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Abstract. We present a method for linear stability analysis of systems with parametric uncertainty formulated
in the stochastic Galerkin framework. Specifically, we assume that for a model partial differential
equation, the parameter is given in the form of generalized polynomial chaos expansion. The stability
analysis leads to the solution of a stochastic eigenvalue problem, and we wish to characterize the
rightmost eigenvalue. We focus, in particular, on problems with nonsymmetric matrix operators,
for which the eigenvalue of interest may be a complex conjugate pair, and we develop methods for
their efficient solution. These methods are based on inexact, line-search Newton iteration, which
entails use of preconditioned GMRES. The method is applied to linear stability analysis of the
Navier—Stokes equations with stochastic viscosity, its accuracy is compared to that of Monte Carlo
and stochastic collocation, and the efficiency is illustrated by numerical experiments.
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1. Introduction. The identification of instability in large-scale dynamical systems is im-
portant in a number of applications such as fluid dynamics, epidemic models, pharmacokinet-
ics, analysis of power systems and power grids, and quantum mechanics and plasma physics.
A steady solution w is stable if, when in a transient simulation, it is introduced with a small
perturbation as initial data and the simulation reverts to u, and it is unstable otherwise.
This is of fundamental importance since unstable solutions may lead to inexplicable dynamic
behavior. Linear stability analysis entails computing the rightmost eigenvalue of the Jacobian
evaluated at u, and thus it leads to solution of, in general, large sparse generalized eigenvalue
problems; see, e.g., [4, 5, 8, 13, 16, 27] and the references therein. Typically, a complex pair of
rightmost eigenvalues leads to a Hopf bifurcation, and a real rightmost eigenvalue may lead to
a pitchfork bifurcation. The analysis is further complicated if the parameters in the systems
are functions of one or more random variables. This is quite common in many real-world
applications, since the precise values of model coefficients or boundary conditions are often
not known. A popular method for this type of problem is Monte Carlo, which is known for
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its robustness but also its slow convergence. In this study, we use spectral stochastic finite
element methods [12, 17, 33, 34], with the main focus on the so-called stochastic Galerkin
method, for the linear stability analysis of Navier—Stokes equation with stochastic viscosity.
Specifically, we consider the parameterized viscosity given in the form of generalized poly-
nomial chaos (gPC) expansion. In the first step, we apply the algorithms developed in [18,
30] (see also [24]) to find a gPC expansion of the solution of the Navier—Stokes equation. In
the second step, we use the expansions of the solution and viscosity to set up a generalized
eigenvalue problem with a nonsymmetric matrix operator, and in the assessment of linear
stability of this problem we identify the gPC expansions of the rightmost eigenvalue. The
main contribution in this study is the development of the stochastic Galerkin method for
nonsymmetric eigenvalue problems. Our approach is based on inexact Newton iteration: the
linear systems with Jacobian matrices are solved using GMRES, for which we also develop
several preconditioners. The preconditioners are motivated by our prior work on (truncated)
hierarchical preconditioning [32, 19]; see also [2]. For an overview of literature on solving
eigenvalue problems in the context of spectral stochastic finite element methods we refer the
reader to [1, 19, 29] and the references therein. Recently, Hakula and Laaksonen [15] studied
crossing of eigenmodes in the stochastic parameter space, and Elman and Su [9] developed a
low-rank inverse subspace iteration. However, to the best of our knowledge, there are only
a few references addressing nonsymmetric stochastic eigenvalue problems: by Sarrouy, Des-
sombz, and Sinou [25, 26], though there is no discussion of efficient solution strategies, and
also by Sonday et al. [28], who studied distribution of eigenvalues for the Jacobian in the
context of the stochastic Galerkin method. Most recently, the authors with collaborators
also compared surrogate learning strategies based on a sampling method, Gaussian process
regression, and a neural network in [31].

A study of linear stability of Navier—Stokes equation under uncertainty was conducted by
Elman and Silvester [7]. The study was based on a judiciously chosen perturbation of the state
variable, and a stochastic collocation method was used to characterize the rightmost eigen-
value. Our approach here is different. We consider parametric uncertainty (of the viscosity),
and the solution strategy is based on the stochastic Galerkin method. In fact, also the variant
of the collocation method used here is based on the stochastic Galerkin projection (sometimes
called a nonintrusive stochastic Galerkin method in the literature; see [33, Chapter 7| for a
discussion). From this perspective, our study can be viewed as an extension of the setup from
[5] to problems with viscosity given in the form of stochastic expansion and their efficient
solution using the stochastic Galerkin method. However, more importantly, we illustrate that
the inexact methods for stochastic eigenvalue problems proposed recently by Lee and Sousedik
[19] can be also applied to problems with the nonsymmetric matrix operator.! This in general
allows us to perform a linear stability analysis for other types of problems as well. We do
not address eigenvalue crossing here, which is a somewhat delicate task for gPC-based tech-
niques. We assume that the eigenvalue of interest is sufficiently separated from the rest of
the spectrum and no crossing occurs. This is often the case for outliers and other eigenvalues
that may be of interest in applications. A suitability of the algorithm we propose in this

LSpecifically, the methods based on inexact Newton iteration, since in our experience the stochastic Rayleigh
quotient and inverse iteration methods are less effective for nonsymmetric problems.
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study can be assessed, e.g., by running first a low-fidelity (quasi-)Monte Carlo simulation.
From our experience with the problem at hand, we can also note that this indicates that the
rightmost eigenvalue remains relatively well separated from the rest of the spectrum, and it is
less prone to switching, unlike the other eigenvalues, even with moderate values of coefficient
of variation, which in turn allows its efficient characterization by a gPC expansion.

The rest of the paper is organized as follows. In section 2 we recall the basic elements
of linear stability analysis and link it to an eigenvalue problem for a specific model given by
the Navier—Stokes equation. In section 3 we introduce the stochastic eigenvalue problem. In
section 4 we formulate the sampling methods and in section 5 the stochastic Galerkin method
and inexact Newton iteration for its solution. In section 6 we apply the algorithms to linear
stability analysis of Navier—Stokes equation with stochastic viscosity, and in section 7 we
report the results of numerical experiments. Finally, in section 8 we summarize and conclude
our work.

2. Linear stability and deterministic model problem. Following [5], let us consider the
dynamical system

(2.1) Mu; = f(u,v),

where f : R™ x R—R" is a nonlinear mapping, u € R™ is the state variable (velocity, pressure,
temperature, deformation, etc.), M € R™ ™ is the mass matrix in the finite element setting,
and v is a parameter. Let u denote the steady-state solution to (2.1), i.e., uy = 0. We are
interested in the stability ofu: if a small perturbation §(0) is introduced to u at time ¢ = 0,
does 6(t) grow with time, or does it decay? For a fixed value of v, linear stability of the
steady-state solution is determined by the spectrum of the eigenvalue problem

(2.2) Jv =AM,
where J = %(u(u),u) is the Jacobian matrix of f evaluated at v. The eigenvalues have
a general form A = o + i3, where a = Re) and 8 = Im\. Then e = et
‘e/\t’ = ‘eat’, there are in general two cases: if a < 0, the perturbation decays with time,
and if @ > 0, the perturbation grows. We refer the reader to, e.g., [4, 13] and the references
therein for a detailed discussion. That is, if all the eigenvalues have strictly negative real part,
then v is a stable steady solution, and if some eigenvalues have nonnegative real part, thenu
is unstable. Therefore, a change of stability can be detected by monitoring the rightmost
eigenvalues of (2.2). A steady-state solution may lose its stability in one of two ways: either
the rightmost eigenvalue of (2.2) is real and passes through zero from negative to positive as v
varies, or (2.2) has a complex pair of rightmost eigenvalues and they cross the imaginary axis
as v varies, which leads to a Hopf bifurcation with the consequent birth of periodic solutions
of (2.1).

