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ABSTRACT 
 

Disturbance regimes can strongly influence geographic 
patterns of biodiversity. The types of disturbances and their 
frequencies can have varying impacts on different 
dimensions of biodiversity and taxonomic groups, and their 
influence can also vary with spatial scale. Yet disturbance 
layers are lacking at sufficiently high spatial resolution and 
extent to uncover these relationships with biodiversity. We 
detected disturbances for the conterminous United States 
from Landsat time series using the established LandTrendr 
temporal segmentation with a novel secondary classification 
that incorporates spatial context. We then included these 
disturbance layers, aggregated to metrics at different 
temporal and spatial scales, into model of species richness at 
National Ecological Observatory Network sites.  

 
Index Terms— Landsat, NEON, biodiversity, time 

series analysis, disturbance detection 
 

1. INTRODUCTION 
 
Quantifying the influences of biodiversity drivers across 
multiple contexts and scales is a primary goal of ecology. 
Leveraging the rich data on biota and environmental 
conditions from the spatially-nested sampling scheme of the 
National Ecological Observatory Network (NEON) offers a 
unique opportunity to address the spatial scale-dependence 
of biodiversity drivers. Across multiple sampling locations 
within sites, NEON collects hundreds of thousands of 
individual-level trait measurements on organisms spanning 
taxonomic groups.  

Although NEON measures many abiotic drivers of 
biodiversity (e.g., climate, soil attributes), it lacks spatially 
explicit data on past land use, as well as anthropogenic and 
natural disturbances. Without these key data, it is 
challenging to interpret biodiversity patterns and capture 
important cross-scale interactions resulting from 
anthropogenic processes. For example, the disturbance 
history of a location has profound influences on biodiversity 
[1], ecosystem processes and structure [2,3], species 
distributions and abundances [4], and biotic interactions [5]. 

In this study, we derive disturbance layers across NEON 
sites for the last decades using the Landsat archive. We then 
use this disturbance dataset to model one of the dimensions 
of biodiversity, taxonomic species richness, at the NEON 
site level. 

 
2. STUDY SITE, MATERIALS AND METHODS 

 
4.1. Terrestrial NEON sites and species richness data 
 
NEON is a continental-scale network of 47 terrestrial and 34 
aquatic sites strategically located across the U.S. within 20 
eco-climatic domains. At each site, sentinel taxa and a 
diverse suite of environmental variables are sampled using 
standardized methods designed to enable scaling from the 
plot, reach, or airshed scale to the site, domain, and, 
ultimately, continental scale. NEON’s publicly available 
datasets for these taxa include sites that have been sampled 
consistently since 2013. 

We calculated site-level species richness for six 
taxonomic groups (trees, herbaceous plants, birds, beetles, 
small rodents and mosquitoes) for 45 core and relocatable 
terrestrial NEON sites within the conterminous United 
States (CONUS). The number of years over which the 
NEON sites have been sampled varies over sites and taxa 
(Fig. 1). In order to minimize the effects of this unequal 
sampling, we calculated cumulative species richness per site 
over all available sampling years. Preliminary analysis 
showed that species accumulation curves flatten off quickly, 
allowing comparison between sites with different sampling 
effort.  

 
4.2. Environmental variables at NEON sites 
 
We derived site-representative values of four environmental 
variables for all NEON sites: mean annual temperature, 
mean annual precipitation, terrain ruggedness index (TRI) 
[6] and elevation. These variables were chosen because of 
their known relationships with dimensions of biodiversity 
[7]. All four variables were derived for the individual plots 
within each NEON site, and then averaged to obtain a site-
representative value. 
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Fig. 1: Number of sites sampled for the different taxa and sample 
years. Sampled taxa (clockwise from top left: trees, herbaceous 
plants, beetles, mosquitoes, small mammals and birds).  
 
4.3. Landsat disturbance metrics 
 
We calculated disturbance metrics using the LandTrendr 
algorithm for Landsat time series segmentation implemented 
in Google Earth Engine [8] in combination with a secondary 
classification incorporating spatial structure [9]. Provided an 
annual Landsat pixel time series for a spectral band or 
index, LandTrendr returns a limited number of linear 
segments. We calculated a set of three metrics for each of 
these segments: segment start value, segment magnitude, 
and segment duration. These segment metrics were then 
assigned to each year of the respective segment. When done 
for each 30-m pixel in the CONUS, this analysis provides 
for each year in the Landsat time series (1984-2020), wall-
to-wall layers of the three temporal parameters. We then 
derived a set of three spatial parameters for each of these 
temporal parameters, based on a circular neighborhood 
around each pixel: median value, standard deviation and 
ratio of focal value and neighborhood median.  

In the secondary classification, the wall-to-wall layers of 
temporal and spatial parameters were combined with a 
reference dataset in a Random Forests classifier. As 
reference data we used the LCMAP (Land Change 
Monitoring Assessment and Projection) Reference Data 
Product [10]. This dataset contains annual land cover and 
change labels for the period 1984-2018 at 25,000 randomly 
selected 30 m by 30 m plots across the CONUS, assigned 
using the TimeSync software tool [11]. We extracted the 
temporal and spatial variables at the 25,000 reference plots 
from the wall-to-wall data layers, resulting in a reference 
dataset of time series metrics and corresponding reference 
disturbance pairs.  

