et al., 2011; Mossong et al., 2008). Cohort and
case-control studies have been executed to draw contrast between
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transmissible disease incidence rates among populations who travel in
close proximity to others and populations that do not (Baker et al., 2010;
Homma-Campos etal., 2007; Hu et al., 2020). Each of these analyses suggests
a relationship between infectious disease and transit adoption, but none
focus on COVID-19.

Although there was little published on COVID-19 and transit adoption,
researchers conducted literature reviews to summarize findings that convey
transportation disease transmission risks or best practices to public health
officials (Browne et al., 2016; Edelson and Phypers, 2011; Mohr et al.,
2012; Nasir et al., 2016; Tirachini and Cats, 2020). Many of these studies
inferred that crowded modes of transit, poor ventilation, and long travel
times each increases disease transmission on mass transit; however, there
are few that have examined this association in the context of COVID-19.
Ecological studies have examined the hypothesis that there is an association
between transit adoption and disease transmission by comparing measures
of disease between geographic units, some granular enough to define prox-
imity to a rail station and exposure variable (Sanna and Hsieh, 2017); how-
ever, this ecological study was not specific to COVID-19. The association
between COVID-19 infections and mass transportation has been established
in China (Zheng et al., 2020). But further national-scale study that considers
covariates via explicit modeling of control variables has yet to be published.
Implementing an ecological study allows for quick, large scale analysis of
emerging diseases that the aforementioned research methods cannot ob-
tain. However, measuring exposure to transit in an ecological analysis can
also be a challenge given there is little available data directly measuring
the entire populations of riders' mass transit adoption.

The literature on transit modes as an exposure in ecological studies
often relies on survey data to quantify exposure to different modes of tran-
sit, because those data offer a level of detail unavailable in most administra-
tive data (e.g., ridership estimates by a transit authority). This is relevant to
disease modeling because using a diverse array of exposure estimation
methods limits potential biases in assessing exposure-outcome relation-
ships. For example, there are numerous studies that examined the link be-
tween ride time and location to bicycle accident frequency, exploiting
time spent on transportation mode as a control variable (Beck et al.,
2007; Schneider et al., 2017). Weighted surveys including the National
Household Travel Survey (NHTS) have been leveraged to estimate similar
risk factors such as ride distance where a simple random sample is infeasi-
ble (Buehler and Pucher, 2017; Pucher and Renne, 2003). Researchers also
strengthened their transit-related hypotheses by using multiple exposure
measures to describe similar constructs (Ferenchak and Marshall, 2020).
Many of these analyses are similar to ecological analyses of COVID-19
spread and transit in that they measure the relationship between transit
mode adoption and some health outcome. Researchers have used ridership
estimates to determine whether the number of transit riders increasing led
to sharp increases in COVID-19 cases, but little effect was found after con-
trolling for covariates such as essential worker density (Sy et al., 2020).
Other studies have considered urban factors, but did not focus on mass
transportation (Hu et al., 2021; Scarpone et al., 2020). This study leverages
survey-based exposure measures as opposed to ridership estimates in a
national-scale ecological analysis to address this gap in the literature and
account for this finding.

Understanding factors that impact the disease spread helps modelers
create more accurate estimates, and therefore, will improve the accuracy
of information used by policymakers. Mass transit adoption may be an im-
portant factor in estimating disease spread parameters. Although transit has
been considered a potential risk factor for the spread of COVID-19, there is
currently a gap in the research where this association has not been shown
for COVID-19 specifically on a scale larger than one city or subnational re-
gion using exposure data regarding transit adoption attitudes. This study
applies statistical modeling to assess the association between transit adop-
tion and COVID-19 incidence while addressing potential confounding var-
iables that may affect the association on a metropolitan-area level. A
hierarchical regression model compares COVID-19 incidence early in the
pandemic using transit attitude measures for metropolitan statistical areas
(MSA) in the US.
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2. Material and methods
2.1. Data

The data used to model the association between mass transit adoption
and COVID-19 incidence rates were gathered from the NHTS and the
COVID-19 Data Repository by the Center for Systems Science and Engineer-
ing (CSSE) at Johns Hopkins University (JHU) (Dong et al., 2021; U.S. Dept
of Transportation, 2017). Between the beginning of JHU's data collection
period, January 22, 2020, and May 1, 2020, a total of 837,811 cases were
recorded in 52 MSAs; these values are aggregated into county-based bins
which prevents individual-level analysis. These NHTS includes responses
to the survey item “Frequency of __ Use for Travel” for 52 of 384 MSAs.
The question asked individuals how often they rode the train or bus on a
Likert-type scale with options like “Daily,” “A few times a week,” “A few
times a month,” “A few times a year,” and “Never.” “Daily” and “A few
times a week” were grouped in this study, because frequent public transpor-
tation use is relatively uncommon in many U.S. cities (Blumenberg et al.,
2020), and a combined group retains the same direction increase in transit
usage behavior.

