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Stochastic Galerkin Methods for Linear Stability Analysis of Systems with
Parametric Uncertainty∗
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Abstract. We present a method for linear stability analysis of systems with parametric uncertainty formulated
in the stochastic Galerkin framework. Specifically, we assume that for a model partial differential
equation, the parameter is given in the form of generalized polynomial chaos expansion. The stability
analysis leads to the solution of a stochastic eigenvalue problem, and we wish to characterize the
rightmost eigenvalue. We focus, in particular, on problems with nonsymmetric matrix operators,
for which the eigenvalue of interest may be a complex conjugate pair, and we develop methods for
their efficient solution. These methods are based on inexact, line-search Newton iteration, which
entails use of preconditioned GMRES. The method is applied to linear stability analysis of the
Navier–Stokes equations with stochastic viscosity, its accuracy is compared to that of Monte Carlo
and stochastic collocation, and the efficiency is illustrated by numerical experiments.
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1. Introduction. The identification of instability in large-scale dynamical systems is im-
portant in a number of applications such as fluid dynamics, epidemic models, pharmacokinet-
ics, analysis of power systems and power grids, and quantum mechanics and plasma physics.
A steady solution u is stable if, when in a transient simulation, it is introduced with a small
perturbation as initial data and the simulation reverts to u, and it is unstable otherwise.
This is of fundamental importance since unstable solutions may lead to inexplicable dynamic
behavior. Linear stability analysis entails computing the rightmost eigenvalue of the Jacobian
evaluated at u, and thus it leads to solution of, in general, large sparse generalized eigenvalue
problems; see, e.g., [4, 5, 8, 13, 16, 27] and the references therein. Typically, a complex pair of
rightmost eigenvalues leads to a Hopf bifurcation, and a real rightmost eigenvalue may lead to
a pitchfork bifurcation. The analysis is further complicated if the parameters in the systems
are functions of one or more random variables. This is quite common in many real-world
applications, since the precise values of model coefficients or boundary conditions are often
not known. A popular method for this type of problem is Monte Carlo, which is known for
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1102 BEDŘICH SOUSEDÍK AND KOOKJIN LEE

its robustness but also its slow convergence. In this study, we use spectral stochastic finite
element methods [12, 17, 33, 34], with the main focus on the so-called stochastic Galerkin
method, for the linear stability analysis of Navier–Stokes equation with stochastic viscosity.
Specifically, we consider the parameterized viscosity given in the form of generalized poly-
nomial chaos (gPC) expansion. In the first step, we apply the algorithms developed in [18,
30] (see also [24]) to find a gPC expansion of the solution of the Navier–Stokes equation. In
the second step, we use the expansions of the solution and viscosity to set up a generalized
eigenvalue problem with a nonsymmetric matrix operator, and in the assessment of linear
stability of this problem we identify the gPC expansions of the rightmost eigenvalue. The
main contribution in this study is the development of the stochastic Galerkin method for
nonsymmetric eigenvalue problems. Our approach is based on inexact Newton iteration: the
linear systems with Jacobian matrices are solved using GMRES, for which we also develop
several preconditioners. The preconditioners are motivated by our prior work on (truncated)
hierarchical preconditioning [32, 19]; see also [2]. For an overview of literature on solving
eigenvalue problems in the context of spectral stochastic finite element methods we refer the
reader to [1, 19, 29] and the references therein. Recently, Hakula and Laaksonen [15] studied
crossing of eigenmodes in the stochastic parameter space, and Elman and Su [9] developed a
low-rank inverse subspace iteration. However, to the best of our knowledge, there are only
a few references addressing nonsymmetric stochastic eigenvalue problems: by Sarrouy, Des-
sombz, and Sinou [25, 26], though there is no discussion of efficient solution strategies, and
also by Sonday et al. [28], who studied distribution of eigenvalues for the Jacobian in the
context of the stochastic Galerkin method. Most recently, the authors with collaborators
also compared surrogate learning strategies based on a sampling method, Gaussian process
regression, and a neural network in [31].

A study of linear stability of Navier–Stokes equation under uncertainty was conducted by
Elman and Silvester [7]. The study was based on a judiciously chosen perturbation of the state
variable, and a stochastic collocation method was used to characterize the rightmost eigen-
value. Our approach here is different. We consider parametric uncertainty (of the viscosity),
and the solution strategy is based on the stochastic Galerkin method. In fact, also the variant
of the collocation method used here is based on the stochastic Galerkin projection (sometimes
called a nonintrusive stochastic Galerkin method in the literature; see [33, Chapter 7] for a
discussion). From this perspective, our study can be viewed as an extension of the setup from
[5] to problems with viscosity given in the form of stochastic expansion and their efficient
solution using the stochastic Galerkin method. However, more importantly, we illustrate that
the inexact methods for stochastic eigenvalue problems proposed recently by Lee and Soused́ık
[19] can be also applied to problems with the nonsymmetric matrix operator.1 This in general
allows us to perform a linear stability analysis for other types of problems as well. We do
not address eigenvalue crossing here, which is a somewhat delicate task for gPC-based tech-
niques. We assume that the eigenvalue of interest is sufficiently separated from the rest of
the spectrum and no crossing occurs. This is often the case for outliers and other eigenvalues
that may be of interest in applications. A suitability of the algorithm we propose in this

1Specifically, the methods based on inexact Newton iteration, since in our experience the stochastic Rayleigh
quotient and inverse iteration methods are less effective for nonsymmetric problems.
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STOCHASTIC GALERKIN METHODS FOR STABILITY ANALYSIS 1103

study can be assessed, e.g., by running first a low-fidelity (quasi-)Monte Carlo simulation.
From our experience with the problem at hand, we can also note that this indicates that the
rightmost eigenvalue remains relatively well separated from the rest of the spectrum, and it is
less prone to switching, unlike the other eigenvalues, even with moderate values of coefficient
of variation, which in turn allows its efficient characterization by a gPC expansion.

The rest of the paper is organized as follows. In section 2 we recall the basic elements
of linear stability analysis and link it to an eigenvalue problem for a specific model given by
the Navier–Stokes equation. In section 3 we introduce the stochastic eigenvalue problem. In
section 4 we formulate the sampling methods and in section 5 the stochastic Galerkin method
and inexact Newton iteration for its solution. In section 6 we apply the algorithms to linear
stability analysis of Navier–Stokes equation with stochastic viscosity, and in section 7 we
report the results of numerical experiments. Finally, in section 8 we summarize and conclude
our work.

2. Linear stability and deterministic model problem. Following [5], let us consider the
dynamical system

Mut = f(u, ν),(2.1)

where f : Rn×R→Rn is a nonlinear mapping, u ∈ Rn is the state variable (velocity, pressure,
temperature, deformation, etc.), M ∈ Rn×n is the mass matrix in the finite element setting,
and ν is a parameter. Let u denote the steady-state solution to (2.1), i.e., ut = 0. We are
interested in the stability ofu: if a small perturbation δ(0) is introduced to u at time t = 0,
does δ(t) grow with time, or does it decay? For a fixed value of ν, linear stability of the
steady-state solution is determined by the spectrum of the eigenvalue problem

Jv = λMv,(2.2)

where J = ∂f
∂u(u(ν), ν) is the Jacobian matrix of f evaluated at ν. The eigenvalues have

a general form λ = α + iβ, where α = Reλ and β = Imλ. Then eλt = eαteiβt, and since∣∣eλt
∣∣ =

∣∣eαt
∣∣, there are in general two cases: if α < 0, the perturbation decays with time,

and if α > 0, the perturbation grows. We refer the reader to, e.g., [4, 13] and the references
therein for a detailed discussion. That is, if all the eigenvalues have strictly negative real part,
then u is a stable steady solution, and if some eigenvalues have nonnegative real part, thenu
is unstable. Therefore, a change of stability can be detected by monitoring the rightmost
eigenvalues of (2.2). A steady-state solution may lose its stability in one of two ways: either
the rightmost eigenvalue of (2.2) is real and passes through zero from negative to positive as ν
varies, or (2.2) has a complex pair of rightmost eigenvalues and they cross the imaginary axis
as ν varies, which leads to a Hopf bifurcation with the consequent birth of periodic solutions
of (2.1).

Consider a special case of (2.1), the time-dependent Navier–Stokes equations governing
viscous incompressible flow,

~ut = ν∇2~u− (~u · ∇) ~u−∇p,
0 = ∇ · ~u,

(2.3)

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.
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1104 BEDŘICH SOUSEDÍK AND KOOKJIN LEE

subject to appropriate boundary and initial conditions in a bounded physical domainD, where
ν is the kinematic viscosity, ~u is the velocity, and p is the pressure. Properties of the flow are
usually characterized by the Reynolds number

Re =
UL

ν
,

where U is the characteristic velocity and L is the characteristic length. For convenience,
we will also sometimes refer to the Reynolds number instead of the viscosity. Mixed finite
element discretization of (2.3) gives the following Jacobian and the mass matrix (see [5] and
[8, Chapter 8] for more details):

J =

[
F BT

B 0

]
∈ R

nx×nx , M =

[
−G 0
0 0

]
∈ R

nx×nx ,(2.4)

where nx = nu + np is the number of velocity and pressure degrees of freedom, respectively,
nu > np, F ∈ Rnu×nu is nonsymmetric, B ∈ Rnp×nu is the divergence matrix, and the velocity
mass matrix Gnu×nu is symmetric positive definite. The matrices are sparse and nx is typically
large. We note that the mass matrixM is singular, and (2.2) has an infinite eigenvalue. As
suggested in [3], we replace the singular mass matrixM with the nonsingular, shifted mass
matrix

Mσ =

[
−G σBT

σB 0

]
,(2.5)

which is symmetric but in general indefinite, and it maps the infinite eigenvalues of (2.2) to
σ−1 and leaves the finite ones unchanged. Then the generalized eigenvalue problem (2.2) can
be transformed into an eigenvalue problem

Jv = λMσv.(2.6)

The flow is considered stable if Reλ < 0, and we wish to detect the onset of instability, that
is, to find when the rightmost eigenvalue crosses the imaginary axis. Efficient methods for
finding the rightmost pair of complex eigenvalues of (2.2) (or (2.6)) were studied in [5]. Here,
our goal is different. We consider parametric uncertainty in the sense that the parameter
ν ≡ ν(ξ), where ξ is a set of random variables and which is given by the so-called generalized
polynomial chaos expansion. To this end, we first recast the eigenvalue problem (2.6) in the
spectral stochastic finite element framework, then we show how to efficiently solve it, and
finally we apply the stability analysis to the Navier–Stokes equation with stochastic viscosity.

