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Abstract

The purpose of this work is to determine if the ability to
interpret a convolutional neural network (CNN) architec-
ture can enhance human performance, pertaining to face
recognition. We are interested in distinguishing between
the faces of two similar-looking actresses of Indian origin,
who have only a few discriminating features. This recog-
nition task proved challenging for humans who were not
previously familiar with the actresses (novices) as they per-
formed only just better than random. When asked to per-
form the same task, humans who were more familiar with
the actresses (experts) performed significantly better. We
attempted the same task with a Siamese CNN which per-
formed as well as the experts. We therefore became in-
terested in applying any new knowledge obtained from the
CNN to aid in improving the distinguishing abilities of other
novices. This was accomplished by generating activation
maps from the CNN. The maps showed what parts of the
input face images created the highest activations in the last
convolutional layer of the network. Using “fooling” tech-
niques, we also investigated what spatial locations on the
face were most responsible for confusing one actress for the
other. Empirically, the cheekbones and foreheads were de-
termined to be the strongest differentiating features between
the actresses. By providing this information verbally to a
new set of novices, we successfully raised the human recog-
nition rates by 11%. For this work, we therefore success-
fully increased human understanding pertaining to facial
recognition via post-hoc interpretability of a CNN.

1. Introduction

In this work, we are interested in understanding how a

convolutional neural network (CNN) would work to differ-

entiate between two similar subjects, having only a few dis-

criminating features. The subjects we employ are the faces

of two famous Bollywood actresses who have acted in a

Figure 1. Are these 2 images of the same person or of different
people? If different, what distinguishing features can you observe?
If same, what features are most similar? This recognition problem
is the basis of this paper. (Image best viewed in color or online).

large number of films and TV series, thus providing a rich

source of data for our evaluation. They are Aishwarya Rai

and Priyanka Chopra (referred to for the rest of the docu-

ment as AR and PC, respectively). Their faces are similar

enough that humans unfamiliar with them (novices) only do

slightly better than chance in differentiating them.

We are interested in measuring how well a CNN can tell

the difference between these two actresses and then com-

pare with how well novices perform on the same task be-

fore and after they are influenced by the CNN on where to

look. This provides empirical evidence that CNNs can po-

tentially assist human learning for facial recognition tasks.

We should note however that for this work, we focused on

only two actresses since we are more interested in trans-

ferring knowledge from the CNN to humans, rather than in

general facial recognition.

The purpose of this work is to move us closer to under-

standing the potential uses of neural network interpretability

in aiding humans with hard prediction tasks. For this rea-
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son, we selected a Siamese CNN, which allows us to effec-

tively train a model useful for learning their differentiating

features, when presented with pairs of input images.

The resulting Siamese CNN heatmaps show the spatial

locations in the input images where the CNN has the highest

positive activations in the last convolutional layer. This al-

lows us to determine the regions of the input images where

the network focuses to create its decision boundaries be-

tween the two actresses. This information is then presented

to novices in order to increase their differentiating abilities.

We then use a fooling network which makes slight ad-

justments to images to fool the CNN into thinking an image

of one of the actresses is actually the other, and predicts

this with high confidence. The modifications to the images

are restricted to be small enough that humans cannot distin-

guish between the pre-fooled and the post-fooled images.

This allows us to examine the noise that is created when

taking the post-fooled image and subtract it from the pre-

fooled image. The difference in these images is how the

fooling network manipulated the image to trick the CNN

into misclassifying that image. This visualization allows us

to see which regions in the image the fooling network is

using to trick the network.

The main contribution of this paper is providing empir-
ical evidence towards the utility of post-hoc deep neural
network interpretability methodologies for enhancing hu-
man understanding when dealing with difficult classifica-
tion problems.

2. RELATED WORK
CNNs have demonstrated excellent performance at im-

age recognition (and other related computer vision tasks

such as scene classification [17], image segmentation [6],

etc.), starting from their earlier versions by LeCunn et al.
[4]. Li et al. demonstrated the efficacy of CNNs for face

detection at multiple poses, on a large real-world dataset

consisting of 5,171 annotated face images. In the same

year, Parkhi [7] et al. successfully presented the use of the

VGG16 and 19 networks for use in face recognition from

a single image or tracked from videos, given a very large

training dataset. Data availability for training face recog-

nition networks is still challenging in general, since many

very large-scale datasets are proprietary and owned by com-

panies like Facebook [12, 13] and Google [9].