Consider a special case of (2.1), the time-dependent Navier—Stokes equations governing
viscous incompressible flow,

, and since

@ = vV — (@- V)i — Vp,

2.3
(2:3) 0=V-4,
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subject to appropriate boundary and initial conditions in a bounded physical domainD, where
v is the kinematic viscosity, # is the velocity, and p is the pressure. Properties of the flow are
usually characterized by the Reynolds number

Re = —,
v
where U is the characteristic velocity and L is the characteristic length. For convenience,
we will also sometimes refer to the Reynolds number instead of the viscosity. Mixed finite
element discretization of (2.3) gives the following Jacobian and the mass matrix (see [5] and
[8, Chapter 8] for more details):

-G 0

F BT
(2.4) J:[ 0 0

Mg XNy _
A

:| c anxnm7

where n; = n, + n, is the number of velocity and pressure degrees of freedom, respectively,
Ny > Ny, F' € R™>™ is nonsymmetric, B € R"»*™ is the divergence matrix, and the velocity
mass matrix G™*" is symmetric positive definite. The matrices are sparse and n,. is typically
large. We note that the mass matrixM is singular, and (2.2) has an infinite eigenvalue. As
suggested in [3], we replace the singular mass matrixM with the nonsingular, shifted mass
matrix

(2.5) M, = [ ~G oB" ] :

cB 0

which is symmetric but in general indefinite, and it maps the infinite eigenvalues of (2.2) to
o1 and leaves the finite ones unchanged. Then the generalized eigenvalue problem (2.2) can
be transformed into an eigenvalue problem

(2.6) Jv = AM,v.

The flow is considered stable if ReA < 0, and we wish to detect the onset of instability, that
is, to find when the rightmost eigenvalue crosses the imaginary axis. Efficient methods for
finding the rightmost pair of complex eigenvalues of (2.2) (or (2.6)) were studied in [5]. Here,
our goal is different. We consider parametric uncertainty in the sense that the parameter
v =v(§), where £ is a set of random variables and which is given by the so-called generalized
polynomial chaos expansion. To this end, we first recast the eigenvalue problem (2.6) in the
spectral stochastic finite element framework, then we show how to efficiently solve it, and
finally we apply the stability analysis to the Navier—Stokes equation with stochastic viscosity.

3. Stochastic eigenvalue problem. Let (€2, F,P) be a complete probability space, that
is, ) is the sample space with o-algebraF and probability measureP. We assume that the
randomness in the mathematical model is induced by a vector £ : Q — I' C R"* of independent
random variables & (w), ..., &mn, (w), where w € . Let B(I') denote the Borel o-algebra onl’
induced by £ and p the induced measure. The expected value of the product of measurable
functions onI" determines a Hilbert space Tt = L? (T', B(T'), ) with inner product
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(31) (1.0) = Efu] = [ u(€)o(€)du(e)
where the symbol E denotes the mathematical expectation.

In computations we will use a finite-dimensional subspace 7}, C Tt spanned by a set of
multivariate polynomials {¢;(£)} that are orthonormal with respect to the density function
w, that is, E [x1)s] = Ok, and 1)y is constant. This will be referred to as the gPC basis [34].
The dimension of the spaceT), depends on the polynomial degree. For polynomials of total
degreep, the dimension is ng = (mfpﬂj).

Suppose that we are given an affine expansion of a matrix operator, which may correspond

to the Jacobian matrix in (2.2), as
(32) K(&) =) Kebu(€),
/=1

where eachK, € R"*" ig a deterministic matrix, and K; is the mean-value matrix K; =
E [K(&)]. The representation (3.2) is obtained from either Karhunen—Loe¢ve or, more generally,
a stochastic expansion of an underlying random process; a specific example is provided in
section 7.

We are interested in a solution of the following stochastic eigenvalue problem: find a
specific eigenvalue A(§) and possibly also the corresponding eigenvectorv(§) which satisfy inD
almost surely (a.s.) the equation

(3.3) K(§)v(§) = MEMov(E),

where K () € R™*" is a nonsymmetric matrix operator, M,€ R *" is a deterministic
mass matrix, A(§) € C and v(§) € C™ along with a normalization condition

(3.4) (v(€))" v(€) = constant,

which is further specified in section 5.
We will search for expansions of the eigenpair (A(§),v(§)) in the form

(3.5) AE =D Mwk(€), v(&) =D w(©),
k=1 k=1

where A\ € C and v € C" are coefficients corresponding to the basis{¢;}. We note that
the series for A(§) in (3.5) converges for ng — oo in the space Tt under the assumption that
the gPC polynomials provide its orthonormal basis and provided that \(§) has finite second
moments; see, e.g., [10] or [33, Chapter 5]. Convergence analysis of this approximation for
self-adjoint problems can be found in [1].

4. Monte Carlo and stochastic collocation. Both Monte Carlo and stochastic collocation
are based on sampling. The coefficients are defined by a discrete projection

(4.1) /\k: <)\,1/}k>, VE = <v,¢k>, kZl,...,ng.
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The evaluations of coefficients in (4.1) entail solving a set of independent deterministic eigen-

value problems at a set of sample points{ﬁ(q)}, qg=1,....,nmc, or ng,
(4.2) K(g(q))v@(q)) Y (5(11)) My <§(q)) )
In the Monte Carlo method, the sample pointsé(?, ¢ = 1,...,nyc, are generated randomly
following the distribution of the random variables¢;, ¢ = 1,...,m¢, and moments of solution
are computed by ensemble averaging. In addition, the coefficients in (3.5) could be computed
using Monte Carlo integration as?

nypc nmc

For stochastic collocation, which is used here as the so-called nonintrusive stochastic Galerkin
method, the sample points¢@, ¢ = 1,... ,Ng, consist of a predetermined set of collocation
points, and the coefficients Ay and v in the expansions (3.5) are determined by evaluating
(4.1) in the sense of (3.1) using numerical quadrature as

Tq

A = Z MEDED @, v = Y varm, €D (D),

q=1

where ¢(@ are the quadrature (collocation) points and w@ are quadrature weights. Details
of the rule we use in our numerical experiments are discussed in section 7, and we refer the
reader to monograph [17] for a detailed discussion of quadrature rules.

5. Stochastic Galerkin method and Newton iteration. The stochastic Galerkin method
is based on the projection

(51) <K’U,1/Jk> = <)\MUU,¢]€>, k= 1,...,n5,
(5.2) (v*v,1g) = const-0k, k=1,...,n¢ const € R.

Let us introduce the notation

(53) [Hg]jk = h(,jka hé,jk EE[@bgw]@bk], EZ 1,...,77,1,, j,]{ = 1,...,7’1,5.

In order to formulate an efficient algorithm for eigenvalue problem (3.3) with nonsymmetric
matrix operator using the stochastic Galerkin formulation, we introduce a separated repre-
sentation of the eigenpair using real and imaginary parts,

v(§) = vRe(§) +1vm(§),  A(§) = Age(§) + iAm (),

where vRe (&), vim(€) € R™ and Are(§), Atm(§) € R. Then replacing v(£) and A(€) in eigenvalue
problem (3.3) results in

(5.4) K (&) (vre(§) +ivm(£)) = (Are(§) +1Am(§)) Mo (vre(§) + ivm(£))-

2In numerical experiments, we avoid this approximation of the gPC coefficients and directly work with the
sampled quantities.
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Expanding the terms in (5.4) and collecting the real and imaginary parts yields a system of
equations that can be written in a separated representation as

9 et ] = [retete o] [ e

and the normalization condition corresponding to the separated representation in (5.5) is
taken as

(5.6) vRe(€) VRe(§) = 1, o1 () vm(§) = 1.
Now, we seek expansions of type (3.5) for vRe(§), vm (&), Are(§), and A, (§), that is,

(5.7) vs(§) = (‘IJ(S)T ® In,)0s,  As(§) = \I'(g)TS\Sa s = Re, Im,
where the symbol ® denotes the Kronecker product, ¥(¢) = [¢1(€),...,Yn ()]T, As =
Ao 1oy Asne)? € R, and o5 = [Ug:h . ,vgné]T € R™" for s = Re, Im.