3. Stochastic eigenvalue problem. Let (Ω,F ,P) be a complete probability space, that
is, Ω is the sample space with σ-algebraF and probability measureP. We assume that the
randomness in the mathematical model is induced by a vector ξ : Ω 7→ Γ ⊂ Rmξ of independent
random variables ξ1(ω), . . . , ξmξ

(ω), where ω ∈ Ω. Let B(Γ) denote the Borel σ-algebra onΓ
induced by ξ and µ the induced measure. The expected value of the product of measurable
functions onΓ determines a Hilbert space TΓ ≡ L2 (Γ,B(Γ), µ) with inner product

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.
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STOCHASTIC GALERKIN METHODS FOR STABILITY ANALYSIS 1105

〈u, v〉 = E [uv] =

∫

Γ
u(ξ)v(ξ)dµ(ξ),(3.1)

where the symbol E denotes the mathematical expectation.
In computations we will use a finite-dimensional subspace Tp ⊂ TΓ spanned by a set of

multivariate polynomials {ψℓ(ξ)} that are orthonormal with respect to the density function
µ, that is, E [ψkψℓ] = δkℓ, and ψ1 is constant. This will be referred to as the gPC basis [34].
The dimension of the spaceTp depends on the polynomial degree. For polynomials of total
degreep, the dimension is nξ =

(
mξ+p

p

)
.

Suppose that we are given an affine expansion of a matrix operator, which may correspond
to the Jacobian matrix in (2.2), as

K(ξ) =

nν∑

ℓ=1

Kℓψℓ(ξ),(3.2)

where eachKℓ ∈ Rnx×nx is a deterministic matrix, and K1 is the mean-value matrix K1 =
E [K(ξ)]. The representation (3.2) is obtained from either Karhunen–Loève or, more generally,
a stochastic expansion of an underlying random process; a specific example is provided in
section 7.

We are interested in a solution of the following stochastic eigenvalue problem: find a
specific eigenvalue λ(ξ) and possibly also the corresponding eigenvectorv(ξ) which satisfy inD
almost surely (a.s.) the equation

K(ξ)v(ξ) = λ(ξ)Mσv(ξ),(3.3)

where K(ξ) ∈ Rnx×nx is a nonsymmetric matrix operator, Mσ∈ Rnx×nx is a deterministic
mass matrix, λ(ξ) ∈ C and v(ξ) ∈ Cnx along with a normalization condition

(v(ξ))∗ v(ξ) = constant,(3.4)

which is further specified in section 5.
We will search for expansions of the eigenpair (λ(ξ), v(ξ)) in the form

λ(ξ) =

nξ∑

k=1

λkψk(ξ), v(ξ) =

nξ∑

k=1

vkψk(ξ),(3.5)

where λk ∈ C and vk ∈ Cnx are coefficients corresponding to the basis{ψk}. We note that
the series for λ(ξ) in (3.5) converges for nξ → ∞ in the space TΓ under the assumption that
the gPC polynomials provide its orthonormal basis and provided that λ(ξ) has finite second
moments; see, e.g., [10] or [33, Chapter 5]. Convergence analysis of this approximation for
self-adjoint problems can be found in [1].

4. Monte Carlo and stochastic collocation. Both Monte Carlo and stochastic collocation
are based on sampling. The coefficients are defined by a discrete projection

λk = 〈λ, ψk〉 , vk = 〈v, ψk〉 , k = 1, . . . , nξ.(4.1)

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.
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1106 BEDŘICH SOUSEDÍK AND KOOKJIN LEE

The evaluations of coefficients in (4.1) entail solving a set of independent deterministic eigen-
value problems at a set of sample points

{
ξ(q)

}
, q = 1, . . . , nMC , or nq,

K(ξ(q))v(ξ(q)) = λ
(
ξ(q)

)
Mσv

(
ξ(q)

)
.(4.2)

In the Monte Carlo method, the sample pointsξ(q), q = 1, . . . , nMC , are generated randomly
following the distribution of the random variablesξi, i = 1, . . . ,mξ, and moments of solution
are computed by ensemble averaging. In addition, the coefficients in (3.5) could be computed
using Monte Carlo integration as2

λk =
1

nMC

nMC∑

q=1

λ(ξ(q))ψk

(
ξ(q)

)
, vmk =

1

nMC

nMC∑

q=1

v(xm, ξ
(q))ψk(ξ

(q)).

For stochastic collocation, which is used here as the so-called nonintrusive stochastic Galerkin
method, the sample pointsξ(q), q = 1, . . . , nq, consist of a predetermined set of collocation
points, and the coefficients λk and vk in the expansions (3.5) are determined by evaluating
(4.1) in the sense of (3.1) using numerical quadrature as

λk =

nq∑

q=1

λ(ξ(q))ψk(ξ
(q))w(q), vmk =

nq∑

q=1

v(xm, ξ
(q))ψk(ξ

(q))w(q),

where ξ(q) are the quadrature (collocation) points and w(q) are quadrature weights. Details
of the rule we use in our numerical experiments are discussed in section 7, and we refer the
reader to monograph [17] for a detailed discussion of quadrature rules.

5. Stochastic Galerkin method and Newton iteration. The stochastic Galerkin method
is based on the projection

〈Kv,ψk〉 = 〈λMσv, ψk〉 , k = 1, . . . , nξ,(5.1)

〈v∗v, ψk〉 = const·δk1, k = 1, . . . , nξ, const ∈ R.(5.2)

Let us introduce the notation

[Hℓ]jk = hℓ,jk, hℓ,jk ≡ E [ψℓψjψk] , ℓ = 1, . . . , nν , j, k = 1, . . . , nξ.(5.3)

In order to formulate an efficient algorithm for eigenvalue problem (3.3) with nonsymmetric
matrix operator using the stochastic Galerkin formulation, we introduce a separated repre-
sentation of the eigenpair using real and imaginary parts,

v(ξ) = vRe(ξ) + ivIm(ξ), λ(ξ) = λRe(ξ) + iλIm(ξ),

where vRe(ξ), vIm(ξ) ∈ Rnx and λRe(ξ), λIm(ξ) ∈ R. Then replacing v(ξ) and λ(ξ) in eigenvalue
problem (3.3) results in

K(ξ)(vRe(ξ) + ivIm(ξ)) = (λRe(ξ) + iλIm(ξ))Mσ(vRe(ξ) + ivIm(ξ)).(5.4)

2In numerical experiments, we avoid this approximation of the gPC coefficients and directly work with the
sampled quantities.
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Expanding the terms in (5.4) and collecting the real and imaginary parts yields a system of
equations that can be written in a separated representation as

[
K(ξ)vRe(ξ)
K(ξ)vIm(ξ)

]
=

[
λRe(ξ)Mσ −λIm(ξ)Mσ

λIm(ξ)Mσ λRe(ξ)Mσ

] [
vRe(ξ)
vIm(ξ)

]
,(5.5)

and the normalization condition corresponding to the separated representation in (5.5) is
taken as

vRe(ξ)
T vRe(ξ) = 1, vIm(ξ)

T vIm(ξ) = 1.(5.6)

Now, we seek expansions of type (3.5) for vRe(ξ), vIm(ξ), λRe(ξ), and λIm(ξ), that is,

vs(ξ) = (Ψ(ξ)T ⊗ Inx
)v̄s, λs(ξ) = Ψ(ξ)T λ̄s, s = Re, Im,(5.7)

where the symbol ⊗ denotes the Kronecker product, Ψ(ξ) = [ψ1(ξ), . . . , ψnξ
(ξ)]T , λ̄s =

[λs,1, . . . , λs,nξ
]T ∈ Rnξ , and v̄s = [vTs,1, . . . , v

T
s,nξ

]T ∈ Rnxnξ for s = Re, Im.
Let us consider expansions (5.7) as approximations to the solution of (5.5)–(5.6). Then

we can write the residual of (5.5) as

F̃ (v̄Re, v̄Im, λ̄Re, λ̄Im)

=



(
Ψ(ξ)T⊗K(ξ)

)
v̄Re −

(
λ̄TReΨ(ξ)Ψ(ξ)T⊗Mσ

)
v̄Re+

(
λ̄TImΨ(ξ)Ψ(ξ)T⊗Mσ

)
v̄Im

(
Ψ(ξ)T⊗K(ξ)

)
v̄Im−

(
λ̄TImΨ(ξ)Ψ(ξ)T⊗Mσ

)
v̄Re−

(
λ̄TReΨ(ξ)Ψ(ξ)T⊗Mσ

)
v̄Im


 ,

and the residual of (5.6) as

G̃(v̄Re, v̄Im) =



v̄TRe

(
Ψ(ξ)Ψ(ξ)T ⊗ Inx

)
v̄Re − 1

v̄TIm
(
Ψ(ξ)Ψ(ξ)T ⊗ Inx

)
v̄Im − 1


 .