In recent years, many new complex and significantly

deeper convolutional networks have emerged. These in-

clude the GoogleNet Inception network [11]. GoogleNet in-

cluded an inception module which was significantly differ-

ent from all the previous sequential architectures by having

several components of the network happen in parallel. The

Microsoft ResNet architecture is an extremely deep CNN

structure with 152 and growing number of layers, consisting

of residual blocks. Although these more advanced networks

have been shown to perform better than traditional architec-

tures, and we would probably have obtained significantly

better recognition results with them, for interpretability pur-

poses, we stick to a traditional convolutional architecture

for our Siamese model, described in more detail in Section

4.

For gaining deeper insight into the internals of the net-

work, different visualization methods have been proposed

such as by Zeiler and Fergus [15], where a convolution-

deconvolution network is used to map activations at differ-

ent layers in the network back to the image pixel to deter-

mine what pattern in the input image caused a given activa-

tion in the feature maps. The behaviors of the network at

the higher activation layers provide insight into the features

that the topmost layers extract before passing the represen-

tations to the fully connected dense layer(s).

For the rest of the paper, in Section 3 we briefly describe

the data collection and cleaning processes, we present the

CNN model used for the recognition task in Section 4; in

Section 6 we discuss the recognition tests performed on hu-

mans and discuss what we observe from the internals of the

network in Section 5, which deals with visualizing input

regions that maximize activations. Lastly, we discuss our

findings and conclude in Section 7.

3. DATA COLLECTION AND PRE-
PROCESSING

As mentioned earlier, we selected two Indian actresses

AR and PC who are well known for their acting accom-

plishments. AR won the Miss World contest in 1994 and

PC won it in 2000 and between them have starred in more

than 300 full feature films, thus providing us with a rich

source for collecting their face data online. Another ma-

jor reason for choosing them for this study is that, though

unrelated, they look quite similar making it quite difficult

for a person (especially one not familiar with Bollywood

movies1, whom we will refer to as novices) to consistently

distinguish between AR and PC when seeing their pictures

for the first time.

We collected the data for this work by searching for a

specific movie where one of the actresses was a lead be-

tween 2008 and 2016, and downloading all the images as-

sociated with the movie. This process was repeated for

about 30 - 40 films for each actress. The actresses rarely

act together and we did not encounter situations where they

co-appeared in the same movies or images. Many images

extracted from these movies had faces of other actors ap-

pearing alongside AR or PC. The data cleaning process in-

volved:

1. Running a state-of-the-art face detector to extract all

1In recent times though, the actress PC has expanded her career to the

US, making her more internationally known.
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faces in all frames/images obtained from online

2. Cropping and aligning all the faces from the images

3. Resizing the images to 128× 128 as most cropped im-

ages obtained were this size or larger.

4. Removing the images that are not either AR or PC in-

volved a 2-step process:

(a) Step 1: We built a 3-layer neural network trained

with the correctly annotated images of AR and

PC and the output of the network was a Softmax

classifier which the model categorizes all the im-

ages in three categories - AR, PC and Other. This

process was not very effective in removing noisy

images because it was heavily skewed towards

the positive classes. The negative class data used

in training did not fully represent the whole set of

faces of the other actors who acted with AR and

PC. When the class score provided by the Soft-

max classifier exceeded 90%, we safely accepted

this result as the correct identity of the actress.

(b) Step 2: We then manually went through the re-

maining images and deleted as many noisy faces

as possible resulting in a total of 2,275 images of

AR and 2,295 images of PC.

The total data size is 4,570. The data was then divided

into 3 categories - training, validation and testing. A total

of 1000 were removed for validation and the remaining data

was split in the ratio 2.5:1 training to testing.

4. THE RECOGNITION MODELS
We use two similar techniques for learning the identities

of the two actresses-under-investigation. The first network

is purely for recognition so that given any input image in

testing, it returns a value indicating whether the image is

of AR or PC. The second architecture attempts to directly

mimic the human tests which is presented in more detail in

Section 6. In this network, two images are simultaneously

presented and the network attempts to identify whether it

is the same individual in the images or different individuals.

The architectures and training schemes are described below.

4.1. The Basic CNN

The CNN used for this work is a slight variant of the

well-known VGG16 model showed in Figure 2, as the VGG

family of models has empirically shown to learn well when

dealing with face image data. The network consisted of 16

weight layers, using very small (3×3) convolution filters on

the the layers, and (2×2) pooling intermittently as shown in

Figure 2a. After each convolution layer, rectified linear unit

(ReLU) activation is performed, although that is not shown

in the diagrams for clarity purposes. The last convolution

layers is flattened and fed into a fully connected network

whose layers are also referred to as the dense layers. The

last fully-connected layer is fed into a softmax classifier.