We calculated the temporal and spatial LandTrendr 
parameters for four Landsat bands/indices: Normalized Burn 

Ratio (NBR), Tasselled Cap Brightness (TCB), Tasselled 
Cap Greenness (TCG) and Landsat TM band 5–equivalent 
shortwave infrared 1 (SWIR1). We then calibrated and 
validated Random Forests models for these four 
bands/indices individually and combined, and using 
temporal parameters alone and temporal and spatial 
parameters combined. The accuracy of these ten models ((4 
bands/indices + 1 ensemble) times 2 (spatial or 
spatial+temporal parameters)) was validated using 10-fold 
cross validation with random folds with 10% of the 
reference data used as validation data. This 10-fold cross-
validation was repeated 20 times. Applying the calibrated 
Random forest classifier based on all reference data on the 
entire image dataset provides, for each year in the time 
series, a binary classification whether or not a pixel 
underwent a disturbance in that year.  
 
4.3. Species richness modeling 
 
We build a baseline Generalized Linear Model (GLM) for 
each of the six terrestrial taxa with NEON site-level species 
richness as response variables and the four environmental 
variables (mean annual temperature, mean annual 
precipitation, TRI, elevation). Additionally, we build GLMs 
for each taxon using the baseline predictive variables plus 
one disturbance metric. The disturbance metric was defined 
as the fraction of 30-meter by 30-meter pixels that were 
identified as having undergone at least one disturbance 
during a certain time period over a certain spatial scale. We 
used three timeframes as temporal scales: the 5 years, 10 
years and 20 years leading up to the year 2017, which is the 
year in which data collection had begun for almost all of the 
sites for the six taxa (Fig. 1). We considered four spatial 
scales to calculate the fraction of disturbed pixels during 
each of these temporal scales: the site boundaries as defined 
by NEON, and circular neighborhoods with radius of 5 km, 
10 km and 25 km around the NEON site centroid.  

The performances of the different models (one baseline 
model and twelve using a combination of spatial and 
temporal scales) for each taxon were compared using 
Akaike’s information criterion with a correction for small 
sample sizes (AICc). We identified the two models with the 
largest AICc for each taxon. This analysis was performed in 
R software using the stats and MuMin packages.  
 

3. PRELIMINARY RESULTS AND DISCUSSION 
 
3.1. Landsat disturbance detection 
 
Figure 2 summarized the Kappa coefficients of agreement 
derived from the 10-fold cross validation of disturbance 
detection. These showed that adding spatial information 
increases disturbance detection accuracy compared to when 
temporal variables obtained from LandTrendr time series 
segmentation are used alone, and this for all spectral 
bands/indices except SWIR1. This confirms previous results 
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comparing temporal and spatial parameters for disturbance 
detection, where the increased accuracies have been 
attributed to a better detection of low-severity disturbances 
[9].  
 

 
Fig. 2: Kappa coefficients for 20 runs of the 10-fold cross-

validation for the different spectral bands/indices and the ensemble 
method, and using temporal variables alone and temporal and 

spatial variables combined. 
 

Validation of the disturbance detection (Fig. 2) also 
showed that the use of an ensemble model that incorporates 
multiple spectral bands/indices performs better than the 
models based on a single band/index. This behavior has 
been observed in other studies for forest disturbance 
detection [12], indicating that different bands and indices 
carry complementary information, and ensemble methods 
can exploit this information in spectral space. 
 
3.2. Species richness modeling 
 
Figure 3 provides an overview of the two most informative 
models for the six taxa. The baseline model, which uses no 
disturbance metrics as predictive variables, was never 
identified among the best two models. Models including 
metrics of recent (5 years) disturbances best explained 
species richness for almost all taxa. Furthermore, Fig. 3 
shows that these recent disturbances had a negative effect on 
species richness, i.e., increased disturbances were associated 
with a lower cumulative number of observed species. An 
exception to this were two models for birds and herbaceous 
plants, where cumulative disturbance over a longer scale (20 
years) had a positive effect on species richness. This could 
imply that vegetation disturbances over longer scales allow 
the creation of more diverse niches, while recent 
disturbances cause removal of species without allowing the 
settlement of new successional species.  

Trees are the only taxon for which disturbances over 
longer time scales result in a decrease of species richness at 
NEON sites. This could be explained as a sampling artifact, 
because only trees with a diameter at breast height (DBH) 
larger than 10 cm are sampled. Consequently, it will take 
several years for new trees to reach this size after 
disturbances.  

 
Fig. 3: Identification of the two models with highest AICc among 
thirteen models (one baseline model and twelve models including 

the baseline variable and one disturbance metric) for the six 
terrestrial sampled at terrestrial NEON sites. 

 
In general, disturbance metrics calculated within the 

NEON site boundaries or in a circular neighborhood with 
radius of 5 km around the site’s centroid provided the most 
informative models. This could be expected for less mobile 
taxa such as trees and herbaceous plants. However, this was 
also the most informative scale for some of the more mobile 
taxa (e.g., birds, mosquitoes), where we had expected a 
more important contribution of disturbances over a larger 
spatial scale.  
 

4. CONCLUSIONS 
 
In this research, we detected disturbance events across the 
CONUS using long (1984-2020) Landsat time series, based 
on the LandTrendr temporal segmentation with a secondary 
classification that includes spatial context. Using an existing 
reference dataset of 25,000 visually interpreted pixel time 
series, we found that disturbance detection accuracy was 
improved by incorporating spatial context and by combining 
data from several bands and indices into an ensemble. 
Further research will focus on attribution of change agent to 
detected disturbances.  

Generalized linear models were more capable of 
modeling species richness at the NEON site level when the 
included a disturbance metric as predictive variable in 
addition to temperature, precipitation, elevation and terrain 
ruggedness variables. For most taxa, including disturbance 
metrics calculated for the lower end of the temporal and 
spatial scales resulted in the most informative models, and 
disturbances had a negative effect on species richness. 
Further research will include more advanced disturbance 
metrics, and will investigate the influence of disturbance 
agent on species richness and other biodiversity metrics. 
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