Let us consider expansions (5.7) as approximations to the solution of (5.5)—(5.6). Then

we can write the residual of (5.5) as

F('L—}Rea Ulm, S\Rea S\Im)
(T(E)TREK(E)) Vre — (ALY ()W (E)T@My) tret (AL, W ()W (E)T @ M,) Vim

)

(T ®K(E)) Tt — (M U () V(E)T @My) Tre — (Ao U () T(€)T @My ) Timn

and the residual of (5.6) as

G(T)Re; T)Im) =

Imposing the stochastic Galerkin orthogonality conditions (5.1) and (5.2) toF andG, respec-
tively, we get a system of nonlinear equations

(5.8) T(ﬁRea Dl S\Rea S\Im) _ F(URey 2iImv %Rea )\Im) —0c RQ(RI+1)H5’
G(URea Ulm)

where

F(T_}Re, rUIrna S‘Re7 E\Im)
E[VUT ® K|toge —E[(Are? V) VU @ M, |0Re +E[(Amm? V)V @ M, |01y,
E[VUT @ K)o —E[(Am? V)V @ M,|ore —E[(Are’ ¥)UUT @ M, |01,
and

E[¥ @ ((tre! (VU @ I, )0Re) — 1)]
G(@Rey @Im) —
E[V @ (0 (YT @ I, )01m) — 1)]

Copyright (© by SIAM and ASA. Unauthorized reproduction of this article is prohibited.



Downloaded 09/29/22 to 130.85.59.150 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

1108 BEDRICH SOUSEDIK AND KOOKJIN LEE

We will use Newton iteration to solve the system of nonlinear equations (5.8). The Jacobian
matrixDJ(URe, O1m, ARes Alm) Of (5.8) can be written as

oF OF OF oF
8’DRC 8’Elm 85\Re axIm
_ _ < N 2(n,+1 2(n,+1
DJ (e, Bims A, Aim) = c RCMatDne)x (2(na+ )ng)7
oc  8G  0G oG
OUre  OUtm  OMre  OAmm

where
(5.9)
op  [ERYTOK]-E[Qr V)TV OM,]]  5n  [ERT @ (WU @M,)]oR]
VR i —E[(Am T 0) OO ® M,] OARe —E[UT @ (VU ® M, )|omy |
(5.10)
oF E[(Am? ) U¥T @ M,] oF EVT @ (WU ®M,)|vm
Vi | EVUT K] —E[(Arel V) WU @ M,] | OAim -E[VT @ (P97 ®M,)|vRe |
and
- el 2E[¥ ® (0%, YV ®1,,)]] oG .
. OURe N ’ aj\Re -
(5.12) aa_G = , ;AG =0.
Uim 2R © (oF 90T @1, )] Im

However, for convenience in the formulation of the preconditioners presented later, we formu-
late Newton iteration with rescaled Jacobian matrixD.J (171%72,171(&), )\gg, /\g;)), which at stepn

entails solving a linear system

GF ™) HF (™) BF™  9E™M OURe
(5 13) OUre OV1m OARe OAim 51_7Im o F(n)
' SAre|  |—-3GM|°
_18G™  19G™ 0 0 Re 3
2 677Re 2 6'DIm 5)\Im

followed by an update

il(’::rl) il(’:;) OURe
(5 . 14) 721(:1+1) 721(:1) 4 51__}1111
)\gl;rl) glo) 0 %\Re
I e

Remark 5.1. We used the rescaling of the Jacobian in [19] in order to symmetrize the
matrix in (5.13); however, we note that here it is still in general nonsymmetric.

Copyright (© by SIAM and ASA. Unauthorized reproduction of this article is prohibited.



Downloaded 09/29/22 to 130.85.59.150 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

STOCHASTIC GALERKIN METHODS FOR STABILITY ANALYSIS 1109

Linear systems (5.13) are solved inexactly using a preconditioned GMRES method. We
refer the reader to Appendix A for details of the evaluation of the right-hand side and of the
matrix-vector product, and to [18] for a discussion of GMRES in a related context.

5.1. Inexact Newton iteration. As in [19], we consider a line-search modification of this
method following [23, Algorithm 11.4] in order to improve global convergence behavior of
Newton iteration. Denoting

5™ = (5", )TN and 2™ = [AEDT, AEDTT"

m

we define the merit function as the sum of squares,

- - - (n)
30 = SR AR, where 7, X = | T

—%G(")

that is, 7((™, A(")) is the negative right-hand side of (5.13), i.e., it is a rescaled residual of
(5.8), and we also denote

fo = f(@™, XM, P = F(@™ ™Y, DJ, = DJ(™, ).

As the initial approximation of the solution, we use the eigenvectors and eigenvalues of the
associated mean problem

G.15) & (ol i) = (N i) My (il + i)
concatenated by zeros, that is,

T
00 = [0, (BT 0.
50

T
[A&21,0, . 0,

Im

and the initial residual is

R [F(@(O),S\(O))]
ro = _ .
0 —1G(@O)

The line-search Newton method is summarized in our setting as Algorithm 1, and the choice
of parametersp andc in the numerical experiments is discussed in section 7.

The inexact iteration entails in each step a solution of the stochastic Galerkin linear
system in line 4 of Algorithm 1 given by (5.13) using a Krylov subspace method. We use
preconditioned GMRES with the adaptive stopping criteria,

H?n + DannH2

7212

(5.16)

<7 [Fn-1llz

where 7 = 10!, The for-loop is terminated when the convergence check in line 12 is satisfied;
in our numerical experiments we check if ||7,]], < 1071,
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Algorithm 1 [23, Algorithm 11.4] Line-search Newton iteration

1:  Given p,c € (0,1), set o* = 1.

2: Set 99 and A0,

3: for n=0,1,2,... do

4: l/)jnpn = —Ty (Solve inexactly to find the Newton update py,.)
so(m)

5: [5)\@)] = Pn

6: a, = o

7 while f(z_)(") + oo™ A 4 and;\(”)) > fo+ca,Vflp, do

8: Qp ¢ pan

9: end while

10: ot 5 4 o, 60

11: XD X)) g sA)

12: Check for convergence.

13:  end for

Our implementation of the solvers is based on the so-called matricized formulation, in
which we make use of isomorphism between R"™="¢ and R"=*"¢ determined by the operators vec
and mat: v = vec(V), V = mat(v), where v € R"" V € R% "¢, The uppercase/lowercase
notation is assumed throughout the paper, so R = mat(7), etc. Specifically, we define the
matricized coefficients of the eigenvector expansion

(5.17) V = mat(s) = o1, -, ng] € RPFT,

where the column k contains the coefficients associated with the basis functiony,. A detailed
formulation of the GMRES in the matricized format can be found, e.g., in [18]. We only
describe computation of the matrix-vector product (Appendix A), and in the next section we
formulate several preconditioners.