Imposing the stochastic Galerkin orthogonality conditions (5.1) and (5.2) toF̃ andG̃, respec-
tively, we get a system of nonlinear equations

r(v̄Re, v̄Im, λ̄Re, λ̄Im) =

[
F (v̄Re, v̄Im, λ̄Re, λ̄Im)

G(v̄Re, v̄Im)

]
= 0 ∈ R

2(nx+1)nξ ,(5.8)

where

F (v̄Re, v̄Im, λ̄Re, λ̄Im)

=



E[ΨΨT⊗K]v̄Re−E[(λ̄Re

TΨ)ΨΨT⊗Mσ]v̄Re+E[(λ̄Im
TΨ)ΨΨT⊗Mσ]v̄Im

E[ΨΨT⊗K]v̄Im−E[(λ̄ImTΨ)ΨΨT⊗Mσ]v̄Re−E[(λ̄Re
TΨ)ΨΨT⊗Mσ]v̄Im




and

G(v̄Re, v̄Im) =



E[Ψ⊗ ((v̄Re

T (ΨΨT ⊗ Inx
)v̄Re)− 1)]

E[Ψ⊗ ((v̄Im
T (ΨΨT ⊗ Inx

)v̄Im)− 1)]


 .

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.
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1108 BEDŘICH SOUSEDÍK AND KOOKJIN LEE

We will use Newton iteration to solve the system of nonlinear equations (5.8). The Jacobian
matrixDJ(v̄Re, v̄Im, λ̄Re, λ̄Im) of (5.8) can be written as

DJ(v̄Re, v̄Im, λ̄Re, λ̄Im) =




∂F
∂v̄Re

∂F
∂v̄Im

∂F
∂λ̄Re

∂F
∂λ̄Im

∂G
∂v̄Re

∂G
∂v̄Im

∂G
∂λ̄Re

∂G
∂λ̄Im


 ∈ R

(2(nx+1)nξ)×(2(nx+1)nξ),

where

∂F

∂v̄Re
=



E[ΨΨT⊗K]−E[(λ̄Re

TΨ)ΨΨT⊗Mσ]

−E[(λ̄ImTΨ)ΨΨT⊗Mσ]


 , ∂F

∂λ̄Re
=



−E[ΨT ⊗ (ΨΨT⊗Mσ)]v̄Re

−E[ΨT ⊗ (ΨΨT⊗Mσ)]v̄Im


 ,

(5.9)

∂F

∂v̄Im
=




E[(λ̄Im
TΨ)ΨΨT⊗Mσ]

E[ΨΨT⊗K]−E[(λ̄Re
TΨ)ΨΨT⊗Mσ]


 , ∂F

∂λ̄Im
=




E[ΨT ⊗ (ΨΨT⊗Mσ)]v̄Im

−E[ΨT ⊗ (ΨΨT⊗Mσ)]v̄Re




(5.10)

and

∂G

∂v̄Re
=



2E[Ψ⊗ (v̄TReΨΨT⊗Inx

)]

0


 , ∂G

∂λ̄Re
= 0,(5.11)

∂G

∂v̄Im
=




0

2E[Ψ⊗ (v̄TImΨΨT⊗Inx
)]


 , ∂G

∂λ̄Im
= 0.(5.12)

However, for convenience in the formulation of the preconditioners presented later, we formu-

late Newton iteration with rescaled Jacobian matrixD̂J(v̄
(n)
Re , v̄

(n)
Im , λ̄

(n)
Re , λ̄

(n)
Im ), which at stepn

entails solving a linear system




∂F (n)

∂v̄Re

∂F (n)

∂v̄Im

∂F (n)

∂λ̄Re

∂F (n)

∂λ̄Im

−1
2
∂G(n)

∂v̄Re
−1

2
∂G(n)

∂v̄Im
0 0







δv̄Re

δv̄Im
δλ̄Re

δλ̄Im


 = −

[
F (n)

−1
2G

(n)

]
,(5.13)

followed by an update 


v̄
(n+1)
Re

v̄
(n+1)
Im

λ̄
(n+1)
Re

λ̄
(n+1)
Im


 =




v̄
(n)
Re

v̄
(n)
Im

λ̄
(n)
Re

λ̄
(n)
Im


+




δv̄Re

δv̄Im
δλ̄Re

δλ̄Im


 .(5.14)

Remark 5.1. We used the rescaling of the Jacobian in [19] in order to symmetrize the
matrix in (5.13); however, we note that here it is still in general nonsymmetric.

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.

D
o
w

n
lo

ad
ed

 0
9
/2

9
/2

2
 t

o
 1

3
0
.8

5
.5

9
.1

5
0
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y



STOCHASTIC GALERKIN METHODS FOR STABILITY ANALYSIS 1109

Linear systems (5.13) are solved inexactly using a preconditioned GMRES method. We
refer the reader to Appendix A for details of the evaluation of the right-hand side and of the
matrix-vector product, and to [18] for a discussion of GMRES in a related context.

5.1. Inexact Newton iteration. As in [19], we consider a line-search modification of this
method following [23, Algorithm 11.4] in order to improve global convergence behavior of
Newton iteration. Denoting

v̄(n) = [(v̄
(n)
Re )

T , (v̄
(n)
Im )T ]T and λ̄(n) = [(λ̄

(n)
Re )

T , (λ̄
(n)
Im )T ]T ,

we define the merit function as the sum of squares,

f(v̄(n), λ̄(n)) =
1

2
‖r̂(v̄(n), λ̄(n))‖22, where r̂(v̄(n), λ̄(n)) =

[
F (n)

−1
2G

(n)

]
,

that is, r̂(v̄(n), λ̄(n)) is the negative right-hand side of (5.13), i.e., it is a rescaled residual of
(5.8), and we also denote

fn = f(v̄(n), λ̄(n)), r̂n = r̂(v̄(n), λ̄(n)), D̂Jn = D̂J(v̄(n), λ̄(n)).

As the initial approximation of the solution, we use the eigenvectors and eigenvalues of the
associated mean problem

K1

(
[v

(0)
Re ]1 + i[v

(0)
Im ]1

)
=

(
[λ

(0)
Re ]1 + i[λ

(0)
Im ]1

)
Mσ

(
[v

(0)
Re ]1 + i[v

(0)
Im ]1

)
,(5.15)

concatenated by zeros, that is,

v̄(0) =
[
([v

(0)
Re ]1)

T , 0, . . . , ([v
(0)
Im ]1)

T , 0, . . .
]T
,

λ̄(0) =
[
[λ

(0)
Re ]1, 0, . . . , [λ

(0)
Im ]1, 0, . . .

]T
,

and the initial residual is

r̂0 =

[
F (v̄(0), λ̄(0))

−1
2G(v̄

(0))

]
.

The line-search Newton method is summarized in our setting as Algorithm 1, and the choice
of parametersρ andc in the numerical experiments is discussed in section 7.

The inexact iteration entails in each step a solution of the stochastic Galerkin linear
system in line 4 of Algorithm 1 given by (5.13) using a Krylov subspace method. We use
preconditioned GMRES with the adaptive stopping criteria,

‖r̂n + D̂Jnpn‖2
‖r̂n‖2

< τ ‖r̂n−1‖2 ,(5.16)

where τ = 10−1. The for-loop is terminated when the convergence check in line 12 is satisfied;
in our numerical experiments we check if ‖r̂n‖2 < 10−10.
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1110 BEDŘICH SOUSEDÍK AND KOOKJIN LEE

Algorithm 1 [23, Algorithm 11.4] Line-search Newton iteration

1: Given ρ, c ∈ (0, 1), set α∗ = 1.

2: Set v̄(0) and λ̄(0).
3: for n = 0, 1, 2, . . . do

4: D̂Jnpn = −r̂n (Solve inexactly to find the Newton update pn.)

5:

[
δv̄(n)

δλ̄(n)

]
= pn

6: αn = α∗

7: while f(v̄(n) + αnδv̄
(n), λ̄(n) + αnδλ̄

(n)) > fn + c αn∇fTn pn do

8: αn ← ραn

9: end while

10: v̄(n+1) ← v̄(n) + αnδv̄
(n)

11: λ̄(n+1) ← λ̄(n) + αnδλ̄
(n)

12: Check for convergence.
13: end for

Our implementation of the solvers is based on the so-called matricized formulation, in
which we make use of isomorphism between Rnxnξ and Rnx×nξ determined by the operators vec
and mat: v̄ = vec(V̄ ), V̄ = mat(v̄), where v̄ ∈ Rnxnξ , V̄ ∈ Rnx×nξ . The uppercase/lowercase
notation is assumed throughout the paper, so R̄ = mat(r̄), etc. Specifically, we define the
matricized coefficients of the eigenvector expansion

V̄ = mat(v̄) =
[
v1, v2, . . . , vnξ

]
∈ R

nx×nξ ,(5.17)

where the column k contains the coefficients associated with the basis functionψk. A detailed
formulation of the GMRES in the matricized format can be found, e.g., in [18]. We only
describe computation of the matrix-vector product (Appendix A), and in the next section we
formulate several preconditioners.