The VGG19 network is very similar to VGG16 but has

additional convolution layers. We tested various architec-

tures on our recognition task and found a structure with 21

layers (instead of the more popular ones with 16 or 19 lay-

ers) to perform the best on the task at hand. While the input

image size to VGG16 is 226×226, we use 128×128 due to

the nature of the images we collected. Our modified variant

of the network is shown in Figure 2b.

4.1.1 Training the Network

We present the set of hyper-parameters the yielded the best

accuracy in training the network on the actresses’ data:

Dropout: We trained the network using dropout values at

0.2, 0.25, 0.3, 0.35, 0.4; 0.3 gave the best result in compar-

ison to all other drop out values.

Batch size: We trained the network in batches with a size

of 30 as it maximized the GPU resources available to us.

Number of Epochs: We trained the network using 125,

150, 200 epochs and settled for 200 as the most efficient

given our resource limits.

Learning rate: We trained the network with learning rates

of e-5, e-6, e-7 and found e-7 giving the best results without

taking excessively longer time to train.

Batch normalization: Using batch normalization thrice in

the course of the training gave us better results. Batch nor-

malization was applied on the output of each of the fully

connected dense layers of the neural network.

The best and final accuracy given by the network for dif-

ferentiating between the two actresses was 87.3% on our

test set of 1000 images. The average accuracy and average

loss for the training and the validation data can be seen in

Figures 3 and 4 respectively.

4.2. Fooling the Network

With a technique similar to that proposed by Karpathy

on his blog [2], we implemented a routine which adjusted

the gradients of the network in relation to the image pix-

els, to “fool” the network into wrongly classifying an ob-

ject with high confidence. The original image was altered

by iteratively adding some noise to its pixels applying the

constraint that kept a 15% limit on how much each pixel

could change, and then we attempted to maximize the er-

ror of the model. The resulting pictures looked the same to

humans but the network now assigned them with ≥ 90%
probability to the wrong class. Some results from fooling

the network are shown in Figure 5.

To visualize what the difference is between the pre-fooling

and post-fooling images, we created a visualization method
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Figure 2. The VGG16 network (top) and our modified variant (bottom) used for the recognition task.

Figure 3. Training and validation accuracy of the model over 200

epochs.

Figure 4. Training and validation loss of the model over 200

epochs.

that focused on finding the largest changes to pixel inten-

sity when the post-fooled image is subtracted from the pre-

fooled image. To do this we first convert the noise image

to grayscale and then create a basic pixel-map image on a

pixel-by-pixel basis to visualize the biggest changes from a

pre-fooled image to a post-fooled image. To remove noise

in the image, if any pixel had a grayscale value less than

150, we visualized it as black. We then show more signifi-

cant background changes in gray. We found that pixel val-

ues between 150 and 180 best represented general changes

Figure 5. The top two images show results of fooling the network

into thinking that images of AR are PC and the bottom two are the

reverse, PC images fooled to being classified as AR. The leftmost

image is the original, the rightmost image is the altered version and

the middle is the enhanced visualization of the difference between

them, resulting from the adjusted pixels.

to the face.

Beyond that we used red, orange, and yellow pixels to

show the varying importance of pixels, with red being the

most significant. Figure 5 shows the result of the adjusted

changes that resulted in misclassification of the original im-
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ages.

Table 1 shows the pixel-map color scheme we used. This

allowed us to easily see the most important changes the

fooling network made to the images. Closest neighboring

pixels of pixels with intensities above 150 are shown with

the same color to enlarge these changes between the images.

Intensity Value of a Pixel(I) Color
I ≤ 150 Black

151 < I ≤ 180 Gray

181 < I ≤ 200 Yellow

201 < I ≤ 225 Orange

226 < I ≤ 255 Red
Table 1. The colors chosen to represent the ranges of intensity

for the difference between the post-fooling image pixels and pre-

fooling image pixels.

We find with the visualization of the differences between

the post-fooling and pre-fooling images, that several parts

of the face seem to be consistently highlighted including

the forehead, the cheeks, and lower portions of the face

excluding the mouth. We note the eyes seem to have no

real changes from the pre-fooled images to the post-fooled

images, indicating the eyes are not a good feature to trick

the network from misclassifying one actress as the other.

These highlighted areas provide an insight on how the net-

work changes its classification decisions based on certain

regions of the images. This allows us to find the most in-

fluential features the network looks for when differentiating

between the two actresses.