5.2. Preconditioners for the Newton iteration. In order to allow for an efficient iterative
solution of linear systems in line 4 of Algorithm 1 given by (5.13) using a Krylov subspace
method, it is necessary to provide a preconditioner. In this section, we adapt the mean-based
preconditioner and two of the constraint preconditioners from [19] to the formulation with
separated real and complex parts, and we write them in the matricized format. The idea can
be motivated as follows. The preconditioners are based on approximations of the blocks in
(A.2). The mean-based preconditioner is inspired by the approximation

A 0

0 S|’
where A ~ [ARe Amm] and the Schur complement S ~ —% [CRe Cm] [ARe Alm]_l [Bre Bim]-
The constraint preconditioners are based on the approximation

B
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Algorithm 2 Mean-based preconditioner (MB)

The preconditioner Myp : (R”Re, RV RAre, R/\Im) — (V”Re, Vvim JAre V’\Im) is defined
as

1/ VRe RVRe
V’l}[m vam
(5.18) MuB Ve | = | RMwe
VAIm R>\Im
Above
Av 02nx><2
0)T 0 0
’ On,x1 —wy,, —Mywy,  —Mswg,
where wg)e) and wl(?n) are the real and imaginary components of eigenvector w of the stencil

(Ky, M,) with corresponding eigenvalue p = pre+ipim, cf. (5.15), and

T Ky — ERGNRGMJ 6ImHIm-Z\4J :|
5.20 A= ,
(5.20) [ —tmpimMy K1 — enefineM,

with constants ere, €rm further specified in the numerical experiments section.

where B & [Bre Bim| and C ~ —3 [Cre Crm]. Next, considering the truncation of the series
in (A.3)-(A.8) to the very first term, we get

A~ [ Kl - ARe,ljw’a )\Im,lMa
Ax InE © L _)\Im,lMa Ky — )\Re,lMa :|
(see left columns in (5.9)—(5.10) and (A.3)—(A.4)),

B _MJURe,l MO'va,l . . _ .
B~1I, ® | Myvm: —Myoges ] (see right columns in (5.9)—(5.10) and (A.5)—(A.6)),
r T
_ - 0
Caly, ®| Rel DXl | (g0 (5.11)—(5.12) and (A.7)—(A.8)).
N L Onmxl ~UIm,1

The precise formulations are listed for the mean-based preconditioner as Algorithm 2 and for
the constraint mean-based preconditioner as Algorithm 3. Finally, the constraint hierarchical
Gauss—Seidel preconditioner is listed as Algorithm 4. It can be viewed as an extension of
Algorithm 3, because the solves with stochastic Galerkin matrices (5.22) are used also in this
preconditioner, but in addition the right-hand sides are updated using an idea inspired by
Gauss—Seidel method in a for-loop over the degree of the gPC basis. Moreover, as proposed
n [32], the matrix-vector multiplications, used in the setup of the right-hand sides, can be
truncated in the sense that in the summations, t = 1,...,n¢ is replaced by ¢t € 7;, where
7y ={1,...,n} with ny = (mﬁpirpt) for some p; < p, and in particular with p; = 0 the chGS
preconditioner (Algorithm 4) reduces to the cMB preconditioner (Algorithm 3). We also note
that, since the initial guess is zero in Algorithm 4, the multiplications by and Fj; vanish
from (5.23)—(5.24).
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Algorithm 3 Constraint mean-based preconditioner (cMB)

The preconditioner Mgump : (R”RE, RV | RAre, R)‘Im) — (‘_/”RE, Vuim JARe ‘7)‘11“) is defined
as

V’URC RUR.C

‘_/’I)Im RUIm
(5.21) MaB | Vawe | = | prne

‘_/AIm RAIm
Above

(0) (0)
i evne Moty
—M, M,
(5.22) Mens = 0T i e
—’U)Re Onw x 1 02 9
X
Onm x1 _wI(I(L)T

with wl(ge) , fwl(gz, and A set as in Algorithm 2.

5.2.1. Updating the constraint preconditioner. It is also possible to update the applica-
tion of the constraint mean-based preconditioner in order to incorporate the latest approxima-
ge)/lm in (5.22). Suppose
the inverse of the matrixMgyp from (5.22) for n = 0 is available, e.g., as the LU decompo-
sition. That is, we have the preconditioner for the initial step of the Newton iteration, and
let us denote its application by X ~!. Specifically, X! = U'L~!, where L and U are the

factors of Mo\g. Next, let us consider two matrices Y and Z such that

—MUAwl({Le) MJAw(n)

tions of the eigenvector mean coefficients represented by the vectorsw

02111 X 2N, (n) Ir(nn)

(5.25) vzl —MzAwy,  —MsAwg,
' —Aw(n) 0 ’
Re My X1
(n) O2x2
Onz X1 _Awlm
where
Ak = wfd ol el = i ol

Specifically, Y Z7 is the rank 4 update of the preconditioner at stepn of the Newton itera-
tion, and the matrices Y and Z can be computed using a sparse SVD, which is available,
e.g., in [20]. In implementation, using MATLAB notation with Y Z7 = YZt, we compute
[U,S,V] = svds(YZt,4) and set Y = Ux S, ZT = V. Finally, a solve M\pv = u at stepn
of Newton iteration may be facilitated using the Sherman—Morrison—-Woodbury formula (see,
e.g., [14], or [22, section 3.8]) as

o= (X+vZ") lu= (X - XY (14 27X 7Y) T 2K
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Algorithm 4 Constraint hierarchical Gauss—Seidel preconditioner (chGS)

The preconditioner Mepgs : (R, RV, RAre, RAim) —y (VVRe [Y/VIm /AR |/Am) s defined as
follows. - - - ~
1:  Set the initial solution (VURe, VVim VAre VA1) to zero and update as:

2:  Solve
vy Ry Viaine)
(5.23) Mems “}; = f;%; -7 1‘%55; :

where Mg is set as in Algorithm 3, and

Ve i o) ]
yp FP [he,2ne) )]
n vne :t;t —(i )TV [he@mom] |
Ve | (i) TV B o) |
Fit = (K= AR M) Vit 20 MoV =il MoV ol MoV )
FP = (=M M) Vi ) = A MoV = ofd) MoV =l MoV )

and vl({?,t, UI(ZI)J, the tth gPC coefficients of eigenvector v(™ at step n of Algorithm 1.

3: ford=1,...,p—1do

4: Set £ = (ng+1:mn,), where ny = ("Ej_dl_l) and n, = ("5;d).
5:  Solve
VRe VRe VURe VURe
Vv(f? R(%{) Vv(l?ng) “jv(nluﬂ—lzns)
V’U m RU m V’U 1;: 'l,:Lm "
(524) MCMB ‘/(flie = R&Qe - ngrl Vv()l\;{e[) - ]:d+1 ()\;:jl' &) ,
(ﬁ) S\E) ()1\:n() (;\Lu+1:n§)
Im Im Im Im
‘/(Z) R(Z) Vv(linl) ‘/(nu-‘rl:ng)
where

EX [he ey o)

o EZer [P imny o)

1n
Eae V(ARJ) =2 (n) YTy o ’

me) | ez, | —(oge )"V [he o 0]

@) TV e @) |
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Algorithm 4 Constraint hierarchical Gauss—Seidel preconditioner (chGS), continued

Fa [Pt nattner o)

VURc L )
P e Fie [ht,<nu+1ms><@>}
A GO >
V(nic-%l:ng) teT, (n) \Ty,vRe
¢ _(URe,t) ‘/(nu—&-l:ng) ht,(nu-‘,-l:ng)(f)

Im
‘/(nu—&-l:ng)

(n) \T'y,v1m
7(va,t) Vv(nIu—i-lzng) [ht,(nu+1:n§)(€)i| i

A _ (n) NG o) e (D) rg A
6d+1 - <<Kt_)\Re,tMU) ‘/(qlfng)+>\Im,tMU‘/(qlzng)_vRe,tMgv(l?ng)+v1m,tMUV(11:ng)> ’