5.2. Preconditioners for the Newton iteration. In order to allow for an efficient iterative
solution of linear systems in line 4 of Algorithm 1 given by (5.13) using a Krylov subspace
method, it is necessary to provide a preconditioner. In this section, we adapt the mean-based
preconditioner and two of the constraint preconditioners from [19] to the formulation with
separated real and complex parts, and we write them in the matricized format. The idea can
be motivated as follows. The preconditioners are based on approximations of the blocks in
(A.2). The mean-based preconditioner is inspired by the approximation

[
A 0

0 S

]
,

where A ≈ [ARe AIm] and the Schur complement S ≈ −1
2 [CRe CIm] [ARe AIm]

−1 [BRe BIm].
The constraint preconditioners are based on the approximation

[
A B

C 0

]
,
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STOCHASTIC GALERKIN METHODS FOR STABILITY ANALYSIS 1111

Algorithm 2 Mean-based preconditioner (MB)

The preconditionerMMB :
(
R̄vRe , R̄vIm , R̄λRe , R̄λIm

)
7−→

(
V̄ vRe , V̄ vIm , V̄ λRe , V̄ λIm

)
is defined

as

MMB




V̄ vRe

V̄ vIm

V̄ λRe

V̄ λIm


 =




R̄vRe

R̄vIm

R̄λRe

R̄λIm


 .(5.18)

Above

MMB =




Ã 02nx×2

02×2nx

[
−w(0)T

Re 0nx×1

0nx×1 −w(0)T
Im

]
Ã−1

[
−Mσw

(0)
Re Mσw

(0)
Im

−Mσw
(0)
Im −Mσw

(0)
Re

]

 ,(5.19)

where w
(0)
Re and w

(0)
Im are the real and imaginary components of eigenvector w of the stencil

(K1,Mσ) with corresponding eigenvalue µ = µRe+iµIm, cf. (5.15), and

Ã =

[
K1 − ǫReµReMσ ǫImµImMσ

−ǫImµImMσ K1 − ǫReµReMσ

]
,(5.20)

with constants ǫRe, ǫIm further specified in the numerical experiments section.

where B ≈ [BRe BIm] and C ≈ −1
2 [CRe CIm]. Next, considering the truncation of the series

in (A.3)–(A.8) to the very first term, we get

A ≈ Inξ
⊗
[
K1 − λRe,1Mσ λIm,1Mσ

−λIm,1Mσ K1 − λRe,1Mσ

]

(see left columns in (5.9)−(5.10) and (A.3)−(A.4)),

B ≈ Inξ
⊗
[
−MσvRe,1 MσvIm,1

−MσvIm,1 −MσvRe,1

]
(see right columns in (5.9)−(5.10) and (A.5)−(A.6)),

C ≈ Inξ
⊗
[ −vTRe,1 0nx×1

0nx×1 −vTIm,1

]
(see (5.11)−(5.12) and (A.7)−(A.8)).

The precise formulations are listed for the mean-based preconditioner as Algorithm 2 and for
the constraint mean-based preconditioner as Algorithm 3. Finally, the constraint hierarchical
Gauss–Seidel preconditioner is listed as Algorithm 4. It can be viewed as an extension of
Algorithm 3, because the solves with stochastic Galerkin matrices (5.22) are used also in this
preconditioner, but in addition the right-hand sides are updated using an idea inspired by
Gauss–Seidel method in a for-loop over the degree of the gPC basis. Moreover, as proposed
in [32], the matrix-vector multiplications, used in the setup of the right-hand sides, can be
truncated in the sense that in the summations, t = 1, . . . , nξ is replaced by t ∈ It, where
It = {1, . . . , nt} with nt =

(
mξ+pt

pt

)
for some pt ≤ p, and in particular with pt = 0 the chGS

preconditioner (Algorithm 4) reduces to the cMB preconditioner (Algorithm 3). We also note
that, since the initial guess is zero in Algorithm 4, the multiplications byF1 and Fd+1 vanish
from (5.23)–(5.24).
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Algorithm 3 Constraint mean-based preconditioner (cMB)

The preconditionerMcMB :
(
R̄vRe , R̄vIm , R̄λRe , R̄λIm

)
7−→

(
V̄ vRe , V̄ vIm , V̄ λRe , V̄ λIm

)
is defined

as

McMB




V̄ vRe

V̄ vIm

V̄ λRe

V̄ λIm


 =




R̄vRe

R̄vIm

R̄λRe

R̄λIm


 .(5.21)

Above

McMB =




Ã
−Mσw

(0)
Re Mσw

(0)
Im

−Mσw
(0)
Im −Mσw

(0)
Re

−w(0)T
Re 0nx×1

0nx×1 −w(0)T
Im

02×2


 ,(5.22)

with w
(0)
Re , w

(0)
Im , and Ã set as in Algorithm 2.

5.2.1. Updating the constraint preconditioner. It is also possible to update the applica-
tion of the constraint mean-based preconditioner in order to incorporate the latest approxima-

tions of the eigenvector mean coefficients represented by the vectorsw
(n)
Re/Im in (5.22). Suppose

the inverse of the matrixMcMB from (5.22) for n = 0 is available, e.g., as the LU decompo-
sition. That is, we have the preconditioner for the initial step of the Newton iteration, and
let us denote its application by X−1. Specifically, X−1 = U−1L−1, where L and U are the
factors ofMcMB. Next, let us consider two matrices Y and Z such that

Y ZT =




02nx×2nx

−Mσ∆w
(n)
Re Mσ∆w

(n)
Im

−Mσ∆w
(n)
Im −Mσ∆w

(n)
Re

−∆w(n)
Re 0nx×1

0nx×1 −∆w(n)
Im

02×2


 ,(5.25)

where

∆w
(n)
Re = w

(n)
Re − w

(0)
Re , ∆w

(n)
Im = w

(n)
Im − w

(0)
Im .

Specifically, Y ZT is the rank 4 update of the preconditioner at stepn of the Newton itera-
tion, and the matrices Y and Z can be computed using a sparse SVD, which is available,
e.g., in [20]. In implementation, using MATLAB notation with Y ZT = YZt, we compute
[U, S, V] = svds(YZt, 4) and set Y = U ∗ S, ZT = V′. Finally, a solve McMBv = u at stepn
of Newton iteration may be facilitated using the Sherman–Morrison–Woodbury formula (see,
e.g., [14], or [22, section 3.8]) as

v =
(
X + Y ZT

)−1
u =

(
X−1 −X−1Y

(
I + ZTX−1Y

)−1
ZTX−1

)
u.
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Algorithm 4 Constraint hierarchical Gauss–Seidel preconditioner (chGS)

The preconditioner MchGS :
(
R̄vRe , R̄vIm , R̄λRe , R̄λIm

)
7−→

(
V̄ vRe , V̄ vIm , V̄ λRe , V̄ λIm

)
is defined as

follows.
1: Set the initial solution

(
V̄ vRe , V̄ vIm , V̄ λRe , V̄ λIm

)
to zero and update as:

2: Solve

McMB




V vRe
1

V vIm
1

V λRe
1

V λIm
1


 =




RvRe
1

RvIm
1

RλRe
1

RλIm
1


−F1




V vRe

(2:nξ)

V vIm

(2:nξ)

V λRe

(2:nξ)

V λIm

(2:nξ)


 ,(5.23)

whereMcMB is set as in Algorithm 3, and

F1




V vRe
1

V vIm
1

V λRe
1

V λIm
1




=
∑

t∈It




FA
1

[
ht,(2:nξ)(1)

]

FB
1

[
ht,(2:nξ)(1)

]

−(v(n)Re,t)
TV vRe

(2:nξ)

[
ht,(2:nξ)(1)

]

−(v(n)Im,t)
TV vIm

(2:nξ)

[
ht,(2:nξ)(1)

]




,

FA
1 =

((
Kt−λ(n)Re,tMσ

)
V vRe

(2:nξ)
+λ

(n)
Im,tMσV

vIm
(2:nξ)

−v(n)Re,tMσV
λRe

(2:nξ)
+v

(n)
Im,tMσV

λIm

(2:nξ)

)
,

FB
1 =

((
Kt−λ(n)Re,tMσ

)
V vIm
(2:nξ)

−λ(n)Im,tMσV
vRe

(2:nξ)
−v(n)Re,tMσV

λIm

(2:nξ)
−v(n)Im,tMσV

λRe

(2:nξ)

)
,

and v
(n)
Re,t, v

(n)
Im,t, the tth gPC coefficients of eigenvector v(n) at step n of Algorithm 1.

3: for d = 1, . . . , p− 1 do

4: Set ℓ = (nℓ + 1 : nu) , where nℓ =
(
nξ+d−1

d−1

)
and nu =

(
nξ+d

d

)
.

5: Solve

McMB




V vRe

(ℓ)

V vIm

(ℓ)

V λRe

(ℓ)

V λIm

(ℓ)


 =




RvRe

(ℓ)

RvIm
(ℓ)

RλRe

(ℓ)

RλIm

(ℓ)


− Ed+1




V vRe

(1:nℓ)

V vIm

(1:nℓ)

V λRe

(1:nℓ)

V λIm

(1:nℓ)


−Fd+1




V vRe

(nu+1:nξ)

V vIm
(nu+1:nξ)

V λRe

(nu+1:nξ)

V λIm

(nu+1:nξ)


 ,(5.24)

where

Ed+1




V vRe

(1:nℓ)

V vIm

(1:nℓ)

V λRe

(1:nℓ)

V λIm

(1:nℓ)


=

∑

t∈It




EAd+1

[
ht,(1:nℓ)(ℓ)

]

EBd+1

[
ht,(1:nℓ)(ℓ)

]

−(v(n)Re,t)
TV vRe

(1:nℓ)

[
ht,(1:nℓ)(ℓ)

]

−(v(n)Im,t)
TV vIm

(1:nℓ)

[
ht,(1:nℓ)(ℓ)

]




,

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.