MSAs are combinations of counties created by the U.S. Census Bureau to
represent urbanized areas containing 50,000 or more residents (U.S. Census
Bureau, 2020). The early time period was chosen to demonstrate effects
that included disease transmission before and during individuals' changing
attitudes towards transit and policies preventing them from using transit.
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Because many of the public health interventions and changes in human be-
havior happened early in the pandemic, it is likely that this exposure type
did occur more in the first few months of the pandemic than later when pol-
icy and risks were clearer (Mohammadi and Taylor, 2020). Data from the
NHTS was estimated using the summarizeNHTS R package (Fucci and
Cates, 2018) to express transit habits of people living in the MSAs; the
most recent version of the survey available, the 2017 version, including re-
sponses from 129,626 individuals which were weighted by an algorithm
aiming to compensate for their sampling probability and thereby improve
the representativeness of the responses (U.S. Dept of Transportation,
2017). The most recent version of the travel surveys are often used to
measure travel outcomes even years after their publication (Blumenberg
et al.,, 2020; Pucher and Buehler, 2016). The proportions of households an-
swering that they ride a bus weekly or daily were summed to measure the
proportion of riders among the population of each MSA shown in Figs. 1
and 2. The same transformation was applied to the NHTS train/light rail
question.

Data from the 2019 American Community Survey 5-year estimates, the
most recent complete U.S. Census data at the time of this study’s comple-
tion, were aggregated at the MSA level and attached to the dataset as fea-
tures and used in the modeling process to control for other COVID-19 risk
factors on an MSA scale (U.S. Census Bureau, 2019). The first covariate,
percentage of families in the last 12 months that are below the poverty
level was selected to control for poverty (Sy et al., 2020). Percentage of in-
dividuals over 25 with only a high school diploma (including equivalency

Scaled

Values

(]

Fig. 1. Spatial Distribution of Scaled Values (left-to-right starting from top left) percentage of individuals over 25 with only a high school diploma (including equivalency
exam), COVID-19 incidence rate, percentage of househalds with one occupant or fewer per room, percentage of families in the last 12 months that are below the poverty
level, percentage of survey respondents stating transit (Bus,/Train) use daily or weekly. All values are mean normalized.
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Total COVID-19 Incidence Vs Bus/Train Usage
Jan. 22, 2020 - May 1, 2020
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Fig. 2. Total COVID-19 incidence plotted against bus and train usage with LOESS smoothed line with standard error estimate describing association.

exam) was selected as a measure of education as a proxy for essential
worker status (Yang et al., 2021). Percentage of households with one occu-
pant or fewer per room was selected to represent density of residential con-
tact networks (Mossong et al., 2008; Rojas-Bolivar et al., 2021). Covariates
were selected based on presence in the literature; the number of covariates
was limited to the three cited in ecological studies above to prevent multi-
collinearity and model convergence issues that occur with small sample
sizes (Rojas-Bolivar et al., 2021; Yangetal., 2021).

2.2. Analysis methods

First, a locally estimated regression method known as LOESS lines and
standard errors were applied to a plot of incidence rate versus the propor-
tion of respondents stating they take mass transit either weekly or daily
(Jacoby, 2000). LOESS smoothing is a non-parametric data visualization
method used to describe the relationship between two continuous vari-
ables. A set of equally distant points v; are defined on the range of an
input variable, X, then a linear regression model is trained at each of the j
points using the values of X and the response variable, Y. Only values that
are “close” to the point being estimated are included in the regression at
point j. The parameter that determines what is “close to” j is called the
span and is represented by the Greek character, a. The span represents
the proportion of the data points used in each of the j regression models.
The parameter a for this study was selected by generating plots with values
(0.45, 0.65, 0.75, 0.95). The 0.75 plot was the first to remove the majority
of small variations in the fitted line among the cluster points on the left side
of the plot which were likely results of overfitting.