B _ (n) m (n) o (n) AIm (n) ARe
5d+1 - ((Kt*)‘Rne,tMJ) V(szne)*/\Izl,tMUV(Tnl)*UI{L,tMU (1{n[)*vlg,tMUV(1?n[)> ’
A (n) e (n) m (n) ARe (n) Alm
]:dJrl - ((K _)\l{;tMa) V(I:le—&-l:ng)+>\117;1,tM‘Tv(zu-&-l:ng)_DRZ,tMU‘/(nIz-i-l:ng)+vII:Ll,tM‘7V(nIu+1:n5)) )
B _ (n) m (n) e (n) Alm (n) ARe
]:d+1 - ((Kt_)\Rnc,tMU) Vv(qgu%»l:n&)_)\I:rll,tMU‘/v(lr)Lrjﬁ»l:ng)_URTZ,tMUVv(nIqul:nE)_UIZI,tMUVY(ni%»l:ng)) :
6: end for
7 Setﬂz(nqul:n{).
8: Solve
VURe URe VURe
“j(gg ggfg &:m
4 4 1y,
MenB V&Le = R&er ~ Cptl V(ARZ uE
0) &5) (Liny)
V)\Im R m V)\Im
(0) (0) (1)
where
) _
Epit [, tinu) )]
YV URe
Eﬁfﬁ“; gt [he,in o))
1n
Ept1 el =)0 ;
Vihe (1) \Ty,vRe
W) | ez, | —(ree) Vi) [reinn o]
V(l:nu)
(n) \Ty vim
~@ime)” Vi Peama©] |

A (n) o (n) m (n) ARe (n) Alm
Ept1 = ((Kt—ARe,tM‘T) V(qil?nu)+Alm,tMUV(?:nu)_URe,tMUV(fnu)+”Im7tM0V(1fnu)) ;

Epp1 = ((K */\ge),thf) V(?:rﬁu)*/\g;),th’V(vf?Zu)*’Ulgl),tMa (/}fzu)*vl(gl),tMUV(??iuD :
9: ford=p-1,...,1do
10: Set £ = (ng+1:mny), where ny = (nfj_dfl) and nq, = (nijd),
11: Solve (5.24).
12: end for
13: Solve (5.23).
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6. Bifurcation analysis of Navier—Stokes equations with stochastic viscosity. Here, we
follow the setup from [30] and assume that the viscosityr is given by a stochastic expansion

Ty

(6.1) v(x,&) =Y vilx) ve(©),

(=1

where {v;(x)} is a set of given deterministic spatial functions. We note that there are several
possible interpretations of such a setup [24, 30]. Assuming fixed geometry, the stochastic
viscosity is equivalent to the Reynolds number being stochastic and, for example, to a scenario
when the volume of fluid moving into a channel is uncertain. Consider the discretization of
(2.3) by a div-stable mixed finite element method, and let the bases for the velocity and
pressure spaces be denoted by {¢;}1*; and {p;}.?,, respectively. We further assume that we
have a discrete approximation of the steady-state solution of the stochastic counterpart of

(2.3), given as®
(5,0~ 3 S undi(@)vn(©) = S Bu(@)en(©),
k=1 i=1 k=1
p(, )= Y > pinei(@)n(€) =D pr(@)vr(S).
k=1 j=1 k=1

We are interested in a stochastic counterpart of the generalized eigenvalue problem (2.2),
which we write as

(6.2) T(€)v = AM,v,

whereM,, is the deterministic (shifted) mass matrix from (2.5), and J (&) is the stochastic
Jacobian matrix operator given by the stochastic expansion

n
(6.3) T(€) =Y Tehu(9).
/=1
The expansion is built from matrices J, € R™*™ ¢ =1,...,n, such that
[ A BT [ F 0 _ ~
j1_|:B 0 :|7 k7f_|:0 0:|7 6_27'”7”7
where n = max (n,,n¢), and Fy is a sum of the vector-Laplacian matrixAy, the vector-

convection matrix/Ny, and the Newton derivative matrix Wy,

Fy=Ap+ Ny + Wy,

3Techniques for computing these approximations were studied in [18, 30].
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where

Ay = laga), agap = /D ve(z) Vo : Vo, (=1,...,n,,

Ny = [ng,ap] , Neab = /D (g - V) - ¢a, (=1,...,n¢,

W = [we,ap) W ah = /D (¢p - Viig) - ¢, C=1,...,ng,
and if n, > ng, we set Ny = Wy = 0 for £ = ngiq,...,n,, and if n, < ng, we set Ay = 0 for
¢ =mnyq1,...,n¢ In the numerical experiments, we use the stochastic Galerkin method from

[30] to calculate the terms iy for the construction of the matrices N;. The divergence matrix
B is defined as

B:[bcd]a bcd:_/DSOC(v'(bd)’

and the velocity mass matrix G is defined as

G = [gap] , Gab = /D Db Pa-

7. Numerical experiments. We implemented the method in MATLAB using the IFISS
3.5 package [6], and we tested the algorithms using two benchmark problems: flow around an
obstacle, and an expansion flow around a symmetric step. The stochastic Galerkin methods
were used to solve both the Navier—Stokes problem (see [18, 30] for full description) and the
eigenvalue problem (3.3), which was solved using the inexact Newton iteration from section
5. The sampling methods (Monte Carlo and stochastic collocation) entail generating a set of
sample viscosities from (6.1), and for each sample solving a deterministic steady-state Navier—
Stokes equation followed by a solution of a deterministic eigenvalue problem (4.2) with a matrix
operator corresponding to sampled Jacobian matrix operator (6.3), where the deterministic
eigenvalue problems at sample points were solved using function eigs in MATLAB. For the
solution of the Navier—Stokes equation, in both sampling and stochastic Galerkin methods,
we used a hybrid strategy in which an initial approximation was obtained from the solution
of the stochastic Stokes problem, after which several steps of Picard iteration were used to
improve the solution, followed by Newton iteration. A convergent iteration stopped when the
Euclidean norm of the algebraic residual was smaller than 10~%; see [30] for more details.
Also, when replacing the mass matrixM by the shifted mass matrix M, (see (2.4) and (2.5)),
we set 0 = —1072 as in [5]. The 300 eigenvalues with the largest real part of the deterministic
eigenvalue problem with mean viscosity v; for each of the two examples are displayed in
Figure 7.1.

7.1. Flow around an obstacle. For the first example, we considered flow around an obsta-
cle in a similar setup as studied in [30]. The domain of the channel and the discretization are
shown in Figure 7.2. The spatial discretization used a stretched grid with 1008 Q2— Q1 finite
elements. We note that these elements are referred to as Taylor—-Hood in the literature. There
were 8416 velocity and 1096 pressure degrees of freedom. The viscosityr(z, ) was taken to be
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Figure 7.1. The 300 eigenvalues with the largest real part of the matrices K1 for the two examples: flow
around an obstacle (left), and expansion flow around a symmetric step (right). The rightmost eigenvalues are
indicated by a red cross.

3 4 5 6 7 8

Figure 7.2. Finite element mesh for the flow around an obstacle problem.

a truncated lognormal process transformed from the underlying Gaussian process [11]. That
is, ¥e(&), £ = 1,...,n,, is a set of Hermite polynomials and, denoting the coefficients of the
Karhunen-Loeve expansion of the Gaussian process byg;(z) and n; =& — g5, j =1,...,mg,
the coefficients in expansion (6.1) were computed as

ve(z) = ﬂ exp | go + %Z (gj(x))Q
j=1

The covariance function of the Gaussian field, for points X1 = (z1,y1) and Xy = (22, y2)
inD, was chosen to be

(7.1) C (X1, Xo) = 02 exp <_ ’$2L$$1‘ _ \y2Lyy1’> :

where L, and L, are the correlation lengths of the random variables &;, ¢ = 1,...,m¢, in the =
and y directions, respectively, and o4 is the standard deviation of the Gaussian random field.
The correlation lengths were set to be equal to 25% of the width and height of the domain.
The coefficient of variation C'oV of the lognormal field, defined as CoV = o, /v1, where o,
is the standard deviation and 14 is the mean viscosity, was 1% or 10%. The viscosity (6.1)
was parameterized using m¢ = 2 random variables. According to [21], in order to guarantee a
complete representation of the lognormal process by (6.1), the degree of polynomial expansion
of v(z,&) should be twice the degree of the expansion of the solution. We followed the same

strategy here. Therefore, the values of n¢ and n, are (cf., e.g. [12, p. 87] or [33, section 5.2])
_ (metp)! o (met2p)!