D
o
w

n
lo

ad
ed

 0
9
/2

9
/2

2
 t

o
 1

3
0
.8

5
.5

9
.1

5
0
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y
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Algorithm 4 Constraint hierarchical Gauss–Seidel preconditioner (chGS), continued

Fd+1




V
vRe

(nu+1:nξ)

V
vIm
(nu+1:nξ)

V
λRe

(nu+1:nξ)

V
λIm

(nu+1:nξ)




=
∑

t∈It




FA
d+1

[
ht,(nu+1:nξ)(ℓ)

]

FB
d+1

[
ht,(nu+1:nξ)(ℓ)

]

−(v
(n)
Re,t)

TV
vRe

(nu+1:nξ)

[
ht,(nu+1:nξ)(ℓ)

]

−(v
(n)
Im,t)

TV
vIm
(nu+1:nξ)

[
ht,(nu+1:nξ)(ℓ)

]




,

EA
d+1 =

((
Kt−λ

(n)
Re,tMσ

)
V

vRe

(1:nℓ)
+λ

(n)
Im,tMσV

vIm
(1:nℓ)

−v
(n)
Re,tMσV

λRe

(1:nℓ)
+v

(n)
Im,tMσV

λIm

(1:nℓ)

)
,

EB
d+1 =

((
Kt−λ

(n)
Re,tMσ

)
V

vIm
(1:nℓ)

−λ
(n)
Im,tMσV

vRe

(1:nℓ)
−v

(n)
Re,tMσV

λIm

(1:nℓ)
−v

(n)
Im,tMσV

λRe

(1:nℓ)

)
,

FA
d+1 =

((
Kt−λ

(n)
Re,tMσ

)
V

vRe

(nu+1:nξ)
+λ

(n)
Im,tMσV

vIm

(nu+1:nξ)
−v

(n)
Re,tMσV

λRe

(nu+1:nξ)
+v

(n)
Im,tMσV

λIm

(nu+1:nξ)

)
,

FB
d+1 =

((
Kt−λ

(n)
Re,tMσ

)
V

vIm
(nu+1:nξ)

−λ
(n)
Im,tMσV

vRe

(nu+1:nξ)
−v

(n)
Re,tMσV

λIm

(nu+1:nξ)
−v

(n)
Im,tMσV

λRe

(nu+1:nξ)

)
.

6: end for

7: Set ℓ =
(
nu + 1 : nξ

)
.

8: Solve

McMB




V
vRe

(ℓ)

V
vIm

(ℓ)

V
λRe

(ℓ)

V
λIm

(ℓ)


 =




R
vRe

(ℓ)

R
vIm

(ℓ)

R
λRe

(ℓ)

R
λIm

(ℓ)


− Ep+1




V
vRe

(1:nu)

V
vIm
(1:nu)

V
λRe

(1:nu)

V
λIm

(1:nu)


 ,

where

Ep+1




V
vRe

(1:nu)

V
vIm
(1:nu)

V
λRe

(1:nu)

V
λIm

(1:nu)


 =

∑

t∈It




EA
p+1

[
ht,(1:nu)(ℓ)

]

EB
p+1

[
ht,(1:nu)(ℓ)

]

−(v
(n)
Re,t)

TV
vRe

(1:nu)

[
ht,(1:nu)(ℓ)

]

−(v
(n)
Im,t)

TV
vIm

(1:nu)

[
ht,(1:nu)(ℓ)

]




,

EA
p+1 =

((
Kt−λ

(n)
Re,tMσ

)
V

vRe

(1:nu)
+λ

(n)
Im,tMσV

vIm
(1:nu)

−v
(n)
Re,tMσV

λRe

(1:nu)
+v

(n)
Im,tMσV

λIm

(1:nu)

)
,

EB
p+1 =

((
Kt−λ

(n)
Re,tMσ

)
V

vIm
(1:nu)

−λ
(n)
Im,tMσV

vRe

(1:nu)
−v

(n)
Re,tMσV

λIm

(1:nu)
−v

(n)
Im,tMσV

λRe

(1:nu)

)
.

9: for d = p− 1, . . . , 1 do

10: Set ℓ = (nℓ + 1 : nu) , where nℓ =
(nξ+d−1

d−1

)
and nu =

(nξ+d

d

)
.

11: Solve (5.24).

12: end for

13: Solve (5.23).
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STOCHASTIC GALERKIN METHODS FOR STABILITY ANALYSIS 1115

6. Bifurcation analysis of Navier–Stokes equations with stochastic viscosity. Here, we
follow the setup from [30] and assume that the viscosityν is given by a stochastic expansion

ν(x, ξ) =

nν∑

ℓ=1

νℓ(x)ψℓ(ξ),(6.1)

where {νℓ(x)} is a set of given deterministic spatial functions. We note that there are several
possible interpretations of such a setup [24, 30]. Assuming fixed geometry, the stochastic
viscosity is equivalent to the Reynolds number being stochastic and, for example, to a scenario
when the volume of fluid moving into a channel is uncertain. Consider the discretization of
(2.3) by a div-stable mixed finite element method, and let the bases for the velocity and
pressure spaces be denoted by {φi}nu

i=1 and {ϕj}np

i=1, respectively. We further assume that we
have a discrete approximation of the steady-state solution of the stochastic counterpart of
(2.3), given as3

~u(x, ξ)≈
nξ∑

k=1

nu∑

i=1

uikφi(x)ψk(ξ) =

nξ∑

k=1

~uk(x)ψk(ξ),

p(x, ξ)≈
nξ∑

k=1

np∑

j=1

pjkϕj(x)ψk(ξ) =

nξ∑

k=1

pk(x)ψk(ξ).

We are interested in a stochastic counterpart of the generalized eigenvalue problem (2.2),
which we write as

J (ξ)v = λMσv,(6.2)

whereMσ is the deterministic (shifted) mass matrix from (2.5), and J (ξ) is the stochastic
Jacobian matrix operator given by the stochastic expansion

J (ξ) =
n̂∑

ℓ=1

Jℓψℓ(ξ).(6.3)

The expansion is built from matrices Jℓ ∈ Rnx×nx , ℓ = 1, . . . , n̂, such that

J1 =
[
F1 BT

B 0

]
, Jℓ =

[
Fℓ 0
0 0

]
, ℓ = 2, . . . , n̂,

where n̂ = max (nν , nξ), and Fℓ is a sum of the vector-Laplacian matrixAℓ, the vector-
convection matrixNℓ, and the Newton derivative matrix Wℓ,

Fℓ = Aℓ +Nℓ +Wℓ,

3Techniques for computing these approximations were studied in [18, 30].
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1116 BEDŘICH SOUSEDÍK AND KOOKJIN LEE

where

Aℓ = [aℓ,ab] , aℓ,ab =

∫

D
νℓ(x)∇φb : ∇φa, ℓ = 1, . . . , nν ,

Nℓ = [nℓ,ab] , nℓ,ab =

∫

D
(~uℓ · ∇φb) · φa, ℓ = 1, . . . , nξ,

Wℓ = [wℓ,ab] , wℓ,ab =

∫

D
(φb · ∇~uℓ) · φa, ℓ = 1, . . . , nξ,

and if nν > nξ, we set Nℓ = Wℓ = 0 for ℓ = nξ+1, . . . , nν , and if nν < nξ, we set Aℓ = 0 for
ℓ = nν+1, . . . , nξ. In the numerical experiments, we use the stochastic Galerkin method from
[30] to calculate the terms ~uℓ for the construction of the matrices Nℓ. The divergence matrix
B is defined as

B = [bcd] , bcd = −
∫

D
ϕc (∇ · φd) ,

and the velocity mass matrix G is defined as

G = [gab] , gab =

∫

D
φb φa.

7. Numerical experiments. We implemented the method in MATLAB using the IFISS

3.5 package [6], and we tested the algorithms using two benchmark problems: flow around an
obstacle, and an expansion flow around a symmetric step. The stochastic Galerkin methods
were used to solve both the Navier–Stokes problem (see [18, 30] for full description) and the
eigenvalue problem (3.3), which was solved using the inexact Newton iteration from section
5. The sampling methods (Monte Carlo and stochastic collocation) entail generating a set of
sample viscosities from (6.1), and for each sample solving a deterministic steady-state Navier–
Stokes equation followed by a solution of a deterministic eigenvalue problem (4.2) with a matrix
operator corresponding to sampled Jacobian matrix operator (6.3), where the deterministic
eigenvalue problems at sample points were solved using function eigs in MATLAB. For the
solution of the Navier–Stokes equation, in both sampling and stochastic Galerkin methods,
we used a hybrid strategy in which an initial approximation was obtained from the solution
of the stochastic Stokes problem, after which several steps of Picard iteration were used to
improve the solution, followed by Newton iteration. A convergent iteration stopped when the
Euclidean norm of the algebraic residual was smaller than 10−8; see [30] for more details.
Also, when replacing the mass matrixM by the shifted mass matrixMσ (see (2.4) and (2.5)),
we set σ = −10−2 as in [5]. The 300 eigenvalues with the largest real part of the deterministic
eigenvalue problem with mean viscosity ν1 for each of the two examples are displayed in
Figure 7.1.

7.1. Flow around an obstacle. For the first example, we considered flow around an obsta-
cle in a similar setup as studied in [30]. The domain of the channel and the discretization are
shown in Figure 7.2. The spatial discretization used a stretched grid with 1008 Q2−Q1 finite
elements. We note that these elements are referred to as Taylor–Hood in the literature. There
were 8416 velocity and 1096 pressure degrees of freedom. The viscosityν(x, ξ) was taken to be
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D
o
w

n
lo

ad
ed

 0
9
/2

9
/2

2
 t

o
 1

3
0
.8

5
.5

9
.1

5
0
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y



STOCHASTIC GALERKIN METHODS FOR STABILITY ANALYSIS 1117

-6 -5 -4 -3 -2 -1 0 1

-5

-4

-3

-2

-1

0

1

2

3

4

5

-1.6 -1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2

-1.5

-1

-0.5

0

0.5

1

1.5

Figure 7.1. The 300 eigenvalues with the largest real part of the matrices K1 for the two examples: flow
around an obstacle (left), and expansion flow around a symmetric step (right). The rightmost eigenvalues are
indicated by a red cross.