4.3. The Siamese Network

The next type of CNN used in this work is a 10 layer

Siamese model that takes a pair of images as input. Due to

the nature of the data collected, the images are resized to

128×128. Each image in the input pair propagates through

10 weight layers before being flattened and sent through an

average pooling layer which is then joined in the first of two

fully connected layers. A softmax classifier is applied after

the last fully connected layer. The model has very small

filters, starting with 2 layers of 64 (3 × 3) filters followed

by 8 layers of 128 (3 × 3) filters. Pooling is applied in-

termittently as shown in Figure 6. After each convolution

layer, rectified linear unit (ReLU) activation is preformed,

although not shown for clarity purposes. To perform weight

updates, a modified version of binary cross-entropy is used.

Instead of traditional binary cross-entropy where the loss

L = −y log(p) + (1− y) log(1− p); here, the loss is com-

puted by first computing a batch of positive samples, and

then negative samples individually, notated as L+ and L−,

respectively. These values are summed to result in a com-

plete loss function of L = L+ + L−. Our complete model

is shown in Figure 6.

For both training and testing of the Siamese model, we

take our original training data and create equal pairs of posi-

tive samples (a pair of the same actresses) and negative sam-

ples (pairs of both actresses) and create a balanced dataset

of positive and negative pairs of examples for training and

testing. The best and final accuracy given by the network

for differentiating between the two actresses was 85.04%
on our test set of 2000 images.

5. CNN CLASS ACTIVATION MAP
Class activation maps (CAMs) [16, 3] are attention maps

that indicate the most discriminative regions used by a CNN

to identify a specific category/class. The CAM for a class

can be viewed as the weighted sum over the feature maps

of the last convolutional layer. A global average pooling

layer is used to convert the feature map into a single value,

and then used for calculating the associated weights. CAMs

naturally allow for re-using classifiers for localization, even

when training without any bounding box coordinates data.

This suggests that CNNs have some kind of built-in atten-

tion mechanism.

Guided backpropagation [10] propagates only positive

gradients as it sets any negative gradients that are in the cur-

rent layer and the previous layer to zeros. As gradients are

computed through the layers of the network, this technique

only highlights nodes that that have entirely positive gra-

dients through the network, thus making it more accurate

than the basic backpropagation algorithm, which only con-

siders one layer at a time. We use guided backpropagation

to generate the CAMs for our recognition network.

Figure 7 shows a set of heatmaps corresponding to the

activation maps generated when recognizing that actresses

are the same person (shown in columns 1 and 2) and when

the input images are of the different actresses (shown in col-

umn 3). The heatmaps in Figure 7 show which areas of the

input images contribute towards maximizing the output fil-

ters of the last convolution layer for each class. When ex-

amining two images of the same actress (as in columns 1

and 2) we apply the “same” filter for the heatmap which

shows us where the two images activated the most for the

“same” class. Similarly, for the “different” class where both

actresses are present in the input (as in column 3), we apply

the “different” filter.

This allows us to visualize the network’s attentiveness to

different areas of the face. By knowing where the network

is attending to make its decisions from the input images, we

can inform users, thus aiding in their abilities to distinguish

between the actresses.

With this technique, we consistently find that certain ar-

eas of the input images are important for maximizing the

filter activations for both cases where the input image pairs

are of the same actress, and when they are of different ac-

tresses. We note that the forehead, cheeks and nose are
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Figure 6. Siamese network model propagates each input image through a 10 layer convolutional network segment that joins together in the

fully connected layers where softmax activation is applied. Note that some layers repeat 4×.

the most significant areas when considering heatmaps of the

same actress. From the fooling noise visualizations of the

standard CNN, along with the Siamese CNN class activa-

tion maps, we conclude the cheek bones and forehead may

be the best distinguishing factors of the two actresses for the

network.

6. HUMAN TESTS
In 2011, Carbon [1] showed that processing of faces

(matching of sequentially presented faces), was possible

when faces were presented for only 100 milliseconds or

less. To overcome any biases in recognition, in our work,

we increased the processing speed to 400-1200 ms.

To compare the Siamese CNN results with human per-

formance, we conducted a survey where we first presented

novice participants with twenty (20) different pictures of

one of the actresses, followed by another 20 pictures of the

other actress at intervals of 400 milliseconds (ms). This is

done to “train” the participant on what each actress looks

like at the 128 × 128 resolution. Figure 8a is the screen

first presented the participants to “train” them on what each

actress looks like at the 128× 128 resolution.