Negative binomial regression was used to estimate the association be-
tween mass transit adoption and COVID-19 incidence. The negative bino-
mial regression model was chosen for its common use in ecological
studies of disease involving incidence rates for diseases in areal data as
well as its ability to replace the Poisson regression model when response
data are overdispersed (Liu et al., 2020; Szklo and Nieto, 2014). For the
negative binomial regression models, MSA-level estimates of COVID-19 in-
cidence in US MSAs are modeled as the response variable Y~ log (1) with
an offset term for the population of each MSA. A negative binomial model is
a generalized linear model with a log link and response modeled as a bino-
mial random variable. Random effects error modeling is used to address the
regression assumption violation of independent observations. In the con-
text of this analysis, that means that the random effect term will be used

tomodel the spatial autocorrelation atiributable to differences in U.S. Cen-
sus Regions that are not explicitly indicated among the other independent
predictors such as climate or elevation. In this model, case counts in each
MSA, Y, are assumed to be independent random variables each with
mean ;. The model is stated as

I{Jg { Yf) = ﬂl"nzn:e;x + ﬁrrm.u'.rXmeﬂﬁ’ + E’;:Iﬁcfw‘,xfm'u + bi,ceﬂmﬂtx + 0('"1')'

In the model, each of the unknown parameters representing fixed ef-
fects isrepresented by . Bung measures the association between mass tran-
sit usage (i.e., bus or train), ., measures each of the m covariates' impact
©on cases, b, cenausre; CONtrols for the variance attributable to Census Region,
and an offset term O(ny) is included to control for the size of an area’s pop-
ulation (). The offset term is used to define the output in terms of impact
on the rate for each location as opposed to raw case counts; this is necessary
because the population in an area impacts the number of cases that arise.
The primary exposure of interest is proportion of survey respondents stating
weekly or daily bus or train transit usage Xy, Xrai (i.€., they responded
“daily” or “weekly” to the survey item asking about their transit use fre-
quency). The negative binomial regression model parameters were esti-
mated using iteratively reweighted least squares. Base R and Ime4
software packages were used to estimate the parameters for the model
(Bates et al., 2015; R Core Team, 2018).

3. Results

The maps in Fig. 1 show that there are large disparities in mass transit
use behavior across the 52 MSAs. The usage difference is exaggerated in
the train usage plot. A relatively small number of MSAs have greater than
20% of frequent riders. The figure drops down to approximately 10% for
Philadelphia-Camden-Wilmington.

Fig. 2, the LOESS smoothed regression line, plots the bivariate associa-
tion between train and bus rider attitudes in MSAs and COVID-19 spread
early in the pandemic. The curve, coinciding with common population dy-
namics and epidemiologic patterns, follows an exponential increase in inci-
dence rates resulting from both mass transit settings (Szklo and Nieto,
2014). Both LOESS smoothed lines are heavily influenced by cities with
high transit usage, especially New York City, which has especially crowded
transit during busy times. This visual statistical output does have a rela-
tively weaker but still positive association in the smaller proportion values,
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but once about 10% of the respondents indicate they ride mass transit
weekly or daily, the association is evident.

The train mass transit adoption and bus mass transit adoption negative
binomial regression models demonstrate a positive association between
total COVID-19 incidence and mass transit adoption through their corre-
sponding model parameters (Table 1). Both terms, 3;; = 0.43 [95% CI:
(0.23, 0.64)] and f,,, = 0.53 [95% CI: (0.35, 0.73)] are statistically signif-
icant and relatively high magnitude implying that incidence early in the
pandemic did increase with transit usage. The 0.43 value implies that in-
creasing the bus transit weekly or daily riders by one scaled unit increases
the estimated incidence rate by 1.38 [95% CI: (1.25, 1.90)] times. The
train estimate, 0.53, implies that a one scaled unit increase in train transit
weekly or daily riders increases the estimated incidence rate by 1.54
[95% CI: (1.42, 2.07)] times. This result adds to the result of the LOESS
smoothed lines, because it also takes into account other known risk factors
of large COVID-19 outbreaks in urban centers including household
crowding, poverty, and education. Despite controlling for potential con-
founding factors, there was still a clear association between transit adoption
and COVID-19incidence early in the pandemic. Because of the apparent in-
fluence of the New York City MSA data point in the LOESS smoothed plots,
the model was run without the data point for comparison; the statistically
significant association remained regardless of the observation's presence
in the model (See table in Appendix I).