0 1 2 3 4 5 6 7 8

-1
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0

0.5

1

Figure 7.2. Finite element mesh for the flow around an obstacle problem.

a truncated lognormal process transformed from the underlying Gaussian process [11]. That
is, ψℓ(ξ), ℓ = 1, . . . , nν , is a set of Hermite polynomials and, denoting the coefficients of the
Karhunen–Loève expansion of the Gaussian process bygj(x) and ηj = ξj − gj , j = 1, . . . ,mξ,
the coefficients in expansion (6.1) were computed as

νℓ(x) =
E [ψℓ(η)]

E
[
ψ2
ℓ (η)

] exp


g0 +

1

2

mξ∑

j=1

(gj(x))
2


 .

The covariance function of the Gaussian field, for points X1 = (x1, y1) and X2 = (x2, y2)
inD, was chosen to be

C (X1, X2) = σ2g exp

(
−|x2 − x1|

Lx
− |y2 − y1|

Ly

)
,(7.1)

where Lx and Ly are the correlation lengths of the random variables ξi, i = 1, . . . ,mξ, in the x
and y directions, respectively, and σg is the standard deviation of the Gaussian random field.
The correlation lengths were set to be equal to 25% of the width and height of the domain.
The coefficient of variation CoV of the lognormal field, defined as CoV = σν/ν1, where σν
is the standard deviation and ν1 is the mean viscosity, was 1% or 10%. The viscosity (6.1)
was parameterized using mξ = 2 random variables. According to [21], in order to guarantee a
complete representation of the lognormal process by (6.1), the degree of polynomial expansion
of ν(x, ξ) should be twice the degree of the expansion of the solution. We followed the same
strategy here. Therefore, the values of nξ and nν are (cf., e.g. [12, p. 87] or [33, section 5.2])

nξ = (mξ+p)!
mξ!p!

, nν = (mξ+2p)!
mξ!(2p)!

. For the gPC expansion of eigenvalues/eigenvectors (3.5), the

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.
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1118 BEDŘICH SOUSEDÍK AND KOOKJIN LEE

Figure 7.3. Monte Carlo samples of 25 eigenvalues with the largest real part for the flow around an obstacle
with CoV = 1% (left) and CoV = 10% (right). The eigenvalues of the mean problem are indicated by circles.

maximal degree of gPC expansion is p = 3, so then nξ = 10 and nν = 28. We used 1 × 103

samples for the Monte Carlo method and Smolyak sparse grid with Gauss–Hermite quadrature
points and grid level4 for collocation; see, e.g., [17] for discussion of quadrature rules. With
these settings, the size of {Hℓ}nν

ℓ=1 in (5.3) was 10 × 10 × 28 with 203 nonzeros, and there
were nq = 29 points in the sparse grid. As a consequence, the size of the stochastic Galerkin
matrices is nξ(nu+np) = 95120, the matrix associated with the Jacobian is fully block dense,
and the mass matrix is block diagonal, but we note that these matrices are never formed in
implementation. For the solution of the Navier–Stokes problem we used the hybrid strategy
with 6 steps of Picard iteration followed by at most 15 steps of Newton iteration. We used
mean viscosity ν1 = 5.36193 × 10−3, which corresponds to Reynolds number Re = 373, and
the rightmost eigenvalue pair is 0.0085± 2.2551i; see the left panel in Figure 7.1. Figure 7.3
displays Monte Carlo realizations of the 25 eigenvalues with the largest real part for the values
CoV = 1% and CoV = 10%. It can be seen that the rightmost eigenvalue is relatively less
sensitive to perturbation compared to the other eigenvalues, and since its real part is well
separated from the rest of the spectrum, it can be easily identified in all runs of a sampling
method. Figure 7.4 displays the probability density function (pdf) estimates of the rightmost
eigenvalue with the positive imaginary part obtained directly by Monte Carlo, the stochastic
collocation, and stochastic Galerkin methods, for which the estimates were obtained using
MATLAB function ksdensity (in 2D) for sampled gPC expansions. Figure 7.5 shows plots
of the estimated pdf of the real part of the rightmost eigenvalue. In both figures we can
see a good agreement of the plots in the left column corresponding to CoV = 1% and in
the right column corresponding to CoV = 10%. In Table 7.1 we tabulate the coefficients of
the gPC expansion of the rightmost eigenvalue with positive imaginary part computed using
the stochastic collocation and Galerkin methods. A good agreement of coefficients can be
seen, in particular, for coefficients with value much larger than zero, specifically with k =
1, 2, 4, 6, 7, and 9. Finally, in Table 7.2 we examine the inexact line-search Newton iteration
from Algorithm 1. For the line-search method, we set ρ = 0.9 for the backtracking and
c = 0.25. The initial guess is set using the rightmost eigenvalue and corresponding eigenvector
of the eigenvalue problem (5.15) concatenated by zeros. The nonlinear iteration terminates
when the norm of the residual ‖r̂n‖2 < 10−10. The linear systems in line 4 of Algorithm 1 are

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.
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Figure 7.4. Plots of the pdf estimate of the rightmost eigenvalue with positive imaginary part obtained
using Monte Carlo (top), stochastic collocation (middle), and stochastic Galerkin method (bottom) for the flow
around an obstacle with CoV = 1% (left) and CoV = 10% (right).

solved using GMRES with the mean-based preconditioner (Algorithm 2), constraint mean-
based preconditioner (Algorithm 3), and its updated variant discussed in section 5.2.1, and the
constraint hierarchical Gauss–Seidel preconditioner (Algorithm 4–5), which was used without
truncation of the matrix-vector multiplications and also with truncation, setting pt = 2, as
discussed in section 5.2. For the mean-based preconditioner we used ǫRe = ǫIm = 0.97, which
worked best in our experience, and ǫRe = ǫIm = 1 otherwise. For the constraint mean-based
preconditioner the matrixMcMB from (5.22) was factored using LU decomposition, and the
updated variant from section 5.2.1 was used also in the constraint hierarchical Gauss–Seidel
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Figure 7.5. Plots of the pdf estimate of the real part of the rightmost eigenvalue obtained using Monte Carlo
(MC), stochastic collocation (SC), and stochastic Galerkin method (SG) for the flow around an obstacle with
CoV = 1% (left) and CoV = 10% (right).

preconditioner. First, we note that the performance of the algorithm with the mean-based
preconditioner was very sensitive to the choice of ǫRe and ǫIm, and it can be seen that it
is quite sensitive also to CoV . On the other hand, the performance of all variants of the
constraint preconditioners appear to be far less sensitive, and we see only a mild increase in
numbers of both nonlinear and GMRES iterations. Next, we see that updating the constraint
mean-based preconditioner reduces the numbers of GMRES iterations, in particular in the
latter steps of the nonlinear method. Finally, we see that using the constraint hierarchical
Gauss–Seidel preconditioner further decreases the number of GMRES iterations; for smaller
CoV it may be suitable to truncate the matrix-vector multiplications without any change in
iteration counts, and even though we see with CoV = 10% an increase in number of nonlinear
steps, the overall number of GMRES iterations remains smaller than when the two variants
of the constraint mean-based preconditioner were used.

7.2. Expansion flow around a symmetric step. For the second example, we considered
an expansion flow around a symmetric step. The domain and its discretization are shown in
Figure 7.6. The spatial discretization used a uniform grid with 976 Q2−P−1 finite elements,
which provided a stable discretization for the rectangular grid; see [8, p. 139]. There were
8338 velocity and 2928 pressure degrees of freedom. For the viscosity we considered a random
field with affine dependence on the random variables ξ given as

ν(x, ξ) = ν1 + σν

nν∑

ℓ=2

νℓ(x) ξℓ−1,(7.2)

where ν1 is the mean and σν = CoV · ν1 the standard deviation of the viscosity, nν = mξ +1,
and νℓ+1 =

√
3λℓvℓ(x) with {(λℓ, vℓ(x))}mξ

ℓ=1 are the eigenpairs of the eigenvalue problem
associated with the covariance kernel of the random field. As in the previous example, we
used the values CoV = 1% and 10%. We considered the same form of the covariance kernel
as in (7.1),

C (X1, X2) = exp

(
−|x2 − x1|

Lx
− |y2 − y1|

Ly

)
,
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STOCHASTIC GALERKIN METHODS FOR STABILITY ANALYSIS 1121

Table 7.1
The 10 coefficients of the gPC expansion of the rightmost eigenvalue with positive complex part for the flow

around an obstacle problem with CoV = 1% and 10% computed using stochastic collocation (SC), and stochastic
Galerkin method (SG). Here d is the polynomial degree and k is the index of basis function in expansion (3.5).

d k SC SG

CoV = 1%

0 1 8.5726E-03+2.2551E+00 i 8.5726E-03+2.2551E+00 i

1 2 −6.5686E-03− 2.2643E-03 i −6.5686E-03− 2.2643E-03 i
3 1.1181E-16− 2.0817E-14 i 2.6512E-17+8.3094E-17 i

2 4 −1.1802E-06− 2.4274E-05 i −1.2055e-06− 2.4200E-05 i
5 3.8351E-15− 4.4964E-15 i 8.9732E-20− 2.0565E-19 i
6 −3.3393E-06+4.0603E-05 i −3.3527E-06+4.0641E-05 i

3 7 −1.0635E-07+4.1735E-07 i −8.5671E-08+3.5926E-07 i
8 7.8095E-16+6.1617E-15 i −4.3191E-22− 8.3970E-21 i
9 −4.6791E-07+5.1602E-08 i −4.4762E-07− 6.0766E-09 i
10 2.2155E-15+4.6907E-15 i 1.2691E-15+2.9181E-16 i

CoV = 10%

0 1 1.3420E-02+2.2577E+00 i 1.3419E-02+2.2576E+00 i

1 2 −6.6200E-02− 2.2034E-02 i −6.6243E-02− 2.2018E-02 i
3 1.6011E-15− 1.0297E-14 i 1.1672E-15+8.8396E-16 i

2 4 −2.2415E-04− 2.5416E-03 i −1.0889E-04− 2.4178E-03 i
5 8.5869E-17− 1.0547E-15 i 1.1865E-17+6.5559E-17 i
6 −2.7323E-04+4.1219E-03 i −2.1977E-04+4.1437E-03 i

3 7 −4.8106E-05+3.556E-04 i 1.3510E-04+9.1486E-05 i
8 2.8365E-15+6.1062E-15 i 8.0683E-19+5.3753E-18 i
9 −4.5696E-04+2.7795E-06 i −4.1149E-04− 1.8160E-04 i
10 1.7408E-15+1.3101E-14 i 1.3975E-15+3.5152E-16 i

Table 7.2
The number of GMRES iterations in each step of inexact line-search Newton method (Algorithm 1) for

computing the rightmost eigenvalue and corresponding eigenvectors of the flow around an obstacle problem
with CoV = 1% (left) and 10% (right) and with the stopping criteria ‖rn‖2 < 10−10 and different choices of
preconditioners: mean-based (MB) from Algorithm 2, constraint mean-based (cMB) from Algorithm 3 and its
updated variant (cMBu) from section 5.2.1, and the constraint hierarchical Gauss–Seidel preconditioner (chGS)
from Algorithm 4–5 and also with truncation, setting pt = 2 (chGS2).