melpl s el For the gPC expansion of eigenvalues/eigenvectors (3.5), the

3
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Figure 7.3. Monte Carlo samples of 25 eigenvalues with the largest real part for the flow around an obstacle
with CoV = 1% (left) and CoV = 10% (right). The eigenvalues of the mean problem are indicated by circles.

maximal degree of gPC expansion is p = 3, so then n¢ = 10 and n,, = 28. We used 1 x 103
samples for the Monte Carlo method and Smolyak sparse grid with Gauss—Hermite quadrature
points and grid level4 for collocation; see, e.g., [17] for discussion of quadrature rules. With
these settings, the size of {H,},”, in (5.3) was 10 x 10 x 28 with 203 nonzeros, and there
were ng = 29 points in the sparse grid. As a consequence, the size of the stochastic Galerkin
matrices is n¢(n,, +np) = 95120, the matrix associated with the Jacobian is fully block dense,
and the mass matrix is block diagonal, but we note that these matrices are never formed in
implementation. For the solution of the Navier—Stokes problem we used the hybrid strategy
with 6 steps of Picard iteration followed by at most 15 steps of Newton iteration. We used
mean viscosity v; = 5.36193 x 1073, which corresponds to Reynolds number Re = 373, and
the rightmost eigenvalue pair is 0.0085 £ 2.25514; see the left panel in Figure 7.1. Figure 7.3
displays Monte Carlo realizations of the 25 eigenvalues with the largest real part for the values
CoV = 1% and CoV = 10%. It can be seen that the rightmost eigenvalue is relatively less
sensitive to perturbation compared to the other eigenvalues, and since its real part is well
separated from the rest of the spectrum, it can be easily identified in all runs of a sampling
method. Figure 7.4 displays the probability density function (pdf) estimates of the rightmost
eigenvalue with the positive imaginary part obtained directly by Monte Carlo, the stochastic
collocation, and stochastic Galerkin methods, for which the estimates were obtained using
MATLAB function ksdensity (in 2D) for sampled gPC expansions. Figure 7.5 shows plots
of the estimated pdf of the real part of the rightmost eigenvalue. In both figures we can
see a good agreement of the plots in the left column corresponding to CoV = 1% and in
the right column corresponding to CoV = 10%. In Table 7.1 we tabulate the coefficients of
the gPC expansion of the rightmost eigenvalue with positive imaginary part computed using
the stochastic collocation and Galerkin methods. A good agreement of coefficients can be
seen, in particular, for coefficients with value much larger than zero, specifically with k =
1,2,4,6,7, and 9. Finally, in Table 7.2 we examine the inexact line-search Newton iteration
from Algorithm 1. For the line-search method, we set p = 0.9 for the backtracking and
¢ = 0.25. The initial guess is set using the rightmost eigenvalue and corresponding eigenvector
of the eigenvalue problem (5.15) concatenated by zeros. The nonlinear iteration terminates
when the norm of the residual |7, [, < 1071%. The linear systems in line 4 of Algorithm 1 are
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Figure 7.4. Plots of the pdf estimate of the rightmost eigenvalue with positive imaginary part obtained
using Monte Carlo (top), stochastic collocation (middle), and stochastic Galerkin method (bottom) for the flow
around an obstacle with CoV = 1% (left) and CoV = 10% (right).

solved using GMRES with the mean-based preconditioner (Algorithm 2), constraint mean-
based preconditioner (Algorithm 3), and its updated variant discussed in section 5.2.1, and the
constraint hierarchical Gauss—Seidel preconditioner (Algorithm 4-5), which was used without
truncation of the matrix-vector multiplications and also with truncation, setting p, = 2, as
discussed in section 5.2. For the mean-based preconditioner we used egre = €1 = 0.97, which
worked best in our experience, and ere = €, = 1 otherwise. For the constraint mean-based
preconditioner the matrixMgyp from (5.22) was factored using LU decomposition, and the
updated variant from section 5.2.1 was used also in the constraint hierarchical Gauss—Seidel
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Figure 7.5. Plots of the pdf estimate of the real part of the rightmost eigenvalue obtained using Monte Carlo
(MC), stochastic collocation (SC), and stochastic Galerkin method (SG) for the flow around an obstacle with
CoV =1% (left) and CoV = 10% (right).

preconditioner. First, we note that the performance of the algorithm with the mean-based
preconditioner was very sensitive to the choice of ere and ey, and it can be seen that it
is quite sensitive also to CoV. On the other hand, the performance of all variants of the
constraint preconditioners appear to be far less sensitive, and we see only a mild increase in
numbers of both nonlinear and GMRES iterations. Next, we see that updating the constraint
mean-based preconditioner reduces the numbers of GMRES iterations, in particular in the
latter steps of the nonlinear method. Finally, we see that using the constraint hierarchical
Gauss—Seidel preconditioner further decreases the number of GMRES iterations; for smaller
CoV it may be suitable to truncate the matrix-vector multiplications without any change in
iteration counts, and even though we see with CoV = 10% an increase in number of nonlinear
steps, the overall number of GMRES iterations remains smaller than when the two variants
of the constraint mean-based preconditioner were used.

7.2. Expansion flow around a symmetric step. For the second example, we considered
an expansion flow around a symmetric step. The domain and its discretization are shown in
Figure 7.6. The spatial discretization used a uniform grid with 976 Q.— P _1 finite elements,
which provided a stable discretization for the rectangular grid; see [8, p. 139]. There were
8338 velocity and 2928 pressure degrees of freedom. For the viscosity we considered a random
field with affine dependence on the random variables £ given as

Ny

(72) V(CE,€) :V1+UVZV€(93)§Z—17

(=2

where 11 is the mean and o, = CoV - v, the standard deviation of the viscosity, n, = m¢ + 1,
and v = V3Ave(z) with {(Ag,ve(z))},=, are the eigenpairs of the eigenvalue problem
associated with the covariance kernel of the random field. As in the previous example, we
used the values CoV = 1% and 10%. We considered the same form of the covariance kernel
as in (7.1),

L, L,
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Table 7.1
The 10 coefficients of the gPC' expansion of the rightmost eigenvalue with positive complex part for the flow
around an obstacle problem with CoV = 1% and 10% computed using stochastic collocation (SC), and stochastic
Galerkin method (SG). Here d is the polynomial degree and k is the index of basis function in expansion (3.5).

d k SC SG
CoV = 1%

0 1 8.5726E-03 + 2.2551E + 00 i 8.5726E-03 + 2.2551E 4+ 00 i

1 2 —6.5686E-03 — 2.2643E-03 i —6.5686E-03 — 2.2643E-03 i
3 1.1181E-16 — 2.0817E-14 i 2.6512E-17 + 8.3094E-17 i

2 4 —1.1802E-06 — 2.4274E-05 i —1.2055e-06 — 2.4200E-05 i
5 3.8351E-15 — 4.4964E-15 i 8.9732E-20 — 2.0565E-19 i
6 —3.3393E-06 + 4.0603E-05 i —3.3527E-06 + 4.0641E-05 i

3 7 —1.0635E-07 4+ 4.1735E-07 i —8.5671E-08 + 3.5926E-07 i
8 7.8095E-16 +6.1617E-15 i —4.3191E-22 — 8.3970E-21 i
9 —4.6791E-07 + 5.1602E-08 i —4.4762E-07 — 6.0766E-09 i
10 2.2155E-15+4.6907E-15 i 1.2691E-154 2.9181E-16 i

CoV = 10%

0 1 1.3420E-02 4+ 2.2577E + 00 i 1.3419E-02 4 2.2576E + 00 i

1 2 —6.6200E-02 — 2.2034E-02 i —6.6243E-02 — 2.2018E-02 i
3 1.6011E-15—1.0297E-14 i 1.1672E-15 + 8.8396E-16 i

2 4 —2.2415E-04 — 2.5416E-03 i —1.0889E-04 — 2.4178E-03 i
5 8.5869E-17 — 1.0547E-15 i 1.1865E-17 4+ 6.5559E-17 i
6 —2.7323E-04 + 4.1219E-03 i —2.1977E-04 4+ 4.1437E-03 i