Once the training session is completed, a different screen

shown in Figure 8b is presented to the participant: a pair of

images is flashed to the user for a 1200 millisecond dura-

tion. The user is then expected to select a button indicating

whether the images displayed were of the same person or

not. Twenty different pairs of images are shown to the par-

ticipant. This is a slightly easier task than asking the par-

ticipants to select the identities of the actresses since they

might not necessarily have memorized the labels assigned to

each actress, even if the participant can distinguish between

them. Asking the participants to determine if the images are

of the same actress or not, still requires recognition, with-

out the need for label assignment. This is similar to the task

of the Siamese network. The user scores a point if he/she

correctly determines if the pair of images presented belong

to the same actress (Yes- Same) or not (No - Diff),

and scores a zero if he/she is wrong. The accuracy for M
participants is computed as:

accuracy =

∑M
i Correctly classified by participant i

M × Total pairs shown (N=20)
(1)

The survey was conducted on three sets of participants.

In the first survey, we randomly selected 200 images of each

actress and used them to run the test described above. The
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Figure 7. Heatmaps for the “same” class (first two columns) and

“different” class (last column) where the first (top) row of images

and third row of images correspond to the pair of images passed

into the network, and the second row and forth (bottom) rows of

images are the heatmaps corresponding to that pair of images.

images that each participant was surveyed on were random

out of the selected 200 images, and there was an equilikely

chance of getting a ground truth value of the same actress

or different actresses. There were 15 participants for this

test, none of which claimed were familiar with the actresses

(novices). We call this the pre-test. The accuracy of this

group was just about random at 52.67%
For the second survey, which we call the post-test, we

used the same 200 images used in the pre-test to generate

random pairs and applied the same process again, but this

time instructing the participants to focus on the forehead
and cheekbones, to distinguish between the actresses. There

were 15 different novice participants for the second test. No

subjects of Indian origin participated in the pre- and post-

tests as they would have been more likely to be familiar

with the actresses or show cultural biases. The accuracy of

this group was 63.67%.

The third group consisted of 5 participants who were of

Indian origin, and familiar with both AR and PC (experts).

They were not given any focusing instructions, much like

the pre-test. The accuracy in differentiating between the

two actresses in this group was 85.0%. This allowed us to

examine the experts’ performances, even if they could not

explain precisely how they successfully distinguished the

two actresses.

(a)

(b)
Figure 8. The top image shows the screen used to train the partic-

ipants on recognizing each actress individually; the bottom image

shows the screen used to test the participants on their recognition

capabilities.

Figure 9. Histogram results for our three survey groups. The num-

ber of correct responses is shown left for the pre-test (gray), middle

for the post-test (black), and right for the experts (red). Some pre-

test novices scored as low as 6
20

and some experts as high as 20
20

.

No post-test novice scored lower than 11
20

.

Figure 9 shows the distribution of the results from the

3 surveys. Note that the last survey only involved 5 ex-

pert participants unlike the others which had 15 participants

each.
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7. DISCUSSION AND CONCLUSION
We designed a couple of CNN architectures which sig-

nificantly outperformed novice humans in recognizing two

famous and similar looking Bollywood actresses. While

humans taking the pre-survey performed only slightly bet-

ter than random, the network yielded an accuracy value

> 85%, equivalent to the expert humans.

We therefore used class activation maps to better un-

derstand what the CNN paid attention to in the inputs, to

yield its decisions. We then visualized the regions of the in-

puts which maximized the activations of the network’s last

convolutional layer. This allowed us to interpret where in

the input the best distinction locations between the two ac-

tresses might be.

We further examined the utility of a fooling network to

visualize the modifications it makes to images to cause the

network to misclassify, thus providing us with the differ-

ences the network is looking for when distinguishing be-

tween AR and PC. The pixels-maps shown in Figure 5 are

consistently higher in similar areas as discovered by the ac-

tivation maps, thus empirically demonstrating that the net-

work pays particular attention to specific areas of the face

during the recognition task.

We found that for our dataset, the cheekbones and fore-

heads appear to be the main sources of differences when

trying to distinguish between AR and PC. Interestingly, we

also found that the Siamese CNN appeared to avoid the eyes

and mouth. This finding was rather unintuitive as we ini-

tially expected the areas of strong texture such as the eye or

mouth regions, to be the most distinguishing.

We used the results from this to survey people, to deter-

mine if providing them with information learned from inter-

preting the CNN would guide novice participants to better

distinguish between the two similar actresses and found an

improvement of about 11 percentage points.

In conclusion, we have provided empirical evidence

demonstrating that for a basic (but nontrivial) binary classi-

fication task that both a traditional and a Siamese CNN can

find features that humans are able to use to assist in distin-

guishing between two similar people. The CNN performed

right on-par with expert humans and elevated the accuracy

rate for novices.
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