4. Discussion

This study represents the first national-scale assessment of the associa-
tion between mass transit adoption in MSAs and COVID-19 incidence rate
in the US controlling for the effects of other known risk factors. A measure
of COVID-19 incidence rate was regressed against mass transit adoption
measures to establish this connection. Studies within individual regions
have proposed similar results and used transit attitude data to investigate
transit outcomes on a metropolitan area scale (Buehler and Pucher, 2017;
Sy et al., 2020). This study built upon a combination of these methods to
evaluate a similar hypothesis on a national scale across the MSAs. The re-
search of Sy et al. (2020) focused on the impact of transit adoption for dis-
advantaged communities on COVID-19 outcomes. The current study
applied a methodology examining a similar association on a national
scale; similar to Buehler and Pucher’s (2017) work, this study leveraged
the NHTS to examine the impact of transit adoption on an outcome. Buehler
and Pucher acknowledge in their work that there is benefit in examining ex-
posure data that inspects specific aspects of individual level transit such as
the number of trips per household per week, which was used in this paper.

LOESS smoothed visualizations and negative binomial regression model
results were congruent in supporting the hypothesis that mass transit adop-
tion in US MSAs was positively associated with COVID-19 incidence early
in the pandemic. The train transit and bus transit LOESS plots do demon-
strate an inflection point that shows an increase in growth including the
MSAs of New York City, Chicago, Washington, and Boston. Although it is
clear that the transit adoption in New York City MSA and high COVID-19

Table 1
Negative binomial regression model results.
Estimate SE 95% CI P-Value
Train Negative Binomial (N = 52)
(Intercept) -6.06 0.10 (-6.30,-5.84) <0.001
Proportion Ride Train Daily or Weekly 0.53 0.09 (0.35, 0.73) <0.001
Proportion Below Poverty Line 0.23 012 (0.00, 0.47) 0.058
Proportion with <1 Occupant per Room 0.22 012 (-0.02,0.46) 0.071
Proportion High School Graduate 0.12 0.17 (-0.21, 0.45) 0.462
Bus Negative Binomial (N = 52)
(Intercept) -6.03 0.15 (-6.37,-5.68) <0.001
Proportion Ride Bus Daily or Weekly 0.43 0.11 (0.23, 0.64) <0.001
Proportion Below Poverty Line 0.21 0.14 (-0.06, 0.49) 0.139
Proportion with <1 Occupant per Room 0.11 0.15 (-0.19,0.39) 0111
Proportion High School Graduate 0.02 0.20 (-0.39,0.41) 0.016
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incidence influences the magnitude of this association in this study, this
MSA represents an extreme case of mass transit adoption. That is, based
on the survey, transit crowding is likely highest in New York City MSA,
and therefore, that municipal area would suffer the greatest disease spread
given that the hypothesis of this study is correct.

The results of this study are of value to epidemiologists, policymakers,
and municipal transit providers. Modeling attempts made earlier in the
pandemic were integral to the allocation of resources in early stages of
transmission in the US. Literature has criticized some of these models for
using data from southern Italy and Hubei province to inform large areas
that differ in key factors relating to the application of social distancing
(Jewell et al., 2020). Paying attention to these factors, such as mass transit
adoption in a region, when generating or presenting model results may im-
prove the way policymakers are able to avoid mistakenly sending resources
to areas with fewer transmission risks leaving areas with high transmission
risk without aid. Epidemiologic modelers can modify disease transmission
parameters with mathematical adjustments or clarify rhetorically the im-
pacts of the generalizability when presenting models to policy makers
and the public. Additionally, it may be possible to use the NHTS estimates
of transit to weight the disease transmission rates in models explicitly
outlining their impact. Awareness regarding the risks of transit can keep
the aforementioned entities ahead of heuristic assessments of the risks of
riding transit. Preempting these risks could help prevent the magnitude of
transit ridership drop-offs that occurred at the beginning of the pandemic
and continued through the ensuing year (Sharifi and Khavarian-Garmsir,
2020). Some research has shown that these changes may persist, so it is im-
perative that those advocating for transit adoption remain aware of the
risks and actively address them when they appear (Mohammadi and
Taylor, 2020).