3 7 —4.8106E-05 + 3.556E-04 i 1.3510E-04 4 9.1486E-05 1
8 2.8365E-15 + 6.1062E-15 i 8.0683E-19 + 5.3753E-18 i
9 —4.5696E-04 + 2.7795E-06 i —4.1149E-04 — 1.8160E-04 i
10 1.7408E-15 + 1.3101E-14 i 1.3975E-15 4 3.5152E-16 i

Table 7.2

The number of GMRES iterations in each step of inexact line-search Newton method (Algorithm 1) for
computing the rightmost eigenvalue and corresponding eigenvectors of the flow around an obstacle problem
with CoV = 1% (left) and 10% (right) and with the stopping criteria ||r.|l2 < 107'° and different choices of
preconditioners: mean-based (MB) from Algorithm 2, constraint mean-based (cMB) from Algorithm 3 and its
updated variant (¢cMB,) from section 5.2.1, and the constraint hierarchical Gauss—Seidel preconditioner (chGS)
from Algorithm 4-5 and also with truncation, setting pr = 2 (chGSs).

CoV = 1% CoV =10%

step MB cMB cMB, chGS chGS; MB cMB cMB, chGS chGS,
1 2 1 1 1 1 7 1 1 1 1
2 2 1 1 1 1 6 3 2 3 3
3 6 3 2 1 1 13 4 4 3 4
4 9 6 3 2 2 10 8 7 3 4
5 15 10 6 3 3 15 16 13 4 5
6 14 8 8
7 25

8 32

9 67
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Figure 7.6. Finite element mesh for the expansion flow around a symmetric step.

and the correlation lengths were set to 12.5% of the width and 25% of the height of the
domain. We assume that the random variables {&}Zfl follow a uniform distribution over
(—1,1). We note that (7.2) can be viewed as a special case of (6.1), which consists of only
linear terms of¢. For the parametrization of viscosity by (7.2) we used the same stochastic
dimension m¢ and degree of polynomial expansionp as in the previous example: m¢ = 2 and
p = 3, so then ng = 10 and n, = me +1 = 3. We used 1 X 103 samples for the Monte Carlo
method and Smolyak sparse grid with Gauss-Legendre quadrature points and grid leveld
for collocation. With these settings, the size of {H,},~; in (5.3) was 10 x 10 x 3 with 34
nonzeros, and there were n, = 29 points on the sparse grid. As a consequence, the size of
the stochastic Galerkin matrices is 112660, and the matrix associated with the Jacobian has
in this case a block-sparse structure; see, e.g., [17, p. 88]. For the solution of the Navier—
Stokes problem we used the hybrid strategy with 20 steps of Picard iteration followed by
at most 20 steps of Newton iteration. We used mean viscosity v; = 4.5455 x 1073, which
corresponds to Reynolds number Re = 220, and the rightmost eigenvalue is 5.7963 x 10~*
(the second largest eigenvalue is —8.2273 x 10~2) see the right panel in Figure 7.1. Figure 7.7
displays Monte Carlo realizations of the 25 eigenvalues with the largest real part. As in the
previous example, it can be seen that the rightmost eigenvalue is relatively less sensitive to
perturbation compared to the other eigenvalues, and it can be easily identified in all runs of
a sampling method. Figure 7.8 displays the probability density function (pdf) estimates of
the rightmost eigenvalue obtained directly by Monte Carlo, the stochastic collocation, and
stochastic Galerkin methods, for which the estimates were obtained using MATLAB function
ksdensity for sampled gPC expansions. We can see a good agreement of the plots in the left
column corresponding to CoV = 1% and in the right column corresponding to CoV = 10%.
In Table 7.3 we tabulate the coefficients of the gPC expansion of the rightmost eigenvalue
computed using the stochastic collocation and stochastic Galerkin methods. A good agreement
of coefficients can be seen, in particular, for coefficients with larger values. Finally, we examine
the inexact line-search Newton iteration from Algorithm 1. For the line-search method, we
used the same setup as before with p = 0.9 and ¢ = 0.25. The initial guess is set using
the rightmost eigenvalue and corresponding eigenvector of the eigenvalue problem (5.15), just
with no imaginary part, concatenated by zeros. The nonlinear iteration terminates when the
norm of the residual ||7,]|, < 1071%. The linear systems in line 4 of Algorithm 1 are solved
using the right-preconditioned GMRES method as in the complex case. However, since the
eigenvalue is real, the generalized eigenvalue problem as written in (5.5) has the (usual) form
given by (3.3), and all algorithms formulated in this paper can be adapted by simply dropping
the components corresponding to the imaginary part of the eigenvalue problem, for example,
the constraints mean-based preconditioner (Algorithm 3), and specifically (5.22) reduces to

K| —¢ M, —Mw?
McMB = ! R?(g?e 0 Re
—WRe
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Figure 7.7. Monte Carlo samples of 25 eigenvalues with the largest real part for the flow around an obstacle
with CoV = 1% (left) and CoV = 10% (right). The eigenvalues of the mean problem are indicated by circles.
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Figure 7.8. Plots of the pdf estimate of the real part of the rightmost eigenvalue obtained using Monte
Carlo (MC), stochastic collocation (SC), and stochastic Galerkin method (SG) for the expansion flow around
a symmetric step with CoV = 1% (left) and CoV = 10% (right).

and in the mean-based preconditioner (Algorithm 2) we also modified (5.19) as

Merip = Ky — 6ReMReI . 0
¢ 0 wg)g (K1 — EReMReI)_l wg)e) ’
that is, we used [ instead of M, in the shift of the matrix K. We also adapted the constraint
hierarchical Gauss—Seidel preconditioner (Algorithm 4-5), which was used as before without
truncation of the matrix-vector multiplications and also with truncation, setting p; = 2, as
discussed in section 5.2. For the mean-based preconditioner we used ege = 0.97, but the pre-
conditioner appeared to be far less sensitive to a specific value ofege, and ere = 1 otherwise.
We note that this way the algorithms are still formulated for a generalized nonsymmetric
eigenvalue problem unlike in [19], where we studied symmetric problems, and in implemen-
tation we used a Cholesky factorization of the mass matrix in order to formulate a standard
eigenvalue problem. From the results in Table 7.4 we see that for all preconditioners the
overall number of nonlinear steps and GMRES iterations increases for larger C'oV’; although,
all variants of the constraint preconditioner outperform the mean-based preconditioner and
the total number of iterations remains relatively small. Next, the performance with constraint
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Table 7.3
The 10 coefficients of the gPC expansion of the rightmost eigenvalue for the expansion flow around a
symmetric step problem with CoV = 1% and 10% computed using stochastic collocation (SC), and stochastic
Galerkin method (SG). Here d is the polynomial degree and k is the index of basis function in expansion (3.5).

d k SC SG SC SG
CoV = 1% CoV =10%

0 1 5.7873E-04 5.7873E-04 4.8948E-04 4.8927E-04

1 2 —1.5948E-04 —1.5948E-04 —1.5890E-03 —1.5877E-03
3 —2.3689E-04 —2.3689E-04 —2.3619E-03 —2.3605E-03

2 4 —2.4179E-07 —2.6041E-07 —2.4472E-05 —2.6501E-05
5 —8.2562E-07 —8.7937E-07 —8.3136E-05 —8.8911E-05
6 —5.6059E-07 —5.9203E-07 —5.6429E-05 —5.9831E-05

3 7 7.7918E-10 8.2134E-10 5.7810E-07 8.5057E-07
8 2.5941E-09 3.9327E-09 2.8439E-06 4.022E-06
9 3.8788E-09 5.5168E-09 4.0315E-06 5.6217E-06

[
o

1.3002E-09 2.2685E-09 1.6668E-06 2.3171E-06

Table 7.4
The number of GMRES iterations in each step of inexact line-search Newton method (Algorithm 1) for
computing the rightmost eigenvalue and corresponding eigenvectors of the expansion flow around a symmetric
step problem with CoV = 1% (left) and 10% (right) and with the stopping criteria ||rs]|2 < 107° and different
choices of preconditioners: mean-based (MB) from Algorithm 2, constraint mean-based (¢cMB) from Algorithm 3
and its updated variant (¢cMB,) from section 5.2.1, and the constraint hierarchical Gauss—Seidel preconditioner
(chGS) from Algorithm 4-5 and also with truncation, setting py = 2 (chGS2).