CoV = 1% CoV = 10%

step MB cMB cMBu chGS chGS2 MB cMB cMBu chGS chGS2

1 2 1 1 1 1 7 1 1 1 1
2 2 1 1 1 1 6 3 2 3 3
3 6 3 2 1 1 13 4 4 3 4
4 9 6 3 2 2 10 8 7 3 4
5 15 10 6 3 3 15 16 13 4 5
6 14 8 8
7 25
8 32
9 67
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0 5 10 15 20 25 30

-1

0

1

Figure 7.6. Finite element mesh for the expansion flow around a symmetric step.

and the correlation lengths were set to 12.5% of the width and 25% of the height of the
domain. We assume that the random variables {ξℓ}mξ

ℓ=1 follow a uniform distribution over
(−1, 1). We note that (7.2) can be viewed as a special case of (6.1), which consists of only
linear terms ofξ. For the parametrization of viscosity by (7.2) we used the same stochastic
dimension mξ and degree of polynomial expansionp as in the previous example: mξ = 2 and
p = 3, so then nξ = 10 and nν = mξ + 1 = 3. We used 1 × 103 samples for the Monte Carlo
method and Smolyak sparse grid with Gauss–Legendre quadrature points and grid level4
for collocation. With these settings, the size of {Hℓ}nν

ℓ=1 in (5.3) was 10 × 10 × 3 with 34
nonzeros, and there were nq = 29 points on the sparse grid. As a consequence, the size of
the stochastic Galerkin matrices is 112660, and the matrix associated with the Jacobian has
in this case a block-sparse structure; see, e.g., [17, p. 88]. For the solution of the Navier–
Stokes problem we used the hybrid strategy with 20 steps of Picard iteration followed by
at most 20 steps of Newton iteration. We used mean viscosity ν1 = 4.5455 × 10−3, which
corresponds to Reynolds number Re = 220, and the rightmost eigenvalue is 5.7963 × 10−4

(the second largest eigenvalue is −8.2273× 10−2) see the right panel in Figure 7.1. Figure 7.7
displays Monte Carlo realizations of the 25 eigenvalues with the largest real part. As in the
previous example, it can be seen that the rightmost eigenvalue is relatively less sensitive to
perturbation compared to the other eigenvalues, and it can be easily identified in all runs of
a sampling method. Figure 7.8 displays the probability density function (pdf) estimates of
the rightmost eigenvalue obtained directly by Monte Carlo, the stochastic collocation, and
stochastic Galerkin methods, for which the estimates were obtained using MATLAB function
ksdensity for sampled gPC expansions. We can see a good agreement of the plots in the left
column corresponding to CoV = 1% and in the right column corresponding to CoV = 10%.
In Table 7.3 we tabulate the coefficients of the gPC expansion of the rightmost eigenvalue
computed using the stochastic collocation and stochastic Galerkin methods. A good agreement
of coefficients can be seen, in particular, for coefficients with larger values. Finally, we examine
the inexact line-search Newton iteration from Algorithm 1. For the line-search method, we
used the same setup as before with ρ = 0.9 and c = 0.25. The initial guess is set using
the rightmost eigenvalue and corresponding eigenvector of the eigenvalue problem (5.15), just
with no imaginary part, concatenated by zeros. The nonlinear iteration terminates when the
norm of the residual ‖r̂n‖2 < 10−10. The linear systems in line 4 of Algorithm 1 are solved
using the right-preconditioned GMRES method as in the complex case. However, since the
eigenvalue is real, the generalized eigenvalue problem as written in (5.5) has the (usual) form
given by (3.3), and all algorithms formulated in this paper can be adapted by simply dropping
the components corresponding to the imaginary part of the eigenvalue problem, for example,
the constraints mean-based preconditioner (Algorithm 3), and specifically (5.22) reduces to

McMB =

[
K1 − ǫReµReMσ −Mσw

(0)
Re

−w(0)T
Re 0

]
.
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Figure 7.7. Monte Carlo samples of 25 eigenvalues with the largest real part for the flow around an obstacle
with CoV = 1% (left) and CoV = 10% (right). The eigenvalues of the mean problem are indicated by circles.
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Figure 7.8. Plots of the pdf estimate of the real part of the rightmost eigenvalue obtained using Monte
Carlo (MC), stochastic collocation (SC), and stochastic Galerkin method (SG) for the expansion flow around
a symmetric step with CoV = 1% (left) and CoV = 10% (right).

and in the mean-based preconditioner (Algorithm 2) we also modified (5.19) as

McMB =

[
K1 − ǫReµReI 0

0 w
(0)T
Re (K1 − ǫReµReI)

−1w
(0)
Re

]
,

that is, we used I instead of Mσ in the shift of the matrix K1. We also adapted the constraint
hierarchical Gauss–Seidel preconditioner (Algorithm 4–5), which was used as before without
truncation of the matrix-vector multiplications and also with truncation, setting pt = 2, as
discussed in section 5.2. For the mean-based preconditioner we used ǫRe = 0.97, but the pre-
conditioner appeared to be far less sensitive to a specific value ofǫRe, and ǫRe = 1 otherwise.
We note that this way the algorithms are still formulated for a generalized nonsymmetric
eigenvalue problem unlike in [19], where we studied symmetric problems, and in implemen-
tation we used a Cholesky factorization of the mass matrix in order to formulate a standard
eigenvalue problem. From the results in Table 7.4 we see that for all preconditioners the
overall number of nonlinear steps and GMRES iterations increases for larger CoV ; although,
all variants of the constraint preconditioner outperform the mean-based preconditioner and
the total number of iterations remains relatively small. Next, the performance with constraint
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1124 BEDŘICH SOUSEDÍK AND KOOKJIN LEE

Table 7.3
The 10 coefficients of the gPC expansion of the rightmost eigenvalue for the expansion flow around a

symmetric step problem with CoV = 1% and 10% computed using stochastic collocation (SC), and stochastic
Galerkin method (SG). Here d is the polynomial degree and k is the index of basis function in expansion (3.5).

d k SC SG SC SG

CoV = 1% CoV = 10%

0 1 5.7873E-04 5.7873E-04 4.8948E-04 4.8927E-04

1 2 −1.5948E-04 −1.5948E-04 −1.5890E-03 −1.5877E-03
3 −2.3689E-04 −2.3689E-04 −2.3619E-03 −2.3605E-03

2 4 −2.4179E-07 −2.6041E-07 −2.4472E-05 −2.6501E-05
5 −8.2562E-07 −8.7937E-07 −8.3136E-05 −8.8911E-05
6 −5.6059E-07 −5.9203E-07 −5.6429E-05 −5.9831E-05

3 7 7.7918E-10 8.2134E-10 5.7810E-07 8.5057E-07
8 2.5941E-09 3.9327E-09 2.8439E-06 4.022E-06
9 3.8788E-09 5.5168E-09 4.0315E-06 5.6217E-06
10 1.3002E-09 2.2685E-09 1.6668E-06 2.3171E-06

Table 7.4
The number of GMRES iterations in each step of inexact line-search Newton method (Algorithm 1) for

computing the rightmost eigenvalue and corresponding eigenvectors of the expansion flow around a symmetric
step problem with CoV = 1% (left) and 10% (right) and with the stopping criteria ‖rn‖2 < 10−10 and different
choices of preconditioners: mean-based (MB) from Algorithm 2, constraint mean-based (cMB) from Algorithm 3
and its updated variant (cMBu) from section 5.2.1, and the constraint hierarchical Gauss–Seidel preconditioner
(chGS) from Algorithm 4–5 and also with truncation, setting pt = 2 (chGS2).

CoV = 1% CoV = 10%

step MB cMB cMBu chGS chGS2 MB cMB cMBu chGS chGS2

1 19 4 4 2 2 23 6 6 3 3
2 17 4 4 3 3 20 6 6 4 4
3 15 3 3 3 3 19 6 6 4 4
4 15 5 5 4 4
5 14 5 5 3 3
6 23 8 8 5 5

preconditioners seems not to improve with the updating discussed in section 5.2.1, which is
likely since the numbers of iterations are already low. Finally, using the constraint hierarchical
Gauss–Seidel preconditioner reduces the number of GMRES iterations, which is slightly more
significant for larger values of CoV . The computational cost of the preconditioner may be
reduced by using the truncation of the matrix-vector multiplications; specifically we see that
the overall iteration counts with and without the truncation are the same.