Although this study identifies mass transit adoption as one of many risk
factors for COVID-19 transmission in cities, it should be mentioned that
there are key steps that can curtail this effect. Tirachini and Cats (2020)
as well as Nasir et al. (2016) each wrote review papers on changes mass
transportation agencies can implement in the early stages of an epidemic
or pandemic of a disease like COVID-19. Physical distancing of riders, san-
itation of train cars/buses, improved ventilation, and mask usage for riders
were each identified as important protective measures for transportation
systems. Of course, each of these factors does involve a cost to the riders
and operators of transit systems. As the authors of the aforementioned stud-
ies suggest, future research should be conducted to evaluate the efficacy of
these interventions in light of the inherent tradeoffs attributable to each.

One limitation of the methods used in this study is a fluctuation in test-
ing availability in the US early in the pandemic. Testing availability stabi-
lized in the latter half of the study period where the majority of cases
occurred, but the beginning of the pandemic in the US (early February
and March) was characterized by low testing supply (Hadaya et al.,
2020). Because the highest COVID-19 incidence rates occurred late in the
study period, it is likely that thishad little effect on the estimates for the en-
tire period. Association in a geographic scale statistical analysis does not
necessarily imply a causal link between a risk factor and an outcome. De-
spite taking measures to reduce confounding and finding a result that is
consistent with the literature, there is still the possibility that this associa-
tion is a function of a different variable regarding the MSAs. Due to the
small number of MSAs, the models could only permit a small number of co-
variates; further study with a larger sample would benefit further research
by increasing the number of potential confounding relationships that may
modify the association. A few examples of potential confounding variables
or effect modifiers include tourism in cities with better public transporta-
tion systems, demographic composition of cities, better healthcare access
in more developed cities, and presence of diseases increasing COVID-19
risk. Because of this limitation, further research should take a more
individual-focused approach to interrogating this potential link. An
individual-level study would also allow for taking into account the distance
and time of travel. A cohort study like that of Homa-Campos and colleagues
where a number of transit riders and non-transit riders are linked to COVID-
19 testing data may help better ensure the veracity of this result, however,
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there are myriad challenges in acquiring health data quickly and recruiting
subjects (Horna-Campos et al., 2007).

5. Conclusion

The analysis in this study elucidated the association between the stated
adoption of mass transit and COVID-19 incidence in U.S. metropolitan sta-
tistical areas; there is evidence that urban centers with high usage transit
systems experience differential disease transmission rates than those with-
out. This finding adds to existing findings by focusing specifically on
COVID-19 as opposed to other infectious diseases, expanding the analysis
to a national scale while controlling for relevant crowding and socioeco-
nomic indicators. This notion implies that transit infrastructure must re-
spond quickly when a potential pandemic situation is developing.
Ventilation, social distancing, and other public health measures support
meeting this need. This finding also suggests that modeling efforts under-
taken to estimate the number of cases and, by extension, impact of policies
early in a pandemic, such as the 2020 COVID-19 pandemic, should take
measures to control for the impact of mass transit and possibly other
urban crowding measures in their estimates. This directly relates to models
generated for COVID-19, some of which used transmission rates from
Wuhan, China, a region with higher transit usage than most US urban cen-
ters. Although their work was integral to the COVID-19 response, in order
to retain the trust of the public and lawmakers, it is essential that epidemi-
ologic modelers provide as accurate and consistent models as possible.
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Considering transit and other relevant population characteristics provides
an essential component of meeting that end and ultimately reducing the
burden of devastating health emergencies.
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Appendix I

Table A1

Negative binomial regression model results (Without New York).

Estimate SE 95% CI P-Value
Train Negative Binomial (N = 52)
(Intercept) -6.07 0.11 (—6.32, —~5.84) <0.001
Proportion Ride Train Daily or Weekly 0.50 0.13 (0.26, 0.75) <0.001
Proportion Below Poverty Line 0.23 0.1z (—0.01, 0.48) 0.063
Proportion with <1 Occupant per Room 023 013 (—0.02, 0.48) 0.066
Proportion High School Graduate 011 0.17 (—0.24, 0.44) 0.539
Bus Negative Binomial (N = 52)

(Intercept) —6.08 0.14 (-6.40, =5.76) <0.001
Proportion Ride Bus Daily or Weekly 0.33 0.11 (0.12, 0.55) 0.003
Proportion Below Poverty Line 020 013 (—0.05, 0.47) 0.130
Proportion with <1 Occupant per Room 021 015 (—0.09, 0.49) 0.145
Proportion High School Graduate -0.03 0.19 (—0.40,0.34) 0.891
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