CoV =1% CoV = 10%
step MB cMB cMB, chGS chGS; MB cMB cMB, chGS chGS,
1 19 4 4 2 2 23 6 6 3 3
2 17 4 4 3 3 20 6 6 4 4
3 15 3 3 3 3 19 6 6 4 4
4 15 5 5 4 4
5 14 5 5 3 3
6 23 8 8 5 5

preconditioners seems not to improve with the updating discussed in section 5.2.1, which is
likely since the numbers of iterations are already low. Finally, using the constraint hierarchical
Gauss—Seidel preconditioner reduces the number of GMRES iterations, which is slightly more
significant for larger values of CoV. The computational cost of the preconditioner may be
reduced by using the truncation of the matrix-vector multiplications; specifically we see that
the overall iteration counts with and without the truncation are the same.

8. Conclusion. We studied inexact stochastic Galerkin methods for linear stability analy-
sis of dynamical systems with parametric uncertainty and a specific application: the Navier—
Stokes equation with stochastic viscosity. The model leads to a generalized eigenvalue problem
with a symmetric mass matrix and nonsymmetric stiffness matrix, which was given by an affine
expansion obtained from a stochastic expansion of the viscosity. For the assessment of linear
stability we were interested in characterizing the rightmost eigenvalue using the generalized
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polynomial chaos expansion. Since the eigenvalue of interest may be complex, we consid-
ered separated representation of the real and imaginary parts of the associated eigenpair. The
algorithms for solving the eigenvalue problem were formulated on the basis of line-search New-
ton iteration, in which the associated linear systems were solved using the right-preconditioned
GMRES method. We proposed several preconditioners: the mean-based preconditioner, the
constraint mean-based preconditioner, and the constraint hierarchical Gauss—Seidel precon-
ditioner. For the two constraint preconditioners we also proposed an updated version, which
adapts the preconditioners to the linear system using the Sherman—Morrison—Woodbury for-
mula after each step of Newton iteration. We studied two model problems: one when the
rightmost eigenvalue is given by a complex conjugate pair, and another when the eigenvalue is
real. The overall iteration count of GMRES with the constraint preconditioners was smaller
compared to the mean-based preconditioner, and the constraint preconditioners were also less
sensitive to the value of CoV. Also we found that updating the constraint preconditioner after
each step of Newton iteration and using the off-diagonal blocks in the action of the constraint
hierarchical Gauss—Seidel preconditioner may further decrease the overall iteration count, in
particular when the rightmost eigenvalue is complex. Finally, for both problems the prob-
ability density function estimates of the rightmost eigenvalue closely matched the estimates
obtained using the stochastic collocation and also with the direct Monte Carlo simulation.

Appendix A. Computations in inexact Newton iteration. The main component of a
Krylov subspace method, such as GMRES, is the computation of a matrix-vector product.
First, we note that the algorithms make use of the identity

(A.1) (Ve W)vec(U) = vec (WUVT) .

Let us write a product with Jacobian matrix from (5.13) as

OURe
=5/-(n) ~(n) () 1(n)\ | Vm
DJ , Al A v 7
(URe UIm Re Im ) (5%\Re
5)‘Im
where | | ; i
(A.2) l/)j(i_}gg, 171(:1), S‘Qe)? 5‘&?) - Re Im Re Im

—2Cre —3Cim 0 0 |’

with ARe, Amm, BRe, Bm, and CRre, Crn denoting the matrices in (5.9)—(5.12). Then, using
(5.17) and (A.1), the matrix-vector product entails evaluating

B [007 @ K] -E[(ADT0) 90T @ M,]

(A3) AReOTURe = OURe
_ T T
BT 0 00T @ M,

[vee (S0, KedVie ) —vee (3275, Mol Moo Ve HY )

—vee (04 M Mo 0 Ve HY )

Copyright (© by SIAM and ASA. Unauthorized reproduction of this article is prohibited.



Downloaded 09/29/22 to 130.85.59.150 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

1126 BEDRICH SOUSEDIK AND KOOKJIN LEE

E(MNYT0) 00T @ M,
(A4) A1 001, = OUIm
EWUT o K] -E[\) W) 0w’ 0 M,]

[ vee (3275, A Moo Vi HY )

vee (S, KedVie Y ) —vee (3275, Mol Moo Ve HY )

-—Vec (E?il 6)\R674MGVP({Z)HZT) |

_EWT @ (0T e M,)slY

(A5) BReéj\Re = 6XRB = 7
—E[97 @ (97 M,)o" | —vee (Z?il 5ARe,gMUVI§;}>HZT)
[ EpTe@eter)p ] vec (Z?il At Mo Vi HY )
—E[T @ (W7o M,)|sl | —vee (Y245, Ao Mo Vit HY )
(A7)
o7 (Hy ® I, )6Tg,
L E[¥ @ (o) w0l oL,)]] :
3 OhedURe = = . O%Re = = | {0 (Hy, © I,)00Re] | °
L. 0 =
(A.8)
] . ]
1 0 (n)T
_iclmééIm - - (5’[71111 = — T}Im (Hl & Inm)(gﬁlm ,
E[¥ @ (o) 0T @1,,)] :
L vl(gl)T(Hns ® Inm)&_)lm 1

and the right-hand side of (5.13) is evaluated using

BT Ko —E[(A\ " 0) 007 M, ol +E[(AL 0) 007 @ M,]o
rn) —
B[ 0 Kol ~E[(A, ) 9T 0 M, o) B[ 00T e Moy
e (S 7)) v (2 0 )

vee (g Ko Vi HE ) —vee (07, M Mo Vit HT ) —vee (245, A Mo Vi BT )
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and

E[W @ (00" (0! @ I, )ol)—1)]
G — 7
E[¥ (0T (@007 @ 1, )o'™)-1)]

Im Im

where, using * for either Re or Im, the ith row of G(™ is

{G(”)} =R @@ @ 1, )oi™) — i,
(

TR 0T @ I, 6™ — 6,
and the first term above is evaluated as
TR 0T @ I, 0l = o (H; @ I, )0l
or, denoting the trace operator bytr, this term can be also evaluated as
I TE T © 1, o = (VBT = eV TV ).

Appendix B. Parameters used in numerical experiments. In addition to the description
in section 7, we provide in Table B.1 an overview of the main parameters used in the numerical
experiments. Besides that, we used the following settings in both experiments: the gPC
parameters mg = 2, p = 3, ne = 10; for the sampling methods, nyc = 1 x 103, ng = 29;
for the inexact Newton iteration, p = 0.9, ¢ = 0.25, stopping criterion |||, < 1071%; for
the preconditioners, ere = € = 0.97 (the mean-based preconditioner) and ere = €y = 1
(otherwise).

Table B.1
The main parameters used in the numerical experiments.

Section 7.1 Section 7.2
problem Flow around an obstacle  Expansion flow around a symmetric step
FEM Q2_Q1 Qz—Pfl
nelem/n., /n, 1008/8416,/1096 976,/8338/2928
Re 373 220
A 0.0085 4 2.25514 5.7963 x 1074
ny 28 3
quadrature (in SC) Gauss—Hermite Gauss-Legendre

Solving the Navier—Stokes problem (see [30] for details):

max Picard steps 6 20
max Newton steps 15 20
nltol 1078 1078
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