8. Conclusion. We studied inexact stochastic Galerkin methods for linear stability analy-
sis of dynamical systems with parametric uncertainty and a specific application: the Navier–
Stokes equation with stochastic viscosity. The model leads to a generalized eigenvalue problem
with a symmetric mass matrix and nonsymmetric stiffness matrix, which was given by an affine
expansion obtained from a stochastic expansion of the viscosity. For the assessment of linear
stability we were interested in characterizing the rightmost eigenvalue using the generalized

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.

D
o
w

n
lo

ad
ed

 0
9
/2

9
/2

2
 t

o
 1

3
0
.8

5
.5

9
.1

5
0
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y



STOCHASTIC GALERKIN METHODS FOR STABILITY ANALYSIS 1125

polynomial chaos expansion. Since the eigenvalue of interest may be complex, we consid-
ered separated representation of the real and imaginary parts of the associated eigenpair. The
algorithms for solving the eigenvalue problem were formulated on the basis of line-search New-
ton iteration, in which the associated linear systems were solved using the right-preconditioned
GMRES method. We proposed several preconditioners: the mean-based preconditioner, the
constraint mean-based preconditioner, and the constraint hierarchical Gauss–Seidel precon-
ditioner. For the two constraint preconditioners we also proposed an updated version, which
adapts the preconditioners to the linear system using the Sherman–Morrison–Woodbury for-
mula after each step of Newton iteration. We studied two model problems: one when the
rightmost eigenvalue is given by a complex conjugate pair, and another when the eigenvalue is
real. The overall iteration count of GMRES with the constraint preconditioners was smaller
compared to the mean-based preconditioner, and the constraint preconditioners were also less
sensitive to the value of CoV . Also we found that updating the constraint preconditioner after
each step of Newton iteration and using the off-diagonal blocks in the action of the constraint
hierarchical Gauss–Seidel preconditioner may further decrease the overall iteration count, in
particular when the rightmost eigenvalue is complex. Finally, for both problems the prob-
ability density function estimates of the rightmost eigenvalue closely matched the estimates
obtained using the stochastic collocation and also with the direct Monte Carlo simulation.

Appendix A. Computations in inexact Newton iteration. The main component of a
Krylov subspace method, such as GMRES, is the computation of a matrix-vector product.
First, we note that the algorithms make use of the identity

(V ⊗W ) vec (U) = vec
(
WUV T

)
.(A.1)

Let us write a product with Jacobian matrix from (5.13) as

D̂J(v̄
(n)
Re , v̄

(n)
Im , λ̄

(n)
Re , λ̄

(n)
Im )




δv̄Re

δv̄Im
δλ̄Re

δλ̄Im


 ,

where

D̂J(v̄
(n)
Re , v̄

(n)
Im , λ̄

(n)
Re , λ̄

(n)
Im ) =

[
ARe AIm BRe BIm

−1
2CRe −1

2CIm 0 0

]
,(A.2)

with ARe, AIm, BRe, BIm, and CRe, CIm denoting the matrices in (5.9)–(5.12). Then, using
(5.17) and (A.1), the matrix-vector product entails evaluating

AReδv̄Re =



E
[
ΨΨT⊗K

]
−E[(λ̄(n)TRe Ψ)ΨΨT⊗Mσ]

−E[(λ̄(n)TIm Ψ)ΨΨT⊗Mσ]


 δv̄Re(A.3)

=



vec

(∑nν

ℓ=1KℓδV̄ReH
T
ℓ

)
−vec

(∑nξ

ℓ=1 λ
(n)
Re,ℓMσδV̄ReH

T
ℓ

)

−vec
(∑nξ

ℓ=1 λ
(n)
Im,ℓMσδV̄ReH

T
ℓ

)


 ,
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1126 BEDŘICH SOUSEDÍK AND KOOKJIN LEE

AImδv̄Im =




E[(λ̄
(n)T
Im Ψ)ΨΨT⊗Mσ]

E[ΨΨT⊗K]−E[(λ̄(n)TRe Ψ)ΨΨT⊗Mσ]


 δv̄Im(A.4)

=




vec
(∑nξ

ℓ=1 λ
(n)
Im,ℓMσδV̄ReH

T
ℓ

)

vec
(∑nν

ℓ=1KℓδV̄ReH
T
ℓ

)
−vec

(∑nξ

ℓ=1 λ
(n)
Re,ℓMσδV̄ReH

T
ℓ

)


 ,

BReδλ̄Re =



−E[ΨT ⊗ (ΨΨT⊗Mσ)]v̄

(n)
Re

−E[ΨT ⊗ (ΨΨT⊗Mσ)]v̄
(n)
Im


 δλ̄Re =



−vec

(∑nξ

ℓ=1 δλRe,ℓMσV̄
(n)
Re H

T
ℓ

)

−vec
(∑nξ

ℓ=1 δλRe,ℓMσV̄
(n)
Im HT

ℓ

)


 ,(A.5)

BImλ̄Im =




E[ΨT ⊗ (ΨΨT⊗Mσ)]v̄
(n)
Im

−E[ΨT ⊗ (ΨΨT⊗Mσ)]v̄
(n)
Re


 δλ̄Im =




vec
(∑nξ

ℓ=1 δλIm,ℓMσV̄
(n)
Im HT

ℓ

)

−vec
(∑nξ

ℓ=1 δλIm,ℓMσV̄
(n)
Re H

T
ℓ

)


 ,(A.6)

−1

2
CReδv̄Re = −



E[Ψ⊗ (v̄

(n)T
Re ΨΨT⊗Inx

)]

0


 δv̄Re = −






v̄
(n)T
Re (H1 ⊗ Inx

)δv̄Re
...

v̄
(n)T
Re (Hnξ

⊗ Inx
)δv̄Re




0



,

(A.7)

−1

2
CImδv̄Im = −




0

E[Ψ⊗ (v̄
(n)T
Im ΨΨT⊗Inx

)]


 δv̄Im = −




0



v̄
(n)T
Im (H1 ⊗ Inx

)δv̄Im
...

v̄
(n)T
Im (Hnξ

⊗ Inx
)δv̄Im






,

(A.8)

and the right-hand side of (5.13) is evaluated using

F (n) =



E[ΨΨT⊗K]v̄

(n)
Re −E[(λ̄

(n)T
Re Ψ)ΨΨT⊗Mσ]v̄

(n)
Re +E[(λ̄

(n)T
Im Ψ)ΨΨT⊗Mσ]v̄

(n)
Im

E[ΨΨT⊗K]v̄
(n)
Im −E[(λ̄

(n)T
Im Ψ)ΨΨT⊗Mσ]v̄

(n)
Re −E[(λ̄

(n)T
Re Ψ)ΨΨT⊗Mσ]v̄

(n)
Im




=



vec

(∑nν

ℓ=1KℓδV̄
(n)
Re H

T
ℓ

)
−vec

(∑nξ

ℓ=1 λ
(n)
Re,ℓMσV̄

(n)
Re H

T
ℓ

)
+vec

(∑nξ

ℓ=1 λ
(n)
Im,ℓMσV̄

(n)
Im HT

ℓ

)

vec
(∑nν

ℓ=1KℓδV̄
(n)
Im HT

ℓ

)
−vec

(∑nξ

ℓ=1 λ
(n)
Im,ℓMσV̄

(n)
Re H

T
ℓ

)
−vec

(∑nξ

ℓ=1 λ
(n)
Re,ℓMσV̄

(n)
Im HT

ℓ

)



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and

G(n) =



E[Ψ⊗ ((v̄

(n)T
Re (ΨΨT ⊗ Inx

)v̄
(n)
Re )−1)]

E[Ψ⊗ ((v̄
(n)T
Im (ΨΨT ⊗ Inx

)v̄
(n)
Im )−1)]


 ,

where, using ⋆ for either Re or Im, the ith row ofG(n) is

[
G(n)

]
i
= E[ψi(v̄

(n)
⋆

T (ΨΨT ⊗ Inx
)v̄

(n)
⋆ )− ψi],

= v̄
(n)
⋆

T
E[ψiΨΨT ⊗ Inx

]v̄
(n)
⋆ − δ1i,

and the first term above is evaluated as

v̄
(n)
⋆

T
E[ψiΨΨT ⊗ Inx

]v̄
(n)
⋆ = v̄

(n)
⋆

T (Hi ⊗ Inx
)v̄

(n)
⋆ ,

or, denoting the trace operator bytr, this term can be also evaluated as

v̄
(n)
⋆

T
E[ψiΨΨT ⊗ Inx

]v̄
(n)
⋆ = tr(V̄

(n)
⋆ HiV̄

(n)
⋆

T ) = tr(V̄
(n)
⋆

T V̄
(n)
⋆ Hi).

Appendix B. Parameters used in numerical experiments. In addition to the description
in section 7, we provide in Table B.1 an overview of the main parameters used in the numerical
experiments. Besides that, we used the following settings in both experiments: the gPC
parameters mξ = 2, p = 3, nξ = 10; for the sampling methods, nMC = 1 × 103, nq = 29;
for the inexact Newton iteration, ρ = 0.9, c = 0.25, stopping criterion ‖r̂n‖2 < 10−10; for
the preconditioners, ǫRe = ǫIm = 0.97 (the mean-based preconditioner) and ǫRe = ǫIm = 1
(otherwise).

Table B.1
The main parameters used in the numerical experiments.

Section 7.1 Section 7.2

problem Flow around an obstacle Expansion flow around a symmetric step

FEM Q 2−Q 1 Q 2− P −1

nelem/nu/np 1008/8416/1096 976/8338/2928
Re 373 220
λ 0.0085± 2.2551i 5.7963× 10−4

nν 28 3
quadrature (in SC) Gauss–Hermite Gauss–Legendre

Solving the Navier–Stokes problem (see [30] for details):

max Picard steps 6 20
max Newton steps 15 20
nltol 10−8 10−8
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